JP7107291B2 - バルブ装置、流体循環回路 - Google Patents

バルブ装置、流体循環回路 Download PDF

Info

Publication number
JP7107291B2
JP7107291B2 JP2019164851A JP2019164851A JP7107291B2 JP 7107291 B2 JP7107291 B2 JP 7107291B2 JP 2019164851 A JP2019164851 A JP 2019164851A JP 2019164851 A JP2019164851 A JP 2019164851A JP 7107291 B2 JP7107291 B2 JP 7107291B2
Authority
JP
Japan
Prior art keywords
rotor
shaft
fluid
flow path
valve device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019164851A
Other languages
English (en)
Other versions
JP2021042809A (ja
JP2021042809A5 (ja
Inventor
翔太 木村
広樹 島田
彰 樋口
赳人 水沼
拓也 濱田
亮 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019164851A priority Critical patent/JP7107291B2/ja
Priority to PCT/JP2020/030381 priority patent/WO2021049223A1/ja
Priority to CN202080063629.4A priority patent/CN114402153A/zh
Priority to DE112020004258.8T priority patent/DE112020004258T5/de
Publication of JP2021042809A publication Critical patent/JP2021042809A/ja
Publication of JP2021042809A5 publication Critical patent/JP2021042809A5/ja
Priority to US17/683,449 priority patent/US11940057B2/en
Application granted granted Critical
Publication of JP7107291B2 publication Critical patent/JP7107291B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • F16K3/10Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members with special arrangements for separating the sealing faces or for pressing them together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • F16K3/06Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages
    • F16K3/08Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages with circular plates rotatable around their centres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/314Forms or constructions of slides; Attachment of the slide to the spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K2200/00Details of valves
    • F16K2200/10Means for compensation of misalignment between seat and closure member
    • F16K2200/101Means for compensation of misalignment between seat and closure member closure member self-aligning to seat

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)
  • Sliding Valves (AREA)

Description

本開示は、バルブ装置および当該バルブ装置を備える流体循環回路に関する。
従来、シャフトに連結される第1バルブプレートとハウジングに回転不能に配置された第2バルブプレートとの相対的な位置関係を変化させることで、第2バルブプレートに形成された流路孔の開度を調整するバルブ装置が知られている(例えば、特許文献1参照)。
国際公開第2017/211311号
ところで、特許文献1の記載のバルブ装置は、シャフトと第1バルブプレートとが一体に構成されているので、何らかの要因によってシャフトが傾くと、シャフトとともに第1バルブプレートが傾いてしまい、各バルブプレートの密着性が損なわれてしまう。このようなシャフトの姿勢変化は、バルブ装置における意図しない流体漏れを招く要因となることから好ましくない。このことは本発明者らの鋭意検討の末に見出された。
本開示は、シャフトの姿勢変化による流体漏れを抑えることが可能なバルブ装置および流体循環回路を提供することを目的とする。
請求項1、4、7に記載の発明は、
バルブ装置であって、
流体が通過する流路孔(141、142、722、723、724、725)が少なくとも1つ形成された流路形成部(14、720)と、
回転力を出力する駆動部(16)と、
駆動部が出力する回転力によって所定の軸心(CL)を中心に回転するシャフト(20、740)と、
流路形成部のうち流路孔が開口する開口面(140、721)に相対して摺動する摺動面(220、751)を有し、シャフトの回転に伴って流路孔の開度を増減する回転子(22、750)と、
回転子を流路形成部に向けて付勢する付勢部材(26、770)と、
シャフトの姿勢によらず摺動面と開口面との接触状態が維持されるようにシャフトを回転子に対して傾動可能に連結する連結構造(24、28、32、760、780)と、を備える。
請求項12、13、14に記載の発明は、
流体循環回路であって、
流体が通過する複数の機器(303、304、403、BT)と、
複数の機器を通過する流体の流量を調整するバルブ装置(10、310、430、70)と、を備え、
バルブ装置は、
流体が通過する流路孔(141、142、722、723、724、725)が少なくとも1つ形成された流路形成部(14、720)と、
回転力を出力する駆動部(16)と、
駆動部が出力する回転力によって所定の軸心(CL)を中心に回転するシャフト(20、740)と、
流路形成部のうち流路孔が開口する開口面(140、721)に相対して摺動する摺動面(220、751)を有し、シャフトの回転に伴って流路孔の開度を増減する回転子(22、750)と、
回転子を流路形成部に向けて付勢する付勢部材(26、770)と、
シャフトの姿勢によらず摺動面と開口面との接触状態が維持されるようにシャフトを回転子に対して傾動可能に連結する連結構造(24、28、32、760、780)と、を含んでいる。
請求項1、12に記載の発明は、
連結構造は、回転子に設けられた嵌合孔(223)にシャフトの嵌合部(20c)を嵌め込む嵌合構造(28、780)を含み、
嵌合孔は、嵌合部を嵌合させた状態でシャフトを傾動可能なように、シャフトとの間に隙間が形成される大きさになっている。
請求項4、13に記載の発明は、
付勢部材は、シャフトの軸心方向に弾性変形する弾性部材(261、262)で構成されており、
弾性部材は、回転子に圧縮荷重を付与するコイル状の圧縮バネ(261)で構成され、
回転子をシャフトの軸心まわりの周方向の一方側に付勢するコイル状のトーションバネ(29)を備え、
圧縮バネは、トーションバネの内側に配置されるとともに、トーションバネよりも巻き数が多くなっている。
請求項7、14に記載の発明は、付勢部材は、回転子を前記流路形成部に向けて付勢するだけでなく、シャフトの軸心まわりの周方向の一方側に付勢するように回転子に対して連結される弾性部材(261)で構成されている。
このように、シャフトを回転子に対して傾動可能に連結する連結構造を備えていれば、何らかの要因によってシャフトが傾いても、回転子と流路形成部との密着性を確保することができる。また、付勢部材によって回転子が流路形成部に向けて押し付けられるので、回転子の姿勢を流路形成部に接する姿勢に維持することができる。したがって、本開示のバルブ装置および流体循環回路は、シャフトの姿勢変化による流体漏れを抑制することができる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係るバルブ装置の模式的な平面図である。 第1実施形態に係るバルブ装置の模式的な正面図である。 図1のIII-III断面を示す模式図である。 図3のIV-IV断面を示す模式図である。 第1実施形態に係るバルブ装置の付勢部材を説明するための説明図である。 回転子と固定子との接触状態を説明するための説明図である。 第1実施形態に係るバルブ装置の一部を示す模式的な断面図である。 バルブ装置におけるシャフトの傾きを説明するための説明図である。 バルブ装置におけるシャフトの傾きと嵌合部分に生ずる隙間との関係性を説明するための説明図である。 第1実施形態の変形例に係るバルブ装置を示す模式的な断面図である。 第2実施形態に係るバルブ装置を示す模式的な断面図である。 第2実施形態に係るバルブ装置の付勢部材を示す模式図である。 第3実施形態に係るバルブ装置を示す模式的な断面図である。 第3実施形態に係るバルブ装置の付勢部材を示す模式図である。 第4実施形態に係るバルブ装置を示す模式的な断面図である。 第4実施形態に係るバルブ装置の付勢部材を示す模式図である。 第5実施形態に係るバルブ装置を示す模式的な断面図である。 第5実施形態に係るバルブ装置の固定子およびシール部材を示す模式的な斜視図である。 第6実施形態に係るバルブ装置を示す模式的な断面図である。 第6実施形態に係るバルブ装置のシャフトと回転子との連結部分を説明するための説明図である。 第7実施形態に係るバルブ装置を示す模式的な断面図である。 第7実施形態に係るバルブ装置のシャフトと回転子との連結部分を説明するための説明図である。 第8実施形態の温度調整装置の全体構成図である。 第8実施形態に係る高温側切替弁の模式的な斜視図である。 第8実施形態に係る低温側切替弁の模式的な斜視図である。 第8実施形態に係る流路切替弁の模式的な斜視図である。 流路切替弁の模式的な分解斜視図である。 流路切替弁の通路構成を説明するための説明図である。 流路切替弁の通路構成の切替態様の一例を示す説明図である。 流路切替弁の通路構成の切替態様の他の例を示す説明図である。 第8実施形態の空調ユニットの模式的な構成図である。 流路切替弁の機器冷却モードの通路構成を示す説明図である。 流路切替弁の外気冷却モードの通路構成を示す説明図である。 流路切替弁の外気吸熱モードの通路構成を示す説明図である。 除霜モードの回路構成の一例を示す説明図である。
以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
(第1実施形態)
本実施形態について、図1~図9を参照して説明する。本実施形態では、本開示のバルブ装置10を、車両に搭載される車両用の制御バルブに適用した例について説明する。図1に示すバルブ装置10は、図示しないが、流体(本例では、冷却水)を走行用動力源およびラジエータ等に循環させる流体循環回路に適用され、流体循環回路を循環する流体が流れる。
バルブ装置10は、流体循環回路のうちバルブ装置10を介した流通経路における流体の流量を増減することができるとともに、当該流通経路における流体の流れを遮断することもできる。流体としては、例えばエチレングリコールを含むLLCなどが用いられる。なお、LLCはLong Life Coolant の略称である。
図1および図2に示すように、バルブ装置10は、外殻を形成するハウジング12を有する。バルブ装置10は、流体が流入する入口部121、流体を流出させる第1出口部122、流体を流出させる第2出口部123がハウジング12に設けられた三方弁で構成されている。バルブ装置10は、単に流路切替弁としての機能だけでなく、入口部121から第1出口部122へ流れる流体と、入口部121から第2出口部123へ流れる流体との流量割合を調整する流量調整弁としても機能する。
バルブ装置10は、後述するシャフト20の軸心CLまわりに円盤状の弁体が回転することで、バルブ開閉動作を行うディスクバルブとして構成されている。なお、本実施形態は、後述するシャフト20の軸心CLに沿う方向を軸心方向DRaとし、当該軸心方向DRaに直交するとともに軸心方向DRaから放射状に伸びる方向を径方向DRrとして各種構成等を説明する。また、本実施形態は、軸心CLまわりの方向を周方向DRcとして各種構成等を説明する。
図3に示すように、バルブ装置10は、ハウジング12の内側に、固定子14、駆動部16、回転部18、付勢部材26等が収容されている。
ハウジング12は、回転しない非回転部材である。ハウジング12は、例えば樹脂材料によって形成されている。ハウジング12は、軸心方向DRaに沿って延びる有底筒状の本体部120と本体部120の開口部120aを閉塞する本体カバー部124とを有している。
本体部120は、底面を形成する底壁部120bおよび軸心CLまわりを囲む側壁部120cを有している。側壁部120cには、底壁部120bよりも開口部120aに近い位置に入口部121が形成され、開口部120aよりも底壁部120bに近い位置に第1出口部122および第2出口部123が形成されている。
側壁部120cの内側には、軸心CLに近づくように突き出る環状の突起部120dが形成されている。突起部120dは、本体部120の内側に固定子14を配置するために設けられている。突起部120dには、図示しないが、回り止め用のピンが設けられ、当該ピンによって、固定子14の周方向DRcへの移動が規制されている。なお、固定子14の回り止めは、回り止め用のピン以外の手段によって実現されていてもよい。
本体部120の内側は、固定子14によって入口側空間120eと出口側空間120fとに仕切られている。入口側空間120eは、ハウジング12の内側にて入口部121に連通する空間である。出口側空間120fは、ハウジング12内側にて第1出口部122および第2出口部123に連通する空間である。
また、本体部120の内側には、出口側空間120fを第1出口側空間120gと第2出口側空間120hとに仕切る板状の仕切部125が設定されている。仕切部125は、出口側空間120fを径方向DRrに沿って横断するように設けられている。
固定子14は、軸心方向DRaを厚み方向とする円盤状の部材で構成されている。固定子14は、後述する回転子22が摺動する表面としての開口面140を有する。開口面140は、後述する回転子22の摺動面220に対応するシール面である。
固定子14は、ハウジング12の構成材料に比較して、線膨張係数が小さく、且つ、耐摩耗性に優れた材料で形成されていることが望ましい。固定子14は、ハウジング12よりも硬度が高い高硬度材料で構成されている。具体的には、固定子14はセラミックで構成されている。なお、固定子14は、開口面140を形成する部位だけが、ハウジング12の構成材料に比較して、セラミック等の線膨張係数が小さく、且つ、耐摩耗性に優れた材料で形成されていてもよい。
また、固定子14は、流体が通過する流路孔が形成された流路形成部を構成する。図4に示すように、固定子14には、流体が通過する第1流路孔141および第2流路孔142が形成されている。
第1流路孔141および第2流路孔142は、シャフト20の軸心CLと重ならないように、固定子14のうちシャフト20の軸心CLから離れた位置に形成されている。第1流路孔141および第2流路孔142は、セクタ状(すなわち、扇形状)の貫通孔であり、第1流路孔141および第2流路孔142は、入口側空間120eと出口側空間120fとを連通させる連通路として機能する。なお、第1流路孔141および第2流路孔142は、セクタ状に限らず、円形状や楕円形状等の他の形状になっていてもよい。
具体的には、第1流路孔141は、第1出口側空間120gに連通するように、固定子14のうち、第1出口側空間120gに対応する部位に設けられている。また、第2流路孔142は、第2出口側空間120hに連通するように、固定子14のうち、第2出口側空間120hに対応する部位に設けられている。
図3に戻り、固定子14の略中心部分には、後述するシャフト20の他端側部位20bを保持する保持孔143が形成されている。シャフト20の他端側部位20bは、シャフト20において駆動部16から回転力が伝えられる一端側部位20aとは軸心方向DRaにおいて反対側となる部位である。
保持孔143には、シャフト20の他端側部位20bを回転自在に支持する他端側軸受部144が配置されている。他端側軸受部144は、滑り面によって他端側部位20bを受ける滑り軸受で構成されている。なお、他端側軸受部144は、滑り軸受ではなく、玉軸受等の他の軸受で構成されていてもよい。本実施形態のバルブ装置10は、保持孔143および他端側軸受部144によって保持部が構成されている。
駆動部16は、回転力を出力するための機器である。駆動部16は、駆動源としてのモータ161と、モータ161の出力をシャフト20に伝達する動力伝達部材としてのギア部162とを有している。
モータ161は、電力供給を受けることにより回転作動する駆動源である。モータ161は、例えばサーボモータまたはブラシレスモータが採用される。モータ161は、モータ161と電気的に連結したバルブ制御部17からの制御信号に従って回転する。
バルブ制御部17は、非遷移的実体的記憶媒体であるメモリ、およびプロセッサなどを有するコンピュータである。バルブ制御部17は、メモリに記憶されたコンピュータプログラムを実行するとともに、コンピュータプログラムに従って種々の制御処理を実行する。
ギア部162は、複数の歯車を有している。ギア部162は、複数の歯車の互いの噛み合いにより、モータ161の回転作動を回転部18へ伝達し回転部18を回転させる。具体的には、ギア部162は、モータ161の回転作動を回転部18のシャフト20へ伝達し、回転部18を構成するシャフト20および回転子22を回転させる。本実施形態のギア部162は、歯車としてヘリカルギアまたは平歯車を含むギア機構で構成されている。なお、ギア部162は、上述のギア機構に限らず、例えば、歯車としてウォームおよびウォームホイールを有するウォームギアで構成されていてもよい。
回転部18は、バルブ装置10において、駆動部16の出力によってシャフト20の軸心CLを中心に回転する。回転部18は、シャフト20と、弁体としての回転子22と、シャフト20に回転子22を連結する中間子24とを有している。
シャフト20は、駆動部16が出力する回転力によって所定の軸心CLを中心に回転する回転軸である。シャフト20は軸心方向DRaに沿って延伸する。シャフト20は、軸心方向DRaの一方側に駆動部16から回転力が伝えられる一端側部位20aおよび一端側部位20aとは軸心方向DRaにて反対となる他端側部位20bを有している。一端側部位20aはギア部162に連結されている。また、シャフト20は、一端側部位20aと他端側部位20bとの間の部位が、中間子24を介して回転子22に相対回転不能に連結されている。
シャフト20は、一端側部位20aが本体カバー部124に設けられた一端側軸受部126によって回転可能に支持されるとともに、他端側部位20bが他端側軸受部144によって回転可能に支持されている。一端側軸受部126は、滑り面によって一端側部位20aを受ける滑り軸受で構成されている。なお、一端側軸受部126は、滑り軸受ではなく、玉軸受等の他の軸受で構成されていてもよい。
シャフト20は、シャフト20の姿勢によらず固定子14の開口面140と回転子22の摺動面220との接触状態が維持されるように、回転子22に対して傾動可能に連結されている。シャフト20と回転子22との連結構造の詳細は後述する。なお、「傾動」は、一方向に傾いて動くことを意味する。
回転子22は、シャフト20の回転に伴って第1流路孔141の開度および第2流路孔142の開度を増減する弁体である。なお、第1流路孔141の開度は、第1流路孔141が開かれている度合いであり、第1流路孔141の全開を100%、全閉を0%として表される。第1流路孔141の全開は、例えば、第1流路孔141が回転子22に全く塞がれていない状態である。第1流路孔141の全閉は、例えば、第1流路孔141の全体が回転子22に塞がれている状態である。第2流路孔142の開度は、第1流路孔141の開度と同様である。
回転子22は、軸心方向DRaを厚み方向とする円盤状の部材で構成されている。回転子22は、軸心方向DRaにおいて固定子14に相対するように入口側空間120eに配置されている。回転子22は、固定子14の開口面140に相対して摺動する摺動面220を有する。摺動面220は、固定子14の開口面140をシールするシール面である。
回転子22は、ハウジング12の構成材料に比較して、線膨張係数が小さく、且つ、耐摩耗性に優れた材料で形成されていることが望ましい。回転子22は、ハウジング12よりも硬度が高い高硬度材料で構成されている。具体的には、回転子22はセラミックで構成されている。なお、回転子22は、摺動面220を形成する部位だけが、ハウジング12の構成材料に比較して、セラミック等の線膨張係数が小さく、且つ、耐摩耗性に優れた材料で形成されていてもよい。
回転子22には、シャフト20の軸心CLに対して偏心した位置に回転子孔221が形成されている。回転子孔221は、軸心方向DRaに貫通する貫通孔である。回転子孔221は、回転子22のシャフト20の軸心CLまわりを回転させた際に、回転子22において第1流路孔141および第2流路孔142と軸心方向DRaに重なり合う部位に形成されている。
バルブ装置10は、回転子孔221が第1流路孔141と軸心方向DRaに重なり合うように回転子22を回転させると、第1流路孔141が開放される。また、バルブ装置10は、回転子孔221が第2流路孔142と軸心方向DRaに重なり合うように回転子22を回転させると、第2流路孔142が開放される。
回転子22は、第1流路孔141を通過する流体および第2流路孔142を通過する流体の流量割合を調整可能に構成されている。すなわち、回転子22は、第1流路孔141の開度が大きくなるにともなって第2流路孔142の開度が小さくなるように構成されている。
中間子24は、シャフト20に回転子22を連結する連結構造の一部を構成する。中間子24は、回転子22の自転を防止する自転防止機構としても機能する。中間子24は、他端側部位20bと回転子22との間に隙間が形成されるように回転子22をシャフト20に連結する。中間子24は、回転子22よりも軸心方向DRaにおいて一端側部位20aに近い位置に設けられている。
中間子24は、シャフト20の外周を覆う中間筒状部241および中間筒状部241から回転子22に向けて軸心方向DRaに沿って突き出る中間ピン242を有している。中間筒状部241は、シャフト20と一体に回転可能なように、圧入、嵌合、接着等の連結手段によってシャフト20に対して連結されている。中間ピン242は、シャフト20の回転を回転子22に伝える部材である。中間ピン242は、回転子22のうち摺動面220の反対側の表面に形成されたピン受部222に嵌め込むことが可能に構成されている。
このように構成される中間子24は、中間ピン242をピン受部222に嵌め込むことによって回転子22の自転を防止する構成になっている。なお、回転子22の自転防止機構は、上述のものに限らず、他の手段によって実現されていてもよい。
付勢部材26は、回転子22を流路形成部に対応する固定子14に向けて付勢する部材である。付勢部材26は、図5に示すように、回転子22に圧縮荷重を付与するコイル状の圧縮バネ261で構成されている。圧縮バネ261は、シャフト20の軸心方向DRaに弾性変形する弾性部材である。
圧縮バネ261は、シャフト20の軸心CLまわりに巻かれて形成されている。すなわち、圧縮バネ261の内側にシャフト20が配置されている。圧縮バネ261は、駆動部16と回転子22との間に圧縮された状態で配置されている。
具体的には、圧縮バネ261は、軸心方向DRaの一方側の端部が本体カバー部124に接し、軸心方向DRaの他方側の端部が回転子22に接するようにハウジング12の内側に配置されている。なお、圧縮バネ261は、トーションバネとして機能しないように、回転子22および本体カバー部124の少なくとも一方に対して固定されていない。
圧縮バネ261は、シャフト20の軸心CLに対して傾斜し難くなるように両端部がクローズエンドとなるバネが採用されている。クローズエンドとなるバネは、バネの据わりをよくするために、バネ端部の巻だけ巻角度を変えて隣の巻にバネ線の端部を付けたものである。なお、圧縮バネ261は、両端部がオープンエンドとなるバネが採用されていてもよい。
圧縮バネ261によって回転子22が固定子14に押し付けられることで、固定子14の開口面140と回転子22の摺動面220との接触状態が維持される。この接触状態は、固定子14の開口面140と回転子22の摺動面220とが面接触した状態である。
ここで、面接触とは、開口面140および摺動面220がシャフト20の軸心CLを中心として周方向DRcに互いに90°以上離れた3点で接触している状態である。例えば、図6に示すように、回転子22は、開口面140および摺動面220が第1接点P1、第2接点P2、および第3接点P3で接するように、圧縮バネ261によって固定子14に押し付けられている。
ここで、図6に示すものは、第1流路孔141と第2流路孔142との間にて固定子14と回転子22とが接する接点を第1接点P1としている。
また、図6に示すものは、第1接点P1とシャフト20の軸心CLとを通る第1仮想線VL1と、第1仮想線VL1に直交するとともにシャフト20の軸心CLとを通る第2仮想線VL2とで、4つの領域A1、A2、A3、A4に区分している。そして、図6に示すものは、第1接点P1を介して隣り合う第1領域A1および第2領域A2以外の第3領域A3で固定子14と回転子22とが接する接点を第2接点P2とし、第4領域A4にて固定子14と回転子22とが接する接点を第3接点P3としている。なお、固定子14と回転子22とが接する第1接点P1、第2接点P2、第3接点P3は、図6に示されるものに限定されない。第1接点P1、第2接点P2、第3接点P3は、例えば、付勢部材26によって回転子22から固定子14に作用する荷重に基づいて規定されていてもよい。
続いて、本実施形態のシャフト20と回転子22との連結構造について図7を参照して説明する。図7は、図3のVII部分を拡大した部分拡大図である。
図7に示すように、シャフト20と回転子22との連結構造は、回転子22に設けられた嵌合孔223にシャフト20の一部を嵌め込む嵌合構造28を含んでいる。嵌合構造28は、回転子22の嵌合孔223に対してシャフト20の一部が隙間嵌となる嵌め合い構造になっている。
本実施形態のシャフト20は、他端側部位20bの一部が、回転子22に設けられた嵌合孔223に嵌め込まれる嵌合部20cを構成している。この嵌合部20cは、他端側部位20bのうち径方向DRrにおいて回転子22と重なり合う部位である。
嵌合孔223は、シャフト20の一部を嵌合させた状態でシャフト20を傾動可能なように、シャフト20との間に隙間が形成される大きさになっている。すなわち、嵌合孔223は、その直径Φgがシャフト20の嵌合部20cの直径Φsよりも大きくなっている(すなわち、Φg>Φs)。
また、嵌合孔223と嵌合部20cとの隙間は、シャフト20の保持部を構成する他端側軸受部144と嵌合部20cとの隙間よりも大きくなっている。具体的には、嵌合孔223の直径Φgと嵌合部20cの直径Φgとの差である嵌合寸法差ΔΦaは、他端側軸受部144の内径Φbと嵌合部20cの直径Φgとの差である軸寸法差ΔΦbよりも大きくなっている(すなわち、ΔΦa>ΔΦb)。
ここで、例えば、嵌合孔223は、円形状でない場合、上述の直径Φgが規定できなくなってしまう。このため、例えば、嵌合孔223が円形状でない場合、嵌合孔223の直径Φgを嵌合孔223と断面積が等しい円の直径(すなわち、等価直径)とし、上述の大小関係が設定されていてもよい。このことは、嵌合部20cや他端側軸受部144においても同様である。
図8に示すように、シャフト20および回転子22は、何らかの要因によって、実線で示す設計上の狙いの姿勢から破線で示す傾いた姿勢になってしまうことがある。シャフト20および回転子22が傾く要因としては、例えば、シャフト20の軸心方向DRaの寸法バラツキ、シャフト20の両端が別体の部材に保持されて構造になっていること等が挙げられる。このような構造では、本体カバー部124と本体部120と組み付け精度が充分でないと、一端側軸受部126と他端側軸受部144との相対的な位置が径方向DRrにずれ、シャフト20およびが傾いてしまう。
これに対して、付勢部材26による押付荷重を大きくして回転子22と固定子14との密着性を確保することが考えられるが、この場合、回転子22と固定子14との間での摺動抵抗が大きくなることで負荷トルクが増加してしまう。
そこで、本実施形態のバルブ装置10は、シャフト20の一部が隙間嵌となる嵌め合い構造で回転子22の嵌合孔223に嵌合されている。これによると、付勢部材26による押付荷重を大きくする必要がなく、負荷トルクの増大も抑制することができる。
ここで、シャフト20の傾き角として設計上許容される最大角をシャフト傾斜角θとし、回転子22の傾き角として設計上許容される最大角を回転子傾斜角αとしたとき、嵌合孔223と嵌合部20cとの隙間Gが、以下の数式F1を満たしていることが望ましい。嵌合孔223と嵌合部20cとの隙間Gが、以下の数式F1を満たす場合、シャフト20や回転子22が設計範囲内で傾いたとしても、固定子14の開口面140と回転子22の摺動面220との面接触させることが可能となる。
G≧T×tan(θ-α)・・・(F1)
また、嵌合孔223と嵌合部20cとの隙間Gは、シャフト20の一端側部位20aの回転中心と他端側部位20bの回転中心との径方向DRrでのズレ量として許容される許容ズレ量よりも大きくなるように設定されていてもよい。これによっても、設計範囲内において、回転子22と固定子14との密着性を確保することができる。
次に、本実施形態のバルブ装置10の作動について説明する。バルブ装置10は、図3および図4に示すように、流体は、矢印Fiのように入口部121から入口側空間120eへ流入する。そして、第1流路孔141が開いている場合には、流体が入口側空間120eから第1流路孔141を介して第1出口側空間120gへ流れる。第1出口側空間120gへ流れ込んだ流体は、第1出口側空間120gから第1出口部122を介してバルブ装置10の外部へ矢印F1oのように流出する。この場合、第1流路孔141を通過する流体の流量は、第1流路孔141の開度に応じて定まる。すなわち、入口部121から第1流路孔141を介して第1出口部122へ流れる流体の流量は、第1流路孔141の開度が大きいほど大きくなる。
一方、第2流路孔142が開いている場合には、流体が入口側空間120eから第2流路孔142を介して第2出口側空間120hへ流入する。第2出口側空間120hへ流れ込んだ流体は第2出口側空間120hから第2出口部123を介してバルブ装置10の外部へ矢印F2oのように流出する。この場合、第2流路孔142を通過する流体の流量は、第2流路孔142の開度に応じて定まる。すなわち、入口部121から第2流路孔142を介して第2出口部123へ流れる流体の流量は、第2流路孔142の開度が大きいほど大きくなる。
以上説明した本実施形態のバルブ装置10は、シャフト20を回転子22に対して傾動可能に連結する連結構造を備えている。これによると、何らかの要因によってシャフト20が傾いても、回転子22と流路形成部を構成する固定子14との密着性を確保することが可能となる。
ここで、単にシャフト20を回転子22に対して傾動可能に連結する場合、流体の圧力によって回転子22の姿勢が規定される。この場合、例えば、流体の圧力が変化すると、回転子22の姿勢が定まらず、回転子22と流路形成部を構成する固定子14との密着性の確保には不充分となってしまう。
これに対して、本実施形態のバルブ装置10は、付勢部材26によって回転子22が固定子14に向けて押し付けられているので、回転子22の姿勢を固定子14に接する姿勢に維持することができる。
このように、本実施形態のバルブ装置10は、上述の連結構造と付勢部材26との有機的な結合によって、シャフト20の姿勢変化による流体漏れを抑制することができるといった特有の作用効果を奏する。
また、シャフト20と回転子22との連結構造は、回転子22に設けられた嵌合孔223にシャフト20の嵌合部20cを嵌め込む嵌合構造28を含んでいる。そして、嵌合孔223は、嵌合部20cを嵌合させた状態でシャフト20を傾動可能なように、シャフト20との間に隙間が形成される大きさになっている。嵌合孔223と嵌合部20cとの間に隙間が形成される嵌合構造28によれば、嵌合孔223と嵌合部20cとの接触が抑制されることで、連結構造での摺動損失を抑制したり、耐摩耗性を確保したりすることができる。すなわち、嵌合構造28は、継手のように部材同士が摺動する連結構造に比べて、摺動損失を抑制したり、耐摩耗性を確保したりすることができる。
さらに、嵌合孔223と嵌合部20cとの隙間は、シャフト20の保持部を構成する他端側軸受部144と嵌合部20cとの隙間よりも大きくなっている。これにより、シャフト20の保持部にてシャフト20を適切に保持しつつ、連結構造にてシャフト20を回転子22に対して傾動可能に連結することができる。
ここで、付勢部材26は、シャフト20の軸心方向DRaに弾性変形する弾性部材である圧縮バネ261で構成されている。これによると、回転子22の摺動面220を固定子14の開口面140に向けて押し付ける荷重を充分に確保することができるので、摺動面220と開口面140との接触状態が維持され易くなる。
具体的には、シャフト20は、圧縮バネ261の内側に配置されている。これによると、回転子22に対する圧縮バネ261の荷重がシャフト20の周方向DRcで偏ることが抑制されるので、摺動面220と開口面140との接触状態が維持され易くなる。
(第1実施形態の変形例)
上述の実施形態では、付勢部材26としてコイル状の圧縮バネ261を採用したものを例示したが、付勢部材26は圧縮バネ261に限定されない。付勢部材26は、例えば、図10に示すように、シャフト20の軸心方向DRaに弾性変形する円筒状の弾性体262で構成されていてもよい。弾性体262は、例えば、伸縮性を有するゴム材料で構成される。
(第2実施形態)
次に、第2実施形態について、図11、図12を参照して説明する。本実施形態では第1実施形態と異なる部分について主に説明する。
図11および図12に示すように、シャフト20は、回転子22よりも一端側部位20aに近い位置にシャフト20の径方向DRrに突き出るフランジ部20dが設けられている。フランジ部20dは、円盤状に形成され、シャフト20とともに一体に回転するようにシャフト20に対して設けられている。フランジ部20dは、外径寸法が圧縮バネ261の外径寸法よりも大きくなっている。
圧縮バネ261は、回転子22とともに回転するように、回転子22とフランジ部20dとの間に圧縮された状態で配置されている。具体的には、圧縮バネ261は、軸心方向DRaの一方側の端部がフランジ部20dに接し、軸心方向DRaの他方側の端部が回転子22に接するようにハウジング12の内側に配置されている。なお、圧縮バネ261は、トーションバネとして機能しないように、回転子22および本体カバー部124の少なくとも一方に対して固定されていない。
その他の構成は、第1実施形態と同様である。本実施形態のバルブ装置10は、第1実施形態と同様または均等となる構成から奏される作用効果を第1実施形態と同様に得ることができる。
本実施形態のバルブ装置10は、圧縮バネ261が回転子22とフランジ部20dとの間に圧縮された状態で配置されている。これによると、圧縮バネ261が回転子22およびシャフト20と一体に回転することで、圧縮バネ261の摺動に伴う摺動ロスを抑制したり、耐摩耗性を確保したりすることができる。また、圧縮バネ261がトーションバネとして機能しないので、回転子22に対してシャフト20の軸心CLまわりの周方向に不要な力が作用してしまうことを抑えることができる。
(第2実施形態の変形例)
上述の実施形態では、フランジ部20dが円盤状に構成されているものを例示したが、フランジ部20dは円盤状のものに限定されない。フランジ部20dは、圧縮バネ261の一端を保持可能であれば、例えば、多角形状に構成されていてもよい。なお、フランジ部20dは、シャフト20ではなく、中間子24と一体に設けられていてもよい。
(第3実施形態)
次に、第3実施形態について、図13、図14を参照して説明する。本実施形態では第1実施形態と異なる部分について主に説明する。
図13および図14に示すように、バルブ装置10は、回転子22をシャフト20の軸心CLまわりの周方向DRcの一方側に付勢するコイル状のトーションバネ29を備える。トーションバネ29は、駆動部16と回転子22との間に配置されている。トーションバネ29は、シャフト20の軸心CLまわりに巻かれて形成されている。トーションバネ29は、そのコイル径D2が、圧縮バネ261のコイル径D1よりも大きくなっている。そして、トーションバネ29は、その内側に圧縮バネ261が配置されている。
トーションバネ29は、圧縮バネ261と異なり、回転子22および本体カバー部124それぞれに対して固定されている。トーションバネ29は、軸心方向DRaの一端側が本体カバー部124に相対回転不能に連結され、軸心方向DRaの他端側が回転子22に相対回転不能に連結されている。トーションバネ29を回転子22に連結する方法は種々考えられるが、例えば、トーションバネ29の端部は、回転子22に固定された固定ピン224に係止されることにより回転子22に連結される。
トーションバネ29は、周方向DRcに捩じられて弾性変形を生じた状態で使用される。トーションバネ29は、自身の弾性変形によって、回転子22を周方向DRcの一方側へ付勢する付勢力を発生する。トーションバネ29は、周方向DRcに捩じられているだけで軸心方向DRaに圧縮されているわけではない。
ここで、円筒状のコイルバネは、荷重Pと撓み量δとの関係が基本的に以下の数式F2で示される。
P={G×d×δ}/{8×Na×D} ・・・(F2)
ここで、数式F2では、コイル線材の弾性係数をG、コイル線材の直径をd、コイル径をD、コイル巻数をNaで示している。
数式F2によれば、コイルバネは、コイル径Dが小さいほどバネ定数が大きくなる。バネ定数が大きいと、回転子22に作用する荷重が大きく変動する。このような荷重変動は、回転子22と固定子14との密着性が悪化する要因となり得る。
これに対して、本実施形態の圧縮バネ261は、回転子22に作用する荷重が安定するように、トーションバネ29よりも巻き数Naが多くなっている。圧縮バネ261の巻き数Naは、例えば、圧縮バネ261のコイル径とトーションバネ29のコイル径との差が大きいほど多くなるように設定される。
その他の構成は、第1実施形態と同様である。本実施形態のバルブ装置10は、第1実施形態と同様または均等となる構成から奏される作用効果を第1実施形態と同様に得ることができる。
ここで、回転子22とシャフト20とが別体で構成される場合、周方向DRcにおける回転子22とシャフト20との相対的な位置ズレが生じてしまうことがある。このような位置ズレは流体漏れを招く要因となることから好ましくない。
これに対して、トーションバネ29によって回転子22をシャフト20の周方向DRcの一方側に付勢する構成とすれば、周方向DRcにおける回転子22とシャフト20との相対的な位置ズレの発生を抑えることができる。
加えて、トーションバネ29のコイル径D2よりもコイル径D1の小さい圧縮バネ261の巻き数Naを多くすることで、圧縮バネ261のバネ定数を過大になってしまうことを抑制することができる。これによると、圧縮バネ261の撓みに対して荷重を安定させることができる。
(第3実施形態の変形例)
上述の第3実施形態では、圧縮バネ261の巻き数Naを増加させることで、バネ定数が過大になってしまうことを抑制したものを例示したが、圧縮バネ261はこれに限定されない。圧縮バネ261は、例えば、トーションバネ29に比べてコイル線材の直径が小さくなるものが採用されていてもよい。
(第4実施形態)
次に、第4実施形態について、図15、図16を参照して説明する。本実施形態では第1実施形態と異なる部分について主に説明する。
図15および図16に示すように、付勢部材26は、回転子22を固定子14に向けて付勢するだけでなく、周方向DRcの一方側に付勢するように回転子22に対して連結される弾性部材で構成されている。具体的には、付勢部材26は、トーションバネとしても機能するように構成された圧縮バネ261で構成されている。
本実施形態の圧縮バネ261は、回転子22および本体カバー部124それぞれに対して固定されている。圧縮バネ261は、軸心方向DRaの一端側が本体カバー部124に相対回転不能に連結され、軸心方向DRaの他端側が回転子22に相対回転不能に連結されている。圧縮バネ261を回転子22に連結する方法は種々考えられるが、例えば、圧縮バネ261の端部は、回転子22に固定された固定ピン225に係止されることにより回転子22に連結される。
圧縮バネ261は、第1実施形態と異なり、周方向DRcに捩じられて弾性変形を生じた状態で使用される。圧縮バネ261は、自身の弾性変形によって、回転子22を周方向DRcの一方側へ付勢する付勢力を発生する。
その他の構成は、第1実施形態と同様である。本実施形態のバルブ装置10は、第1実施形態と同様または均等となる構成から奏される作用効果を第1実施形態と同様に得ることができる。
本実施形態のバルブ装置10は、弾性部材は圧縮バネ261としての機能に加えてトーションバネとしての機能を備える。このため、バルブ装置10の部品点数を増加させることなく、回転子22の姿勢を固定子14に接する姿勢に維持しつつ、シャフト20の周方向DRcでの回転子22とシャフト20との位置ズレを抑えることができる。
(第5実施形態)
次に、第5実施形態について、図17、図18を参照して説明する。本実施形態では第1実施形態と異なる部分について主に説明する。
図17に示すように、バルブ装置10は、固定子14とハウジング12との間にシール部材30が配置されている。シール部材30は、固定子14とハウジング12の突起部120dとの間に介在されている。これにより、固定子14とハウジング12の突起部120dとの隙間からの流体漏れが抑制される。
シール部材30は、軸心方向DRaに弾性変形可能に構成されている。図18に示すように、シール部材30は、軸心方向DRaを厚み方向とする円盤状の部材で構成されている。シール部材30は、軸心方向DRaにおいて固定子14と重なり合うように固定子14と同等の外径を有する。また、シール部材30の厚みは、固定子14の厚みよりも小さくなっている。
シール部材30には、第1流路孔141に相対する部位に流体を通過させる第1貫通孔30aが形成されている。また、シール部材30には、第2流路孔142に相対する部位に流体を通過させる第2貫通孔30bが形成されている。
その他の構成は、第1実施形態と同様である。本実施形態のバルブ装置10は、第1実施形態と同様または均等となる構成から奏される作用効果を第1実施形態と同様に得ることができる。
本実施形態のバルブ装置10は、固定子14とハウジング12との間にシール部材30が配置されている。これによると、シール部材30によって固定子14とハウジング12との間でのシール性を確保することができる。また、例えば、回転子22に作用する圧力が周方向DRcにばらつくと、回転子22が傾いた姿勢になってしまうことがあるが、この場合でも、シール部材30の変形によって固定子14を回転子22に追従して傾けることが可能となる。このように、固定子14とハウジング12との間にシール部材30を介在させる構成によれば、固定子14と回転子22との密着性を確保することができ、バルブ装置10での流体漏れを充分に抑制することができる。
(第6実施形態)
次に、第6実施形態について、図19、図20を参照して説明する。本実施形態では第1実施形態と異なる部分について主に説明する。
図19に示すように、シャフト20と回転子22との連結構造は、ユニバーサルジョイント32が採用されている。ユニバーサルジョイント32は、接合する角度を変化させることが可能な継手である。具体的には、ユニバーサルジョイント32は、回転子22の摺動面220とシャフト20の軸心CLとのなす角度を変更可能にシャフト20および回転子22を連結する。
図20に示すように、ユニバーサルジョイント32は、ボールジョイント321で構成されている。ボールジョイント321は、シャフト20の他端側部位20bに設けられたボールスタッド20eおよび回転子22の表面に設けられたソケット226で構成されている。ボールスタッド20eは、球面を有する球体で構成されている。また、ソケット226は、ボールスタッド20eの球面と接触可能なようにボールスタッド20eの球面に対応する内側形状を有している。回転子22は、ボールスタッド20eとソケット226との接触時の摩擦力によってシャフト20とともに回転可能になっている。
その他の構成は、第1実施形態と同様である。本実施形態のバルブ装置10は、第1実施形態と同様または均等となる構成から奏される作用効果を第1実施形態と同様に得ることができる。
(第6実施形態の変形例)
上述の第6実施形態のボールジョイント321は、シャフト20の他端側部位20bにボールスタッド20eが設けられ、回転子22の表面に設けられたソケット226が設けられているものを例示したが、これに限定されない。ボールジョイント321は、例えば、シャフト20の他端側部位20bに設けられたソケットおよび回転子22に設けられたボールスタッドで構成されていてもよい。
(第7実施形態)
次に、第7実施形態について、図21、図22を参照して説明する。本実施形態では第6実施形態と異なる部分について主に説明する。
図21および図22に示すように、本実施形態のユニバーサルジョイント32は、回転子22に設けられた自在受部227で構成されている。自在受部227は、回転子22を厚み方向に貫通する貫通孔である。自在受部227は、軸心方向DRaに近づくように突き出る断面略半円となる円弧面227aを有している。シャフト20の他端側部位20bは、主に円弧面227aの頂点227b付近で接触することで、自在受部227によって傾動可能に支持される。回転子22は、自在受部227とシャフト20との接触時の摩擦力によってシャフト20とともに回転可能になっている。
その他の構成は、第1実施形態と同様である。本実施形態のバルブ装置10は、第1実施形態と同様または均等となる構成から奏される作用効果を第1実施形態と同様に得ることができる。
本実施形態のユニバーサルジョイント32によれば、回転子22に対して自在受部227を設けることで、シャフト20を傾動可能に支持することが可能となる。これによると、シャフト20と回転子22との連結構造を簡易な構造で実現することができる。
(第8実施形態)
次に、第8実施形態について、図23~図35を参照して説明する。本実施形態では第1実施形態と異なる部分について主に説明する。本実施形態では、第1実施形態で説明したバルブ装置10を図23に示す温度調整装置1に搭載される制御バルブに適用した例について説明する。
温度調整装置1は、走行用の駆動力を電動モータから得る電気自動車に搭載されている。温度調整装置1は、電気自動車において、空調対象空間である車室内への送風空気の温度調整を行うとともに、バッテリBTを含む複数の車載機器の温度調整を行う装置である。温度調整装置1は、車載機器の温度調整機能付きの空調装置として解釈することができる。
図23に示すように、温度調整装置1は、冷凍サイクル装置200、第1流体循環回路300、第2流体循環回路400、室内空調ユニット500、制御装置600等を備えている。
冷凍サイクル装置200は、蒸気圧縮式の冷凍サイクルを構成する。冷凍サイクル装置200は、圧縮機201、放熱器202、第1膨張弁204、第2膨張弁205、チラー206、室内蒸発器207、蒸発圧力調整弁208等を有している。冷凍サイクル装置200は、後述する各種運転モードに応じて冷媒回路の回路構成を切替可能になっている。
冷凍サイクル装置200は、冷媒としてHFO系冷媒(例えば、R1234yf)が採用されている。冷凍サイクル装置200は、冷媒圧力の最大値が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成する。冷媒には、圧縮機201等の摺動部位を潤滑するための冷凍機油(例えば、PAGオイル)が混入されている。冷凍機油は、その一部が冷媒と共に冷凍サイクル装置200の冷媒回路を循環する。
圧縮機201は、吸入した冷媒を圧縮して吐出する機器である。圧縮機201は、車両前方側の駆動系収容室に配置されている。駆動系収容室は、走行用の駆動源となる電動機等が配置される空間である。駆動系収容室と車室内とは、ファイヤウォールによって隔てられている。
圧縮機201は、冷媒吐出側に放熱器202の冷媒入口側が接続されている。放熱器202は、圧縮機201から吐出された冷媒と第1流体循環回路300を循環する高温熱媒体とを熱交換させることで冷媒を放熱させる熱交換器である。放熱器202は、高温熱媒体を加熱する加熱用熱交換器としても機能する。
冷凍サイクル装置200は、放熱器202として、いわゆるサブクール型の熱交換器が採用されている。すなわち、放熱器202は、凝縮部202a、レシーバ部202b、および過冷却部202cが設けられている。
凝縮部202aは、圧縮機201から吐出された冷媒と高温熱媒体とを熱交換させて、高圧冷媒を凝縮させる凝縮用の熱交換部である。レシーバ部202bは、凝縮部202aから流出した冷媒の気液を分離して分離された液相冷媒を蓄える受液部である。過冷却部202cは、レシーバ部202bから流出した液相冷媒と高温熱媒体とを熱交換させて、液相冷媒を過冷却する過冷却用の熱交換部である。
放熱器202の冷媒出口側には、冷媒分岐部203が接続されている。冷媒分岐部203は、放熱器202から流出した冷媒の流れを分岐する。冷媒分岐部203は、互いに連通する3つの流入出口を有する三方継手である。冷媒分岐部203は、3つの流入出口の内の1つが流入口として用いられ、残りの2つが流出口として用いられている。
冷媒分岐部203の一方の流出口には、第1膨張弁204を介して、チラー206の冷媒入口側が接続されている。冷媒分岐部203の他方の流出口には、第2膨張弁205を介して、室内蒸発器207の冷媒入口側が接続されている。
第1膨張弁204は、冷媒分岐部203の一方の流出口から流出した冷媒を減圧させる減圧部である。第1膨張弁204は、絞り開度を変化させる弁体、および弁体を変位させる電動アクチュエータ(例えば、ステッピングモータ)を有する電気式の可変絞り機構である。第1膨張弁204は、制御装置600から出力される制御パルスによって、その作動が制御される。
第2膨張弁205は、冷媒分岐部203の他方の流出口から流出した冷媒を減圧させる減圧部である。第2膨張弁205の基本的構成は、第1膨張弁204と同様である。
第1膨張弁204および第2膨張弁205は、弁開度を全開にすることで冷媒減圧作用および流量調整作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能を有している。さらに、第1膨張弁204および第2膨張弁205は、弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。
第1膨張弁204および第2膨張弁205は、この全開機能および全閉機能によって、各種運転モードの冷媒回路を切り替えることができる。したがって、第1膨張弁204および第2膨張弁205は、冷凍サイクル装置200の回路構成を切り替える冷媒回路切替部としての機能を兼ね備えている。
第1膨張弁204の冷媒出口側には、チラー206の冷媒入口側が接続されている。チラー206は、第1膨張弁204にて減圧された低圧冷媒と第2流体循環回路400を循環する低温熱媒体とを熱交換させる熱交換器である。チラー206は、低圧冷媒を蒸発させて吸熱作用を発揮させることによって低温熱媒体を冷却する蒸発部である。
したがって、第2流体循環回路400におけるチラー206は、低温熱媒体を冷却する冷却機器である。チラー206の冷媒出口側には、冷媒合流部209の一方の流入口側が接続されている。
第2膨張弁205の冷媒出口側には、室内蒸発器207の冷媒入口側が接続されている。室内蒸発器207は、第2膨張弁205にて減圧された低圧冷媒と車室内へ送風される送風空気Wとを熱交換させる熱交換器である。室内蒸発器207は、低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気Wを冷却する冷却用の熱交換部である。室内蒸発器207は、後述する室内空調ユニット500のケーシング501内に配置されている。
室内蒸発器207の冷媒出口側には、蒸発圧力調整弁208の冷媒入口側が接続されている。蒸発圧力調整弁208は、室内蒸発器207における冷媒蒸発圧力を予め定めた基準圧力以上に維持する蒸発圧力調整部である。
蒸発圧力調整弁208は、室内蒸発器207の冷媒出口側の冷媒圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構である。蒸発圧力調整弁208は、室内蒸発器207における冷媒蒸発温度を室内蒸発器207の着霜を抑制可能な着霜抑制温度(例えば、1℃)以上に維持している。蒸発圧力調整弁208の冷媒出口側には、冷媒合流部209の他方の流入口側が接続されている。
冷媒合流部209は、チラー206から流出した冷媒の流れと蒸発圧力調整弁208から流出した冷媒の流れとを合流させる。冷媒合流部209は、冷媒分岐部203と同様の三方継手である。冷媒合流部209は、3つの流入出口のうち2つが流入口として用いられ、残りの1つが流出口として用いられている。冷媒合流部209の流出口には、圧縮機201の冷媒吸入側が接続されている。
次に、第1流体循環回路300について説明する。第1流体循環回路300は、流体である高温熱媒体が循環する流体循環回路である。第1流体循環回路300では、高温熱媒体として、エチレングリコール水溶液が採用されている。第1流体循環回路300には、高温側ポンプ301、放熱器202、高温側ラジエータ303、ヒータコア304、高温側切替弁310等が配置されている。
高温側ポンプ301の吐出口には、放熱器202の熱媒体通路302の入口側が接続されている。高温側ポンプ301は、高温熱媒体を放熱器202の熱媒体通路302へ圧送する。高温側ポンプ301は、制御装置600から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される電動ポンプである。
放熱器202の熱媒体通路302の出口側には、電気ヒータ306が配置されている。電気ヒータ306は、放熱器202の熱媒体通路302から流出した高温熱媒体を加熱する加熱装置である。第1流体循環回路300では、電気ヒータ306として、PTC素子(すなわち、正特性サーミスタ)を有するPTCヒータが採用されている。電気ヒータ306の発熱量は、制御装置600から出力される制御電圧によって制御される。
電気ヒータ306の下流側には、高温側切替弁310の入口部311が接続されている。高温側切替弁310は、高温側ラジエータ303へ流入する高温熱媒体と、ヒータコア304へ流入する高温熱媒体との流量割合を調整する。高温側切替弁310は、本開示のバルブ装置を構成する。高温側切替弁310は、第1実施形態で説明したバルブ装置10と同様に構成されている。
図24に示すように、高温側切替弁310は、高温熱媒体が流入する入口部311、高温側ラジエータ303へ高温熱媒体を流出させる第1出口部312、およびヒータコア304へ高温熱媒体を流出させる第2出口部313を備える。
第1出口部312は、高温側ラジエータ303の流体入口側に接続され、高温側ラジエータ303へ高温熱媒体を流出させる。第1出口部312は第1実施形態のバルブ装置10における第1出口部122に対応している。
第2出口部313は、ヒータコア304の流体入口側に接続され、ヒータコア304へ高温熱媒体を流出させる。第2出口部313は第1実施形態のバルブ装置10における第2出口部123に対応している。
入口部311は、高温側ラジエータ303の流体出口側とヒータコア304の流体出口側に接続され、高温側ラジエータ303およびヒータコア304から高温熱媒体が流入する。入口部311は第1実施形態のバルブ装置10における入口部121に対応している。
高温側切替弁310は、回転子22を回転変位させることで、高温側ラジエータ303を通過する高温熱媒体とヒータコア304を通過する高温熱媒体の流量割合が調整される構成になっている。具体的には、高温側切替弁310は、回転子22によって第1流路孔141の開度および第2流路孔142の開度を増減することで、高温側ラジエータ303を通過する高温熱媒体とヒータコア304を通過する高温熱媒体の流量割合が調整される。
高温側切替弁310は、制御装置600から出力される制御パルスによって、その作動が制御される。なお、制御装置600は、第1実施形態で説明したバルブ制御部17としての機能も兼ね備えている。
図23に戻り、高温側ラジエータ303は、放熱器202等で加熱された高温熱媒体と図示しない外気ファンから送風された車室外の空気(すなわち、外気OA)とを熱交換させる室外熱交換器である。
高温側ラジエータ303は、駆動系収容室の前方側に配置されている。車両走行時には、高温側ラジエータ303に、グリルを介して駆動系収容室へ流入した走行風(すなわち、外気OA)を当てることができる。高温側ラジエータ303の流体出口側には、高温側合流部307の一方の流入口側が接続されている。
ヒータコア304は、放熱器202等で加熱された高温熱媒体と室内へ送風される送風空気Wとを熱交換させて、送風空気Wを加熱する室内熱交換器である。ヒータコア304は、室内空調ユニット500のケーシング501内に配置されている。ヒータコア304では、チラー206にて冷媒が吸熱した熱を加熱源として送風空気Wを加熱する。ヒータコア304の流体出口側には、高温側合流部307の他方の流入口側が接続されている。
高温側合流部307は、高温側ラジエータ303から流出した冷媒の流れとヒータコア304から流出した冷媒の流れとを合流させる。高温側合流部307は、冷媒合流部209と同様の三方継手である。高温側合流部307の流体出口側には、高温側リザーブタンク308を介して、高温側ポンプ301の流体吸入側が接続されている。
高温側リザーブタンク308は、第1流体循環回路300で余剰となっている高温熱媒体を貯留する高温熱媒体用の貯留部である。第1流体循環回路300では、高温側リザーブタンク308を配置することで、第1流体循環回路300を循環する高温熱媒体の液量低下が抑制される。高温側リザーブタンク308は、第1流体循環回路300を循環するの高温熱媒体の液量が不足した際に高温熱媒体を補給するための熱媒体供給口を有している。
次に、第2流体循環回路400について説明する。第2流体循環回路400は、流体である低温熱媒体が循環する流体循環回路である。第2流体循環回路400では、低温熱媒体として、高温熱媒体と同種の熱媒体を採用している。
第2流体循環回路400には、低温側ポンプ401、チラー206の熱媒体通路402、低温側ラジエータ403、流路切替弁70、バッテリBTの冷却水通路405、車載機器CEの冷却水通路406等が配置されている。
低温側ポンプ401の流体出口側には、低温熱媒体をチラー206の熱媒体通路402の入口側が接続されている。低温側ポンプ401は、低温熱媒体をチラー206の熱媒体通路402へ圧送する圧送部である。低温側ポンプ401の基本的構成は、高温側ポンプ301と同様である。
チラー206の熱媒体通路402の流体出口側には、流路切替弁70の第1入口部700A側が接続されている。流路切替弁70は、第2流体循環回路400の回路構成を切り替える回路切替部である。流路切替弁70には、複数の入口部および複数の出口部が設けられている。これらの入口部および出口部には、バッテリBTの冷却水通路405、低温側ラジエータ403等が接続されている。流路切替弁70の詳細構成は後述する。
バッテリBTは、電動モータ等の電動式の車載機器CEに電力を供給する。バッテリBTは複数の電池セルを電気的に直列的あるいは並列的に接続することによって形成された組電池である。電池セルは、充放電可能な二次電池(例えば、リチウムイオン電池)で構成されている。バッテリBTは、複数の電池セルを略直方体形状となるように積層配置して専用ケースに収容したものである。
この種のバッテリBTは、低温になると化学反応が進行し難く出力が低下し易い。バッテリBTは、充放電時に発熱する。さらに、バッテリBTは、高温になると劣化が進行し易い。このため、バッテリBTの温度は、バッテリBTの充放電容量を充分に活用可能となる適切な温度範囲内(例えば、15℃以上、かつ、55℃以下)に維持されていることが望ましい。
バッテリBTの冷却水通路405は、バッテリBTの専用ケースに形成されている。冷却水通路405は、低温熱媒体とバッテリBTと熱交換させる熱媒体通路である。より具体的には、冷却水通路405は、バッテリBTの有する熱を低温熱媒体に吸熱させる吸熱用の熱媒体通路である。したがって、バッテリBTは、第2流体循環回路400において低温熱媒体を加熱する加熱機器としても機能する。
バッテリBTの冷却水通路405の通路構成は、専用ケースの内部で複数の通路を並列的に接続した通路構成となっている。これにより、バッテリBTの冷却水通路405は、バッテリBTの全域から均等に吸熱可能に形成されている。換言すると、冷却水通路405は、全ての電池セルの有する熱を均等に吸熱して、全ての電池セルを冷却できるように形成されている。
低温側ラジエータ403は、流路切替弁70の第2出口部700Dから流出した低温熱媒体と外気ファンから送風された外気OAとを熱交換させる室外熱交換器である。低温側ラジエータ403は、駆動系収容室の前方側であって、高温側ラジエータ303の外気流れ下流側に配置されている。したがって、低温側ラジエータ403は、高温側ラジエータ303通過後の外気OAと低温熱媒体とを熱交換させる。低温側ラジエータ403は、高温側ラジエータ303と一体的に形成されていてもよい。
低温側ラジエータ403の熱媒体出口には、低温側リザーブタンク408を介して、低温側合流部407の一方の流入口側が接続されている。
低温側リザーブタンク408は、第2流体循環回路400で余剰となっている低温熱媒体を貯留する低温熱媒体用の貯留部である。低温側リザーブタンク408の基本的構成は、高温側リザーブタンク308と同様である。低温側合流部407は、高温側合流部307等と同様の三方継手である。
低温側合流部407の流体出口側には、低温側ポンプ401の流体吸入側が接続されている。換言すると、低温側ポンプ401は、第2流体循環回路400において、低温側合流部407の流出口からチラー206の熱媒体通路402の流体入口側へ至る流路に配置されている。
また、第2流体循環回路400には、車載機器CEの冷却水通路406が配置された機器用冷却通路410が接続されている。機器用冷却通路410は、低温側リザーブタンク408の下流側であって、かつ、低温側合流部407の上流側の低温熱媒体を、再び低温側ラジエータ403の入口側へ戻すように接続されている。
機器用冷却通路410には、機器用ポンプ411が配置されている。機器用ポンプ411は、低温熱媒体を車載機器CEの冷却水通路406へ圧送する。機器用ポンプ411の基本的構成は、低温側ポンプ401と同様である。
車載機器CEは、作動時に発熱を伴う発熱機器である。具体的には、車載機器CEは、電動モータ、インバータ、先進運転システム用制御装置等である。電動モータは、走行用の駆動力を出力する車載機器である。インバータは、電動モータに電力を供給する車載機器である。先進運転システム用制御装置は、いわゆるADAS用の制御装置である。ADASはAdvanced Driver Assistance System の略称である。
車載機器CEを適切に作動させるためには、バッテリBTと同様に、車載機器CEが適切な温度範囲内に維持されていることが望ましい。但し、バッテリBTの適切な温度範囲と車載機器CEの適切な温度範囲は異なっている。本実施形態では、車載機器CEの適切な温度範囲の上限値が、バッテリBTの適切な温度範囲の上限値よりも高くなっている。
車載機器CEの外殻を形成するハウジング部あるいはケースの内部には、低温熱媒体を流通させる冷却水通路406が形成されている。この冷却水通路406は、車載機器CEの有する熱(すなわち、車載機器CEの廃熱)を低温熱媒体に吸熱させる吸熱用の熱媒体通路である。冷却水通路406は、発熱機器である車載機器CEの温度を調整する温調部を構成している。
さらに、第2流体循環回路400には、機器用迂回通路420が接続されている。機器用迂回通路420は、車載機器CEの冷却水通路406から流出した低温熱媒体を、低温側ラジエータ403等を迂回させて再び機器用ポンプ411の流体入口側へ戻す熱媒体通路である。機器用迂回通路420は、室外熱交換器である低温側ラジエータ403をバイパスして低温熱媒体を流すバイパス部を構成する。
機器用冷却通路410のうち、機器用迂回通路420との接続部よりも上流側には、機器用流量調整弁412が配置されている。機器用流量調整弁412は、機器用冷却通路410の通路断面積を変化させる弁体、および弁体を変位させる電動アクチュエータ(例えば、ステッピングモータ)を有する電気式の流量調整弁である。機器用流量調整弁412は、制御装置600から出力される制御パルスによって、その作動が制御される。
また、機器用冷却通路410と機器用迂回通路420との接続部には、低温側切替弁430が配置されている。低温側切替弁430は、低温側ラジエータ403へ流入する低温熱媒体と、機器用迂回通路420へ流入する低温熱媒体との流量割合を調整する。低温側切替弁430は、高温側切替弁310と同様に本開示のバルブ装置を構成する。低温側切替弁430は、第1実施形態で説明したバルブ装置10と同様に構成されている。
図25に示すように、低温側切替弁430は、低温熱媒体が流入する入口部431、低温側ラジエータ403へ低温熱媒体を流出させる第1出口部432、および機器用迂回通路420へ低温熱媒体を流出させる第2出口部433を備える。
第1出口部432は、低温側ラジエータ403の流体入口側に接続され、低温側ラジエータ403へ低温熱媒体を流出させる。第1出口部432は第1実施形態のバルブ装置10における第1出口部122に対応している。
第2出口部433は、機器用迂回通路420の流体入口側に接続され、機器用迂回通路420へ低温熱媒体を流出させる。第2出口部433は第1実施形態のバルブ装置10における第2出口部123に対応している。
入口部431は、温調部である車載機器CEの冷却水通路406の流体出口側に接続され、冷却水通路406を通過した流体が流入する。入口部431は第1実施形態のバルブ装置10における入口部121に対応している。
低温側切替弁430は、回転子22を回転変位させることで、低温側ラジエータ403を通過する低温熱媒体と機器用迂回通路420を通過する低温熱媒体の流量割合が調整される構成になっている。具体的には、低温側切替弁430は、回転子22によって第1流路孔141の開度および第2流路孔142の開度を増減することで、低温側ラジエータ403を通過する低温熱媒体と機器用迂回通路420を通過する低温熱媒体の流量割合が調整される。
低温側切替弁430は、制御装置600から出力される制御パルスによって、その作動が制御される。なお、制御装置600は、第1実施形態で説明したバルブ制御部17としての機能も兼ね備えている。
図23に戻り、第2流体循環回路400には、流路切替弁70の第3出口部700Eから流出した低温熱媒体を低温側合流部407の他方の流入口へ導く、短絡用熱媒体通路440が接続されている。
次に、流路切替弁70の詳細構成について図26および図27を参照して説明する。流路切替弁70は、図26の外観斜視図に示すように、有底筒状に形成された樹脂製の本体部701を有している。本体部701は、内部に低温熱媒体を流入させる複数の入口部と、内部から低温熱媒体を流出させる複数の出口部とを有するハウジングである。具体的には、本実施形態の本体部701は、2つの入口部と、3つの出口部とを有している。したがって、流路切替弁70は、5つの出入口を有する五方弁である。
具体的には、流路切替弁70には、第1入口部700Aおよび第2入口部700Cが設けられている。第1入口部700Aは、低温側ポンプ401から圧送された低温熱媒体であって、チラー206の熱媒体通路402を通過した低温熱媒体を流入させる入口部である。第2入口部700Cは、バッテリBTの冷却水通路405から流出した低温熱媒体を流入させる入口部である。
また、流路切替弁70には、第1出口部700B、第2出口部700D、および第3出口部700Eが設けられている。第1出口部700Bは、バッテリBTの冷却水通路405の流体入口側へ低温熱媒体を流出させる出口部である。第2出口部700Dは、低温側ラジエータ403の流体入口側へ低温熱媒体を流出させる出口部である。第3出口部700Eは、チラー206の熱媒体通路402の流体入口側へ(すなわち、短絡用熱媒体通路440へ)低温熱媒体を流出させる出口部である。
ここで、バッテリBTの冷却水通路405は、第1出口部700Bから第2入口部700Cへ至る熱媒体通路に配置されている。換言すると、バッテリBTの冷却水通路405は、第1出口部700Bから第2入口部700Cへ至る熱媒体通路に配置されている。なお、第2入口部700Cは、第1出口部700Bから本体部701の外部へ流出した低温熱媒体を再びに内部に流入させる入口部となる。
流路切替弁70の本体部701は、第1本体部711および第2本体部712に分割されている。第1本体部711および第2本体部712は、いずれも円筒状に形成されて、同軸上に配置されている。第1本体部711の軸心方向DRaの一端側は蓋部によって閉塞されており、他端側は開放されている。第2本体部712の軸心方向DRaの他端側は底部によって閉塞されており、一端側は開放されている。
本体部701の内側には、固定子720が配置される。固定子720は、第1本体部711と第2本体部712との接続部付近に配置されている。本体部701の内側は、固定子720によって複数の空間が形成されている。
具体的には、第1本体部711の内部には、第1入口側空間711aが形成されている。第1入口側空間711aは、第1入口部700Aに連通する略円柱状の空間である。また、第2本体部712の内部には、第1出口側空間712b、第2入口側空間712c、第2出口側空間712d、および第3出口側空間712eが形成されている。より具体的には、第2本体部712の内部には、シャフト740の軸心CLから放射状に広がる複数の仕切板713が配置されている。仕切板713は、第2本体部712の内部空間を周方向DRcに複数の空間に区画している。
第1出口側空間712bは、第1出口部700Bに連通する空間である。第2入口側空間712cは、第2入口部700Cに連通する空間である。第2出口側空間712dは、第2出口部700Dに連通する空間である。第3出口側空間712eは、第3出口部700Eに連通する空間である。
第1出口側空間712b、第2入口側空間712c、第2出口側空間712d、および第3出口側空間712eは、いずれも断面がセクタ状(すなわち、扇状)に形成されて軸心方向DRaに延びる柱状の空間である。第1出口側空間712b、第3出口側空間712e、第2入口側空間712c、第2出口側空間712dは、第1本体部711側から軸心方向DRaに向かって見たときに、この順で時計回りに配置されている。つまり、第2入口側空間712cは、第2出口側空間712dおよび第3出口側空間712eの双方と周方向DRcに隣り合うように配置されている。
固定子720は、第1実施形態のバルブ装置10の固定子14に対応する部材である。固定子720の構成材料等は、第1実施形態の固定子14と同様に構成されている。
固定子720は、軸心方向DRaを厚み方向とする円盤状の部材で構成されている。固定子720は、後述する回転子750が摺動する表面としての開口面721を有する。開口面721は、後述する回転子750の摺動面751に対応するシール面である。
固定子720は、流体が通過する流路孔が形成された流路形成部を構成する。固定子720には、流体が通過する第1流路孔722、第2流路孔723、第3流路孔724、第4流路孔725が形成されている。
具体的には、第1流路孔722は、第1出口側空間712bに連通するように、固定子720のうち、第1出口側空間712bに対応する部位に設けられている。第2流路孔723は、第2入口側空間712cに連通するように、固定子720のうち、第2入口側空間712cに対応する部位に設けられている。第3流路孔724は、第2出口側空間712dに連通するように、固定子720のうち、第2出口側空間712dに対応する部位に設けられている。第4流路孔725は、第3出口側空間712eに連通するように、固定子720のうち、第3出口側空間712eに対応する部位に設けられている。
固定子720の略中心部分には、シャフト740の他端側部位742を保持する保持孔726が形成されている。シャフト740の他端側部位742は、シャフト740において図示しない駆動部から回転力が伝えられる一端側部位741とは軸心方向DRaにおいて反対側となる部位である。
図示しないが、保持孔726には、シャフト740の他端側部位742を回転自在に支持する他端側軸受部が配置されている。流路切替弁70は、保持孔726および図示しない他端側軸受部によってシャフト740の保持部が構成されている。
駆動部は、回転力を出力するための機器である。駆動部は、第1実施形態のバルブ装置10の駆動部16に対応する機器である。本実施形態の駆動部は、第1実施形態の駆動部16と同様に構成されている。
本体部701の内側には、駆動部が出力する回転力によって回転する回転部730および付勢部材770が配置されている。この回転部730は、第1実施形態のバルブ装置10の回転部18に対応する。回転部730は、シャフト740と、弁体としての回転子750、シャフト740に回転子750を連結する中間子760とを有している。
シャフト740は、駆動部が出力する回転力によって所定の軸心CLを中心に回転する回転軸である。シャフト740は軸心方向DRaに沿って延伸する。シャフト740は、軸心方向DRaの一方側に駆動部から回転力が伝えられる一端側部位741および一端側部位741とは軸心方向DRaにて反対となる他端側部位742を有している。他端側部位742は、中間子760を介して回転子750に相対回転不能に連結されている。
シャフト740は、シャフト740の姿勢によらず固定子720の開口面721と回転子750の摺動面751との接触状態が維持されるように、回転子750に対して傾動可能に連結されている。シャフト740と回転子750との連結構造は、第1実施形態のバルブ装置10のシャフト20と回転子22との連結構造と同様に構成されている。すなわち、シャフト740と回転子750との連結構造は、回転子750に設けられた嵌合孔753にシャフト740の嵌合部743を嵌め込む嵌合構造780によって構成されている。なお、嵌合構造780は、第1実施形態の嵌合構造28と同様の構造であるため、本実施形態では説明を省略する。
回転子750は、シャフト740の回転に伴って固定子720に形成された各流路孔722~725の開度を増減する弁体である。なお、回転子750は、第1実施形態のバルブ装置10の回転子22に対応する部材である。回転子750の構成材料等は、第1実施形態の回転子22と同様に構成されている。
回転子750は、軸心方向DRaにおいて固定子14に相対するように第1入口側空間711aに配置されている。回転子750は、固定子720の開口面721に相対して摺動する摺動面751を有する。摺動面751は、固定子720の開口面721をシールするシール面である。
回転子750には、シャフト20の軸心CLに対して偏心した位置に回転子孔752が形成されている。回転子孔752は、軸心方向DRaに貫通する貫通孔である。回転子孔752は、回転子750を回転させた際に、回転子750において各流路孔722~725と軸心方向DRaに重なり合う部位に形成されている。
回転子750は、その略中心部分に嵌合孔753が形成されている。嵌合孔753は、シャフト740の嵌合部743を嵌め込むための貫通孔である。嵌合孔753は、その直径が嵌合部743の直径よりも大きくなっている。
中間子760は、シャフト740に回転子750を連結する部材であり、シャフト740に回転子750を連結する連結構造の一部を構成する。中間子760は、第1実施形態のバルブ装置10の中間子24と同様に構成されている。
付勢部材770は、回転子22を流路形成部に対応する固定子14に向けて付勢する部材である。付勢部材770は、第1実施形態のバルブ装置10の付勢部材26と同様に構成されている。
本実施形態の流路切替弁70は、回転子750を回転変位させることで、第1入口側空間711aを、回転子孔752および各流路孔723、724、725の1つを介して、各出口側空間712b、712d、712eのいずれかに連通させることができる。すなわち、流路切替弁70は、回転子750を回転変位させることで、第1入口部700Aから流入した低温熱媒体を、複数の出口部700B、700D、700Eのいずれか1つから流出させることができる。
具体的には、流路切替弁70は、回転子750を回転変位させることによって、第1入口側空間711aを、第1出口側空間712b、第2出口側空間712d、および第3出口側空間712eのいずれか1つと連通させることができる。これにより、第1入口部700Aから流入した低温熱媒体を、第1出口部700Bから流出させる通路構成、第2出口部700Dから流出させる通路構成、および第3出口部700Eから流出させる通路構成のいずれか1つの通路構成に切り替えることができる。
第1入口部700Aから流入した低温熱媒体を第1出口部700Bから流出させる通路構成では、第1入口側空間711aへ流入した低温熱媒体が、本体部701の軸心方向DRaの一方側から他方側へ流れる。このことは、第1入口部700Aから流入した低温熱媒体を第2出口部700Dから流出させる通路構成、および第1入口部700Aから流入した低温熱媒体を第3出口部700Eから流出させる通路構成においても同様である。
ここで、図28に示すように、回転子750の摺動面751には、第2入口側空間712c、第2出口側空間712d、第1出口側空間712b、および第3出口側空間712eのうち、隣り合う空間同士を連通させる連通溝754が形成されている。回転子孔752と連通溝754は、シャフト740の軸心CLに対して、略対称に配置されている。すなわち、回転子孔752と連通溝754は、シャフト740の軸心CLまわりに約180°の角度を開けて配置されている。
このため、回転子750を回転変位させることによって、第2入口側空間712cを、連通溝754を介して、複数の出口側空間のいずれか1つに連通させることができる。本実施形態では、回転子孔752と連通溝754との位置関係を適切に設定しておくことで、第1入口側空間711aを連通させる出口側空間と第2入口側空間712cを連通させる出口側空間が、異なる空間になっている。
換言すると、回転子750を回転変位させることによって、第2入口部700Cから流入した低温熱媒体を、複数の出口部のいずれか1つから流出させる通路構成に切り替えることができる。そして、第2入口部700Cから流入した低温熱媒体を流出させる出口部と第1入口部700Aから流入した低温熱媒体を流出させる出口部が、異なる出口部になる。
本実施形態では、具体的に、回転子750を回転変位させることによって、第2入口側空間712cを、第2出口側空間712dおよび第3出口側空間712eのいずれか1つと連通させることができる。これにより、第2入口部700Cから流入した低温熱媒体を、第2出口部700Dから流出させる通路構成、および第3出口部700Eから流出させる通路構成のいずれか1つの通路構成に切り替えることができる。
第2入口部700Cから流入した低温熱媒体を第2出口部700Dから流出させる通路構成では、第2入口側空間712cへ流入した低温熱媒体のシャフト740の軸心方向DRaの他方側から一方側へと向かう流れが連通溝754にて逆方向に転向する。これにより、第2出口側空間712dでは、低温熱媒体がシャフト740の軸心方向DRaの一方側から他方側へ流れる。このことは、第2入口部700Cから流入した低温熱媒体を第3出口部700Eから流出させる通路構成においても同様である。
ここで、第1入口側空間711aおよび第2入口側空間712cは、回転子750を互いに反対側に形成されている。このため、回転子750は、第1入口側空間711aの圧力Ps1および第2入口側空間712cの圧力Ps2が互いに逆方向に作用するようにハウジングである本体部701の内側に配置されていることになる。
このように構成される流路切替弁70は、図29の太線および太破線に示すように、第1入口部700Aから内部へ流入した低温熱媒体を、第2出口部700Dから流出させる通路構成と第3出口部700Eから流出させる通路構成とを切り替えることができる。
さらに、流路切替弁70は、図30の太実線で示すように、第1入口部700Aから内部へ流入した低温熱媒体を第1出口部700Bから流出させることができる。この状態では、図30の太線および太破線に示すように、第2入口部700Cから内部へ流入した低温熱媒体を、第2出口部700Dから流出させる通路構成と第3出口部700Eから流出させる通路構成とを切り替えることができる。
次に、室内空調ユニット500について図31を参照して説明する。室内空調ユニット500は、温度調整装置1において、適切に温度調整された送風空気Wを車室内の適切な箇所へ吹き出すためのユニットである。室内空調ユニット500は、車室内最前部の計器盤(すなわち、インストルメントパネル)の内側に配置されている。
室内空調ユニット500は、送風空気Wの空気通路を形成するケーシング501を有している。ケーシング501内に形成された空気通路には、室内送風機502、室内蒸発器207、ヒータコア304等が配置されている。ケーシング501は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて形成されている。
ケーシング501の送風空気流れ最上流側には、内外気切替装置503が配置されている。内外気切替装置503は、ケーシング501内へ車室内の空気(すなわち、内気)と車室外の空気(すなわち、外気)とを切替導入するものである。内外気切替装置503の駆動用の電動アクチュエータは、制御装置600から出力される制御信号によって、その作動が制御される。
内外気切替装置503の送風空気流れ下流側には、室内送風機502が配置されている。室内送風機502は、内外気切替装置503を介して吸入した空気を車室内へ向けて送風する。室内送風機502は、ファンを電動モータにて駆動する電動送風機である。室内送風機502は、制御装置600から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。
室内送風機502の送風空気流れ下流側には、室内蒸発器207とヒータコア304が、送風空気流れに対して、この順に配置されている。つまり、室内蒸発器207は、ヒータコア304よりも、送風空気流れ上流側に配置されている。ケーシング501内には、室内蒸発器207を通過した送風空気Wを、ヒータコア304を迂回させて下流側へ流す冷風バイパス通路505が形成されている。
室内蒸発器207の送風空気流れ下流側であって、かつ、ヒータコア304の送風空気流れ上流側には、エアミックスドア504が配置されている。エアミックスドア504は、室内蒸発器207を通過後の送風空気Wのうち、ヒータコア304を通過させる風量と冷風バイパス通路505を通過させる風量との風量割合を調整する。エアミックスドア駆動用の電動アクチュエータは、制御装置600から出力される制御信号によって、その作動が制御される。
ヒータコア304の送風空気流れ下流側には、ヒータコア304にて加熱された送風空気Wと冷風バイパス通路505を通過してヒータコア304にて加熱されていない送風空気Wとを混合させる混合空間506が設けられている。さらに、ケーシング501の送風空気流れ最下流部には、混合空間506にて混合された空調風を、車室内へ吹き出す図示しない開口穴が配置されている。
したがって、エアミックスドア504がヒータコア304を通過させる風量と冷風バイパス通路505を通過させる風量との風量割合を調整することによって、混合空間506にて混合される空調風の温度を調整することができる。そして、各開口穴から車室内へ吹き出される送風空気Wの温度を調整することができる。
開口穴としては、フェイス開口穴、フット開口穴、及びデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面の窓ガラスの内側面に向けて空調風を吹き出すための開口穴である。
これらの開口穴の上流側には、図示しない吹出モード切替ドアが配置されている。吹出モード切替ドアは、各開口穴を開閉することによって、空調風を吹き出す開口穴を切り替える。吹出モード切替ドア駆動用の電動アクチュエータは、制御装置600から出力される制御信号によって、その作動が制御される。
次に、温度調整装置1の電気制御部の概要について説明する。制御装置600は、プロセッサ、メモリ等を含むマイクロコンピュータとその周辺回路から構成されている。制御装置600は、メモリに記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種機器等の作動を制御する。メモリは、非遷移的実体的記憶媒体である。
制御装置600の入力側には、図23に示すように、制御用のセンサ群610が接続されている。制御用のセンサ群610には、車室内温度(内気温)Trを検出する内気温検出部、バッテリBTの温度を検出するバッテリ温度検出部、車載機器CEの温度を検出する車載機器温度検出部等が含まれる。
また、制御装置600の入力側には、操作パネル620が接続されている。操作パネル620には、例えば、車室内温度を設定する温度設定部等が設けられている。制御装置600には、センサ群610の検出信号および操作パネル620の操作信号が入力される。
制御装置600は、その出力側に接続された各種機器を制御する制御部が一体的に形成されたものである。つまり、それぞれの制御対象機器の作動を制御する構成(すなわちハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。例えば、制御装置600のうち、高温側切替弁320、低温側切替弁430、流路切替弁70の作動を制御する構成が、バルブ制御部600aを構成している。なお、図23では、明確化のために、制御装置600と各種制御対象機器とを接続する信号線および電力線、並びに、制御装置600と各種センサとを接続する信号線等の図示を省略している。
次に、上記構成の温度調整装置1の作動について説明する。本実施形態の温度調整装置1は、車室内の空調、およびバッテリBTの温度調整のために、各種運転モードを切り替えることができる。具体的には、温度調整装置1は、機器冷却モード、外気冷却モード、外気吸熱モードに切り替えることができる。以下、各種運転モードについて説明する。
(A)機器冷却モード
機器冷却モードは、冷凍サイクル装置200を作動させて車室内の空調を行うとともに、冷凍サイクル装置200にて冷却された低温熱媒体によってバッテリBTの冷却を行う運転モードである。
機器冷却モードでは、制御装置600が、第1入口部700Aから流入した低温熱媒体を第1出口部700Bから流出させるとともに、第2入口部700Cから流入した低温熱媒体を第3出口部700Eから流出させるように流路切替弁70の作動を制御する。
このため、機器冷却モードの第2流体循環回路400では、図32に示すように、低温側ポンプ401から吐出された低温熱媒体が、チラー206の熱媒体通路を介して流路切替弁70の第1入口部700Aに流入する。そして、第1入口部700Aに流入した低温熱媒体は、流路切替弁70の第1出口部700Bから流出した後、バッテリBTの冷却水通路405を介して流路切替弁70の第2入口部700Cに流入する。第2入口部700Cに流入した低温熱媒体は、流路切替弁70の第3出口部700Eから流出した後、短絡用熱媒体通路440を介して低温側ポンプ401に再び吸入される。
機器冷却モードの冷凍サイクル装置200では、制御装置600が圧縮機201を作動させると、圧縮機201から吐出された高圧冷媒が、放熱器202へ流入する。制御装置600は、室内蒸発器207にて冷却された送風空気Wの温度が、目標蒸発器温度TEOとなるように圧縮機201の冷媒吐出能力を調整する。
目標蒸発器温度TEOは、制御装置600に接続されたセンサ群610の検出信号に基づいて、予め制御装置600に記憶された制御マップを参照して決定される。この制御マップは、室内蒸発器207の着霜を抑制するために、目標蒸発器温度TEOが着霜抑制温度(例えば、1℃)以上となるように構成されている。
放熱器202へ流入した冷媒は、高温側ポンプ301から圧送されて熱媒体通路302を流通する高温熱媒体に放熱して過冷却液相冷媒となる。これにより、熱媒体通路302を流通する高温熱媒体が加熱される。
放熱器202から流出した冷媒の流れは、冷媒分岐部203にて分岐される。冷媒分岐部203にて分岐された一方の冷媒は、第1膨張弁204にて減圧されてチラー206へ流入する。制御装置600は、チラー206の熱媒体通路402から流出した低温熱媒体の温度が、目標冷却温度TBOに近づくように、第1膨張弁204の絞り開度を調整する。
目標冷却温度TBOは、制御装置600に接続されたセンサ群610の検出信号に基づいて、予め制御装置600に記憶された制御マップを参照して決定される。この制御マップでは、バッテリBTの温度が適切な温度範囲内に維持されるように目標冷却温度TBOを決定する。
チラー206へ流入した冷媒は、熱媒体通路402を流通する低温熱媒体から吸熱して蒸発する。これにより、熱媒体通路402を流通する低温熱媒体が冷却される。チラー206から流出した冷媒は、冷媒合流部209へ流入する。
冷媒分岐部203にて分岐された他方の冷媒は、第2膨張弁205にて減圧されて室内蒸発器207へ流入する。制御装置600は、圧縮機201へ吸入される冷媒が予め定めた基準過熱度KSH(例えば、5℃)に近づくように、第2膨張弁205の絞り開度を調整する。このため、機器冷却モードでは、室内蒸発器207における冷媒蒸発温度とチラー206における冷媒蒸発温度が同等となることもある。
室内蒸発器207へ流入した冷媒は、室内送風機502から送風された送風空気Wから吸熱して蒸発する。これにより、送風空気Wが冷却される。室内蒸発器207から流出した冷媒は、蒸発圧力調整弁208を介して、冷媒合流部209へ流入する。冷媒合流部209は、室内蒸発器207から流出した冷媒の流れとチラー206から流出した冷媒の流れとを合流させて、圧縮機201の吸入側へ流出させる。
第1流体循環回路300では、制御装置600が高温側ポンプ301を作動させると、高温側ポンプ301から圧送された高温熱媒体が、放熱器202の熱媒体通路302へ流入する。熱媒体通路302へ流入した高温熱媒体は、高圧冷媒と熱交換して加熱される。
放熱器202から流出した高温熱媒体は、高温側切替弁310に流入し、高温側ラジエータ303へ流入する流れと、高温側切替弁310からヒータコア304へ流入する流れとに分流される。
制御装置600は、ヒータコア304から流出した高温熱媒体の温度である出口側熱媒体温度THCが予め定めた基準出口側熱媒体温度KTHCに近づくように、高温側切替弁310の作動を制御する。つまり、制御装置600は、出口側熱媒体温度THCが基準出口側熱媒体温度KTHCに近づくように、高温側流量比を調整する。
さらに、制御装置600は、放熱器202からの高温熱媒体の全量がヒータコア304に流れるように高温側切替弁310を制御しても、出口側熱媒体温度THCが基準出口側熱媒体温度KTHCに達しない場合は、電気ヒータ306で高温熱媒体を加熱する。電気ヒータ306の加熱能力は、出口側熱媒体温度THCが基準出口側熱媒体温度KTHCに近づくように調整される。
高温側ラジエータ303へ流入した高温熱媒体は、外気ファンから送風された外気OAと熱交換して放熱する。これにより、高温側ラジエータ303を流通する高温熱媒体が冷却される。高温側ラジエータ303から流出した高温熱媒体は、高温側合流部307へ流入する。
一方、ヒータコア304へ流入した高温熱媒体は、室内蒸発器207を通過した送風空気Wと熱交換して放熱する。これにより、室内蒸発器207にて冷却された送風空気Wが再加熱される。さらに、制御装置600は、車室内へ吹き出される送風空気Wの吹出温度が目標吹出温度TAOに近づくように、エアミックスドア504の開度を調整する。
ヒータコア304から流出した高温熱媒体は、高温側合流部307へ流入する。高温側合流部307は、ヒータコア304から流出した高温熱媒体と高温側ラジエータ303から流出した高温熱媒体を合流させて、高温側ポンプ301の流体吸入側へ流出させる。
第2流体循環回路400では、制御装置600が低温側ポンプ401を作動させると、低温側ポンプ401から圧送された低温熱媒体が、チラー206の熱媒体通路402へ流入する。チラー206へ流入した低温熱媒体は、低圧冷媒と熱交換して冷却される。
チラー206から流出した低温熱媒体は、流路切替弁70の第1入口部700Aから内部へ流入して第1出口部700Bから流出する。第1出口部700Bから流出した低温熱媒体は、バッテリBTの冷却水通路405へ流入する。バッテリBTの冷却水通路405へ流入した熱媒体は、冷却水通路405を流通する際にバッテリBTの廃熱を吸熱する。これにより、バッテリBTが冷却される。
バッテリBTの冷却水通路405から流出した低温熱媒体は、流路切替弁70の第2入口部700Cから内部へ流入して第3出口部700Eから流出する。第3出口部700Eから流出した低温熱媒体は、短絡用熱媒体通路440および低温側合流部407を介して、低温側ポンプ401の吸入側へ導かれる。
機器冷却モードでは、以上の如く作動して、室内蒸発器207にて冷却された送風空気Wをヒータコア304にて再加熱して車室内へ吹き出すことができる。この際、送風空気Wを再加熱するために余剰となる熱を高温側ラジエータ303にて外気へ放熱することができる。したがって、適切な温度に調整された送風空気Wを車室内に吹き出して、快適な空調を実現することができる。さらに、機器冷却モードでは、チラー206にて冷却された低温熱媒体を、バッテリBTの冷却水通路405へ流入させることによって、バッテリBTを冷却することができる。
(B)外気冷却モード
外気冷却モードは、冷凍サイクル装置200を作動させて車室内の空調を行うとともに、外気にて冷却された低温熱媒体によってバッテリBTの冷却を行う運転モードである。
外気冷却モードでは、制御装置600が、第1入口部700Aから流入した低温熱媒体を第1出口部700Bから流出させるとともに、第2入口部700Cから流入した低温熱媒体を第2出口部700Dから流出させるように、流路切替弁70の作動を制御する。さらに、制御装置600は、第1膨張弁204を全閉状態とする。
このため、外気冷却モードの第2流体循環回路400では、図33に示すように、低温側ポンプ401から吐出された低温熱媒体が、チラー206の熱媒体通路402を介して流路切替弁70の第1入口部700Aに流入する。流路切替弁70の第1入口部700Aに流入した低温熱媒体は、流路切替弁70の第1出口部700Bから流出した後、バッテリBTの冷却水通路405を介して流路切替弁70の第2入口部700Cに流入する。第2入口部700Cに流入した低温熱媒体は、流路切替弁70の第2出口部700Dから流出した後、低温側ラジエータ403を介して低温側ポンプ401に再び吸入される。
外気冷却モードの冷凍サイクル装置200では、機器冷却モードと同様に、圧縮機201から吐出された高圧冷媒が、放熱器202にて過冷却液相冷媒となるまで冷却される。さらに、放熱器202の熱媒体通路302を流通する高温熱媒体が加熱される。
放熱器202から流出した冷媒は、冷媒分岐部203へ流入する。外気冷却モードでは、第1膨張弁204が全閉状態になっているので、冷媒分岐部203へ流入した冷媒は、第2膨張弁205にて減圧されて、室内蒸発器207へ流入する。制御装置600は、機器冷却モードと同様に、第2膨張弁205の絞り開度を調整する。
室内蒸発器207へ流入した低圧冷媒は、機器冷却モードと同様に、送風空気Wから吸熱して蒸発する。これにより、送風空気Wが冷却される。室内蒸発器207から流出した冷媒は、蒸発圧力調整弁208および冷媒合流部209を介して、圧縮機201に吸入される。
第1流体循環回路300では、制御装置600が、機器冷却モードと同様に、構成機器の作動を制御する。これにより、高温熱媒体の出口側熱媒体温度THCが基準出口側熱媒体温度KTHCに近づく。
第2流体循環回路400では、制御装置600が低温側ポンプ401を作動させると、低温側ポンプ401から圧送された低温熱媒体が、チラー206の熱媒体通路402へ流入する。外気冷却モードでは、第1膨張弁204が全閉状態となっているので、チラー206の熱媒体通路402へ流入した低温熱媒体は、低圧冷媒と熱交換することなく流出する。
チラー206から流出した低温熱媒体は、流路切替弁70の第1入口部700Aから内部へ流入して第1出口部700Bから流出する。第1出口部700Bから流出した低温熱媒体は、バッテリBTの冷却水通路405へ流入する。バッテリBTの冷却水通路405へ流入した熱媒体は、冷却水通路405を流通する際にバッテリBTの廃熱を吸熱する。これにより、バッテリBTが冷却される。
バッテリBTの冷却水通路405から流出した低温熱媒体は、流路切替弁70の第2入口部700Cから内部へ流入して第2出口部700Dから流出する。第2出口部700Dから流出した低温熱媒体は、低温側ラジエータ403へ流入する。
低温側ラジエータ403へ流入した低温熱媒体は、外気ファンから送風されて高温側ラジエータ303通過後の外気OAと熱交換して放熱する。これにより、低温側ラジエータ403を流通する低温熱媒体が冷却される。低温側ラジエータ403から流出した低温熱媒体は、低温側合流部407を介して、低温側ポンプ401の吸入側へ導かれる。
外気冷却モードでは、以上の如く作動して、室内蒸発器207にて冷却された送風空気Wをヒータコア304にて再加熱して車室内へ吹き出すことができる。したがって、機器冷却モードと同様に、適切な温度に調整された送風空気Wを車室内に吹き出して、快適な空調を実現することができる。さらに、外気冷却モードでは、低温側ラジエータ403にて外気と熱交換して冷却された低温熱媒体を、バッテリBTの冷却水通路405へ流入させることによって、バッテリBTを冷却することができる。
ここで、外気冷却モードにおいて、バッテリBTの冷却が必要とされなくなった際には、制御装置600が、第1入口部700Aから流入した低温熱媒体を第3出口部700Eから流出させるようにしてもよい。これによれば、チラー206の熱媒体通路402から流出した低温熱媒体を、短絡用熱媒体通路440および低温側合流部407を介して、低温側ポンプ401の吸入側へ戻すことができる。
(C)外気吸熱モード
外気吸熱モードは、バッテリBTの冷却を行わず、冷凍サイクル装置200を作動させて車室内の暖房を行う運転モードである。外気吸熱モードは、低外気温時(例えば、10℃以下となっている時)に実行される運転モードである。
外気吸熱モードでは、制御装置600が、第1入口部700Aから流入した低温熱媒体を第2出口部700Dから流出させるように流路切替弁70の作動を制御する。さらに、制御装置600は、第2膨張弁205を全閉状態とする。さらに、制御装置600は、冷風バイパス通路505を全閉とするように、エアミックスドア504の開度を調整する。
このため、外気冷却モードの第2流体循環回路400では、図34で示すように、低温側ポンプ401から吐出された低温熱媒体が、チラー206の熱媒体通路402を介して流路切替弁70の第1入口部700Aに流入する。流路切替弁70の第1入口部700Aに流入した低温熱媒体は、流路切替弁70の第2出口部700Dから流出した後、低温側ラジエータ403を介して低温側ポンプ401に再び吸入される。
外気冷却モードの冷凍サイクル装置200では、機器冷却モードと同様に、圧縮機201から吐出された高圧冷媒が、放熱器202にて過冷却液相冷媒となるまで冷却される。さらに、放熱器202の熱媒体通路302を流通する高温熱媒体が加熱される。
放熱器202から流出した冷媒は、冷媒分岐部203へ流入する。外気冷却モードでは、第2膨張弁205が全閉状態になっているので、冷媒分岐部203へ流入した冷媒は、第1膨張弁204にて減圧されて、チラー206へ流入する。制御装置600は、チラー206における冷媒蒸発温度が、外気温よりも低くなるように、第1膨張弁204の絞り開度を調整する。
チラー206へ流入した低圧冷媒は、機器冷却モードと同様に、熱媒体通路402を流通する低温熱媒体から吸熱して蒸発する。これにより、低温熱媒体が冷却される。チラー206から流出した冷媒は、冷媒合流部209を介して、圧縮機201に吸入される。
第1流体循環回路300では、制御装置600が、機器冷却モードと同様に、構成機器の作動を制御する。これにより、高温熱媒体の出口側熱媒体温度THCが基準出口側熱媒体温度KTHCに近づく。
第2流体循環回路400では、制御装置600が低温側ポンプ401を作動させると、低温側ポンプ401から圧送された低温熱媒体が、チラー206の熱媒体通路402へ流入する。チラー206へ流入した低温熱媒体は、低圧冷媒と熱交換して外気温よりも低い温度に冷却される。
チラー206から流出した低温熱媒体は、流路切替弁70の第1入口部700Aから内部へ流入して第2出口部700Dから流出する。第2出口部700Dから流出した低温熱媒体は、低温側ラジエータ403へ流入する。
低温側ラジエータ403へ流入した低温熱媒体は、外気ファンから送風されて高温側ラジエータ303通過後の外気OAと熱交換して吸熱する。これにより、低温側ラジエータ403を流通する低温熱媒体の温度が外気温に近づくように上昇する。低温側ラジエータ403から流出した低温熱媒体は、低温側合流部407を介して、低温側ポンプ401の吸入側へ導かれる。
外気吸熱モードでは、以上の如く作動して、ヒータコア304にて加熱された送風空気Wを車室内へ吹き出すことができる。したがって、外気吸熱モードでは、バッテリBTの冷却を行うことなく、車室内の暖房を実現することができる。
(D)車載機器CEの温度制御等
ここで、温度調整装置1は、上述した各種運転モードによらず、車載機器CEの温度が適切な温度範囲内に維持されるように、制御装置600が各種制御対象機器の作動を制御する。具体的には、制御装置600は、上述した各種運転モードによらず、機器用ポンプ411を予め定めた圧送能力を発揮するように作動させる。
そして、車載機器CEの温度が基準上限値以上となった際には、機器用流量調整弁412を適切な開度とし、低温側切替弁430を機器用冷却通路410の低温熱媒体が低温側ラジエータ403に流れる設定に切り替える。例えば、低温側切替弁430は、第1流路孔141を開放し、且つ、第2流路孔142を閉塞する位置に回転子22を変位させる。これによると、低温側ラジエータ403にて冷却された低温熱媒体を、車載機器CEの冷却水通路406に流入させることができる。その結果、外気によって冷却された低温熱媒体によって、車載機器CEを冷却することができる。
一方、車載機器CEの温度が基準下限値以下となった際には、機器用流量調整弁412を全閉状態とし、低温側切替弁430を機器用冷却通路410の低温熱媒体が機器用迂回通路420に流れる設定に切り替える。例えば、低温側切替弁430は、第1流路孔141を閉塞し、且つ、第2流路孔142を開放する位置に回転子22を変位させる。これによると、車載機器CEの冷却水通路406から流出した低温熱媒体を、機器用迂回通路420を介して、再び冷却水通路406の入口側へ戻すことができる。その結果、車載機器CEの自己発熱によって、車載機器CEを暖機することができる。
ここで、外気温が極低温(例えば、0℃以下)となる場合、低温側ラジエータ403の外表面に霜が付着することがある。低温側ラジエータ403に霜が付着すると外気からの吸熱量が低下するので、温度調整装置1の適切な作動を実現できなくなってしまう。
そこで、温度調整装置1は、低温側ラジエータ403に霜が付着する霜付条件が成立すると、運転モードを除霜モードに切り替える。除霜モードは、低温側ラジエータ403に付着した霜を除去するモードである。霜付条件は、例えば、低温側ラジエータ403前後の低温熱媒体の温度差が所定温度以下となる際に成立する条件である。なお、条件は一例であり、霜付条件は他の条件になっていてもよい。
温度調整装置1は、除霜モード時は、機器用ポンプ411を予め定めた圧送能力を発揮するように作動させる。そして、温度調整装置1は、機器用流量調整弁412を適切な開度とし、低温側切替弁430を機器用冷却通路410の低温熱媒体が低温側ラジエータ403に流れる設定に切り替える。例えば、低温側切替弁430は、第1流路孔141を開放し、且つ、第2流路孔142を閉塞する位置に回転子22を変位させる。これにより、車載機器CEの冷却水通路406を通過する際に昇温した低温熱媒体を低温側ラジエータ403に流入させることで、低温側ラジエータ403に付着した霜を除去することができる。
以上説明した温度調整装置1は、各種運転モードを切り替えることによって、車室内の快適な空調を実現することができるとともに、バッテリBTおよび車載機器CEを適切な温度に調整することができる。
本実施形態の高温側切替弁310および低温側切替弁430は、第1実施形態で説明したバルブ装置10と同様に構成されている。このため、高温側切替弁310および低温側切替弁430は、第1実施形態で説明したバルブ装置10で奏される作用効果をバルブ装置10と同様に得ることができる。
具体的には、高温側切替弁310は、回転子22によって第1流路孔141の開度および第2流路孔142の開度を増減することで、高温側ラジエータ303を通過する高温熱媒体とヒータコア304を通過する高温熱媒体の流量割合を適切に調整することができる。
ここで、高温側切替弁310の開度制御の分解能が大きいと、高温側ラジエータ303を通過する高温熱媒体とヒータコア304を通過する高温熱媒体の流量割合を適切に調整できず、車室内へ吹き出す吹出空気の温度バラツキが大きくなる。この場合、エアミックスドア504等の作動が増大することで、消費電力が増加して車両における電力消費率が悪化してしまう。
これに対して、本実施形態の高温側切替弁310は、シャフト20の姿勢変化による流体漏れを抑制することができるので、ヒータコア304を通過する高温熱媒体の流量を微調整することができる。すなわち、本実施形態の高温側切替弁310によれば、上述の課題を解決することができる。
また、低温側切替弁430は、回転子22によって第1流路孔141の開度および第2流路孔142の開度を増減することで、低温側ラジエータ403を通過する低温熱媒体と機器用迂回通路420を通過する低温熱媒体の流量割合を適切に調整することができる。
例えば、除霜運転時には、車載機器CEで昇温した流体の全量を低温側ラジエータ403に適切に導くことができる。これによると、低温側ラジエータ403の除霜を短時間で実施可能となるので、除霜運転を実施することに伴う車室内空調および機器温調への影響を充分に抑えることができる。
また、流路切替弁70は、複数の開閉弁や三方弁等を組み合わせることによって形成されたものではないので、大型化を招き難い。したがって、流路切替弁70が適用された第2流体循環回路400の大型化を抑制することができる。
特に、流路切替弁70は、第1実施形態のバルブ装置10と同等の構成を備えるとともに、シャフト740と回転子750との連結構造が、バルブ装置10のシャフト20と回転子22との連結構造と同様に構成されている。このため、流路切替弁70は、第1実施形態で説明したバルブ装置10で奏される作用効果をバルブ装置10と同様に得ることができる。すなわち、流路切替弁70は、回転子22によって各流路孔722~725の開度を増減することで、低温熱媒体の最適な分配を実現することができる。
ここで、第2流体循環回路400では、流路切替弁70での低温熱媒体を分配が適切に実施できないと、バッテリBTを構成する各電池の温度バラツキが大きくなってしまう。この場合、バッテリBTの劣化促進されることで、車両の航続距離が低下してしまう。なお、バッテリBTの劣化を考慮して電池を余剰に車載することも考えられるが、この場合、初期コストが大幅に増加してしまう。
これに対して、本実施形態の流路切替弁70は、低温熱媒体の最適な分配を実現することができるので、上述の課題を解決することができる。
また、流路切替弁70は、回転子750が第1入口側空間711aの圧力および第2入口側空間712cの圧力が互いに逆方向に作用する。このため、流路切替弁70では、第1入口部700Aから流入する低温熱媒体および第2入口部700Cから流入する低温熱媒体の一方の圧力が変化すると、回転子750の前後に作用する圧力バランスが変化してしまう。このような圧力バランスの変化は、回転子750と固定子720との密着性を阻害する要因となり得る。
これに対して、本実施形態の流路切替弁70は、付勢部材770によって回転子750が固定子720に向けて押し付けられる構成になっている。このため、各入口部700A、700Cから流入する流体の圧力が変化しても、回転子750の姿勢を固定子720に接する姿勢に維持することができる。
(第8実施形態の変形例)
上述の第8実施形態では、高温側切替弁310、低温側切替弁430、および流路切替弁70が本開示のバルブ装置10と同様の構成を備える旨を説明したが、温度調整装置1はこれに限定されない。温度調整装置1は、高温側切替弁310、低温側切替弁430、および流路切替弁70の少なくとも1つが本開示のバルブ装置10と同様の構成を備えていてもよい。また、本開示のバルブ装置10は、第1流体循環回路300および第2流体循環回路400とは異なる流体循環回路(例えば、冷凍サイクル装置200)にも適用可能である。
例えば、第1流体循環回路300は、バッテリBTの暖機を実施可能なように、高温側ポンプ301の下流側に、高温側ラジエータ303、ヒータコア304、およびバッテリBTの冷却水通路405が並列に接続される回路構成になっている場合がある。この場合、第1流体循環回路300の回路構成を切り替える流路切替弁として本開示のバルブ装置10を適用することが可能である。
このような流路切替弁は、1つの入口部、3つの出口部を有する四方弁によって実現可能である。すなわち、流路切替弁は、高温熱媒体が流入する入口部、高温側ラジエータ303へ高温熱媒体を流出させる第1出口部、ヒータコア304へ高温熱媒体を流出させる第2出口部、バッテリBTの冷却水通路405へ高温熱媒体を流出させる第3出口部を備える。そして、流路切替弁は、回転子22を回転変位させることで、高温側ラジエータ303を通過する高温熱媒体、ヒータコア304を通過する高温熱媒体、およびバッテリBTの冷却水通路405を通過する高温熱媒体の流量割合が調整される構成になっている。
具体的には、流路切替弁は、回転子22によって第1流路孔の開度、第2流路孔の開度、第3流路孔の開度を増減することで、高温側ラジエータ303、ヒータコア304、バッテリBTの冷却水通路405それぞれを通過する高温熱媒体の流量割合が調整される。なお、第1流路孔、第2流路孔、および第3流路孔は固定子14に形成される流路孔である。具体的には、第1流路孔は高温側ラジエータ303に流入する高温熱媒体が通過する流路孔である。第2流路孔はヒータコア304に流入する高温熱媒体が通過する流路孔である。第3流路孔はバッテリBTの冷却水通路405に流入する高温熱媒体が通過する流路孔である。
上述の第8実施形態では、温度調整装置1を電気自動車に適用した例について説明したが、温度調整装置1の適用対象は電気自動車に限定されない。温度調整装置1は、例えば、電気自動車以外の移動体や据置型の機器等にも広く適用可能である。これらのことは、第1~第7実施形態のバルブ装置10においても同様である。
(他の実施形態)
以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。なお、以下のバルブ装置10に対する変形例は、第8実施形態で説明した高温側切替弁310、低温側切替弁430、流路切替弁70等にも適用することができる。
上述の実施形態の如く、バルブ装置10は、シャフト20の一端側部位20aが一端側軸受部126で支持されるとともに、シャフト20の他端側部位20bが他端側軸受部144で支持されていることが望ましいが、これに限定されない。バルブ装置10は、例えば、シャフト20の一端側部位20aおよび他端側軸受部144の少なくとも一方が軸受部で支持されていない構造になっていてもよい。
上述の実施形態の如く、バルブ装置10は、回転子22の嵌合孔223とシャフト20の嵌合部20cとの隙間Gは、保持部である他端側軸受部144と嵌合部20cとの隙間よりも大きくなっていることが望ましいが、これに限定されない。バルブ装置10は、例えば、回転子22の嵌合孔223とシャフト20の嵌合部20cとの隙間Gが、保持部である他端側軸受部144と嵌合部20cとの隙間と同等の大きさになっていてもよい。
上述の実施形態の如く、固定子14および回転子22はセラミックで構成されていることが望ましいが、これに限定されない。固定子14および回転子22は、セラミック以外の材料で構成されていてもよい。
上述の実施形態では、バルブ装置10として1つの流体入口、2つの流体出口を有する三方弁で構成されるものを例示したが、バルブ装置10はこれに限定されない。本開示のバルブ装置10は、2つの流体入口、1つの流体出口を有する三方弁で構成されていてもよい。
上述の実施形態では、バルブ装置10として三方弁で構成されるものを例示したが、バルブ装置10は三方弁に限定されない。本開示のバルブ装置10は、流路切替弁70の如く、5方弁として構成されていてもよい。本開示のバルブ装置10は、例えば、1つの流体入口、1つの流体出口を有する流量調整弁または開閉弁として構成されていてもよい。この場合、固定子14には1つの流路孔が形成される。本開示のバルブ装置10は、例えば、1つの流体入口および3つ以上の流体出口を有する多方弁、3つ以上の流体入口および1つの流体出口を有する多方弁、複数の流体入口および複数の流体出口を有する多方弁等で構成されていてもよい。
上述の実施形態で説明したバルブ装置10は、ハウジング12と固定子14とが別体で構成されているが、これに限定されない。バルブ装置10は、例えば、固定子14に対応する部位がハウジング12に一体に形成されていてもよい。
上述の実施形態では、付勢部材26として弾性部材を例示したが、付勢部材26はこれに限定されない。付勢部材26は、回転子22を固定子14に向けて押し付けることが可能なものであれば弾性部材以外のもので構成されていてもよい。また、圧縮バネ261については、シャフト20の外側を囲むように配置されていることが望ましいが、これに限定されない。圧縮バネ261は、例えば、シャフト20の周囲に配置されていてもよい。
上述の実施形態では、ハウジング12とは別体で構成される固定子14に流路孔が形成されているバルブ装置10を例示したが、バルブ装置10はこれに限定されない。バルブ装置10は、例えば、ハウジング12に対して直に流路孔が形成されていてもよい。この場合、ハウジング12における回転子22が摺動する摺動部位は、当該摺動部位以外の部位の構成材料に比較して、セラミック等の線膨張係数が小さく、且つ、耐摩耗性に優れた材料で形成されていることが望ましい。
上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、バルブ装置は、流路形成部と、駆動部と、シャフトと、回転子と、付勢部材と、シャフトを回転子に対して傾動可能に連結する連結構造と、を備える。
第2の観点によれば、連結構造は、回転子に設けられた嵌合孔にシャフトの嵌合部を嵌め込む嵌合構造を含む。嵌合孔は、嵌合部を嵌合させた状態でシャフトを傾動可能なように、シャフトとの間に隙間が形成される大きさになっている。
嵌合孔と嵌合部との間に隙間が形成される嵌合構造によれば、嵌合孔と嵌合部との接触が抑制されることで、連結構造での摺動ロスを抑制したり、耐摩耗性を確保したりすることができる。
第3の観点によれば、シャフトは、駆動部から回転力が伝えられる一端側部位および一端側部位とはシャフトの軸心方向にて反対となる他端側部位を有する。流路形成部は、他端側部位を保持する保持部が設けられている。嵌合孔と嵌合部との隙間は、保持部と嵌合部との隙間よりも大きくなっている。これにより、保持部にてシャフトを適切に保持しつつ、連結構造にてシャフトを回転子に対して傾動可能に連結することができる。
第4の観点によれば、バルブ装置は、回転子および流路形成部が収容されるハウジングを備える。流路形成部は、流路孔が形成されるとともにハウジングに対して回転不能に配置された円盤状の固定子と、固定子とハウジングとの間に配置されるシール部材と、を含んでいる。
これによると、シール部材によって固定子とハウジングとの間でのシール性を確保することができる。また、例えば、回転子に作用する圧力が周方向にばらつくと、回転子が傾いた姿勢になってしまうことがあるが、この場合でも、シール部材の変形によって固定子を回転子に追従して傾けることが可能となる。このように、固定子とハウジングとの間にシール部材を介在させる構成によれば、固定子と回転子との密着性を確保することができ、バルブ装置での流体漏れを充分に抑制することができる。
第5の観点によれば、連結構造は、摺動面とシャフトの軸心とのなす角度を変更可能にシャフトおよび回転子を連結するユニバーサルジョイントを含んで構成されている。ユニバーサルジョイントによれば、シャフトを回転子に対して傾動可能に連結することができる。
第6の観点によれば、付勢部材は、シャフトの軸心方向に弾性変形する弾性部材で構成されている。これによると、回転子の摺動面を流路形成部の開口面に向けて押し付ける荷重を充分に確保することができるので、摺動面と開口面との接触状態が維持され易くなる。
第7の観点によれば、弾性部材は、回転子に圧縮荷重を付与するコイル状の圧縮バネで構成されている。このように弾性部材は、圧縮バネで構成することができる。
第8の観点によれば、シャフトは、圧縮バネの内側に配置されている。これによると、回転子に対する圧縮バネの荷重がシャフトの周方向で偏ることが抑制されるので、摺動面と開口面との接触状態が維持され易くなる。
第9の観点によれば、バルブ装置は、回転子をシャフトの軸心まわりの周方向の一方側に付勢するコイル状のトーションバネを備える。圧縮バネは、トーションバネの内側に配置されるとともに、トーションバネよりも巻き数が多くなっている。
このように、回転子とシャフトとが別体で構成される場合、シャフトの周方向における回転子とシャフトとの相対的な位置ズレが生じてしまうことがある。このような位置ズレは流体漏れを招く要因となることから好ましくない。
これに対して、トーションバネによって回転子をシャフトの周方向の一方側に付勢する構成とすれば、周方向における回転子とシャフトとの相対的な位置ズレの発生を抑えることができる。
加えて、トーションバネよりもコイル径の小さい圧縮バネの巻き数を多くすることで、圧縮バネのバネ定数を過大になってしまうことを抑制することができる。これによると、圧縮バネの撓みに対して荷重を安定させることができる。
第10の観点によれば、シャフトは、シャフトの径方向に突き出るフランジ部が設けられている。圧縮バネは、回転子とともに回転するように、回転子とフランジ部との間に圧縮された状態で配置されている。
これによると、圧縮バネでの摺動ロスを抑制したり、耐摩耗性を確保したりすることができる。圧縮バネがトーションバネとして機能しないので、回転子に対してシャフトの軸心まわりの周方向に不要な力が作用してしまうことを抑えることができる。
第11の観点によれば、付勢部材は、回転子を流路形成部に向けて付勢するだけでなく、シャフトの軸心まわりの周方向の一方側に付勢するように回転子に対して連結される弾性部材で構成されている。
弾性部材は圧縮バネとしての機能に加えてトーションバネとしての機能を備える。このため、バルブ装置の部品点数を増加させることなく、回転子の姿勢を流路形成部に接する姿勢に維持しつつ、シャフトの周方向での回転子とシャフトとの位置ズレを抑えることができる。
第12の観点によれば、バルブ装置は、流体と車室外の空気とを熱交換させる室外熱交換器および車室内へ流れる空気と流体とを熱交換させる室内熱交換器を含む流体循環回路に適用される。バルブ装置は、室外熱交換器の流体入口側に接続され、室外熱交換器へ流体を流出させる第1出口部と、室内熱交換器の流体入口側に接続され、室内熱交換器へ流体を流出させる第2出口部と、を備える。バルブ装置は、室外熱交換器の流体出口側と室内熱交換器の流体出口側に接続され、室外熱交換器および室内熱交換器から流体が流入する入口部を備える。バルブ装置は、回転子を回転変位させることで、室外熱交換器を通過する流体と室内熱交換器を通過する流体の流量割合が調整される。
これによると、バルブ装置によって室外熱交換器を通過する流体と室内熱交換器を通過する流体との流量割合を調整することができる。特に、本開示のバルブ装置は、シャフトの姿勢変化による流体漏れを抑制することができるので、各熱交換器での流量割合を精度良く調整することが可能となる。
例えば、室内熱交換器にて車室内へ流れる空気の温度を調整する場合、室内熱交換器および室外熱交換器での流量割合を調整することで、車室内へ流れる空気の温度を微調整することが可能となる。
第13の観点によれば、バルブ装置は、流体と車室外の空気とを熱交換させる室外熱交換器、流体によって発熱機器の温度を調整する温調部、および室外熱交換器をバイパスして流体を流すバイパス部を含む流体循環回路に適用される。バルブ装置は、室外熱交換器の流体入口側に接続され、室外熱交換器へ流体を流出させる第1出口部と、バイパス部の流体入口側に接続され、バイパス部へ流体を流出させる第2出口部と、を備える。バルブ装置は、温調部の流体出口側に接続され、温調部から流体が流入する入口部を備え、回転子を回転変位させることで、バイパス部を通過する流体と室外熱交換器を通過する流体の流量割合が調整される。
これによると、バルブ装置によって室外熱交換器を通過する流体とバイパス部を通過する流体との流量割合を調整することができる。特に、本開示のバルブ装置は、シャフトの姿勢変化による流体漏れを抑制することができるので、室外熱交換器およびバイパス部での流量割合を精度良く調整することが可能となる。
例えば、除霜運転時には、温調部で昇温した流体の全量を室外熱交換器に適切に導くことができる。これによると、室外熱交換器の除霜を短時間で実施可能となるので、除霜運転を実施することに伴う車室内空調および機器温調への影響を充分に抑えることができる。
第14の観点によれば、バルブ装置は、流体が流入する第1入口部と、流体が流入する第2入口部と、外部へ流体を流出させる少なくとも1つの出口部と、を備える。バルブ装置は、第1入口部に連通する第1入口側空間および第2入口部に連通する第2入口側空間が内側に形成されたハウジングを備える。回転子は、第1入口側空間の圧力および第2入口側空間の圧力が互いに逆方向に作用するようにハウジングの内側に配置されている。
このように構成されるバルブ装置では、第1入口部から流入する流体および第2入口部から流入する流体の一方の圧力が変化すると、回転子の前後に作用する圧力バランスが変化してしまう。
本開示のバルブ装置は、付勢部材によって回転子が流路形成部に向けて押し付けられる構成になっているので、各入口部から流入する流体の圧力が変化しても、回転子の姿勢を流路形成部に接する姿勢に維持することができる。
第15の観点によれば、流体循環回路は、流体が通過する複数の機器と、複数の機器を通過する流体の流量を調整するバルブ装置と、を備える。バルブ装置は、流体が通過する流路孔が少なくとも1つ形成された流路形成部と、回転力を出力する駆動部と、駆動部が出力する回転力によって所定の軸心を中心に回転するシャフトと、を有する。バルブ装置は、流路形成部のうち流路孔が開口する開口面に相対して摺動する摺動面を有し、シャフトの回転に伴って流路孔の開度を増減する回転子と、回転子を流路形成部に向けて付勢する付勢部材と、有する。バルブ装置は、シャフトの姿勢によらず摺動面と開口面との接触状態が維持されるようにシャフトを回転子に対して傾動可能に連結する連結構造と、を含んでいる。
10 バルブ装置
14 固定子(流路形成部)
140 開口面
16 駆動部
20 シャフト
22 回転子
220 摺動面
24 中間子(連結構造)
26 付勢部材
28 嵌合構造(連結構造)

Claims (14)

  1. バルブ装置であって、
    流体が通過する流路孔(141、142、722、723、724、725)が少なくとも1つ形成された流路形成部(14、720)と、
    回転力を出力する駆動部(16)と、
    前記駆動部が出力する回転力によって所定の軸心(CL)を中心に回転するシャフト(20、740)と、
    前記流路形成部のうち前記流路孔が開口する開口面(140、721)に相対して摺動する摺動面(220、751)を有し、前記シャフトの回転に伴って前記流路孔の開度を増減する回転子(22、750)と、
    前記回転子を前記流路形成部に向けて付勢する付勢部材(26、770)と、
    前記シャフトの姿勢によらず前記摺動面と前記開口面との接触状態が維持されるように前記シャフトを前記回転子に対して傾動可能に連結する連結構造(24、28、32、760、780)と、
    を備え、
    前記連結構造は、前記回転子に設けられた嵌合孔(223)に前記シャフトの嵌合部(20c)を嵌め込む嵌合構造(28、780)を含み、
    前記嵌合孔は、前記嵌合部を嵌合させた状態で前記シャフトを傾動可能なように、前記シャフトとの間に隙間が形成される大きさになっている、バルブ装置。
  2. 前記シャフトは、前記駆動部から回転力が伝えられる一端側部位(20a)および前記一端側部位とは前記シャフトの軸心方向にて反対となる他端側部位(20b)を有し、
    前記流路形成部は、前記他端側部位を保持する保持部(143、144)が設けられており、
    前記嵌合孔と前記嵌合部との隙間は、前記保持部と前記嵌合部との隙間よりも大きくなっている、請求項に記載のバルブ装置。
  3. 前記回転子および前記流路形成部が収容されるハウジング(12)を備え、
    前記流路形成部は、前記流路孔が形成されるとともに前記ハウジングに対して回転不能に配置された円盤状の固定子(14)と、前記固定子と前記ハウジングとの間に配置されるシール部材(30)と、を含んでいる、請求項またはに記載のバルブ装置。
  4. バルブ装置であって、
    流体が通過する流路孔(141、142、722、723、724、725)が少なくとも1つ形成された流路形成部(14、720)と、
    回転力を出力する駆動部(16)と、
    前記駆動部が出力する回転力によって所定の軸心(CL)を中心に回転するシャフト(20、740)と、
    前記流路形成部のうち前記流路孔が開口する開口面(140、721)に相対して摺動する摺動面(220、751)を有し、前記シャフトの回転に伴って前記流路孔の開度を増減する回転子(22、750)と、
    前記回転子を前記流路形成部に向けて付勢する付勢部材(26、770)と、
    前記シャフトの姿勢によらず前記摺動面と前記開口面との接触状態が維持されるように前記シャフトを前記回転子に対して傾動可能に連結する連結構造(24、28、32、760、780)と、
    を備え、
    前記付勢部材は、前記シャフトの軸心方向に弾性変形する弾性部材(261、262)で構成されており、
    前記弾性部材は、前記回転子に圧縮荷重を付与するコイル状の圧縮バネ(261)で構成され、
    前記回転子を前記シャフトの軸心まわりの周方向の一方側に付勢するコイル状のトーションバネ(29)を備え、
    前記圧縮バネは、前記トーションバネの内側に配置されるとともに、前記トーションバネよりも巻き数が多くなっている、バルブ装置。
  5. 前記シャフトは、前記圧縮バネの内側に配置されている、請求項に記載のバルブ装置。
  6. 前記シャフトは、前記シャフトの径方向に突き出るフランジ部(20d)が設けられており、
    前記圧縮バネは、前記回転子とともに回転するように、前記回転子と前記フランジ部との間に圧縮された状態で配置されている、請求項4または5に記載のバルブ装置。
  7. バルブ装置であって、
    流体が通過する流路孔(141、142、722、723、724、725)が少なくとも1つ形成された流路形成部(14、720)と、
    回転力を出力する駆動部(16)と、
    前記駆動部が出力する回転力によって所定の軸心(CL)を中心に回転するシャフト(20、740)と、
    前記流路形成部のうち前記流路孔が開口する開口面(140、721)に相対して摺動する摺動面(220、751)を有し、前記シャフトの回転に伴って前記流路孔の開度を増減する回転子(22、750)と、
    前記回転子を前記流路形成部に向けて付勢する付勢部材(26、770)と、
    前記シャフトの姿勢によらず前記摺動面と前記開口面との接触状態が維持されるように前記シャフトを前記回転子に対して傾動可能に連結する連結構造(24、28、32、760、780)と、
    を備え、
    前記付勢部材は、前記回転子を前記流路形成部に向けて付勢するだけでなく、前記シャフトの軸心まわりの周方向の一方側に付勢するように前記回転子に対して連結される弾性部材(261)で構成されている、バルブ装置。
  8. 前記連結構造は、前記摺動面と前記シャフトの軸心とのなす角度を変更可能に前記シャフトおよび前記回転子を連結するユニバーサルジョイント(32)を含んで構成されている、請求項4ないし7のいずれか1つに記載のバルブ装置。
  9. 前記流体と車室外の空気とを熱交換させる室外熱交換器(303)および前記車室内へ流れる空気と前記流体とを熱交換させる室内熱交換器(304)を含む流体循環回路(300)に適用されるバルブ装置であって、
    前記室外熱交換器の流体入口側に接続され、前記室外熱交換器へ前記流体を流出させる第1出口部(312)と、
    前記室内熱交換器の流体入口側に接続され、前記室内熱交換器へ前記流体を流出させる第2出口部(313)と、
    前記室外熱交換器の流体出口側と前記室内熱交換器の流体出口側に接続され、前記室外熱交換器および前記室内熱交換器から前記流体が流入する入口部(311)と、を備え、
    前記回転子を回転変位させることで、前記室外熱交換器を通過する前記流体と前記室内熱交換器を通過する前記流体の流量割合が調整される、請求項1ないしのいずれか1つに記載のバルブ装置。
  10. 前記流体と車室外の空気とを熱交換させる室外熱交換器(403)、前記流体によって発熱機器(CE)の温度を調整する温調部(406)、および前記室外熱交換器をバイパスして前記流体を流すバイパス部(420)を含む流体循環回路(400)に適用されるバルブ装置であって、
    前記室外熱交換器の流体入口側に接続され、前記室外熱交換器へ前記流体を流出させる第1出口部(432)と、
    前記バイパス部の流体入口側に接続され、前記バイパス部へ前記流体を流出させる第2出口部(433)と、
    前記温調部の流体出口側に接続され、前記温調部から前記流体が流入する入口部(431)と、を備え、
    前記回転子を回転変位させることで、前記バイパス部を通過する前記流体と前記室外熱交換器を通過する前記流体の流量割合が調整される、請求項1ないしのいずれか1つに記載のバルブ装置。
  11. 前記流体が流入する第1入口部(700A)と、
    前記流体が流入する第2入口部(700C)と、
    外部へ前記流体を流出させる少なくとも1つの出口部(700B、700D、700E)と、
    前記第1入口部に連通する第1入口側空間(711a)および前記第2入口部に連通する第2入口側空間(712c)が内側に形成された本体部(701)と、を備え、
    前記回転子は、前記第1入口側空間の圧力および前記第2入口側空間の圧力が互いに逆方向に作用するように前記本体部の内側に配置されている、請求項1ないし10のいずれか1つに記載のバルブ装置。
  12. 流体循環回路であって、
    流体が通過する複数の機器(303、304、403、BT)と、
    前記複数の機器を通過する前記流体の流量を調整するバルブ装置(10、310、430、70)と、を備え、
    前記バルブ装置は、
    前記流体が通過する流路孔(141、142、722、723、724、725)が少なくとも1つ形成された流路形成部(14、720)と、
    回転力を出力する駆動部(16)と、
    前記駆動部が出力する回転力によって所定の軸心(CL)を中心に回転するシャフト(20、740)と、
    前記流路形成部のうち前記流路孔が開口する開口面(140、721)に相対して摺動する摺動面(220、751)を有し、前記シャフトの回転に伴って前記流路孔の開度を増減する回転子(22、750)と、
    前記回転子を前記流路形成部に向けて付勢する付勢部材(26、770)と、
    前記シャフトの姿勢によらず前記摺動面と前記開口面との接触状態が維持されるように前記シャフトを前記回転子に対して傾動可能に連結する連結構造(24、28、32、760、780)と、を含み、
    前記連結構造は、前記回転子に設けられた嵌合孔(223)に前記シャフトの嵌合部(20c)を嵌め込む嵌合構造(28、780)を含み、
    前記嵌合孔は、前記嵌合部を嵌合させた状態で前記シャフトを傾動可能なように、前記シャフトとの間に隙間が形成される大きさになっている、流体循環回路。
  13. 流体循環回路であって、
    流体が通過する複数の機器(303、304、403、BT)と、
    前記複数の機器を通過する前記流体の流量を調整するバルブ装置(10、310、430、70)と、を備え、
    前記バルブ装置は、
    前記流体が通過する流路孔(141、142、722、723、724、725)が少なくとも1つ形成された流路形成部(14、720)と、
    回転力を出力する駆動部(16)と、
    前記駆動部が出力する回転力によって所定の軸心(CL)を中心に回転するシャフト(20、740)と、
    前記流路形成部のうち前記流路孔が開口する開口面(140、721)に相対して摺動する摺動面(220、751)を有し、前記シャフトの回転に伴って前記流路孔の開度を増減する回転子(22、750)と、
    前記回転子を前記流路形成部に向けて付勢する付勢部材(26、770)と、
    前記シャフトの姿勢によらず前記摺動面と前記開口面との接触状態が維持されるように前記シャフトを前記回転子に対して傾動可能に連結する連結構造(24、28、32、760、780)と、を含み、
    前記付勢部材は、前記シャフトの軸心方向に弾性変形する弾性部材(261、262)で構成されており、
    前記弾性部材は、前記回転子に圧縮荷重を付与するコイル状の圧縮バネ(261)で構成され、
    前記回転子を前記シャフトの軸心まわりの周方向の一方側に付勢するコイル状のトーションバネ(29)を備え、
    前記圧縮バネは、前記トーションバネの内側に配置されるとともに、前記トーションバネよりも巻き数が多くなっている、流体循環回路。
  14. 流体循環回路であって、
    流体が通過する複数の機器(303、304、403、BT)と、
    前記複数の機器を通過する前記流体の流量を調整するバルブ装置(10、310、430、70)と、を備え、
    前記バルブ装置は、
    前記流体が通過する流路孔(141、142、722、723、724、725)が少なくとも1つ形成された流路形成部(14、720)と、
    回転力を出力する駆動部(16)と、
    前記駆動部が出力する回転力によって所定の軸心(CL)を中心に回転するシャフト(20、740)と、
    前記流路形成部のうち前記流路孔が開口する開口面(140、721)に相対して摺動する摺動面(220、751)を有し、前記シャフトの回転に伴って前記流路孔の開度を増減する回転子(22、750)と、
    前記回転子を前記流路形成部に向けて付勢する付勢部材(26、770)と、
    前記シャフトの姿勢によらず前記摺動面と前記開口面との接触状態が維持されるように前記シャフトを前記回転子に対して傾動可能に連結する連結構造(24、28、32、760、780)と、を含み、
    前記付勢部材は、前記回転子を前記流路形成部に向けて付勢するだけでなく、前記シャフトの軸心まわりの周方向の一方側に付勢するように前記回転子に対して連結される弾性部材(261)で構成されている、流体循環回路。
JP2019164851A 2019-09-10 2019-09-10 バルブ装置、流体循環回路 Active JP7107291B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019164851A JP7107291B2 (ja) 2019-09-10 2019-09-10 バルブ装置、流体循環回路
PCT/JP2020/030381 WO2021049223A1 (ja) 2019-09-10 2020-08-07 バルブ装置、流体循環回路
CN202080063629.4A CN114402153A (zh) 2019-09-10 2020-08-07 阀装置、流体循环回路
DE112020004258.8T DE112020004258T5 (de) 2019-09-10 2020-08-07 Ventilvorrichtung und Fluid-Zirkulationskreislauf
US17/683,449 US11940057B2 (en) 2019-09-10 2022-03-01 Valve device and fluid circulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019164851A JP7107291B2 (ja) 2019-09-10 2019-09-10 バルブ装置、流体循環回路

Publications (3)

Publication Number Publication Date
JP2021042809A JP2021042809A (ja) 2021-03-18
JP2021042809A5 JP2021042809A5 (ja) 2021-11-18
JP7107291B2 true JP7107291B2 (ja) 2022-07-27

Family

ID=74861643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019164851A Active JP7107291B2 (ja) 2019-09-10 2019-09-10 バルブ装置、流体循環回路

Country Status (5)

Country Link
US (1) US11940057B2 (ja)
JP (1) JP7107291B2 (ja)
CN (1) CN114402153A (ja)
DE (1) DE112020004258T5 (ja)
WO (1) WO2021049223A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737380B1 (ja) 2019-06-11 2020-08-05 株式会社デンソー バルブ装置
US20220134839A1 (en) * 2020-10-29 2022-05-05 Rivian Ip Holdings, Llc Integrated thermal management system for a vehicle
DE102021109701A1 (de) * 2021-04-16 2022-10-20 Otto Egelhof Gmbh & Co. Kg Ventil zur Steuerung eines Kältemittelkreislaufes
JP7380638B2 (ja) 2021-04-21 2023-11-15 株式会社デンソー バルブ装置
JP2022166528A (ja) * 2021-04-21 2022-11-02 株式会社デンソー バルブ装置
JP7435533B2 (ja) * 2021-04-21 2024-02-21 株式会社デンソー バルブ装置
JP2022166526A (ja) * 2021-04-21 2022-11-02 株式会社デンソー バルブ装置
KR102512686B1 (ko) * 2021-07-05 2023-03-23 동일기계공업 주식회사 미세 유량 제어 밸브
WO2023117002A1 (en) * 2021-12-22 2023-06-29 Flowcon International Aps Control valve
US20240068576A1 (en) * 2022-08-30 2024-02-29 Hanon Systems Fluid valve system
US11808372B1 (en) * 2022-10-19 2023-11-07 Hanon Systems Disc coolant valve with self-leveling flow control disc

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4717835B2 (ja) 2007-01-11 2011-07-06 キヤノン株式会社 照明装置及び撮像装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2516795A (en) * 1946-08-28 1950-07-25 Thompson Prod Inc Valve rotating device
US3414007A (en) * 1965-04-19 1968-12-03 Fluid Controls Inc Load lowering valve for hydraulic hoists
JPS4717835Y1 (ja) * 1968-05-02 1972-06-20
FR2693533B1 (fr) * 1992-07-09 1994-10-14 Europ Propulsion Vanne à commande électrique et à boisseau distributeur totalement étanche.
US5365978A (en) * 1992-07-27 1994-11-22 Baker Hughes Incorporated Top entry flow control valve with two sets of orifices
DE4417094A1 (de) * 1994-05-16 1995-11-23 Sempell Babcock Ag Scheibenventil
JP3477987B2 (ja) * 1996-02-05 2003-12-10 株式会社デンソー 車両用暖房装置
US6032869A (en) 1996-04-03 2000-03-07 Denso Corporation Heating apparatus for vehicle
IT1307654B1 (it) * 1999-01-29 2001-11-14 Angelo Serratto Valvola servocomandata per impianti di condizionamento dell'aria noti come impianti a 4 tubi
WO2004016973A1 (ja) * 2002-08-19 2004-02-26 Toto Ltd. ディスク式バルブ
JP2004263725A (ja) * 2003-02-14 2004-09-24 Saginomiya Seisakusho Inc 電動式コントロールバルブ
US7143786B2 (en) * 2003-12-11 2006-12-05 Newfrey Llc Two-handle flow-through valve
EP1566584B1 (en) * 2004-02-18 2009-12-23 Emech Control Limited Control valve
US7108012B2 (en) * 2004-07-22 2006-09-19 Masco Corporation Of Indiana Fluid control valve
CN101655164A (zh) * 2008-08-22 2010-02-24 许承革 圆柱阀门
DE102012022212B4 (de) 2012-11-07 2023-09-21 Mack & Schneider Gmbh Scheibenventil
US9458612B2 (en) * 2013-03-15 2016-10-04 Delta Faucet Company Integrated solenoid valve for an electronic faucet
JP6065779B2 (ja) * 2013-07-31 2017-01-25 株式会社デンソー 車両用熱管理システム
EP3470713B1 (en) 2016-06-08 2024-05-01 Zhejiang Sanhua Intelligent Controls Co., Ltd. Flow control device and method for manufacturing the same
JP2019164851A (ja) 2018-03-19 2019-09-26 株式会社東芝 ディスク装置
CN113710940B (zh) 2019-04-16 2023-09-15 株式会社电装 流路切换阀以及流体循环回路
JP7243410B2 (ja) 2019-04-19 2023-03-22 株式会社デンソー 車両用電池加熱装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4717835B2 (ja) 2007-01-11 2011-07-06 キヤノン株式会社 照明装置及び撮像装置

Also Published As

Publication number Publication date
JP2021042809A (ja) 2021-03-18
CN114402153A (zh) 2022-04-26
DE112020004258T5 (de) 2022-05-25
WO2021049223A1 (ja) 2021-03-18
US11940057B2 (en) 2024-03-26
US20220186840A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
JP7107291B2 (ja) バルブ装置、流体循環回路
JP7164051B2 (ja) バルブ装置
JP7099421B2 (ja) バルブ装置、流体循環回路
JP5659925B2 (ja) 車両用空調装置
JP6201434B2 (ja) 冷凍サイクル装置
WO2011155204A1 (ja) ヒートポンプサイクル
WO2020203151A1 (ja) 空調装置
US11913684B2 (en) Flow passage switching valve and fluid circulation circuit
JP6737380B1 (ja) バルブ装置
JP6586612B2 (ja) 制御弁
WO2014188639A1 (ja) 切替弁
WO2020050085A1 (ja) 圧縮機及び冷凍サイクル装置
WO2020050086A1 (ja) 圧縮機及び冷凍サイクル装置
JP5510374B2 (ja) 熱交換システム
WO2023176380A1 (ja) 冷凍サイクル装置
CN118182049A (zh) 车辆hvac系统

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R151 Written notification of patent or utility model registration

Ref document number: 7107291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151