JP7115639B2 - 太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システム - Google Patents

太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システム Download PDF

Info

Publication number
JP7115639B2
JP7115639B2 JP2021524517A JP2021524517A JP7115639B2 JP 7115639 B2 JP7115639 B2 JP 7115639B2 JP 2021524517 A JP2021524517 A JP 2021524517A JP 2021524517 A JP2021524517 A JP 2021524517A JP 7115639 B2 JP7115639 B2 JP 7115639B2
Authority
JP
Japan
Prior art keywords
solar cell
series
impedance
string
increment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021524517A
Other languages
English (en)
Other versions
JPWO2020245884A1 (ja
Inventor
孝之 森岡
秀忠 時岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020245884A1 publication Critical patent/JPWO2020245884A1/ja
Application granted granted Critical
Publication of JP7115639B2 publication Critical patent/JP7115639B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

本願は、太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムに関する。
太陽電池モジュールは、例えば、単結晶若しくは多結晶のシリコン基板を用いて太陽電池セルを形成する結晶系太陽電池、又は、ガラス基板上にシリコンの薄膜を堆積して太陽電池セルを形成する薄膜太陽電池を直列又は並列に接続してパネル化し、外枠であるフレーム及び端子ボックスを備えつけることで構成される。
この太陽電池モジュールを複数準備し、複数の太陽電池モジュールの太陽電池セルを直列に接続し、これらの太陽電池モジュールのフレームを共通の金属製架台に固定することによって、太陽電池ストリングが構成される。
この太陽電池ストリングが複数アレイ状に配置され、送電ケーブル、接続箱及びパワーコンディショナと組み合わせて、太陽光発電システムが構成される。このような太陽光発電システムは、一般の家庭用発電用途に留まらず、1MW以上の発電量を持つ大規模な太陽光発電所にも使用されている。
一般に、太陽電池モジュールは、機械的に動作する部分がなく、その寿命は20年以上と言われている。しかしながら、実際には、様々な原因により、運転開始から数年で不具合が発生した事例が報告されている。不具合の原因としては、例えば、太陽電池セル内の発電層の劣化若しくは電極部の腐食による抵抗増大、太陽電池セルを保護するために太陽電池セルとガラスの間に充填された封止材の光透過率の低下、絶縁劣化、太陽電池モジュール内の配線抵抗増大、又は、太陽電池モジュールを固定している金属製架台の接地不良等が知られている。
これらの不具合により、太陽電池モジュールの出力低下が起こり、動作不良に至る場合がある。そのため、太陽光発電システムの信頼度を高め、さらなる普及を図るためにも、太陽電池モジュール又は太陽電池ストリングの故障の有無を診断できる技術が求められている。例えば、太陽電池ストリングの故障を診断する方法として、太陽電池ストリングのインダクタンスを測定することにより、太陽電池ストリングの故障を診断する方法が提案されている(例えば、特許文献1参照)。
特許第6214845号
しかしながら、従来の太陽電池ストリングの故障を診断する方法では、太陽電池ストリング単位での故障診断であり、太陽電池ストリング内の劣化した太陽電池モジュールを特定することができない。そのため、太陽電池モジュールを1枚ずつ取り外して確認することが必要であり、多大な時間と労力を要するという問題点があった。
そこで、本願は、このような従来の問題点を解決すべくなされたものであって、太陽電池ストリング内の劣化した太陽電池モジュールの位置を特定することができる太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムを提供することを目的とする。
以上の目的を達成するために、本願の太陽電池ストリングの劣化診断装置は、太陽光発電部と導電性のフレームとを有する複数の太陽電池モジュールを備え、複数の太陽電池モジュールの太陽光発電部が電気的に直列接続され、複数の太陽電池モジュールのフレームが電気的に共通接続された太陽電池ストリングの劣化診断装置であって、太陽電池ストリングの直列接続された複数の太陽光発電部の一端と他端との間の第1インピーダンスの周波数特性を測定し、かつ、太陽電池ストリングの直列接続された複数の太陽光発電部の一端とフレームとの間の第2インピーダンスの周波数特性を測定するインピーダンス測定器と、第1インピーダンスの周波数特性に基づき、太陽電池ストリングの直列接続された複数の太陽光発電部の一端と他端との間の直列抵抗成分の初期値からの第1の増分を算出し、かつ、第2インピーダンスの周波数特性に基づき、太陽電池ストリングの直列接続された複数の太陽光発電部の一端とフレームとの間の抵抗成分の初期値からの第2の増分を算出する解析部と、解析部で算出された第1の増分及び第2の増分に基づき、太陽電池ストリング内の抵抗が増加した太陽電池モジュールの位置を判定する劣化判定部とを備える。
以上のように構成された本願の太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、解析部により、直列接続された複数の太陽光発電部の一端と他端との間の直列抵抗成分の初期値からの第1の増分、及び、直列接続された複数の太陽電池セルの一端とフレームとの間の抵抗成分の初期値からの第2の増分を算出し、解析部で算出された第1の増分及び第2の増分に基づき、劣化判定部が、太陽電池ストリング内の抵抗が増加した太陽電池モジュールの位置を判定する。これにより、太陽電池ストリング内の劣化した太陽電池モジュールの位置を特定することができる。
本願の実施の形態1に係る太陽光発電システム及び太陽電池ストリングの劣化診断装置の概略構成を模式的に示す図。 本願の実施の形態1に係る太陽光発電システム及び太陽電池ストリングの劣化診断装置の接続箱内部の概略構成を示す図。 本願の実施の形態1に係る劣化診断装置の動作を示すフローチャート。 本願の実施の形態1に係る太陽電池ストリングの抵抗増加した太陽電池モジュールの位置ごとの出力端子11-1とフレーム13dとの間の第2インピーダンスの周波数特性の一例を示す図。 本願の実施の形態1に係るパラメータXと抵抗増加した太陽電池モジュール13の位置との関係の一例を示す図。 本願の実施の形態1に係る太陽電池ストリングの等価回路モデルを示す図。 本願の実施の形態1に係る太陽電池ストリングの等価回路モデルを簡略化した図。 本願の実施の形態2に係る太陽光発電システム及び太陽電池ストリングの劣化診断装置の接続箱内部の概略構成を示す図。 本願の実施の形態2に係る劣化診断装置の動作を示すフローチャート。 本願の実施の形態3に係る劣化診断装置の動作を示すフローチャート。 本願の実施の形態4に係る劣化診断装置の動作を示すフローチャート。
はじめに、本願の太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムの構成について、図面を参照しながら説明する。なお、図は模式的なものであり、機能又は構造を概念的に説明するものである。また、以下に示す実施の形態により本願が限定されるものではない。特記する場合を除いて、太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムの基本構成は全ての実施の形態において共通である。また、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通する。
実施の形態1.
図1は、本実施の形態に係る太陽光発電システム及び太陽電池ストリングの劣化診断装置の概略構成を模式的に示す図である。図2は、本実施の形態に係る太陽光発電システム及び太陽電池ストリングの劣化診断装置の接続箱内部の概略構成を示す図である。
図1に示すように、太陽光発電システム100は、太陽電池ストリング10と、太陽電池ストリング10に接続される接続箱20と、接続箱20に接続され、太陽電池ストリング10の劣化を診断する劣化診断装置30と、不図示の送電ケーブル及びパワーコンディショナを備える。太陽電池ストリング10は、正極側に出力端子11-1及び負極側に出力端子11-2を備え、出力端子11-1,11-2は、出力ケーブル12-1,12-2を介して接続箱20に電気的に接続される。また、太陽電池ストリング10は、出力ケーブル12-1,12-2及び接続箱20内の不図示のスイッチ等の切り替え手段を介して、出力端子11-1,11-2は不図示の送電ケーブル及びパワーコンディショナに電気的に接続される。そして、太陽電池ストリング10で発電された電力は、出力端子11-1,11-2から接続箱20を介して、不図示の送電ケーブル及びパワーコンディショナに出力される。
太陽電池ストリング10は、図1に示すように、複数の太陽電池モジュール13を備える。複数の太陽電池モジュール13のそれぞれは、太陽光発電部13aと、端子ボックス13b,13cと、フレーム13dとを備える。ここで、太陽電池ストリング10の例として、図1では、1つの太陽電池ストリング及び5つの太陽電池モジュールを示しているが、太陽電池ストリングは、複数並列に接続されていてもよく、太陽電池モジュールの数も5つに限られず、2つ以上の複数の太陽電池モジュールが直列接続されていればよい。
太陽光発電部13aは、受けた太陽光に応じて発電する。太陽光発電部13aには、例えば、直列又は並列に接続された太陽電池セルが適用される。ここで、太陽電池セルは、PN接合を利用した半導体からなる太陽電池セルであればよく、例えば、太陽電池セルには、単結晶のシリコン基板等からなる結晶系の太陽電池セル、又は、ガラス基板及びシリコンの薄膜などからなる薄膜の太陽電池セル等が適用される。
端子ボックス13b,13cは、正極の端子ボックス13b及び負極の端子ボックス13cを備え、太陽電池モジュール13の裏面側に配設され、太陽光発電部13aの発電電力を取り出す。正極の端子ボックス13bは、正極側の出力端子11-1と電気的に接続され、負極の端子ボックス13cは、負極側の出力端子11-2と電気的に接続されている。これにより、端子ボックス13b,13cで取り出された発電電力は、出力端子11-1,11-2及び接続箱20を介して、太陽電池ストリング10の外部に出力される。
フレーム13dは、金属製フレームなどの導電性のフレームであり、太陽電池モジュール13の外周部に配設される。フレーム13dは、通常、太陽光発電部13a、端子ボックス13b,13c及び出力端子11-1,11-2と電気的に絶縁されている。
太陽電池ストリング10の複数の太陽電池モジュール13は、図1に示すように、複数の太陽光発電部13aが出力ケーブル14-1,14-2によって電気的に直列接続されている。つまり、直列接続として、本実施の形態では、隣接する任意の二つの太陽電池モジュール13のうち、一方の太陽電池モジュール13の負極側の出力ケーブル14-2と、他方の太陽電池モジュール13の正極側の出力ケーブル14-1とが接続されている。この結果、一端に位置する太陽電池モジュール13の出力ケーブル14-1と、他端に位置する太陽電池モジュール13の出力ケーブル14-2とが、直列接続に用いられない出力ケーブルとなる。
複数の太陽電池モジュール13の複数のフレーム13dは、図1に示すように、電気的に共通接続される。このような共通接続として、本実施の形態では、隣接する任意の二つの太陽電池モジュール13のうち、一方の太陽電池モジュール13のフレーム13dと、他方の太陽電池モジュール13のフレーム13dとが接地配線15-1,15-2を介して電気的に接続され、他端に位置する太陽電池モジュール13のフレーム13dの接地配線15-2は接地される。なお、フレーム13d同士の接続は、このような直列接続に限ったものではなく、例えば、太陽電池モジュール13が、金属製の架台に固定されて屋外設置されている場合には、接地配線の代わりに、架台によって、フレーム13dの電気的な接続が行われてもよい。また、一端に位置する太陽電池モジュール13のフレーム13dの接地配線15-1は、隣接する太陽電池モジュール13のフレーム13dと電気的に接続されるだけでなく、接地配線16を介して、接続箱20に電気的に接続される。
接続箱20は、図2に示すように、一端が出力ケーブル12-1に接続されたDCカット用のブロッキングキャパシタ22と、一端が出力ケーブル12-2に接続されたスイッチ24と、一端が接地配線16に接続された共振点調整用のインダクタ26と、インダクタ26の他端と接続されたスイッチ28とを備える。ブロッキングキャパシタ22の他端及びスイッチ24,28の他端は、同軸ケーブル40に接続される。
同軸ケーブル40は、図2に示すように、中心導体42と、絶縁性の誘電体44と、外部導体46とを備える。中心導体42は、ブロッキングキャパシタ22の他端と電気的に接続され、後述する図1の劣化診断装置30のインピーダンス測定器32の測定端子と接続される。外部導体46は、スイッチ24,28の他端と電気的に接続され、後述する図1の劣化診断装置30のインピーダンス測定器32の接地端子と接続されている。そして、中心導体42と外部導体46とは、誘電体44によって電気的に絶縁されている。
ここで、共振点調整用のインダクタ26及びスイッチ28は、直列に接続されて共振点調整回路を構成している。共振点調整用のインダクタ26の値は、計測すべき第2インピーダンスの共振周波数が、後述するインピーダンス測定器32の測定周波数領域内に入るように選定されればよい。なお、共振点調整用のインダクタ26とスイッチ28との位置関係は、図2の位置関係と逆であってもよい。
また、スイッチ24,28は、手動のトグルスイッチでもよいし、ゲート信号で駆動されるダイオードスイッチ又はMOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)のようなスイッチング素子や、機械式リレー等でもよい。
太陽電池ストリング10の劣化を診断する劣化診断装置30は、図1に示すように、インピーダンス測定器32と、解析部34と、劣化判定部36とを備える。
インピーダンス測定器32は、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の第1インピーダンスの周波数特性を測定し、かつ、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの正極側の一端とフレーム13dとの間の第2インピーダンスの周波数特性を測定する。
具体的に説明すると、図1及び図2に示すように、インピーダンス測定器32は、接続箱20内のブロッキングキャパシタ22を介して、正極側の出力端子11-1に電気的に接続され、接続箱20内のスイッチ24を介して、負極側の出力端子11-2に電気的に接続される。そのため、スイッチ24をON、スイッチ28をOFFとすることで、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の第1インピーダンスの周波数特性を測定することができる。そして、測定された第1インピーダンスの周波数特性から第1インピーダンスの共振点を決定し、共振点に対応する第1インピーダンスの値を後段の解析部34へ出力する。
また、図1及び図2に示すように、インピーダンス測定器32は、接続箱20内のスイッチ28及びインダクタ26を介して、共通接続されたフレーム13dに電気的に接続される。そのため、スイッチ24をOFF、スイッチ28をONとすることで、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の第2インピーダンスの周波数特性を測定することができる。そして、測定された第2インピーダンスの周波数特性から第2インピーダンスの共振点を決定し、共振点に対応する第2インピーダンスの値を後段の解析部34へ出力する。
ここで、インピーダンス測定器32は、測定周波数を実質的に掃引することによって共振点を決定することが可能であることから、本実施の形態では、インピーダンス測定器32は、高周波の測定信号を用いて、第1インピーダンス及び第2インピーダンスの周波数特性を測定する。なお、測定周波数を実質的に掃引するとは、例えば、周波数を連続的に掃引する動作、又は、一定間隔で離散的に掃引する動作を指す。このようなインピーダンス測定器32としては、例えば、ネットワークアナライザ、インピーダンスアナライザ、若しくは、コンビネーションアナライザ等が適用されてもよいし、周波数可変の高周波発信器、電流センサ、電圧センサ、A/D変換器又は演算装置を組み合わせたものが適用されてもよい。
ここで、インピーダンス測定器32は、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの正極側の一端とフレーム13dとの間の第2インピーダンスの周波数特性を測定しているが、正極側に限られず、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの負極側の他端とフレーム13dとの間のインピーダンスを測定しても構わない。
なお、図1の例では、インピーダンス測定器32の筐体が、3Pタイプのコンセント又は接地配線により接地されていることを想定しているが、インピーダンス測定器32の筐体は、必ずしも接地される必要はなく、電気的に浮いていてもよい。また、図1に示す太陽電池ストリング10の接地配線16は、スイッチ28がONの場合に接地配線16によりインピーダンス測定器32の筐体を介して接地されるが、別の接地配線を用いて別途接地してもよい。インピーダンス測定器32の筐体及び太陽電池ストリング10の接地の有無は、本実施の形態に係る太陽電池ストリング10の劣化診断装置30の診断結果に実質的に影響を与えるものではない。
インピーダンス測定器32による第1インピーダンス及び第2インピーダンスの周波数特性の測定は、例えば、太陽電池モジュール13の太陽光発電部13aが発電しない夜間の時間帯など、太陽電池モジュール13が暗状態である時間に実施される。ここで、第1インピーダンス及び第2インピーダンスの周波数特性の測定の最中に、太陽電池モジュール13の受光面に偶発的に光が入射すると、太陽電池モジュール13内の太陽光発電部13aが発電し、端子ボックス13bと端子ボックス13cとの間に、例えば数10~数100V程度までの比較的大きな直流電圧が発生してしまうことになる。
この過電圧からインピーダンス測定器32を保護するため、本実施の形態では、上述したDCカット用のブロッキングキャパシタ22が、太陽電池ストリング10とインピーダンス測定器32の測定端子との間に設けられている。一方、インピーダンス測定器32の測定端子から太陽電池ストリング10に供給される測定信号の周波数は、上述したように比較的高いので、測定信号はブロッキングキャパシタ22を容易に通過することができ、太陽電池ストリング10にまで伝送される。
解析部34は、第1インピーダンスの周波数特性に基づき、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の直列抵抗成分の初期値からの第1の増分ΔRを算出し、かつ、第2インピーダンスに基づき、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の抵抗成分の初期値からの第2の増分ΔRframeを算出する。
詳細は後述するが、解析部34は、インピーダンス測定器32から入力された共振点に対応する第1インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の寄生直列抵抗成分Rとする。解析部34は、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の直列抵抗成分の初期値Rs0からの第1の増分ΔR=R-Rs0を算出する。
また、解析部34は、インピーダンス測定器32から入力された共振点に対応する第2インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の寄生抵抗成分Rframeとする。解析部34は、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の寄生抵抗成分の初期値Rframe0からの第2の増分ΔRframe=Rframe-Rframe0を算出する。
そして、解析部34は、算出した第1の増分ΔR及び第2の増分ΔRframeを劣化判定部36へ出力する。
劣化判定部36は、解析部34で算出された第1の増分ΔR及び第2の増分ΔRfr ameに基づき、太陽電池ストリング10内の抵抗が増加した太陽電池モジュール13の位置を判定する。
詳細は後述するが、劣化判定部36は、解析部34で算出した第1の増分ΔR及び第2の増分ΔRframeにより、太陽電池ストリング10中の抵抗増加位置に依存するパラメータXをX=ΔRframe/ΔRとして算出する。そして、算出されたパラメータXに基づき、太陽電池ストリング10内で抵抗値増加が発生した太陽電池モジュール13を特定する。
ここで、解析部34及び劣化判定部36は、例えば、図示しないプロセッサ若しくはCPU(Central Processing Unit)、及び、半導体メモリ等の記憶装置で構成され、プロセッサ若しくはCPUが、半導体メモリなどの記憶装置に記憶されたプログラムを実行することにより、実現される。また、解析部34及び劣化判定部36だけでなく、インピーダンス測定器32の制御や測定データの保存、転送等の制御なども、プロセッサ若しくはCPUの機能として実現されてもよいし、測定から診断結果の出力までの一連の動作が自動で行われてもよい。
また、本実施の形態では、第1の増分ΔR及び第2の増分ΔRframeの算出を解析部34において行い、パラメータXの算出を劣化判定部36において行う例を説明したが、第1の増分ΔR、第2の増分ΔRframe及びパラメータXの算出を解析部34で行い、劣化判定部36では、解析部34により算出されたパラメータXにも基づき、太陽電池ストリング10内で抵抗値増加が発生した太陽電池モジュール13を特定するだけでも構わない。
以上より、本実施の形態に係る太陽光発電システム100及び太陽電池ストリング10の劣化診断装置30は構成される。
次に、本実施の形態に係る太陽光発電システム100及び太陽電池ストリング10の劣化診断装置30の動作を説明する。図3は、本実施の形態に係る劣化診断装置30の動作を示すフローチャートである。ここで、本実施の形態に係る太陽光発電システム100及び太陽電池ストリング10の劣化診断装置30は、例えば、太陽電池モジュール13の太陽光発電部13aが発電しない夜間の時間帯など、太陽電池モジュール13が暗状態である時間に診断が開始される。
まず、劣化診断装置30が太陽電池ストリング10の診断を開始すると、太陽電池ストリング10は、接続箱20内の不図示のスイッチ等の切り替え手段により、太陽光発電用の不図示の送電ケーブル及びパワーコンディショナと切断され、劣化診断装置30に接続される。
そして、図3に示すように、太陽電池ストリング10の診断を開始すると、第1の解析工程を実施する。
まず、接続箱20のスイッチ24をONとし、太陽電池ストリング10の負極側の端子ボックス13cの出力端子と、同軸ケーブル40の外部導体46及びインピーダンス測定器32の接地端子とを電気的に接続する。そして、接続箱20のスイッチ28をOFFとし、太陽電池モジュール13のフレーム13dを、インピーダンス測定器32の接地端子と電気的に絶縁する(S11)。
次に、スイッチ24をONとし、スイッチ28をOFFとした状態で、インピーダンス測定器32は、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の第1インピーダンスの周波数特性を測定する(S12)。そして、測定された第1インピーダンスの周波数特性から第1インピーダンスの共振点を決定し、共振点に対応する第1インピーダンスの値を後段の解析部34へ出力する。
そして、解析部34は、インピーダンス測定器32から入力された共振点に対応する第1インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の寄生直列抵抗成分Rとする。ステップS12のインピーダンス測定工程が劣化診断装置30を設置してからの初回の測定である初期測定の場合は、解析部34は、半導体メモリ等の記憶装置に寄生直列抵抗成分の初期値Rs0を記録し(S13)、ステップS21の工程へ進む。
ここで、直列抵抗成分Rは、例えば、1kHz~1MHzの間で、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の第1インピーダンスの周波数特性を測定し、得られた共振点の最小値となるインピーダンス値を太陽電池ストリング10の寄生直列抵抗成分Rとしている。
初期測定以降、解析部34は、インピーダンス測定器32から入力された共振点に対応する第1インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の寄生直列抵抗成分Rとする。解析部34は、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の寄生直列抵抗成分Rの初期値Rs0からの第1の増分ΔR=R-Rs0を算出し、算出した第1の増分ΔRを劣化判定部36へ出力する(S14)。
次に、第1の解析工程が終了すると、第2の解析工程を実施する。
まず、接続箱20のスイッチ24をOFFとし、太陽電池ストリング10の負極側の端子ボックス13cの出力端子と、同軸ケーブル40の外部導体46及びインピーダンス測定器32の接地端子とを電気的に絶縁する。そして、接続箱20のスイッチ28をONとし、太陽電池モジュール13のフレーム13dと、インピーダンス測定器32の接地端子とを電気的に接続する(S21)。
次に、スイッチ24をOFFとし、スイッチ28をONとした状態で、インピーダンス測定器32は、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの正極側の一端と太陽電池モジュール13のフレーム13dとの間の第2インピーダンスの周波数特性を測定する(S22)。そして、測定された第2インピーダンスの周波数特性から第2インピーダンスの共振点を決定し、共振点に対応する第2インピーダンスの値を後段の解析部34へ出力する。
そして、解析部34は、インピーダンス測定器32から入力された共振点に対応する第2インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の寄生抵抗成分Rframeとする。ステップS22のインピーダンス測定工程が劣化診断装置30を設置してからの初回の測定である初期測定の場合は、半導体メモリ等の記憶装置に寄生直列抵抗成分の初期値Rframe0を記録し(S23)、初期測定の診断は終了する。
ここで、直列抵抗成分Rframeは、例えば、1kHz~1MHzの間で、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の第2インピーダンスの周波数特性を測定し、得られた共振点の最小値となるインピーダンス値を太陽電池ストリング10の寄生抵抗成分Rframeとしている。
初期測定以降、解析部34は、インピーダンス測定器32から入力された共振点に対応する第2インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の寄生抵抗成分Rframeとする。解析部34は、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の寄生抵抗成分Rframeの初期値Rframe0からの第2の増分ΔRframe=Rframe-Rframe0を算出し、算出した第2の増分ΔR rameを劣化判定部36へ出力する。(S24)。
次に、第2の解析工程が終了すると、第1の劣化判定工程を実施する。
まず、劣化判定部36は、第1の解析工程及び第2の解析工程で算出した第1の増分ΔR及び第2の増分ΔRframeに基づいて、パラメータX=ΔRframe/ΔRを算出する(S31)。
そして、詳細は後述するが、パラメータXは、太陽電池ストリング10内の太陽電池モジュール13の位置に依存するパラメータであるため、劣化判定部36は、パラメータXに基づいて、太陽電池ストリング10において抵抗値の増加が発生した太陽電池モジュール13を特定する(S32)。
このとき、太陽電池ストリング10内の一つの太陽電池モジュール13の抵抗値が、例えば、太陽電池セル内の発電層の劣化若しくは電極部の腐食等により、大幅に増加したと仮定すると、劣化判定部36は、解析部34が算出した第1の増分ΔRが所定の閾値よりも大きいことを判定する。そして、劣化判定部36は、パラメータXに基づき決定された抵抗値の増加が発生した太陽電池モジュール13の位置をユーザに知らせることができる。
ここで、本実施の形態では、第1の解析工程を行った後、第2の解析工程を行ったが、第2の解析工程を行った後、第1の解析工程を行っても構わない。
次に、本実施の形態に係る太陽光発電システム100及び太陽電池ストリング10の劣化診断装置30の詳細な動作原理について説明を行う。
図4は、本実施の形態に係る太陽電池ストリング10の抵抗増加した太陽電池モジュール13の位置ごとの出力端子11-1とフレーム13dとの間の第2インピーダンスの周波数特性の一例を示す図である。図4は、図1の太陽電池ストリング10内のA~Eの太陽電池モジュール13において、どれか一つの太陽電池モジュール13の直列抵抗成分Rが10Ω増加した際の共振点付近の第2インピーダンス周波数特性を示す。
図4に示すように、直列抵抗成分Rの増加がない場合に対し、A~Fの順に共振点におけるインピーダンス値、つまり、直列抵抗成分Rframeが低下する傾向であることがわかる。ここで、図4のFは、太陽電池モジュール13のEと出力ケーブル12-2との間に何らかの原因で10Ωの直列抵抗成分が増加する場合を想定している。
図5は、本実施の形態に係るパラメータXと抵抗増加した太陽電池モジュール13の位置との関係の一例を示す図である。図5は、図4において求めたRframe及びRより算出したパラメータXの値と直列抵抗成分が増加した太陽電池モジュールの位置の関係が示されている。抵抗増加した太陽電池モジュール13がA、B、C、D、E、Fの順に従い、パラメータXの値が1から0に近づく傾向が確認できる。
以下に、パラメータXが太陽電池ストリング10中の抵抗増加位置に依存する理由を詳細に説明する。図6は、本実施の形態に係る太陽電池ストリングの等価回路モデルを示す図である。図7は、本実施の形態に係る太陽電池ストリングの等価回路モデルを簡略化した図である。
図6に示すように、それぞれの太陽電池モジュール13は、電極やケーブル等による直列抵抗成分R、同じく電極やケーブルなどによるインダクタンス成分L、太陽電池セルのpn接合間の容量による直列のキャパシタンス成分C、及び、フレーム間のキャパシタンス成分Cにより構成される。そのため、複数の太陽電池モジュール13の直列抵抗成分Rとインダクタンス成分Lが複数直列に接続され、それぞれの太陽電池モジュール13とフレーム13dとの間は、キャパシタンス成分Cを介して接地配線15-1,15-2に接続された回路モデルで簡易的に示すことができる。
例えば、太陽電池モジュール13のAの直列抵抗成分RsAが、ΔRだけ増加した場合を考える。太陽電池ストリング10の出力端子11-1とフレーム端子間のインピーダンスを測定すると、直列抵抗成分RsAは出力端子11-1とフレーム13dとの間において直列に接続されているため、寄生抵抗成分Rframeの増加分ΔRframeはΔRと等しくなり、パラメータX=ΔRframe/ΔR=1となる。
これに対して、太陽電池モジュール13のBの直列抵抗成分RsBが、ΔRだけ増加した場合を考える。その場合、太陽電池ストリング10の出力端子11-1から流れ込んだ電流は、節点Pにおいて、太陽電池モジュール13のBへ向かう成分と、太陽電池モジュール13のAのCfAに向かう成分が生じる。太陽電池モジュール13のB以降、直列抵抗成分RはΔRだけ増加するが、CfAのインピーダンス増加はないため、寄生抵抗成分Rframeの増加分ΔRframeは、太陽電池モジュール13のAの直列抵抗成分RsAが増加する場合よりも小さくなる。
同様に、太陽電池モジュール13のCの直列抵抗成分RsCが、ΔRだけ増加した場合も、寄生抵抗成分Rframeの増加分ΔRframeは、太陽電池モジュール13のBの直列抵抗成分RsBが増加する場合よりも小さくなる。これを太陽電池モジュール13のEまで繰り返すと、ある太陽電池モジュール13のNの直列抵抗成分RsNがΔR増加した場合の寄生抵抗成分Rframeの増加分ΔRframeをΔRframe(N)とすると、ΔRframe(A)>ΔRframe(B)>ΔRframe(C)>ΔR rame(D)>ΔRframe(E)>ΔRframe(F)が成り立ち、抵抗増加の位置がFに近づくに従い、パラメータXは0に近づく。ここで、抵抗増加の位置がFの場合は、図1で示すように、太陽電池モジュール13のEと出力ケーブル12-2との間に何らかの原因で抵抗が増加した場合を想定しているため、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の寄生抵抗成分R rameの増加には影響せず、寄生抵抗成分Rframeの増加分ΔRframe(F)は0となり、パラメータXも0となる。つまり、パラメータXについても、図5で示したような太陽電池モジュール13の位置に依存した関係を有することになる。
図7は、図6の回路図を数式で説明するために模式的に示した図である。ここでは、それぞれの太陽電池モジュール13において、AからEの太陽電池モジュール13の正極側の端子ボックス13bと負極側の端子ボックス13cとの間のインピーダンスをZ、AからEの太陽電池モジュール13の出力端子11-1とフレーム13dとの間の容量によるアドミタンスをY、角振動数ωとすると、それぞれのインピーダンスZ及びアドミタンスYは、以下のように表されるため、図7の回路はインピーダンスZおよびアドミタンスYを直列及び並列に交互に接続したはしご形回路として示すことができる。ここで、Nは、AからEいずれかの太陽電池モジュール13を示しており、例えば、Aの太陽電池モジュール13の場合、インピーダンスZ及びアドミタンスYとなる。
Figure 0007115639000001
Figure 0007115639000002
それぞれのインピーダンスZ及びアドミタンスをYに基づき、太陽電池モジュール13の出力端子11-1とフレーム13dとの間のインピーダンスZを求めると、以下の式で表すことができる。
Figure 0007115639000003
この式により、太陽電池モジュール13の出力端子11-1と出力端子11-2との間の測定で得られた直列抵抗成分の増加分ΔRをZからZのどれか一つに加算した場合のZをそれぞれの場合で計算する。例えば、太陽電池モジュール13のCの直列抵抗成分がΔR増加した場合、ΔRはZに対して直列に増加する成分であるため、太陽電池モジュール13のCの直列抵抗成分がΔR増加した場合の太陽電池モジュール13の出力端子11-1とフレーム13dとの間のインピーダンスZであるインピーダンスZ(C)は、以下の式で表すことができる。
Figure 0007115639000004
つまり、Zの実数部が寄生抵抗成分Rframeに等しくなるため、太陽電池モジュール13のAからEの直列抵抗成分がそれぞれΔR増加した場合、各太陽電池モジュール13の第2の増分ΔRframeは、上述した関係と同様、ΔRframe(A)>ΔRframe(B)>ΔRframe(C)>ΔRframe(D)>ΔRframe(E)>ΔRframe(F)となることがわかる。そのため、パラメータX(A)からパラメータX(F)についても、図5に示すような関係となり、パラメータXは、太陽電池ストリング10中の抵抗増加した太陽電池モジュールの位置に依存するパラメータとなる。
以上のような理由により、定性的に図5のパラメータXと、太陽電池ストリング10内の太陽電池モジュール13の位置の関係は説明することができる。
太陽電池ストリング10内の太陽電池モジュール13の抵抗増加位置を判定するためには、例えば、事前に、透過回路計算を実行し、パラメータXと太陽電池ストリング10内の太陽電池モジュール13の抵抗増加の位置関係を計算しておく。そして、上述した第1及び第2インピーダンスの周波数特性の測定により得られたパラメータXと、計算値のパラメータXとを比較し、最も近い計算値のパラメータXから太陽電池モジュール13の位置を判定することができる。
ここで、太陽電池ストリング10が同一仕様の太陽電池モジュール13の直列接続で構成される場合、透過回路計算は、一つの太陽電池モジュール13の等価回路から、事前に一つの太陽電池モジュール13のインピーダンスの周波数特性を測定して、等価回路及び回路定数を決定することができる。そして、その値を用いて、太陽電池ストリング10内の太陽電池モジュール13の抵抗値が増加した場合の回路計算を実施し、図5のパラメータXと太陽電池モジュール13の位置関係を求めることができる。この場合の回路計算は、劣化判定部36内の計算機で実行されてもよいし、例えば、外部の計算機で計算し、その結果を劣化判定部36に受け渡してもよい。
以上のように構成される太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、例えば、図1に示すような太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムを設置後、日没2時間後又は日の出2時間前の発電量の十分低い時間帯に、第1の解析工程の初期測定を行い、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の寄生直列抵抗成分Rの初期値Rs0を記録する。同様に、第2解析工程の初期測定を行い、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の寄生抵抗成分Rfr ameの初期値Rframe0を記録する。
その後、毎日、日没2時間後又は日の出2時間前の発電量の十分低い時間帯に、第1の解析工程及び第2の解析工程を実施し、解析部34は、第1の増分ΔR及び第2の増分ΔRframeを算出する。そして、劣化判定部36は、第1の増分ΔR及び第2の増分ΔRframeに基づき、パラメータXを算出し、パラメータXのモニタリングを1日毎に実施する。
例えば、太陽電池セル内の発電層の劣化若しくは電極部の腐食等により増加した直列抵抗成分の第1の増分ΔRの閾値を1Ωと設定する。例えば、日々のモニタリングで行われる第1の解析工程により、第1の増分ΔRが閾値1Ωを超えた場合、劣化判定部36は、パラメータXから抵抗が増加した太陽電池モジュール13の位置を判定する第1の劣化判定工程を実施する。そして、劣化判定部36は、パラメータXに基づき決定された抵抗値の増加が発生した太陽電池モジュール13の位置をユーザに知らせることができる。
以上より、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、太陽電池ストリング内の劣化した太陽電池モジュールの位置を特定することができる。
そのため、従来では、太陽電池ストリング単位でしか故障診断を行うことができず、太陽電池ストリング内の故障した太陽電池モジュールの特定には、多大な時間と労力を要していたが、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、太陽電池ストリング内の劣化した太陽電池モジュールの位置を特定することができるため、太陽電池ストリング内の太陽電池モジュールの故障診断に必要な時間及び労力を大幅に低減することができる。
また、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、インピーダンスの周波数特性の測定において、高周波の信号を用いることができるので、多くの太陽電池モジュールの劣化を診断することができる。また、日没2時間後又は日の出2時間前の発電量の十分低い時間帯である夜間に劣化診断を行うことができるので、劣化診断のために太陽光発電システム全体の太陽光発電の発電量が低減してしまうことを抑制することができる。
実施の形態2.
本実施の形態である太陽光発電システム及び太陽電池ストリングの劣化診断装置は、実施の形態1の劣化診断装置30の解析部34及び劣化判定部36の機能に加え、解析部34が太陽電池ストリング10の直列接続された複数の太陽光発電部13aの負極側の他端とフレーム13dとの間の抵抗成分の初期値からの第3の増分ΔR’frameを算出し、劣化判定部36が太陽電池ストリング10中の抵抗増加位置に依存するパラメータX’をX’=ΔR’frame/ΔRとして算出し、そして、算出されたパラメータX及びパラメータX’に基づき、太陽電池ストリング10内で抵抗値増加が発生した太陽電池モジュール13を特定する。
本実施の形態に係る太陽光発電システム及び太陽電池ストリングの劣化診断装置の概略構成は、実施の形態1の図1と同じであり、本実施の形態の解析部34及び劣化判定部36の特徴部分以外の同様の構成については説明を省略する。図8は、本実施の形態に係る太陽光発電システム及び太陽電池ストリングの劣化診断装置の接続箱内部の概略構成を示す図である。図2と同一符号を付した部分については、実施の形態1の接続箱20と同様に構成されるため、詳細な説明は省略する。
図8に示すように、実施の形態1の接続箱20と同様の構成に加え、接続箱20aは、出力ケーブル12-1に接続されるスイッチ29、出力ケーブル12-2に接続されるスイッチ24a、及び、接地配線16に接続されるインダクタ26の他端と同軸ケーブル40の外部導体46との間に接続されるスイッチ28aを備える。
スイッチ29は、ブロッキングキャパシタ22と接続される端子aと、同軸ケーブル40の外部導体46と接続される端子bとを切り替えることができる。スイッチ24aは、ブロッキングキャパシタ22と接続される端子cと、同軸ケーブル40の外部導体46と接続される端子dとを切り替えることができる。
詳細は後述するが、スイッチ29を端子a、スイッチ24aを端子d、スイッチ28をOFFとすることで、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間を電気的に接続し、第1インピーダンスの周波数特性を測定することができる。また、スイッチ29を端子a、スイッチ24aをOFF、スイッチ28をONとすることで、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの正極側の一端とフレーム13dとの間を電気的に接続し、第2インピーダンスの周波数特性を測定することができる。また、スイッチ29をOFF、スイッチ24aを端子c、スイッチ28をONとすることで、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの負極側の他端とフレーム13dとの間を電気的に接続し、第3インピーダンスの周波数特性を測定することができる。
次に、本実施の形態に係る太陽光発電システム100及び太陽電池ストリング10の劣化診断装置30の動作を説明する。図9は、本実施の形態に係る劣化診断装置30の動作を示すフローチャートである。図3と同一符号を付した部分については、実施の形態1と同様であるため、詳細な説明は省略し、実施の形態1と異なる点のみ説明を行う。
まず、実施の形態1と同様、劣化診断装置30が太陽電池ストリング10の診断を開始すると、太陽電池ストリング10は、接続箱20内の不図示のスイッチ等の切り替え手段により、太陽光発電用の不図示の送電ケーブル及びパワーコンディショナと切断され、劣化診断装置30に接続される。
そして、図9に示すように、太陽電池ストリング10の診断を開始すると、第1の解析工程を実施する。
まず、図9に示すように、接続箱20aのスイッチ24aを端子d、スイッチ28をOFFとする。これにより、太陽電池ストリング10の負極側の端子ボックス13cの出力端子11-2を同軸ケーブル40の外部導体46及びインピーダンス測定器32の接地端子とを電気的に接続し、太陽電池モジュール13のフレーム13dを、インピーダンス測定器32の接地端子と電気的に絶縁する。そして、接続箱20aのスイッチ29を端子aとし、太陽電池ストリング10の正極側の端子ボックス13bの出力端子11-1と同軸ケーブル40の中心導体42及びインピーダンス測定器32の測定端子とを電気的に接続する(S11a)。
その後、第1の解析工程のステップS12からステップS14までのステップを実施するが、実施の形態1と同様であるため、詳細な説明は省略する。
次に、第1の解析工程が終了すると、第2の解析工程を実施する。
まず、図9に示すように、接続箱20aのスイッチ24aをOFF、スイッチ28をONとする。これにより、太陽電池ストリング10の負極側の端子ボックス13cの出力端子11-2をインピーダンス測定器32の接地端子と電気的に絶縁し、太陽電池モジュール13のフレーム13dを同軸ケーブル40の外部導体46及びインピーダンス測定器32の接地端子と電気的に接続する。そして、接続箱20aのスイッチ29を端子aとし、太陽電池ストリング10の正極側の端子ボックス13bの出力端子11-1と同軸ケーブル40の中心導体42及びインピーダンス測定器32の測定端子とを電気的に接続する(S21a)。
その後、図9に示すように、第2の解析工程のステップS22からステップS24までのステップを実施するが、実施の形態1と同様であるため、詳細な説明は省略する。初期測定の場合、ステップ23の後、実施の形態1のように診断は終了せず、後述の第3の解析工程に進む。
次に、第2の解析工程が終了すると、第1の劣化判定工程を実施する。第1の劣化判定工程は、実施の形態1と同様であるため、詳細な説明は省略するが、図9に示すように、第1の解析工程及び第2の解析工程で算出した第1の増分ΔR及び第2の増分ΔRfr ameに基づいて、パラメータX=ΔRframe/ΔRを算出し(S31)、パラメータXに基づいて、太陽電池ストリング10において抵抗値の増加が発生した太陽電池モジュール13の第1の位置を特定する(S32)。
次に、第1の劣化判定工程が終了すると、第3の解析工程を実施する。
まず、図9に示すように、接続箱20aのスイッチ24aを端子c、スイッチ28をONとする。これにより、太陽電池ストリング10の負極側の端子ボックス13cの出力端子11-2を同軸ケーブル40の中心導体42及びインピーダンス測定器32の測定端子とを電気的に接続し、太陽電池モジュール13のフレーム13dを同軸ケーブル40の外部導体46及びインピーダンス測定器32の接地端子と電気的に接続する。そして、接続箱20aのスイッチ29をOFFとし、太陽電池ストリング10の正極側の端子ボックス13bの出力端子11-1とインピーダンス測定器32の接地端子と電気的に絶縁する(S41)。
次に、スイッチ24aを端子c、スイッチ28をON、スイッチ29をOFFとした状態で、インピーダンス測定器32は、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの負極側の他端と太陽電池モジュール13のフレーム13dとの間の第3インピーダンスの周波数特性を測定する(S42)。そして、測定された第3インピーダンスの周波数特性から第3インピーダンスの共振点を決定し、共振点に対応する第3インピーダンスの値を後段の解析部34へ出力する。
そして、図9に示すように、解析部34は、インピーダンス測定器32から入力された共振点に対応する第3インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの負極側の他端とフレーム13dとの間の寄生抵抗成分R’ rameとし、ステップS42のインピーダンス測定工程が劣化診断装置30を設置してからの初期測定の場合は、半導体メモリ等の記憶装置に寄生直列抵抗成分の初期値R’ rame0として記録し(S43)、初期測定の診断は終了する。
ここで、寄生抵抗成分R’frameは、例えば、1kHz~1MHzの間で、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの負極側の他端とフレーム13dとの間の第3インピーダンスの周波数特性を測定し、得られた共振点の最小値となるインピーダンス値を太陽電池ストリング10の寄生抵抗成分R’frameとしている。
初期測定以降、図9に示すように、解析部34は、インピーダンス測定器32から入力された共振点に対応する第3インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの負極側の他端とフレーム13dとの間の寄生抵抗成分R’frameとし、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの負極側の他端とフレーム13dとの間の寄生抵抗成分R’frameの初期値R’ rame0からの第3の増分ΔR’frame=R’frame-R’frame0を算出する(S44)。
そして、解析部34は、第3の解析工程で算出した第3の増分ΔR’frameを劣化判定部36へ出力する。
次に、第3の解析工程が終了すると、第2の劣化判定工程を実施する。
まず、劣化判定部36は、図9に示すように、第1の解析工程及び第3の解析工程で算出した第1の増分ΔR及び第3の増分ΔR’frameに基づいて、パラメータX’=ΔR’frame/ΔRを算出する(S51)。
そして、実施の形態1と同様、パラメータX’も太陽電池ストリング10内の太陽電池モジュール13の位置に依存するパラメータであるため、劣化判定部36は、パラメータX’に基づいて、太陽電池ストリング10において抵抗値の増加が発生した太陽電池モジュール13の第2の位置を特定する(S52)。
ここで、パラメータX’は、太陽電池ストリング10内の太陽電池モジュール13の位置に依存するパラメータであるが、太陽電池モジュール13の位置とパラメータX’の値との関係は、図5のパラメータXとは逆となり、太陽電池モジュール13の位置が、AからFに行くに従い、パラメータX’は、0付近から1まで増加する傾向にある。パラメータX’の傾き方向は、パラメータXと逆であるが、原理は実施の形態1と同様であるため、説明は省略する。
次に、ステップS32によって決定された抵抗増加の太陽電池モジュール13の第1の位置と、ステップS52によって決定された抵抗増加の太陽電池モジュール13の第2の位置とを比較する。このとき、互いの太陽電池モジュール13の第1の位置と第2の位置とが同じ場合は、そのまま判定された抵抗増加の太陽電池モジュール13の位置を判定結果として出力する(S53)。他方で、互いの太陽電池モジュール13の第1の位置と第2の位置とが異なる場合には、太陽電池ストリング10において正極側の出力端子11-1と負極側の出力端子11-2から近い方の出力端子11-1,11-2で測定した判定結果の方が精度が高いため、そちらで測定した太陽電池モジュール13の位置判定の結果を真の判定結果として出力する(S54)。
例えば、第1の劣化判定工程で、劣化判定部36が、抵抗増加した太陽電池モジュール13の第1の位置をDと判定し、第2の劣化判定工程で、劣化判定部36が、抵抗増加した太陽電池モジュール13の第2の位置をCと判定したと仮定する。その場合、太陽電池ストリング10において正極側の出力端子11-1と負極側の出力端子11-2から近い方の出力端子11-2で測定した判定結果の方が精度が高いため、劣化判定部36は、第2の劣化判定工程で判定した太陽電池モジュール13の第2の位置Cを真の判定結果として出力する。
以上より、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、太陽電池ストリング内の劣化した太陽電池モジュールの位置を特定することができ、さらに、判定結果に精度の高い側の出力端子による測定結果を使用することで、直列接続された太陽電池モジュールの数が多い場合においても正確に劣化した太陽電池モジュールの位置を判定することができる。
また、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、実施の形態1と同様の構成及び動作原理を有するため、実施の形態1と同様、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、太陽電池ストリング内の劣化した太陽電池モジュールの位置を特定することができるため、太陽電池ストリング内の太陽電池モジュールの故障診断に必要な時間及び労力を大幅に低減することができる。また、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、インピーダンスの周波数特性の測定において、高周波の信号を用いることができるので、多くの太陽電池モジュールの劣化を診断することができる。また、日没2時間後又は日の出2時間前の発電量の十分低い時間帯である夜間に劣化診断を行うことができるので、劣化診断のために太陽光発電システム全体の太陽光発電の発電量が低減してしまうことを抑制することができる。
ここで、本実施の形態では、第1の解析工程を行った後、第2の解析工程を行い、その後、第3の解析工程を行ったが、それぞれの解析工程を行うタイミングは種々に変更可能である。また、本実施の形態では、第1の劣化判定工程を行った後、第2の劣化判定工程を行っているが、先にパラメータX’を算出して、抵抗増加位置を判定しても構わないし、同時にパラメータX及びパラメータX’を算出して、それぞれの抵抗増加位置を判定しても構わない。
実施の形態3.
本実施の形態である太陽光発電システム及び太陽電池ストリングの劣化診断装置は、実施の形態2と異なり、劣化判定部が、算出されたパラメータX及びパラメータX’に基づき、太陽電池ストリング内の複数の太陽電池モジュールの抵抗が増加したと判定する。
本実施の形態に係る太陽光発電システム及び太陽電池ストリングの劣化診断装置の概略構成は、実施の形態1の図1及び実施の形態2の図8と同じであり、本実施の形態の劣化判定部36の特徴部分以外の同様の構成については説明を省略する。
次に、本実施の形態に係る太陽光発電システム100及び太陽電池ストリング10の劣化診断装置30の動作を説明する。図10は、本実施の形態に係る劣化診断装置30の動作を示すフローチャートである。実施の形態2の図9と同一符号を付した部分については、実施の形態2と同様であるため、詳細な説明は省略し、実施の形態2と異なる点のみ説明を行う。
本実施の形態に係る太陽光発電システム100及び太陽電池ストリング10の劣化診断装置30の動作は、第1の解析工程、第2の解析工程、第1の劣化判定工程、第3の解析工程、及び、第2の劣化判定工程のステップS52までは、実施の形態2と同様である。
その後、ステップS32によって決定された抵抗増加の太陽電池モジュール13の位置と、ステップS52によって決定された抵抗増加の太陽電池モジュール13の位置とを比較する。このとき、互いの太陽電池モジュール13の位置が同じ場合は、そのまま判定された抵抗増加の太陽電池モジュール13の位置を判定結果として出力する(S53)。他方で、互いの太陽電池モジュール13の位置が異なる場合には、太陽電池ストリング10中の抵抗増加した太陽電池モジュール13が一つではないと考えられるため、劣化判定部36は、太陽電池ストリング10内の複数の太陽電池モジュール13の抵抗が増加したと判定し、その結果を出力する(S54a)。
例えば、第1の劣化判定工程で、劣化判定部36が、抵抗増加した太陽電池モジュール13の位置をDと判定し、第2の劣化判定工程で、劣化判定部36が、抵抗増加した太陽電池モジュール13の位置をAと判定したと仮定する。その場合、劣化判定部36は、太陽電池ストリング10中の抵抗増加した太陽電池モジュール13が一つではないと考えられるため、太陽電池ストリング10内の複数の太陽電池モジュール13の抵抗が増加したと判定し、その結果を出力する。
以上より、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、太陽電池ストリング10内の複数の太陽電池モジュール13の抵抗が増加したと判定し、その結果を出力することができるので、ユーザに複数の太陽電池モジュールにおいて劣化が進んでいる状況を伝えることができる。また、ユーザは、複数の太陽電池モジュールが劣化している状況も含めて、劣化状況を詳細に把握することができる。
また、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、実施の形態1と同様の構成及び動作原理を有するため、実施の形態1と同様、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、太陽電池ストリング内の劣化した太陽電池モジュールの位置を特定することができるため、太陽電池ストリング内の太陽電池モジュールの故障診断に必要な時間及び労力を大幅に低減することができる。また、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、インピーダンスの周波数特性の測定において、高周波の信号を用いることができるので、多くの太陽電池モジュールの劣化を診断することができる。また、日没2時間後又は日の出2時間前の発電量の十分低い時間帯である夜間に劣化診断を行うことができるので、劣化診断のために太陽光発電システム全体の太陽光発電の発電量が低減してしまうことを抑制することができる。
実施の形態4.
本実施の形態である太陽光発電システム及び太陽電池ストリングの劣化診断装置は、実施の形態1と異なり、時間経過とともに変化する各太陽電池モジュールの抵抗増加を記録し、各太陽電池モジュールの積算した抵抗増加値に基づき、劣化した太陽電池モジュールを特定するものである。
本実施の形態に係る太陽光発電システム及び太陽電池ストリングの劣化診断装置の概略構成は、実施の形態1の図1と同じであり、本実施の形態の解析部34及び劣化判定部36の特徴部分以外の同様の構成については説明を省略する。また、本実施の形態に係る太陽光発電システム及び太陽電池ストリングの劣化診断装置の接続箱内部の概略構成も実施の形態1と同じであるため、詳細な説明は省略する。
本実施の形態である太陽光発電システム及び太陽電池ストリングの劣化診断装置は、時間経過とともに変化する各太陽電池モジュールの抵抗増加を記録し、各太陽電池モジュールの積算した抵抗増加値に基づき、劣化した太陽電池モジュールを特定する。
詳細は後述するが、解析部34は、インピーダンス測定器32から入力された共振点に対応する第1インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の寄生直列抵抗成分R(k)を半導体メモリ等の記憶装置に記録する。そして、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の直列抵抗成分の前回測定値R(k-1)からの第4の増分ΔR(k)=R(k)-R(k-1)を算出する。
また、解析部34は、インピーダンス測定器32から入力された共振点に対応する第2インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の寄生抵抗成分Rframe(k)を半導体メモリ等の記憶装置に記録する。そして、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の寄生抵抗成分の前回測定値Rframe(k-1)からの第5の増分ΔRframe(k)=Rframe(k)-Rframe(k-1)を算出する。
そして、解析部34は、算出した第4の増分ΔR(k)及び第5の増分ΔRfram (k)を劣化判定部36へ出力する。
劣化判定部36は、解析部34で算出された第4の増分ΔR(k)及び第5の増分ΔRframe(k)に基づき、太陽電池ストリング10内の抵抗が増加した太陽電池モジュール13の位置を判定する。
詳細は後述するが、劣化判定部36は、解析部34で算出した第4の増分ΔR(k)及び第5の増分ΔRframe(k)により、太陽電池ストリング10中の抵抗増加位置に依存するパラメータX(k)をX(k)=ΔRframe(k)/ΔR(k)を算出する。そして、劣化判定部36は、算出されたパラメータX(k)に基づき、太陽電池ストリング10内で抵抗値増加が発生した太陽電池モジュール13の位置を特定する。
そして、劣化判定部36は、抵抗増加が発生した位置の太陽電池モジュール13の直列抵抗値Rsyに第4の増分ΔR(k)を加算して、半導体メモリ等の記憶装置に記録する。
次に、本実施の形態に係る太陽光発電システム100及び太陽電池ストリング10の劣化診断装置30の動作を説明する。図11は、本実施の形態に係る劣化診断装置30の動作を示すフローチャートである。図3と同一符号を付した部分については、実施の形態1と同様であるため、詳細な説明は省略し、実施の形態1と異なる点のみ説明を行う。
まず、劣化診断装置30がk回目の太陽電池ストリング10の診断を開始すると、太陽電池ストリング10は、接続箱20内の不図示のスイッチ等の切り替え手段により、太陽光発電用の不図示の送電ケーブル及びパワーコンディショナと切断され、劣化診断装置30に接続される。
そして、図11に示すように、太陽電池ストリング10のk回目の診断を開始すると、第4の解析工程を実施する。
まず、図11に示すように、接続箱20のスイッチ24をONとし、太陽電池ストリング10の負極側の端子ボックス13cの出力端子と、同軸ケーブル40の外部導体46及びインピーダンス測定器32の接地端子とを電気的に接続する。そして、接続箱20のスイッチ28をOFFとし、太陽電池モジュール13のフレーム13dを、インピーダンス測定器32の接地端子と電気的に絶縁する(S11)。
次に、図11に示すように、スイッチ24をONとし、スイッチ28をOFFとした状態で、インピーダンス測定器32は、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の第1インピーダンスの周波数特性を測定する。そして、測定された第1インピーダンスの周波数特性から第1インピーダンスの共振点を決定し、共振点に対応する第1インピーダンスの値を後段の解析部34へ出力する。
そして、図11に示すように、解析部34は、k回目の診断におけるインピーダンス測定器32から入力された共振点に対応する第1インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の寄生直列抵抗成分R(k)とし、半導体メモリ等の記憶装置に記録する(S12a)。ステップS12aのインピーダンス測定工程が劣化診断装置30を設置してからの初回の測定である初期測定の場合は、図11に示すように、解析部34は、半導体メモリ等の記憶装置に寄生直列抵抗成分の初期値R(1)として記録後、ステップS21の工程へ進む。
初期測定以降、解析部34は、図11に示すように、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端と他端との間の寄生直列抵抗成分の前回測定値R(k-1)を初期値として、前回測定値R(k-1)からの増分である第4の増分ΔR(k)=R(k)-R(k-1)を算出し、算出した第4の増分ΔR(k)を劣化判定部36へ出力する(S14a)。
次に、第4の解析工程が終了すると、第5の解析工程を実施する。
まず、図11に示すように、接続箱20のスイッチ24をOFFとし、太陽電池ストリング10の負極側の端子ボックス13cの出力端子と、同軸ケーブル40の外部導体46及びインピーダンス測定器32の接地端子とを電気的に絶縁する。そして、接続箱20のスイッチ28をONとし、太陽電池モジュール13のフレーム13dと、インピーダンス測定器32の接地端子とを電気的に接続する(S21)。
次に、図11に示すように、スイッチ24をOFFとし、スイッチ28をONとした状態で、インピーダンス測定器32は、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの正極側の一端と太陽電池モジュール13のフレーム13dとの間の第2インピーダンスの周波数特性を測定する。そして、測定された第2インピーダンスの周波数特性から第2インピーダンスの共振点を決定し、共振点に対応する第2インピーダンスの値を後段の解析部34へ出力する。
そして、解析部34は、図11に示すように、k回目の診断におけるインピーダンス測定器32から入力された共振点に対応する第2インピーダンスの値を、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の寄生抵抗成分Rframe(k)とし、半導体メモリ等の記憶装置に記録する(S22a)。ステップS22aのインピーダンス測定工程が劣化診断装置30を設置してからの初回の測定である初期測定の場合は、半導体メモリ等の記憶装置に寄生直列抵抗成分の初期値Rframe(1)として記録し、初期測定の診断は終了する。
初期測定以降、解析部34は、図11に示すように、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの一端とフレーム13dとの間の寄生抵抗成分の前回測定値Rframe(k-1)を初期値として、前回測定値Rframe(k-1)からの増分である第5の増分ΔRframe(k)=Rframe(k)-Rframe(k-1)を算出し、算出した第5の増分ΔRframe(k)を劣化判定部36へ出力する。(S24a)。
次に、第5の解析工程が終了すると、第3の劣化判定工程を実施する。
まず、劣化判定部36は、図11に示すように、第4の解析工程及び第5の解析工程で算出した第4の増分ΔR(k)及び第5の増分ΔRframe(k)に基づいて、パラメータX(k)=ΔRframe(k)/ΔR(k)を算出する(S31a)。
そして、パラメータX(k)は、太陽電池ストリング10内の太陽電池モジュール13の位置に依存するパラメータであるため、劣化判定部36は、パラメータX(k)に基づいて、太陽電池ストリング10において抵抗値の増加が発生した太陽電池モジュール13を特定する(S32a)。
次に、図11に示すように、パラメータX(k)に基づき抵抗値が増加したと判定された抵抗増加位置yの太陽電池モジュール13の直列抵抗値RsyにΔR(k)を加算して、抵抗増加位置yの太陽電池モジュール13の直列抵抗値Rsyとして、半導体メモリ等の記憶装置に記録する(S33)。抵抗増加位置yの太陽電池モジュール13の直列抵抗値Rsyは、次回以降の診断に用いられ、初期測定以降、診断のたびに、各太陽電池モジュール13の記録された直列抵抗値Rsyに第4の増分ΔR(k)が積算される。
ここで、各太陽電池モジュール13の初期の直列抵抗値Rsyは、初期測定前に取得し、半導体メモリ等の記憶装置に記録しておいても構わないし、太陽電池ストリング10内のすべての太陽電池モジュール13の初期抵抗値が同一と仮定して、初期測定で得られた直列抵抗値R(1)を太陽電池モジュール13の数で割った値を初期の直列抵抗値R として用いても構わない。
ここで、パラメータX(k)は、他の実施の形態と異なり、初期測定で測定した初期値ではなく、前回測定値に基づいて求められた第4の増分ΔR(k)及び第5の増分ΔRframe(k)により算出されている。そのため、パラメータX(k)は、時間経過とともに抵抗が増加した各太陽電池モジュール13の抵抗値の変化の影響を受け、実施の形態1で求めた初期値からのパラメータXとは傾き等が時間経過とともに変化する可能性があり、正確に抵抗増加した太陽電池モジュール13の位置を判定できない可能性がある。本実施の形態では、このようなパラメータX(k)の時間経過に伴う変化に対応するために、ステップS32aの抵抗増加した太陽電池モジュール13の位置を判定するステップにおいて、事前に、これまで加算・記録されてきた各太陽電池モジュール13の直列抵抗値に基づき、k回目の診断におけるパラメータX(k)と抵抗増加した太陽電池モジュール13の位置との関係を補正し、補正したパラメータX(k)と抵抗増加した太陽電池モジュール13の位置との関係に基づき、抵抗値の増加が発生した太陽電池モジュール13を特定することができる。
ここで、パラメータX(k)と抵抗増加した太陽電池モジュール13の位置との関係の補正は、診断のたびに毎回行う必要はなく、太陽電池モジュール13の積算された抵抗増加分に基づき、パラメータX(k)と抵抗増加した太陽電池モジュール13の位置との関係の補正を行っても構わないし、所定の診断回数ごとに、パラメータX(k)と抵抗増加した太陽電池モジュール13の位置との関係の補正を行っても構わない。
以上のように構成される太陽電池ストリングの劣化診断装置30及びそれを備えた太陽光発電システム100は、太陽電池ストリング10内の一つの太陽電池モジュール13の積算された直列抵抗値Rsyが所定の閾値を超えた場合、劣化判定部36は、例えば、一つの太陽電池モジュール13の太陽電池セル内の発電層の劣化若しくは電極部の腐食等により、抵抗が増加したと判断し、抵抗値の増加が発生した太陽電池モジュール13の位置をユーザに知らせることができる。
ここで、本実施の形態では、第4の解析工程を行った後、第5の解析工程を行ったが、第5の解析工程を行った後、第4の解析工程を行っても構わない。
また、本実施の形態では、太陽電池モジュール13の直列抵抗値RsyにΔR(k)を加算して、積算された直列抵抗値Rsyに基づき、抵抗値の増加が発生した太陽電池モジュール13を特定しているが、各太陽電池モジュール13のΔR(k)の積算値を記録し、積算値と閾値を比較することで、抵抗値の増加が発生した太陽電池モジュール13を特定し、ユーザに知らせても構わない。
以上より、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、太陽電池ストリング内の劣化した太陽電池モジュールの位置を特定することができ、さらに、時間経過とともに変化する各太陽電池モジュールの抵抗増加を記録し、各太陽電池モジュールの積算した抵抗増加値を推定することができる。
そのため、実施の形態1に比べ、太陽電池ストリング内の劣化した太陽電池モジュールの位置を正確に特定することができ、太陽電池ストリング内の太陽電池モジュールの故障診断に必要な時間及び労力をさらに低減することができる。
また、本実施の形態に加え、実施の形態1と同様の構成及び動作原理を有するため、実施の形態1と同様、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、太陽電池ストリング内の劣化した太陽電池モジュールの位置を特定することができるため、太陽電池ストリング内の太陽電池モジュールの故障診断に必要な時間及び労力を大幅に低減することができる。また、本実施の形態に係る太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システムは、インピーダンスの周波数特性の測定において、高周波の信号を用いることができるので、多くの太陽電池モジュールの劣化を診断することができる。また、日没2時間後又は日の出2時間前の発電量の十分低い時間帯である夜間に劣化診断を行うことができるので、劣化診断のために太陽光発電システム全体の太陽光発電の発電量が低減してしまうことを抑制することができる。
ここで、本実施の形態は、実施の形態2及び実施の形態3にも適用可能である。つまり、太陽電池ストリング10の直列接続された複数の太陽光発電部13aの負極側の他端とフレーム13dとの間の抵抗成分を用いて、本実施の形態と同様、前回測定値に基づいて、k回目のRとRframeの増分を算出し、パラメータX’(k)を算出しても構わない。その場合、算出されたパラメータX(k)及びパラメータX’(k)に基づき、太陽電池ストリング10内で抵抗値増加が発生した太陽電池モジュール13の位置をより正確に特定してすることができ、太陽電池ストリング内の太陽電池モジュールの故障診断に必要な時間及び労力をさらに低減することができる。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。さらに、本発明は上記実施の形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出されうる。
10 太陽電池ストリング、13 太陽電池モジュール、20,20a 接続箱、30 劣化診断装置、32 インピーダンス測定器、34 解析部、36 劣化判定部、100
太陽光発電システム

Claims (12)

  1. 太陽光発電部と導電性のフレームとを有する複数の太陽電池モジュールを備え、前記複数の太陽電池モジュールの前記太陽光発電部が電気的に直列接続され、前記複数の太陽電池モジュールの前記フレームが電気的に共通接続された太陽電池ストリングの劣化診断装置であって、
    前記太陽電池ストリングの直列接続された複数の前記太陽光発電部の一端と他端との間の第1インピーダンスの周波数特性を測定し、かつ、前記太陽電池ストリングの直列接続された複数の前記太陽光発電部の一端と前記フレームとの間の第2インピーダンスの周波数特性を測定するインピーダンス測定器と、
    前記第1インピーダンスの周波数特性に基づき、前記太陽電池ストリングの直列接続された複数の前記太陽光発電部の一端と他端との間の直列抵抗成分の初期値からの第1の増分を算出し、かつ、前記第2インピーダンスの周波数特性に基づき、前記太陽電池ストリングの直列接続された複数の前記太陽光発電部の一端と前記フレームとの間の抵抗成分の初期値からの第2の増分を算出する解析部と、
    前記解析部で算出された前記第1の増分及び前記第2の増分に基づき、前記太陽電池ストリング内の抵抗が増加した太陽電池モジュールの位置を判定する劣化判定部と
    を備えることを特徴とする太陽電池ストリングの劣化診断装置。
  2. 前記直列抵抗成分の初期値及び前記抵抗成分の初期値は、前記太陽電池ストリングの初期測定のときの値であることを特徴とする請求項1に記載の太陽電池ストリングの劣化診断装置。
  3. 前記第1の増分をΔRs、前記第2の増分をΔRframeとしたとき、
    前記解析部は、ΔRframe/ΔRsの値を算出し、
    前記劣化判定部は、前記ΔRframe/ΔRsの値に基づき、前記太陽電池ストリング内の抵抗が増加した前記太陽電池モジュールの位置を判定することを特徴とする請求項1又は請求項2に記載の太陽電池ストリングの劣化診断装置。
  4. 前記インピーダンス測定器は、前記太陽電池ストリングの直列接続された複数の前記太陽光発電部の他端と前記フレームとの間の第3インピーダンスの周波数特性を測定し、
    前記解析部は、前記第3インピーダンスの周波数特性に基づき、前記太陽電池ストリングの直列接続された複数の前記太陽光発電部の他端と前記フレームとの間の抵抗成分の初期値からの第3の増分を算出し、
    前記劣化判定部は、前記解析部で算出された前記第1の増分、前記第2の増分及び前記第3の増分に基づき、前記太陽電池ストリング内の抵抗が増加した前記太陽電池モジュールの位置を判定することを特徴とする請求項3に記載の太陽電池ストリングの劣化診断装置。
  5. 前記第3の増分をΔR’frameとしたとき、
    前記解析部は、ΔR’frame/ΔRsの値を算出し、
    前記劣化判定部は、前記ΔRframe/ΔRsの値及び前記ΔR’frame/ΔRsの値に基づき、前記太陽電池ストリング内の抵抗が増加した前記太陽電池モジュールの位置を判定することを特徴とする請求項4に記載の太陽電池ストリングの劣化診断装置。
  6. 前記劣化判定部は、前記ΔRframe/ΔRsの値に基づき、前記太陽電池ストリング内の抵抗が増加した前記太陽電池モジュールの第1の位置を判定し、前記ΔR’frame/ΔRsの値に基づき、前記太陽電池ストリング内の抵抗が増加した前記太陽電池モジュールの第2の位置を判定し、前記第1の位置と前記第2の位置とが互いに異なる場合、測定に使用した出力端子に近い方の前記太陽電池モジュールを抵抗が増加した前記太陽電池モジュールとして判定することを特徴とする請求項5に記載の太陽電池ストリングの劣化診断装置。
  7. 前記劣化判定部は、前記ΔRframe/ΔRsの値に基づき、前記太陽電池ストリング内の抵抗が増加した前記太陽電池モジュールの第1の位置を判定し、前記ΔR’frame/ΔRsの値に基づき、前記太陽電池ストリング内の抵抗が増加した前記太陽電池モジュールの第2の位置を判定し、前記第1の位置と前記第2の位置とが互いに異なる場合、前記太陽電池ストリング内の複数の前記太陽電池モジュールの抵抗が増加したと判定することを特徴とする請求項5又は請求項6に記載の太陽電池ストリングの劣化診断装置。
  8. 前記直列抵抗成分の初期値及び前記抵抗成分の初期値は、前回測定した前記太陽電池ストリングの直列抵抗成分及び抵抗成分であり、
    前記解析部は、前記前回測定した前記太陽電池ストリングの直列抵抗成分及び抵抗成分に基づき、前記第1の増分及び前記第2の増分を算出し、
    前記劣化判定部は、前記第1の増分及び前記第2の増分に基づいて判定された位置の太陽電池モジュールの前回測定した直列抵抗値に前記第1の増分を加算して記録することを特徴とする請求項1、請求項3から請求項7のいずれか一項に記載の太陽電池ストリングの劣化診断装置。
  9. 前記太陽光発電部と導電性の前記フレームとを有する前記複数の太陽電池モジュールを備え、前記複数の太陽電池モジュールの前記太陽光発電部が電気的に直列接続され、前記複数の太陽電池モジュールの複数の前記フレームが電気的に共通接続された前記太陽電池ストリングと、
    請求項1から請求項8のいずれか一項に記載の前記太陽電池ストリングの劣化診断装置と
    を備えることを特徴とする太陽光発電システム。
  10. 太陽光発電部と導電性のフレームとを有する複数の太陽電池モジュールを備え、前記複数の太陽電池モジュールの前記太陽光発電部が電気的に直列接続され、前記複数の太陽電池モジュールの前記フレームが電気的に共通接続された太陽電池ストリングの劣化診断装置を用いた劣化診断方法であって、
    前記劣化診断装置を用いて、前記太陽電池ストリングの直列接続された複数の前記太陽光発電部の一端と他端との間の第1インピーダンスの周波数特性を測定し、かつ、前記太陽電池ストリングの直列接続された複数の前記太陽光発電部の一端と前記フレームとの間の第2インピーダンスの周波数特性を測定する工程と、
    前記劣化診断装置を用いて、前記第1インピーダンスの周波数特性に基づき、前記太陽電池ストリングの直列接続された複数の前記太陽光発電部の一端と他端との間の直列抵抗成分の初期値からの第1の増分を算出し、かつ、前記第2インピーダンスの周波数特性に基づき、前記太陽電池ストリングの直列接続された複数の前記太陽光発電部の一端と前記フレームとの間の抵抗成分の初期値からの第2の増分を算出する工程と、
    前記劣化診断装置を用いて、算出された前記第1の増分及び前記第2の増分に基づき、前記太陽電池ストリング内の抵抗が増加した太陽電池モジュールの位置を判定する工程と
    を備えることを特徴とする太陽電池ストリングの劣化診断方法。
  11. 複数の電池セルと導電性のフレームとを有する複数の電池モジュールを備え、前記複数の電池モジュールが電気的に直列接続され、前記複数の電池モジュールの前記フレームが電気的に共通接続された電池ストリングの劣化診断装置であって、
    前記電池ストリングの直列接続された複数の前記電池モジュールの一端と他端との間の第1インピーダンスの周波数特性を測定し、かつ、前記電池ストリングの直列接続された複数の前記電池モジュールの一端と前記フレームとの間の第2インピーダンスの周波数特性を測定するインピーダンス測定器と、
    前記第1インピーダンスの周波数特性に基づき、前記電池ストリングの直列接続された複数の前記電池モジュールの一端と他端との間の直列抵抗成分の初期値からの第1の増分を算出し、かつ、前記第2インピーダンスの周波数特性に基づき、前記電池ストリングの直列接続された複数の前記電池モジュールの一端と前記フレームとの間の抵抗成分の初期値からの第2の増分を算出する解析部と、
    前記解析部で算出された前記第1の増分及び前記第2の増分に基づき、前記電池ストリング内の抵抗が増加した電池モジュールの位置を判定する劣化判定部と
    を備えることを特徴とする電池ストリングの劣化診断装置。
  12. 複数の電池セルと導電性のフレームとを有する複数の電池モジュールを備え、前記複数の電池モジュールが電気的に直列接続され、前記複数の電池モジュールの前記フレームが電気的に共通接続された電池ストリングの劣化診断装置を用いた劣化診断方法であって、
    前記劣化診断装置を用いて、前記電池ストリングの直列接続された複数の前記電池モジュールの一端と他端との間の第1インピーダンスの周波数特性を測定し、かつ、前記電池ストリングの直列接続された複数の前記電池モジュールの一端と前記フレームとの間の第2インピーダンスの周波数特性を測定する工程と、
    前記劣化診断装置を用いて、前記第1インピーダンスの周波数特性に基づき、前記電池ストリングの直列接続された複数の前記電池モジュールの一端と他端との間の直列抵抗成分の初期値からの第1の増分を算出し、かつ、前記第2インピーダンスの周波数特性に基づき、前記電池ストリングの直列接続された複数の前記電池モジュールの一端と前記フレームとの間の抵抗成分の初期値からの第2の増分を算出する工程と、
    前記劣化診断装置を用いて、算出された前記第1の増分及び前記第2の増分に基づき、前記電池ストリング内の抵抗が増加した電池モジュールの位置を判定する工程と
    を備えることを特徴とする電池ストリングの劣化診断方法。
JP2021524517A 2019-06-03 2019-06-03 太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システム Active JP7115639B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022020 WO2020245884A1 (ja) 2019-06-03 2019-06-03 太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システム

Publications (2)

Publication Number Publication Date
JPWO2020245884A1 JPWO2020245884A1 (ja) 2021-11-04
JP7115639B2 true JP7115639B2 (ja) 2022-08-09

Family

ID=73652339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021524517A Active JP7115639B2 (ja) 2019-06-03 2019-06-03 太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システム

Country Status (4)

Country Link
US (1) US20220224287A1 (ja)
JP (1) JP7115639B2 (ja)
CN (1) CN113906670A (ja)
WO (1) WO2020245884A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150054523A1 (en) 2013-08-26 2015-02-26 Fraunhofer Usa, Inc. Devices and techniques for detecting faults in photovoltaic systems
WO2015163329A1 (ja) 2014-04-23 2015-10-29 三菱電機株式会社 太陽電池モジュールの診断方法、太陽電池モジュールの診断用回路および診断システム
JP2016171671A (ja) 2015-03-12 2016-09-23 オムロン株式会社 太陽光発電システムの検査方法および検査装置
WO2017212757A1 (ja) 2016-06-09 2017-12-14 三菱電機株式会社 太陽電池ストリングの故障診断方法及び故障診断装置
CN108649893A (zh) 2018-05-14 2018-10-12 上海岩芯电子科技有限公司 一种光伏系统接地故障阻值检测和定位方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4780416B2 (ja) * 2007-07-11 2011-09-28 独立行政法人産業技術総合研究所 太陽電池アレイ故障診断方法
JP5850492B2 (ja) * 2011-10-13 2016-02-03 学校法人早稲田大学 電池システムおよび電池の評価方法
JP6702168B2 (ja) * 2016-12-14 2020-05-27 オムロン株式会社 太陽光発電システムの検査装置および検査方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150054523A1 (en) 2013-08-26 2015-02-26 Fraunhofer Usa, Inc. Devices and techniques for detecting faults in photovoltaic systems
WO2015163329A1 (ja) 2014-04-23 2015-10-29 三菱電機株式会社 太陽電池モジュールの診断方法、太陽電池モジュールの診断用回路および診断システム
JP2016171671A (ja) 2015-03-12 2016-09-23 オムロン株式会社 太陽光発電システムの検査方法および検査装置
WO2017212757A1 (ja) 2016-06-09 2017-12-14 三菱電機株式会社 太陽電池ストリングの故障診断方法及び故障診断装置
CN108649893A (zh) 2018-05-14 2018-10-12 上海岩芯电子科技有限公司 一种光伏系统接地故障阻值检测和定位方法

Also Published As

Publication number Publication date
CN113906670A (zh) 2022-01-07
JPWO2020245884A1 (ja) 2021-11-04
WO2020245884A1 (ja) 2020-12-10
US20220224287A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
JP6075997B2 (ja) 太陽光発電システムの故障診断方法
JP5893030B2 (ja) 設置済み光起電ストリング、サブストリング、およびモジュールのための能動および受動監視システム
JP6209412B2 (ja) 太陽光発電システムの故障診断システム及び故障診断方法
US10833628B2 (en) Failure diagnostic method and failure diagnostic device of solar cell string
US8773156B2 (en) Measurement of insulation resistance of configurable photovoltaic panels in a photovoltaic array
JP6278912B2 (ja) 太陽光発電システム、及びその故障診断方法
JP5872128B1 (ja) 太陽電池モジュールの診断方法、太陽電池モジュールの診断用回路および診断システム
KR20190057974A (ko) 태양광 발전 관리 시스템
US20120049855A1 (en) Dark IV monitoring system for photovoltaic installations
WO2010111412A2 (en) Systems, devices and methods for predicting power electronics failure
JP6091391B2 (ja) 太陽電池パネルの診断方法
JP2017112675A (ja) 太陽光発電システムの診断システム及び診断方法
JP2016208683A (ja) 太陽光発電システムの診断方法及び監視装置
JP2014165232A (ja) 太陽光発電モジュールおよび太陽光発電システム
JP7115639B2 (ja) 太陽電池ストリングの劣化診断装置及びそれを備えた太陽光発電システム
JP6702168B2 (ja) 太陽光発電システムの検査装置および検査方法
JP6312081B2 (ja) 欠陥診断装置
US20200162023A1 (en) Active and passive monitoring system for installed photovoltaic strings, substrings, and modules
CN106797197A (zh) 功率转换系统内连接器故障检测系统及方法
JP7297098B2 (ja) 太陽電池ストリングの故障診断装置、それを備えた太陽光発電システム、及び、太陽電池ストリングの故障診断方法
JP6214845B1 (ja) 太陽電池ストリングの故障診断方法及び故障診断装置
CN113311220A (zh) 电压暂降的诊断方法、系统、介质及电子设备
JP2016075534A (ja) 太陽光発電装置の故障診断方法
KR102518017B1 (ko) Pv 시스템의 단선 고장 위치를 검출하기 위한 기생커패시턴스 탐지 알고리즘이 포함된 시스템 및 이를 이용한 검출 방법
WO2012008941A1 (en) Method for determining the operating condition of a photovoltaic panel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210622

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220427

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R151 Written notification of patent or utility model registration

Ref document number: 7115639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151