JP7095403B2 - Heat treatment method for oxide single crystal - Google Patents

Heat treatment method for oxide single crystal Download PDF

Info

Publication number
JP7095403B2
JP7095403B2 JP2018099524A JP2018099524A JP7095403B2 JP 7095403 B2 JP7095403 B2 JP 7095403B2 JP 2018099524 A JP2018099524 A JP 2018099524A JP 2018099524 A JP2018099524 A JP 2018099524A JP 7095403 B2 JP7095403 B2 JP 7095403B2
Authority
JP
Japan
Prior art keywords
single crystal
inner container
oxide single
container
crystal ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018099524A
Other languages
Japanese (ja)
Other versions
JP2019202915A (en
Inventor
安宏 大保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018099524A priority Critical patent/JP7095403B2/en
Publication of JP2019202915A publication Critical patent/JP2019202915A/en
Application granted granted Critical
Publication of JP7095403B2 publication Critical patent/JP7095403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チョクラルスキー法(以下、Cz法と略記する)等の引き上げ法により育成した酸化物単結晶インゴットをセラミック製容器に収容し、該セラミック製容器を加熱炉内の平坦状炉床台に載置した状態で酸化物単結晶インゴットを熱処理して酸化物単結晶インゴットの「熱歪み」を緩和する方法に係り、特に、処理する酸化物単結晶インゴットが大型化しても(すなわち、インゴットの直径が大きくなっても)熱処理の不均一やセラミック製容器の破損等が回避される酸化物単結晶の熱処理方法に関するものである。 In the present invention, an oxide single crystal ingot grown by a pulling method such as the Czochralski method (hereinafter abbreviated as Cz method) is housed in a ceramic container, and the ceramic container is placed in a flat hearth in a heating furnace. It is related to the method of heat-treating the oxide single crystal ingot while it is placed on a table to alleviate the "thermal strain" of the oxide single crystal ingot, and in particular, even if the oxide single crystal ingot to be treated becomes large (that is,). It relates to a heat treatment method for an oxide single crystal that avoids non-uniform heat treatment and damage to a ceramic container (even if the diameter of the ingot becomes large).

タンタル酸リチウム(以下、LTと略記する)単結晶やニオブ酸リチウム(以下、LNと略記する)単結晶等の酸化物単結晶は一般的にCz法等の引き上げ法を用いて育成されている。Cz法は、坩堝内の原料融液に種結晶を接触させ、該種結晶を回転させながら引き上げることで種結晶と同一方位の単結晶を育成する方法である。Cz法では成長界面が固化することで結晶成長が進むため、先に固化した部分と成長界面との間には温度勾配が生じる。そして、温度勾配を生じることで、育成が完了した結晶には温度差に起因した「熱歪み」が導入される。 Oxide single crystals such as lithium tantalate (hereinafter abbreviated as LT) single crystal and lithium niobate (hereinafter abbreviated as LN) single crystal are generally grown by using a pulling method such as the Cz method. .. The Cz method is a method in which a seed crystal is brought into contact with a raw material melt in a crucible, and the seed crystal is pulled up while rotating to grow a single crystal in the same direction as the seed crystal. In the Cz method, crystal growth proceeds by solidifying the growth interface, so that a temperature gradient is generated between the previously solidified portion and the growth interface. Then, by creating a temperature gradient, "thermal strain" due to the temperature difference is introduced into the crystal that has been grown.

育成した結晶に上記「熱歪み」が導入されると、その後の加工工程でクラックを生じさせることから、Cz法で育成された酸化物単結晶については融点以下の温度でアニール処理(熱処理)を行い、上記「熱歪み」を緩和している。アニール処理は、結晶全体を均一な温度にすることが好ましく、特に、Cz法による単結晶育成では直径の変化が大きい結晶肩部と結晶直胴部の境界付近に大きな「熱歪み」が導入されているため、アニール処理において結晶肩部と結晶直胴部の温度差を可能な限り小さくすることが好ましい。 When the above "heat strain" is introduced into the grown crystal, cracks are generated in the subsequent processing step. Therefore, the oxide single crystal grown by the Cz method is subjected to annealing treatment (heat treatment) at a temperature below the melting point. This is done to alleviate the above "heat distortion". In the annealing treatment, it is preferable to keep the entire crystal at a uniform temperature, and in particular, in the single crystal growth by the Cz method, a large "thermal strain" is introduced near the boundary between the crystal shoulder portion and the crystal straight body portion where the change in diameter is large. Therefore, it is preferable to make the temperature difference between the crystal shoulder portion and the crystal straight body portion as small as possible in the annealing treatment.

LT(融点:約1650℃)やLN(融点:約1250℃)の単結晶は1000℃を越える温度でアニール処理を行うことから、一般的に抵抗加熱式のヒータを備えた電気炉が選択される。電気炉の発熱体はアニール温度に応じて二珪化モリブデンや炭化ケイ素が選択されるが、これ等の発熱体に限定されるものではない。 Since single crystals of LT (melting point: about 1650 ° C.) and LN (melting point: about 1250 ° C.) are annealed at a temperature exceeding 1000 ° C., an electric furnace equipped with a resistance heating type heater is generally selected. To. As the heating element of the electric furnace, molybdenum disilicate or silicon carbide is selected according to the annealing temperature, but the heating element is not limited to these.

アニール処理では、結晶全体を均一な温度で長時間保持し、再び温度差が生じないように徐冷しながら室温まで戻すことで「熱歪み」を緩和し、その後の加工工程におけるクラックを防いでおり、高温下で温度を均一に保持することが必要となる。 In the annealing treatment, the entire crystal is kept at a uniform temperature for a long time, and the temperature is slowly cooled so that the temperature difference does not occur again, and the temperature is returned to room temperature to alleviate "heat distortion" and prevent cracks in the subsequent processing process. Therefore, it is necessary to keep the temperature uniform under high temperature.

ところで、結晶肩部と結晶直胴部を有する上記酸化物単結晶インゴットのアニール処理(熱処理)は、セラミック製容器に上記インゴットを収容し、かつ、インゴット全体を容器で覆った状態にして熱処理がなされるが、酸化物単結晶インゴットとセラミック製容器が接触した部分のインゴットにクラックを生じることがあった。この原因は、酸化物単結晶インゴットにおける接触部位の熱的不均一および酸化物単結晶インゴットの自重による応力の不均一に起因すると考えられている。 By the way, in the annealing treatment (heat treatment) of the oxide single crystal ingot having a crystal shoulder portion and a crystal straight body portion, the heat treatment is performed by accommodating the ingot in a ceramic container and covering the entire ingot with the container. However, cracks may occur in the ingot at the portion where the oxide single crystal ingot and the ceramic container are in contact with each other. It is considered that this cause is caused by the thermal non-uniformity of the contact portion in the oxide single crystal ingot and the stress non-uniformity due to the own weight of the oxide single crystal ingot.

そこで、特許文献1において、図5に示すように上部が開放されかつ酸化物単結晶インゴットと同一材料で構成された塊径2mm以上10mm未満の小塊5群が敷き詰められた内底面を有する筒形の下側部材9と、該下側部材9の内底面に小塊5群を介し収容された酸化物単結晶インゴット1全体が覆われる内壁面と天壁面を有しかつ下側部材9に嵌合される筒形の上側部材8とでセラミック製容器を構成し、酸化物単結晶インゴットが収容されたセラミック製容器を電気炉(図示せず)の平坦状炉床台6に直接載置した状態で熱処理して酸化物単結晶インゴットの「熱歪み」を緩和させる方法が提案され、また、図6に示すように上部が開放されかつ酸化物単結晶インゴットと同一材料で構成された塊径2mm以上10mm未満の小塊5群が敷き詰められた内底面を有する筒形の下側部材12と、中側部材11および上側部材10を嵌合させてセラミック製容器を構成し、図5と同様、酸化物単結晶インゴットの「熱歪み」を緩和させる方法が提案されている。 Therefore, in Patent Document 1, as shown in FIG. 5, a cylinder having an inner bottom surface in which the upper portion is open and five groups of small lumps having a lump diameter of 2 mm or more and less than 10 mm, which are made of the same material as the oxide single crystal ingot, are spread. The lower member 9 has an inner wall surface and a top wall surface that cover the entire oxide single crystal ingot 1 housed in the lower member 9 of the shape and the inner bottom surface of the lower member 9 via a group of small lumps. A ceramic container is formed by the tubular upper member 8 to be fitted, and the ceramic container containing the oxide single crystal ingot is placed directly on the flat hearth 6 of the electric furnace (not shown). A method has been proposed in which heat treatment is performed in this state to alleviate the "thermal strain" of the oxide single crystal ingot, and as shown in FIG. 6, a mass having an open upper portion and made of the same material as the oxide single crystal ingot. A cylindrical lower member 12 having an inner bottom surface in which five groups of small lumps having a diameter of 2 mm or more and less than 10 mm are spread, and the middle member 11 and the upper member 10 are fitted to form a ceramic container. Similarly, a method for alleviating the "thermal strain" of the oxide single crystal ingot has been proposed.

そして、特許文献1で提案された酸化物単結晶の熱処理方法によれば、上記小塊5群は酸化物単結晶で構成される従来の粉末に較べて塊径が著しく大きいため、高温条件下におけるリチウム(Li)成分(LTやLN単結晶を構成する成分)の揮散が起こり難くかつ小塊5の表面積も小さいことから、セラミック製容器と小塊5が直接接触しても容器と小塊5間の反応が起こり難く、かつ、小塊5の塊径が10mm未満であるためセラミック製容器内に収容した酸化物単結晶インゴットが熱処理中に倒れることもない。このため、安価なセラミック製容器内に酸化物単結晶インゴットを安定して収容でき、かつ、酸化物単結晶インゴット全体をセラミック製容器で覆うことによりインゴットの加熱ムラやセラミック製容器の劣化を生じさせることなく酸化物単結晶インゴットの「熱歪み」が緩和される方法であった。 According to the heat treatment method for the oxide single crystal proposed in Patent Document 1, the group 5 of the small lumps has a significantly larger lump diameter than the conventional powder composed of the oxide single crystal, and therefore, under high temperature conditions. Since the lithium (Li) component (components constituting LT and LN single crystals) is unlikely to volatilize and the surface area of the small lump 5 is small, even if the ceramic container and the small lump 5 come into direct contact with each other, the container and the small lump 5 are in direct contact with each other. Since the reaction between the 5 is unlikely to occur and the diameter of the small lump 5 is less than 10 mm, the oxide single crystal ingot housed in the ceramic container does not collapse during the heat treatment. Therefore, the oxide single crystal ingot can be stably housed in an inexpensive ceramic container, and the entire oxide single crystal ingot is covered with the ceramic container, which causes uneven heating of the ingot and deterioration of the ceramic container. It was a method of alleviating the "thermal strain" of the oxide single crystal ingot without causing it.

ところで、近年のスマートホン等の普及に伴い、移動体通信機器用の表面弾性波フィルター(以下、SAWフィルターと略記する)市場は拡大を続けており、SAWフィルターの材料となる上記LTやLN等の単結晶基板の需要も伸びている。そして、SAWフィルター製造プロセスのコストダウンを図るため、LTやLN等の酸化物単結晶基板サイズも、従来のφ3インチから、φ4インチ、φ6インチへと大面積化が進み、育成される酸化物単結晶インゴットが大型化(すなわち、インゴット直径が大きくなっている)している。そして、従来の酸化物単結晶サイズでは問題にならなかったが、育成される酸化物単結晶インゴットの大型化に伴い、上記インゴットに対する熱処理の不均一やセラミック製容器の破損(容器底面のクラック)等の問題が生じている。 By the way, with the spread of smart phones and the like in recent years, the market for surface elastic wave filters (hereinafter abbreviated as SAW filters) for mobile communication devices continues to expand, and the above-mentioned LTs and LNs, which are materials for SAW filters, etc. Demand for single crystal substrates is also growing. In order to reduce the cost of the SAW filter manufacturing process, the size of oxide single crystal substrates such as LT and LN has been increased from the conventional φ3 inch to φ4 inch and φ6 inch, and the oxides grown. The single crystal ingot is getting larger (that is, the diameter of the ingot is getting bigger). The conventional oxide single crystal size did not cause a problem, but as the size of the grown oxide single crystal ingot increased, the heat treatment for the ingot was non-uniform and the ceramic container was damaged (crack on the bottom of the container). Etc. have occurred.

特開2017―193453号公報Japanese Unexamined Patent Publication No. 2017-193453

酸化物単結晶のアニール処理(熱処理)において、育成される酸化物単結晶が大型化する(すなわち単結晶の直径が大きくなる)と容器底面にクラックが発生する問題があり、この原因は、大型化した酸化物単結晶に合わせてセラミック製容器も大きくなったため、セラミック製容器の底面における中心部と外周部に温度差が生じるためと考えられる。 In the annealing treatment (heat treatment) of the oxide single crystal, there is a problem that cracks occur on the bottom surface of the container when the grown oxide single crystal becomes large (that is, the diameter of the single crystal becomes large). It is considered that the ceramic container became larger in accordance with the converted oxide single crystal, so that a temperature difference occurred between the central portion and the outer peripheral portion on the bottom surface of the ceramic container.

そして、容器底面における中心部と外周部に温度差が生じ始めると、酸化物単結晶への熱処理が不均一になるため酸化物単結晶にクラックが発生し易くなり、容器底面にもクラックが発生して酸化物単結晶の保持が困難になる。 When a temperature difference begins to occur between the central portion and the outer peripheral portion of the bottom surface of the container, the heat treatment for the oxide single crystal becomes non-uniform, so that cracks are likely to occur in the oxide single crystal and cracks also occur in the bottom surface of the container. This makes it difficult to retain the oxide single crystal.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、処理する酸化物単結晶(酸化物単結晶インゴット)が大型化しても熱処理の不均一やセラミック製容器の破損等が回避される酸化物単結晶の熱処理方法を提供することにある。 The present invention has been made by paying attention to such a problem, and the problem thereof is that even if the oxide single crystal (oxide single crystal ingot) to be treated becomes large, the heat treatment is non-uniform and the ceramic container is made. It is an object of the present invention to provide a heat treatment method for an oxide single crystal in which damage and the like are avoided.

上記課題を解決するため本発明者が鋭意研究を継続した結果、特許文献1で採用されているセラミック製容器の嵌合方法を変更し、かつ、加熱炉内の平坦状炉床台にセラミック製容器を直接載置させない方法に変更したところ、処理する酸化物単結晶(酸化物単結晶インゴット)が大型化しても熱処理の不均一やセラミック製容器の破損等が回避できることを発見するに至った。本発明はこのような技術的発見に基づき完成されたものである。 As a result of diligent research by the present inventor in order to solve the above problems, the fitting method of the ceramic container adopted in Patent Document 1 has been changed, and the flat hearth base in the heating furnace is made of ceramic. After changing to a method in which the container is not placed directly, it was discovered that even if the oxide single crystal (oxide single crystal ingot) to be treated becomes large, non-uniform heat treatment and damage to the ceramic container can be avoided. .. The present invention has been completed based on such technical discoveries.

すなわち、本発明に係る第1の発明は、
引き上げ法により育成された酸化物単結晶インゴットをセラミック製の容器に収容し、加熱炉内に設置された平坦状炉床台に上記容器を載置して容器内の酸化物単結晶インゴットを熱処理する酸化物単結晶の熱処理方法において、
上記酸化物単結晶インゴットと同一材料で構成された塊径2mm以上10mm未満の小塊群が内底面に敷き詰められかつ該小塊群を介し酸化物単結晶インゴットが収容される内側容器と、該内側容器の外径より大きい内径を有しかつ内側容器に収容された酸化物単結晶インゴットの外周面を囲むように配置される外側筒体とで、上記セラミック製の容器を構成し、かつ、
上記平坦状炉床台と、該炉床台に載置される内側容器並びに外側筒体との間に板状スペーサを介在させ、該板状スペーサに内側容器外底面の中央部へ加熱炉内の加熱空気を給排する通気口を形成して、露出する内側容器外底面に加熱炉内の加熱された空気を供給すると共に、上記内側容器と外側筒体との隙間から加熱された空気を外側筒体内に供給して酸化物単結晶インゴットを熱処理することを特徴とするものである。
That is, the first invention according to the present invention is
The oxide single crystal ingot grown by the pulling method is housed in a ceramic container, and the above container is placed on a flat hearth pedestal installed in a heating furnace to heat the oxide single crystal ingot in the container. In the heat treatment method for oxide single crystals
An inner container composed of the same material as the oxide single crystal ingot and having a mass diameter of 2 mm or more and less than 10 mm spread on the inner bottom surface and accommodating the oxide single crystal ingot via the small mass group, and the inner container. The ceramic container is composed of an outer cylinder having an inner diameter larger than the outer diameter of the inner container and arranged so as to surround the outer peripheral surface of the oxide single crystal ingot housed in the inner container.
A plate-shaped spacer is interposed between the flat hearth pedestal and the inner container and the outer cylinder placed on the hearth pedestal, and the plate-shaped spacer is placed in the heating furnace to the center of the outer bottom surface of the inner container. By forming a vent to supply and discharge the heated air, the heated air in the heating furnace is supplied to the exposed outer bottom surface of the inner container, and the heated air is sent from the gap between the inner container and the outer cylinder. It is characterized in that the oxide single crystal ingot is heat-treated by supplying it into the outer cylinder.

また、本発明に係る第2の発明は、
第1の発明に記載の酸化物単結晶の熱処理方法において、
板状スペーサが上記容器と同一のセラミック材料で構成されることを特徴とし、
第3の発明は、
第1の発明または第2の発明に記載の酸化物単結晶の熱処理方法において、
上記板状スペーサと接する内側容器外底面の面積が該外底面全面積の10%以上50%以下であることを特徴とする。
Further, the second invention according to the present invention is
In the heat treatment method for an oxide single crystal according to the first invention,
The plate-shaped spacer is made of the same ceramic material as the above container.
The third invention is
In the method for heat-treating an oxide single crystal according to the first invention or the second invention.
The area of the outer bottom surface of the inner container in contact with the plate-shaped spacer is 10% or more and 50% or less of the total area of the outer bottom surface.

次に、本発明に係る第4の発明は、
第1の発明~第3の発明のいずれかに記載の酸化物単結晶の熱処理方法において、
露出する上記内側容器外底面の中央部に加熱された空気を給排する2箇所以上の通気口が対称的に形成されるように複数の板材で上記板状スペーサを構成することを特徴とし、
第5の発明は、
第1の発明~第4の発明のいずれかに記載の酸化物単結晶の熱処理方法において、
上記板状スペーサの厚さが10mm以上に設定されていることを特徴とし、
また、第6の発明は、
第1の発明~第5の発明のいずれかに記載の酸化物単結晶の熱処理方法において、
上記酸化物単結晶がタンタル酸リチウム単結晶またはニオブ酸リチウム単結晶で構成されることを特徴とするものである。
Next, the fourth invention according to the present invention is
In the heat treatment method for an oxide single crystal according to any one of the first invention to the third invention.
It is characterized in that the plate-shaped spacer is composed of a plurality of plate materials so that two or more vents for supplying and discharging heated air are symmetrically formed in the central portion of the outer bottom surface of the exposed inner container.
The fifth invention is
In the heat treatment method for an oxide single crystal according to any one of the first to fourth inventions.
The plate-shaped spacer is characterized in that the thickness is set to 10 mm or more.
Moreover, the sixth invention is
In the heat treatment method for an oxide single crystal according to any one of the first invention to the fifth invention.
The oxide single crystal is characterized by being composed of a lithium tantalate single crystal or a lithium niobate single crystal.

引き上げ法で育成された酸化物単結晶インゴットをセラミック製容器に収容し、該セラミック製容器を加熱炉内の平坦状炉床台に載置して酸化物単結晶インゴットを熱処理する本発明に係る熱処理方法は、
酸化物単結晶インゴットと同一材料で構成された塊径2mm以上10mm未満の小塊群が内底面に敷き詰められかつ該小塊群を介し酸化物単結晶インゴットが収容される内側容器と、該内側容器の外径より大きい内径を有しかつ内側容器に収容された酸化物単結晶インゴットの外周面を囲むように配置される外側筒体とで上記セラミック製容器を構成し、かつ、上記平坦状炉床台と、該炉床台に載置される内側容器並びに外側筒体との間に板状スペーサを介在させ、該板状スペーサに内側容器外底面の中央部へ加熱炉内の加熱空気を給排する通気口を形成して、露出する内側容器外底面に加熱炉内の加熱された空気を供給すると共に、上記内側容器と外側筒体との隙間から加熱された空気を外側筒体内に供給して酸化物単結晶インゴットを熱処理することを特徴としている。
The present invention relates to the present invention in which an oxide single crystal ingot grown by a pulling method is housed in a ceramic container, and the ceramic container is placed on a flat hearth in a heating furnace to heat the oxide single crystal ingot. The heat treatment method is
An inner container composed of the same material as the oxide single crystal ingot and having a mass diameter of 2 mm or more and less than 10 mm spread on the inner bottom surface and accommodating the oxide single crystal ingot via the small mass group, and the inner side thereof. The ceramic container is composed of an outer cylinder having an inner diameter larger than the outer diameter of the container and arranged so as to surround the outer peripheral surface of the oxide single crystal ingot housed in the inner container, and the flat shape. A plate-shaped spacer is interposed between the hearth and the inner container and the outer cylinder placed on the hearth, and the plate -shaped spacer is heated to the center of the outer bottom surface of the inner container. The heated air in the heating furnace is supplied to the exposed outer bottom surface of the inner container by forming a vent for supplying and discharging the air, and the heated air is supplied from the gap between the inner container and the outer cylinder inside the outer cylinder. It is characterized in that the oxide single crystal ingot is heat-treated by supplying it to the container.

そして、本発明に係る熱処理方法によれば、露出する内側容器外底面に加熱炉内の加熱空気が供給されるため、内側容器外底面の中心部と周辺部を均等に加熱することが可能となり、かつ、上記内側容器と外側筒体との隙間から加熱炉内の加熱空気が外側筒体内に供給されるため、内側容器と外側筒体とで構成されるセラミック製容器内に収容された酸化物単結晶インゴットを均一に熱処理することが可能となる。 According to the heat treatment method according to the present invention, the heated air in the heating furnace is supplied to the exposed inner bottom surface of the inner container, so that the central portion and the peripheral portion of the outer bottom surface of the inner container can be heated evenly. Moreover, since the heated air in the heating furnace is supplied into the outer cylinder through the gap between the inner container and the outer cylinder, the oxidation housed in the ceramic container composed of the inner container and the outer cylinder. It is possible to uniformly heat a single crystal ingot.

本発明の実施例1に係る酸化物単結晶の熱処理方法を示す説明図。Explanatory drawing which shows the heat treatment method of the oxide single crystal which concerns on Example 1 of this invention. 本発明の実施例2に係る酸化物単結晶の熱処理方法を示す説明図。Explanatory drawing which shows the heat treatment method of the oxide single crystal which concerns on Example 2 of this invention. 4枚の円弧状板材で構成される板状スペーサと該板状スペーサを介在させた状態で平坦状炉床台に載置される内側容器と外側筒体で構成される実施例1に係るセラミック製容器の底面図。Ceramic according to Example 1 composed of a plate-shaped spacer composed of four arc-shaped plate materials, an inner container placed on a flat hearth stand with the plate-shaped spacer interposed therebetween, and an outer cylinder. Bottom view of the container. 平面C文字形状を有する1枚のセラミック製板材で構成される板状スペーサと該板状スペーサを介在させた状態で平坦状炉床台に載置される内側容器と外側筒体で構成される実施例5に係るセラミック製容器の底面図。It is composed of a plate-shaped spacer made of one ceramic plate material having a flat C-shaped shape, an inner container and an outer cylinder placed on a flat hearth stand with the plate-shaped spacer interposed therebetween. The bottom view of the ceramic container which concerns on Example 5. 特許文献1の下側部材と上側部材とで構成されるセラミック製容器を用いた酸化物単結晶の熱処理方法を示す説明図。It is explanatory drawing which shows the heat treatment method of the oxide single crystal using the ceramic container composed of the lower member and the upper member of Patent Document 1. 特許文献1の下側部材と中側部材および上側部材とで構成されるセラミック製容器を用いた酸化物単結晶の熱処理方法を示す説明図。It is explanatory drawing which shows the heat treatment method of the oxide single crystal using the ceramic container composed of the lower member, the middle member and the upper member of Patent Document 1.

以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

(1)本発明に係る酸化物単結晶の熱処理方法
本発明に係る酸化物単結晶の熱処理方法は、上述したように引き上げ法により育成された酸化物単結晶インゴットをセラミック製の容器に収容し、加熱炉内に設置された平坦状炉床台に上記容器を載置して容器内の酸化物単結晶インゴットを熱処理する酸化物単結晶の熱処理方法において、上記酸化物単結晶インゴットと同一材料で構成された塊径2mm以上10mm未満の小塊群が内底面に敷き詰められかつ該小塊群を介し酸化物単結晶インゴットが収容される内側容器と、該内側容器の外径より大きい内径を有しかつ内側容器に収容された酸化物単結晶インゴットの外周面を囲むように配置される外側筒体とで上記セラミック製の容器を構成し、かつ、上記平坦状炉床台と、該炉床台に載置される内側容器並びに外側筒体との間に板状スペーサを介在させ、該板状スペーサに内側容器外底面の中央部へ加熱炉内の加熱空気を給排する通気口を形成して、露出する内側容器外底面に加熱炉内の加熱された空気を供給すると共に、上記内側容器と外側筒体との隙間から加熱された空気を外側筒体内に供給して酸化物単結晶インゴットを熱処理することを特徴とするものである。
(1) Heat Treatment Method for Oxide Single Crystal According to the Present Invention In the heat treatment method for the oxide single crystal according to the present invention, the oxide single crystal ingot grown by the pulling method is housed in a ceramic container as described above. , The same material as the oxide single crystal ingot in the method of heat treatment of the oxide single crystal in which the container is placed on a flat furnace bed installed in the heating furnace and the oxide single crystal ingot in the container is heat-treated. An inner container composed of 2 mm or more and less than 10 mm in diameter is spread on the inner bottom surface and an oxide single crystal ingot is housed through the small mass group, and an inner diameter larger than the outer diameter of the inner container. The ceramic container is composed of an outer cylinder having and arranged so as to surround the outer peripheral surface of the oxide single crystal ingot housed in the inner container, and the flat hearth stand and the furnace are used. A plate-shaped spacer is interposed between the inner container and the outer cylinder placed on the floor, and the plate-shaped spacer is provided with a vent for supplying and discharging the heated air in the heating furnace to the center of the outer bottom surface of the inner container. The heated air in the heating furnace is supplied to the outer bottom surface of the inner container that is formed and exposed, and the heated air is supplied from the gap between the inner container and the outer cylinder into the outer cylinder to supply a simple oxide. It is characterized by heat-treating a crystalline ingot.

(2)セラミック製容器
内側容器と外側筒体とで構成されるセラミック製容器の材料は特に限定されるものではなく、アニール温度や形状に応じて任意に選択することができる。例えば、アルミナ(酸化アルミニウム)やジルコニア(酸化ジルコニウム)、および、マグネシア、ムライト、炭化ケイ素等から選択された1種類以上の材料を用いることができる。
(2) Ceramic container The material of the ceramic container composed of the inner container and the outer cylinder is not particularly limited, and can be arbitrarily selected according to the annealing temperature and the shape. For example, one or more materials selected from alumina (aluminum oxide), zirconia (zirconium oxide), magnesia, mullite, silicon carbide and the like can be used.

内側容器と外側筒体とで構成されるセラミック製容器の形状は、酸化物単結晶インゴットの直径Dに対して、直径若しくは内接円が1.2D~2.0Dとなるような円形や多角形とすることにより、電気炉への充填率を損なうこと無く、セラミック製容器と酸化物単結晶インゴットが直接接することを防ぐことができる。また、酸化物単結晶インゴットの全長Hに対して外側筒体の高さを1.1H~1.5Hとすることにより、内側容器に収容された酸化物単結晶インゴットの外周面が外側筒体で囲まれた状態となるため酸化物単結晶インゴットの加熱ムラを防ぐことができる。 The shape of the ceramic container composed of the inner container and the outer cylinder is circular or polygonal so that the diameter or inscribed circle is 1.2D to 2.0D with respect to the diameter D of the oxide single crystal ingot. By making it rectangular, it is possible to prevent the ceramic container and the oxide single crystal ingot from coming into direct contact with each other without impairing the filling rate of the electric furnace. Further, by setting the height of the outer cylinder to 1.1H to 1.5H with respect to the total length H of the oxide single crystal ingot, the outer peripheral surface of the oxide single crystal ingot housed in the inner container is the outer cylinder. Since it is surrounded by, it is possible to prevent uneven heating of the oxide single crystal ingot.

尚、アニール処理(熱処理)の際、熱処理用加熱炉の発熱体からの熱線が、直接、酸化物単結晶インゴットに照射されないようにするため、内側容器に収容された酸化物単結晶インゴットの外周面が上記外側筒体で囲まれた状態にすることを要する。 During the annealing treatment (heat treatment), the outer periphery of the oxide single crystal ingot housed in the inner container is prevented from directly irradiating the oxide single crystal ingot with the heat rays from the heating element of the heat treatment heating furnace. It is necessary to make the surface surrounded by the outer cylinder.

また、上記内側容器の外径より外側筒体の内径が大きいことを要する。内側容器と外側筒体との隙間から熱処理用加熱炉内の加熱された空気を上記外側筒体内に供給して酸化物単結晶インゴットの熱処理を行うためである。 Further, it is required that the inner diameter of the outer cylinder is larger than the outer diameter of the inner container. This is because the heated air in the heat treatment heating furnace is supplied from the gap between the inner container and the outer cylinder into the outer cylinder to heat-treat the oxide single crystal ingot.

(3)板状スペーサ
熱処理用加熱炉内の平坦状炉床台と、該炉床台に載置される内側容器並びに外側筒体との間に介在させる板状スペーサの材料は特に限定されるものではなく、アニール温度や形状に応じて任意に選択することができる。例えば、アルミナ(酸化アルミニウム)やジルコニア(酸化ジルコニウム)、および、マグネシア、ムライト、炭化ケイ素等から選択された1種類以上の材料を用いることができるが、上記セラミック製容器と同一素材がより好ましい。
(3) Plate-shaped spacer The material of the plate-shaped spacer interposed between the flat hearth pedestal in the heating furnace for heat treatment and the inner container and the outer cylinder placed on the hearth pedestal is particularly limited. It can be arbitrarily selected according to the annealing temperature and shape. For example, one or more materials selected from alumina (aluminum oxide), zirconia (zirconium oxide), magnesia, mulite, silicon carbide and the like can be used, but the same material as the ceramic container is more preferable.

また、板状スペーサを構成する板材の形状は特に限定されるものではなく、使用状況に応じて形状を適宜選択することができる。例えば、正方形、長方形、丸形、扇形等から形状を選択できる。 Further, the shape of the plate material constituting the plate-shaped spacer is not particularly limited, and the shape can be appropriately selected according to the usage situation. For example, the shape can be selected from a square, a rectangle, a round shape, a fan shape, and the like.

尚、板状スペーサと接する内側容器外底面の面積が大きい場合、露出する内側容器外底面の面積が小さくなるため、加熱空気による内側容器外底面の加熱効果が低下する。このため、板状スペーサと接する内側容器外底面の面積は、外底面全面積の10%以上50%以下であることが好ましい。 When the area of the outer bottom surface of the inner container in contact with the plate-shaped spacer is large, the area of the outer bottom surface of the inner container exposed is small, so that the heating effect of the outer bottom surface of the inner container by the heated air is reduced. Therefore, the area of the outer bottom surface of the inner container in contact with the plate-shaped spacer is preferably 10% or more and 50% or less of the total area of the outer bottom surface.

また、露出する上記内側容器外底面の中央部へ、加熱炉内の加熱空気を給排する通気口(空隙)の数については、加熱空気の給排が効率的になされるように2箇所以上が好ましく、より好ましくは2箇所以上の通気口が上下左右対称に形成されるとよい。 In addition, regarding the number of vents (voids) for supplying and discharging the heated air in the heating furnace to the central part of the outer bottom surface of the inner container that is exposed, there are two or more places so that the heated air can be efficiently supplied and discharged. It is preferable that two or more vents are formed symmetrically in the vertical and horizontal directions.

また、板状スペーサの厚さについては、酸化物単結晶インゴットが収容された内側容器の荷重に対し十分な耐性を有するように10mm以上とすることが好ましく、かつ、板状スペーサが複数の板材で構成される場合には各板材の厚さを同一にすることが望ましい。 The thickness of the plate-shaped spacer is preferably 10 mm or more so as to have sufficient resistance to the load of the inner container containing the oxide single crystal ingot, and the plate-shaped spacer is a plurality of plate materials. It is desirable that the thickness of each plate material is the same when it is composed of.

(4)内側容器内底面に敷き詰める小塊群
上記酸化物単結晶インゴットと同一材料で構成される小塊は、LT(LiTaO3)やLN(LiNbO3)の単結晶を砕いて製造される塊径が2mm以上10mm未満である酸化物単結晶の塊を意味している。
(4) Small lumps spread on the inner bottom surface of the inner container The small lumps made of the same material as the oxide single crystal ingot are lumps produced by crushing single crystals of LT (LiTaO 3 ) or LN (LiNbO 3 ). It means a mass of oxide single crystals having a diameter of 2 mm or more and less than 10 mm.

塊径が2mm以上10mm未満である酸化物単結晶の小塊は、酸化物単結晶で構成される従来の粉末に較べて塊径が著しく大きいため、高温条件下におけるリチウム(Li)成分(LTやLN単結晶を構成する成分)の揮散が起こり難くかつ小塊の表面積も小さいことから、セラミック製容器と小塊が直接接触しても容器と小塊間の反応が起こり難く(すなわち、セラミック製容器との反応性に乏しいことから容器の化学的劣化が抑制される)、かつ、小塊の塊径が10mm未満であるため内側容器内に収容した酸化物単結晶インゴットが熱処理中に倒れることもない。 Small lumps of oxide single crystals having a lump diameter of 2 mm or more and less than 10 mm have a significantly larger lump diameter than conventional powders composed of oxide single crystals, and therefore have a lithium (Li) component (LT) under high temperature conditions. Since volatilization of (components constituting LN single crystals) is unlikely to occur and the surface area of the small lumps is small, even if the ceramic container and the small lumps come into direct contact with each other, the reaction between the container and the small lumps is unlikely to occur (that is, ceramic). (Since it has poor reactivity with the container, the chemical deterioration of the container is suppressed), and since the mass diameter of the small mass is less than 10 mm, the oxide single crystal ingot contained in the inner container collapses during the heat treatment. There is no such thing.

上記塊径が2mm未満の場合、小塊の表面積が増大して内側容器との反応性が増大してしまう。また、小塊の塊径が10mm以上の場合、酸化物単結晶インゴットの載置が不安定となり、熱処理中に酸化物単結晶インゴットが倒れてしまってクラック不良の原因となる。 If the lump diameter is less than 2 mm, the surface area of the lump increases and the reactivity with the inner container increases. Further, when the lump diameter of the small lump is 10 mm or more, the placement of the oxide single crystal ingot becomes unstable, and the oxide single crystal ingot collapses during the heat treatment, which causes a crack defect.

(5)酸化物単結晶
酸化物単結晶の熱処理方法を前提とした酸化物単結晶であり、タンタル酸リチウム(LT:LiTaO3)およびニオブ酸リチウム(LN:LiNbO3)が挙げられる。
(5) Oxide single crystal An oxide single crystal premised on a heat treatment method for an oxide single crystal, and examples thereof include lithium tantalate (LT: LiTaO 3 ) and lithium niobate (LN: LiNbO 3 ).

以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明に係る技術的構成がこれ等実施例の構成に限定されるものではない。 Hereinafter, examples of the present invention will be specifically described with reference to comparative examples, but the technical configuration according to the present invention is not limited to the configurations of these examples.

[実施例1]
本実施例で使用されるセラミック製容器は、図1に示すように、上部が開放されかつ小塊5群が敷き詰められる内底面を有する外径φ260mm、高さ45mm、容器厚5mmの内側容器3と、該内側容器3の外径より大きい内径を有しかつ内側容器3の内底面に小塊5群を介し収容されるLT単結晶インゴット(6インチ径)1の外周面を囲むようにして配置される内径φ280mm、高さ280mm、筒厚5mmの外側筒体2とで構成されている。
[Example 1]
As shown in FIG. 1, the ceramic container used in this embodiment is an inner container 3 having an outer diameter of φ260 mm, a height of 45 mm, and a container thickness of 5 mm, which has an inner bottom surface in which the upper part is open and 5 groups of small lumps are spread. And is arranged so as to surround the outer peripheral surface of the LT single crystal ingot (6 inch diameter) 1 having an inner diameter larger than the outer diameter of the inner container 3 and being housed on the inner bottom surface of the inner container 3 via a group of small lumps 5. It is composed of an outer cylinder 2 having an inner diameter of 280 mm, a height of 280 mm, and a cylinder thickness of 5 mm.

また、内側容器3と外側筒体2とで構成されるセラミック製容器は、抵抗加熱式のヒータを備えた電気炉(図示せず)内の平坦状炉床台6に板状スペーサ4を介在させた状態で載置され、これにより内側容器3の外底面が露出して電気炉内の加熱された空気(以下、加熱空気と称する)に上記外底面が曝されるようになっている。 Further, in the ceramic container composed of the inner container 3 and the outer cylinder 2, a plate-shaped spacer 4 is interposed in a flat furnace bed 6 in an electric furnace (not shown) equipped with a resistance heating type heater. The outer bottom surface of the inner container 3 is exposed and the outer bottom surface is exposed to the heated air (hereinafter referred to as “heated air”) in the electric furnace.

尚、セラミック製容器の材質はアルミナ(酸化アルミニウム)とした。また、板状スペーサ4は、図3に示すように4枚の円弧状板材で構成され、その材質はセラミック製容器と同一で、かつ、円弧状板材の厚さは10mmとした。また、上記小塊5は、LT単結晶と同一材料で構成され、LT単結晶を粉砕し、目開き10mmの篩いで粗大な単結晶を除去し、かつ、目開き2mmの篩いで微細な結晶粉を除去して塊径が2mm~10mm程度の小塊群を得た後、小塊群層の厚さが30mmとなるように上記内側容器3の内底面に敷き詰められている。また、図3中、符号dは、外側筒体2の内径と内側容器3の外径差による隙間を示している。 The material of the ceramic container was alumina (aluminum oxide). Further, as shown in FIG. 3, the plate-shaped spacer 4 is composed of four arc-shaped plate materials, the material of which is the same as that of the ceramic container, and the thickness of the arc-shaped plate material is 10 mm. Further, the small lump 5 is made of the same material as the LT single crystal, the LT single crystal is crushed, the coarse single crystal is removed by a sieve having a mesh opening of 10 mm, and the fine crystal is formed by a sieve having a mesh opening of 2 mm. After removing the powder to obtain a small lump group having a lump diameter of about 2 mm to 10 mm, the inner bottom surface of the inner container 3 is spread so that the thickness of the small lump group layer is 30 mm. Further, in FIG. 3, reference numeral d indicates a gap due to the difference between the inner diameter of the outer cylinder 2 and the outer diameter of the inner container 3.

そして、セラミック製容器を構成する内側容器3と外側筒体2が共に板状スペーサ4に載置できるように、該板状スペーサ4を構成する4枚の円弧状板材を図3に示すように平坦状炉床台(図示せず)上に配置し、かつ、小塊5群が内底面に敷き詰められた内側容器3を4枚の円弧状板材上に載置し、小塊5群を介して内側容器3の内底面にLT単結晶インゴット1を収容した後、該LT単結晶インゴット1の外周面を囲むように外側筒体2を4枚の円弧状板材上に載置した。 Then, as shown in FIG. 3, four arc-shaped plate materials constituting the plate-shaped spacer 4 are arranged so that the inner container 3 and the outer cylinder 2 constituting the ceramic container can both be placed on the plate-shaped spacer 4. The inner container 3 placed on a flat hearth (not shown) and having 5 small lumps spread on the inner bottom surface is placed on 4 arcuate plates, and the 5 small lumps are placed through the 5 small lumps. After accommodating the LT single crystal ingot 1 in the inner bottom surface of the inner container 3, the outer tubular body 2 was placed on four arcuate plates so as to surround the outer peripheral surface of the LT single crystal ingot 1.

この際、4枚の円弧状板材で構成される板状スペーサ4と接する内側容器3外底面の面積が該外底面全面積の10%となるように調整し、かつ、内側容器3外底面の外周部に対し4枚の円弧状板材を上下左右対称となるように配置することで、上記内側容器3外底面に加熱空気を給排する4個の通気口(空隙)が上下左右対称に形成されている。 At this time, the area of the outer bottom surface of the inner container 3 in contact with the plate-shaped spacer 4 composed of the four arcuate plate materials is adjusted to be 10% of the total area of the outer bottom surface, and the outer bottom surface of the inner container 3 is adjusted. By arranging the four arcuate plate materials symmetrically in the vertical and horizontal directions with respect to the outer peripheral portion, four vents (voids) for supplying and discharging heated air are formed symmetrically in the vertical and horizontal directions on the outer bottom surface of the inner container 3. Has been done.

そして、抵抗加熱式のヒータを備えた上記電気炉内において、温度1400℃で40時間のアニール処理(熱処理)を実施した。 Then, an annealing treatment (heat treatment) was carried out at a temperature of 1400 ° C. for 40 hours in the electric furnace equipped with a resistance heating type heater.

アニール処理(熱処理)完了後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところ、クラックや劣化は確認されず、内側容器3に収容されたLT単結晶インゴット1にもクラックは確認されなかった。また、内側容器3と外側筒体2とで構成されたセラミック製容器と上記平坦状炉床台6間に介在させた4枚の円弧状板材(セラミック製板状スペーサ4)は、LT単結晶インゴット1が収容された内側容器3の荷重に対し耐性を有していることも確認された。 When the appearance of the inner container 3 and the outer cylinder 2 and the inner bottom surface of the inner container 3 were examined after the annealing treatment (heat treatment) was completed, no cracks or deterioration were confirmed, and the LT single crystal contained in the inner container 3 was not confirmed. No cracks were found in Ingot 1. Further, the four arc-shaped plate materials (ceramic plate-shaped spacer 4) interposed between the ceramic container composed of the inner container 3 and the outer cylinder 2 and the flat hearth 6 are LT single crystals. It was also confirmed that the ingot 1 was resistant to the load of the inner container 3 in which the ingot 1 was housed.

そして、上述した条件と同一の条件でLT単結晶インゴットのアニール処理(熱処理)を10回繰り返したところ、10本の良品を得ることができた。 Then, when the annealing treatment (heat treatment) of the LT single crystal ingot was repeated 10 times under the same conditions as described above, 10 non-defective products could be obtained.

更に、10回繰り返した後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところクラックや劣化は確認されず、また、4枚の円弧状板材においても破損等は確認されなかった。 Furthermore, when the appearance of the inner container 3 and the outer cylinder 2 and the inner bottom surface of the inner container 3 were examined after repeating 10 times, no cracks or deterioration were confirmed, and the four arcuate plates were also damaged. Etc. were not confirmed.

[実施例2]
上端側が閉止された図2に示す外側筒体7を適用した以外は実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を行い、アニール処理(熱処理)完了後における内側容器3と外側筒体7の外観、および、内側容器3の内底面を調べたところ、クラックや劣化は確認されず、内側容器3に収容されたLT単結晶インゴット1にもクラックは確認されなかった。また、内側容器3と外側筒体7とで構成されたセラミック製容器と上記平坦状炉床台6間に介在させた4枚の円弧状板材(セラミック製板状スペーサ4)は、LT単結晶インゴット1が収容された内側容器3の荷重に対し耐性を有していることも確認された。
[Example 2]
The LT single crystal ingot was annealed (heat-treated) in the same manner as in Example 1 except that the outer cylinder 7 shown in FIG. 2 with the upper end side closed was applied, and the inner container 3 after the annealing treatment (heat treatment) was completed. When the appearance of the outer cylinder 7 and the inner bottom surface of the inner container 3 were examined, no cracks or deterioration were confirmed, and no cracks were confirmed in the LT single crystal ingot 1 housed in the inner container 3. Further, the four arc-shaped plate materials (ceramic plate-shaped spacer 4) interposed between the ceramic container composed of the inner container 3 and the outer cylinder 7 and the flat hearth 6 are LT single crystals. It was also confirmed that the ingot 1 was resistant to the load of the inner container 3 containing the ingot 1.

そして、実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を10回繰り返したところ、実施例1と同様、10本の良品を得ることができた。 Then, when the annealing treatment (heat treatment) of the LT single crystal ingot was repeated 10 times in the same manner as in Example 1, 10 non-defective products could be obtained as in Example 1.

また、10回繰り返した後における内側容器3と外側筒体7の外観、および、内側容器3の内底面を調べたところクラックや劣化は確認されず、また、4枚の円弧状板材においても破損等は確認されなかった。 Further, when the appearance of the inner container 3 and the outer cylinder 7 and the inner bottom surface of the inner container 3 were examined after repeating 10 times, no crack or deterioration was confirmed, and the four arcuate plates were also damaged. Etc. were not confirmed.

[実施例3]
4枚の円弧状板材で構成される板状スペーサ4と接する内側容器3外底面の面積が該外底面全面積の50%となるように調整した以外は実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を行い、アニール処理(熱処理)完了後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところ、クラックや劣化は確認されず、内側容器3に収容されたLT単結晶インゴット1にもクラックは確認されなかった。また、内側容器3と外側筒体2とで構成されたセラミック製容器と上記平坦状炉床台6間に介在させた4枚の円弧状板材(セラミック製板状スペーサ4)は、LT単結晶インゴット1が収容された内側容器3の荷重に対し耐性を有していることも確認された。
[Example 3]
LT single crystal in the same manner as in Example 1 except that the area of the outer bottom surface of the inner container 3 in contact with the plate-shaped spacer 4 composed of four arcuate plate materials is adjusted to be 50% of the total area of the outer bottom surface. When the ingot was annealed (heated) and the appearance of the inner container 3 and the outer cylinder 2 and the inner bottom surface of the inner container 3 were examined after the annealing treatment (heat treatment) was completed, no cracks or deterioration were confirmed. No crack was confirmed in the LT single crystal ingot 1 housed in the inner container 3. Further, the four arc-shaped plate materials (ceramic plate-shaped spacer 4) interposed between the ceramic container composed of the inner container 3 and the outer cylinder 2 and the flat hearth 6 are LT single crystals. It was also confirmed that the ingot 1 was resistant to the load of the inner container 3 containing the ingot 1.

そして、実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を10回繰り返したところ、実施例1と同様、10本の良品を得ることができた。 Then, when the annealing treatment (heat treatment) of the LT single crystal ingot was repeated 10 times in the same manner as in Example 1, 10 non-defective products could be obtained as in Example 1.

また、10回繰り返した後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところクラックや劣化は確認されず、また、4枚の円弧状板材においても破損等は確認されなかった。 Further, when the appearance of the inner container 3 and the outer cylinder 2 and the inner bottom surface of the inner container 3 were examined after repeating 10 times, no crack or deterioration was confirmed, and the four arcuate plates were also damaged. Etc. were not confirmed.

[実施例4]
4枚の円弧状板材で構成される板状スペーサ4と接する内側容器3外底面の面積が該外底面全面積の60%となるように調整した以外は実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を行い、アニール処理(熱処理)完了後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところ、クラックや劣化は確認されず、内側容器3に収容されたLT単結晶インゴット1にもクラックは確認されなかった。また、内側容器3と外側筒体2とで構成されたセラミック製容器と上記平坦状炉床台6間に介在させた4枚の円弧状板材(セラミック製板状スペーサ4)は、LT単結晶インゴット1が収容された内側容器3の荷重に対し耐性を有していることも確認された。
[Example 4]
LT single crystal in the same manner as in Example 1 except that the area of the outer bottom surface of the inner container 3 in contact with the plate-shaped spacer 4 composed of four arcuate plate materials is adjusted to be 60% of the total area of the outer bottom surface. When the ingot was annealed (heated) and the appearance of the inner container 3 and the outer cylinder 2 and the inner bottom surface of the inner container 3 were examined after the annealing treatment (heat treatment) was completed, no cracks or deterioration were confirmed. No crack was confirmed in the LT single crystal ingot 1 housed in the inner container 3. Further, the four arc-shaped plate materials (ceramic plate-shaped spacer 4) interposed between the ceramic container composed of the inner container 3 and the outer cylinder 2 and the flat hearth 6 are LT single crystals. It was also confirmed that the ingot 1 was resistant to the load of the inner container 3 containing the ingot 1.

そして、実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を10回繰り返したところ、8本の良品を得ることができたが、2本のLT単結晶インゴットについては、若干、クラックが確認された。尚、実施例1に較べ、若干、処理効果に劣っている原因は、板状スペーサ4と接する内側容器3外底面の面積が該外底面全面積の60%と大きいため、実施例1に較べて露出する内側容器3外底面の面積が減少した分、加熱空気による外底面の加熱効果が低下したためと考えられる。 Then, when the annealing treatment (heat treatment) of the LT single crystal ingot was repeated 10 times in the same manner as in Example 1, eight good products could be obtained, but the two LT single crystal ingots were slightly slightly different. A crack was confirmed. The reason why the treatment effect is slightly inferior to that of Example 1 is that the area of the outer bottom surface of the inner container 3 in contact with the plate-shaped spacer 4 is as large as 60% of the total area of the outer bottom surface, so that it is compared with Example 1. It is probable that the heating effect of the outer bottom surface by the heated air was reduced by the amount that the area of the outer bottom surface of the inner container 3 exposed was reduced.

また、10回繰り返した後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところ、若干、クラックが確認されたが、円弧状板材の破損等は確認されなかった。 Further, when the appearance of the inner container 3 and the outer cylinder 2 and the inner bottom surface of the inner container 3 were examined after repeating 10 times, some cracks were confirmed, but damage to the arcuate plate material was confirmed. There wasn't.

[実施例5]
内側容器3と外側筒体2とで構成されるセラミック製容器と上記平坦状炉床台6間に介在されるセラミック製板状スペーサ4が、図4に示すような単一通気口(空隙)を形成する平面C文字形状を有する1枚のセラミック製板材で構成されている以外は実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を行い、アニール処理(熱処理)完了後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところ、若干、クラックや劣化が確認されたが、内側容器3に収容されたLT単結晶インゴット1にクラックは確認されなかった。また、内側容器3と外側筒体2とで構成されたセラミック製容器と平坦状炉床台6間に介在させた平面C文字形状を有するセラミック製板状スペーサ4は、LT単結晶インゴット1が収容された内側容器3の荷重に対し耐性を有していることも確認された。
[Example 5]
The ceramic plate-shaped spacer 4 interposed between the ceramic container composed of the inner container 3 and the outer cylinder 2 and the flat hearth 6 is a single vent (void) as shown in FIG. The LT single crystal ingot is annealed (heated) in the same manner as in Example 1 except that it is composed of one ceramic plate material having a flat surface C character shape to form the above, and after the annealing treatment (heat treatment) is completed. When the appearance of the inner container 3 and the outer cylinder 2 and the inner bottom surface of the inner container 3 were examined, some cracks and deterioration were confirmed, but cracks were found in the LT single crystal ingot 1 housed in the inner container 3. Not confirmed. Further, the LT single crystal ingot 1 is a ceramic plate-shaped spacer 4 having a flat C-shaped shape interposed between the ceramic container composed of the inner container 3 and the outer cylinder 2 and the flat hearth base 6. It was also confirmed that the inner container 3 contained was resistant to the load.

そして、実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を10回繰り返したところ、6本の良品を得ることができたが、4本のLT単結晶インゴットについては、クラックが確認された。尚、実施例1に較べ、処理効果に劣る原因は、平面C文字形状を有するセラミック製板状スペーサ4が適用されたことで通気口(空隙)が単一となり、単一の通気口(空隙)から内側容器3外底面に給排される加熱空気が減少した分、外底面の加熱効果が低下し、かつ、内側容器3と外側筒体2との隙間から外側筒体2内へ供給される加熱空気も減少したためと考えられる。 Then, when the annealing treatment (heat treatment) of the LT single crystal ingot was repeated 10 times in the same manner as in Example 1, 6 good products could be obtained, but cracks were found in the 4 LT single crystal ingots. confirmed. The reason why the treatment effect is inferior to that of Example 1 is that the ceramic plate-shaped spacer 4 having a flat C-shaped shape is applied, so that the vents (voids) become single, and a single vent (void). ) Reduces the amount of heated air supplied and discharged to the outer bottom surface of the inner container 3, the heating effect of the outer bottom surface is reduced, and the air is supplied into the outer cylinder 2 through the gap between the inner container 3 and the outer cylinder 2. It is probable that the amount of heated air decreased.

また、10回繰り返した後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところ、クラックと放射状の破損が一部に確認されたが、平面C文字形状を有するセラミック製板状スペーサ4の破損等は確認されなかった。 Further, when the appearance of the inner container 3 and the outer cylinder 2 and the inner bottom surface of the inner container 3 were examined after repeating 10 times, cracks and radial damage were partially confirmed, but the flat surface C character shape was found. No damage or the like was confirmed in the ceramic plate-shaped spacer 4 having the above.

[実施例6]
上記セラミック製板状スペーサ4を構成する各円弧状板材の厚さを5mmとした以外は実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を行い、アニール処理(熱処理)完了後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところ、クラックや劣化は確認されず、内側容器3に収容されたLT単結晶インゴット1にもクラックは確認されなかった。但し、内側容器3と外側筒体2とで構成されたセラミック製容器と平坦状炉床台6間に介在させた4枚の円弧状板材(セラミック製板状スペーサ4)は、厚さが5mmと薄い分、LT単結晶インゴット1を収容した内側容器3の荷重に対する耐性が、若干、劣っていることも確認された。
[Example 6]
The LT single crystal ingot was annealed (heat-treated) in the same manner as in Example 1 except that the thickness of each arc-shaped plate constituting the ceramic plate-shaped spacer 4 was 5 mm, and after the annealing treatment (heat treatment) was completed. When the appearance of the inner container 3 and the outer cylinder 2 and the inner bottom surface of the inner container 3 were examined, no cracks or deterioration were confirmed, and cracks were also confirmed in the LT single crystal ingot 1 housed in the inner container 3. Was not done. However, the thickness of the four arc-shaped plate materials (ceramic plate-shaped spacer 4) interposed between the ceramic container composed of the inner container 3 and the outer cylinder 2 and the flat hearth base 6 is 5 mm. It was also confirmed that the resistance to the load of the inner container 3 containing the LT single crystal ingot 1 was slightly inferior due to the thinness.

そして、実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を10回繰り返したところ、実施例1と同様、10本の良品を得ることができた。 Then, when the annealing treatment (heat treatment) of the LT single crystal ingot was repeated 10 times in the same manner as in Example 1, 10 non-defective products could be obtained as in Example 1.

また、10回繰り返した後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところクラックや劣化は確認されなかったが、4枚の円弧状板材に関しては破損等が確認された。 Further, when the appearance of the inner container 3 and the outer cylinder 2 and the inner bottom surface of the inner container 3 were examined after repeating 10 times, no cracks or deterioration were confirmed, but the four arcuate plates were damaged. Etc. were confirmed.

[比較例1]
比較例1で使用されるセラミック製容器は、図5に示すように、上部が開放されかつ実施例1と同一の小塊5群が敷き詰められる内底面を有する筒形下側部材9と、該下側部材9に収容されたLT単結晶インゴット1全体を覆う内壁面と天壁面を有しかつ上記下側部材9に嵌合される筒形上側部材8とで構成され、これ等下側部材9と上側部材8の材質は、実施例1と同一のアルミナ(酸化アルミニウム)が用いられている。また、上記下側部材9の形状は、1辺が200mm、高さが100mmで、かつ、上部が開放された角型の箱状構造体で構成されており、上記上側部材8の形状も下側部材9と同一になっている。
[Comparative Example 1]
As shown in FIG. 5, the ceramic container used in Comparative Example 1 has a tubular lower member 9 having an inner bottom surface in which the upper portion is open and the same group of 5 small lumps as in Example 1 is spread. It is composed of an inner wall surface covering the entire LT single crystal ingot 1 housed in the lower member 9 and a tubular upper member 8 having a top wall surface and fitted to the lower member 9, and these lower members. As the material of 9 and the upper member 8, the same alumina (aluminum oxide) as in Example 1 is used. Further, the shape of the lower member 9 is composed of a square box-shaped structure having a side of 200 mm and a height of 100 mm and an open upper portion, and the shape of the upper member 8 is also lower. It is the same as the side member 9.

そして、下側部材9の内底面に小塊5群層の厚さが30mmとなるように敷き詰め、かつ、小塊5群層上に直径160mmのLT単結晶インゴット1を図5に示すように載置した後、下側部材9と同一形状の上記上側部材8を下側部材9に嵌合させてLT単結晶インゴット1全体がセラミック製容器で覆われた状態とした。 Then, an LT single crystal ingot 1 having a diameter of 160 mm is spread on the inner bottom surface of the lower member 9 so that the thickness of the small mass 5 group layer is 30 mm, and the LT single crystal ingot 1 having a diameter of 160 mm is spread on the small mass 5 group layer as shown in FIG. After mounting, the upper member 8 having the same shape as the lower member 9 was fitted to the lower member 9 so that the entire LT single crystal ingot 1 was covered with a ceramic container.

そして、図5に示すようにLT単結晶インゴット1が収容されたセラミック製容器を、電気炉(図示せず)内の平坦状炉床台6にセラミック製板状スペーサを介さずに直接載置した後、温度1400℃で40時間のアニール処理(熱処理)を行い、アニール処理(熱処理)完了後における下側部材9の外観、および、下側部材9の内底面を調べたところ、上記内底面の中央部にクラックと部分破損が確認され、下側部材9に収容されたLT単結晶インゴット1にも、若干、クラックが確認された。更に、熱処理されるLT単結晶インゴット1の直径が大きくなるに従い、下側部材9における内底面の破損やLT単結晶インゴット1におけるクラックの発生が顕著になることも確認された。 Then, as shown in FIG. 5, the ceramic container containing the LT single crystal ingot 1 is directly placed on the flat hearth 6 in the electric furnace (not shown) without using the ceramic plate spacer. After that, an annealing treatment (heat treatment) was performed at a temperature of 1400 ° C. for 40 hours, and the appearance of the lower member 9 after the completion of the annealing treatment (heat treatment) and the inner bottom surface of the lower member 9 were examined. A crack and a partial breakage were confirmed in the central portion of the above, and a slight crack was also confirmed in the LT single crystal ingot 1 housed in the lower member 9. Further, it was also confirmed that as the diameter of the LT single crystal ingot 1 to be heat-treated becomes larger, the inner bottom surface of the lower member 9 is damaged and the LT single crystal ingot 1 is cracked.

尚、図5のセラミック製容器に代えて、図6に示す下側部材12、中側部材11、および、上側部材10で構成されるセラミック製容器を適用し、かつ、電気炉(図示せず)内の平坦状炉床台6にセラミック製板状スペーサを介さずに上記セラミック製容器を直接載置した場合も同様であった。 Instead of the ceramic container of FIG. 5, a ceramic container composed of the lower member 12, the middle member 11, and the upper member 10 shown in FIG. 6 is applied, and an electric furnace (not shown) is applied. The same was true when the ceramic container was directly placed on the flat hearth 6 in) without using a ceramic plate spacer.

[比較例2]
抵抗加熱式のヒータを備えた電気炉(図示せず)内の平坦状炉床台6に、板状スペーサ4を介さずに実施例1と同一構造のセラミック製容器(LT単結晶インゴット1が収容されている)が直接載置された以外は実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を実施した。
[Comparative Example 2]
A ceramic container (LT single crystal ingot 1) having the same structure as that of Example 1 is placed in a flat hearth 6 in an electric furnace (not shown) equipped with a resistance heating type heater without using a plate-shaped spacer 4. An annealing treatment (heat treatment) of the LT single crystal ingot was carried out in the same manner as in Example 1 except that the contained) was directly placed.

そして、アニール処理(熱処理)完了後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところ、内側容器3の内底面にクラックが発生し、放射状に破損していることが確認された。また、内側容器3に収容されたLT単結晶インゴット1にクラックは確認されなかったが、内側容器3の破損した内底面から小塊5の一部が流出したことで、LT単結晶インゴット1が傾いていた。 Then, when the appearance of the inner container 3 and the outer cylinder 2 after the annealing treatment (heat treatment) was completed and the inner bottom surface of the inner container 3 were examined, cracks were generated in the inner bottom surface of the inner container 3 and the inner bottom surface was damaged radially. It was confirmed that Further, no crack was confirmed in the LT single crystal ingot 1 housed in the inner container 3, but a part of the small lump 5 flowed out from the damaged inner bottom surface of the inner container 3, so that the LT single crystal ingot 1 was formed. It was leaning.

更に、上述した条件と同一の条件でLT単結晶インゴットのアニール処理(熱処理)を3回実施したが、3回共、内側容器3の内底面にクラックが発生していた。また、3回中の2回はLT単結晶インゴットにクラックが確認された。 Further, the annealing treatment (heat treatment) of the LT single crystal ingot was carried out three times under the same conditions as described above, but cracks were generated on the inner bottom surface of the inner container 3 in all three times. In addition, cracks were confirmed in the LT single crystal ingot twice out of three times.

[比較例3]
抵抗加熱式のヒータを備えた電気炉(図示せず)内の平坦状炉床台6に、板状スペーサ4を介さずに実施例2と同一構造のセラミック製容器(LT単結晶インゴット1が収容されている)が直接載置された以外は実施例2と同様にしてLT単結晶インゴットのアニール処理(熱処理)を実施した。
[Comparative Example 3]
A ceramic container (LT single crystal ingot 1) having the same structure as that of Example 2 is placed in a flat hearth 6 in an electric furnace (not shown) equipped with a resistance heating type heater without using a plate spacer 4. An annealing treatment (heat treatment) of the LT single crystal ingot was carried out in the same manner as in Example 2 except that the contained) was directly placed.

そして、アニール処理(熱処理)完了後における内側容器3と外側筒体7の外観、および、内側容器3の内底面を調べたところ、内側容器3の内底面にクラックが発生し、放射状に破損していることが確認された。また、内側容器3に収容されたLT単結晶インゴット1にクラックは確認されなかったが、内側容器3の破損した内底面から小塊5の一部が流出したことで、LT単結晶インゴット1が傾いていた。 Then, when the appearance of the inner container 3 and the outer cylinder 7 after the annealing treatment (heat treatment) was completed and the inner bottom surface of the inner container 3 were examined, cracks were generated in the inner bottom surface of the inner container 3 and the inner bottom surface was damaged radially. It was confirmed that Further, no crack was confirmed in the LT single crystal ingot 1 housed in the inner container 3, but a part of the small lump 5 flowed out from the damaged inner bottom surface of the inner container 3, so that the LT single crystal ingot 1 was formed. It was leaning.

[比較例4]
内側容器3と外側筒体2とで構成されるセラミック製容器と上記平坦状炉床台6間に介在されるセラミック製板状スペーサ4が、本体内部に空隙があるリング状セラミック製板材で構成されている以外は実施例1と同様にしてLT単結晶インゴットのアニール処理(熱処理)を実施した。
[Comparative Example 4]
The ceramic container composed of the inner container 3 and the outer cylinder 2 and the ceramic plate-shaped spacer 4 interposed between the flat hearth base 6 are composed of a ring-shaped ceramic plate material having a gap inside the main body. An annealing treatment (heat treatment) of the LT single crystal ingot was carried out in the same manner as in Example 1 except for the above.

そして、アニール処理(熱処理)完了後における内側容器3と外側筒体2の外観、および、内側容器3の内底面を調べたところ、内側容器3の内底面にクラックが発生し、放射状に破損していることが確認された。また、内側容器3に収容されたLT単結晶インゴット1にもクラックが確認された。 Then, when the appearance of the inner container 3 and the outer cylinder 2 after the annealing treatment (heat treatment) was completed and the inner bottom surface of the inner container 3 were examined, cracks were generated in the inner bottom surface of the inner container 3 and the inner bottom surface was damaged radially. It was confirmed that In addition, cracks were also confirmed in the LT single crystal ingot 1 housed in the inner container 3.

リング状セラミック製板材を適用した場合、内側容器3の外底面へ加熱空気を給排する通気口(空隙)が無くなることから、上記外底面と外側筒体2内への加熱空気の供給が著しく減少するため、内側容器3の内底面とLT単結晶インゴットに上記クラックが発生していると考えられる。 When the ring-shaped ceramic plate material is applied, since there are no vents (voids) for supplying and discharging heated air to the outer bottom surface of the inner container 3, the supply of heated air to the outer bottom surface and the inside of the outer cylinder 2 is remarkable. Since the number is reduced, it is considered that the cracks are generated in the inner bottom surface of the inner container 3 and the LT single crystal ingot.

本発明に係る酸化物単結晶の熱処理方法によれば、酸化物単結晶が収容された容器外底面の中心部と周辺部を均等に加熱できるため、タンタル酸リチウム単結晶やニオブ酸リチウム単結晶インゴットの熱歪みを緩和させる熱処理方法に用いられる産業上の利用可能性を有している。 According to the heat treatment method for the oxide single crystal according to the present invention, the central portion and the peripheral portion of the outer bottom surface of the container containing the oxide single crystal can be heated evenly, so that the lithium tantalate single crystal or the lithium niobate single crystal can be heated evenly. It has industrial applicability used in heat treatment methods that alleviate the thermal strain of ingots.

d 外側筒体2の内径と内側容器3の外径差による隙間
1 LT単結晶インゴット(酸化物単結晶)
2 外側筒体
3 内側容器
4 板状スペーサ
5 小塊
6 平坦状炉床台
7 上端側が閉止された外側筒体
8 上側部材
9 下側部材
10 上側部材
11 中側部材
12 下側部材
d Gap due to the difference between the inner diameter of the outer cylinder 2 and the outer diameter of the inner container 3 1 LT single crystal ingot (oxide single crystal)
2 Outer cylinder 3 Inner container 4 Plate spacer 5 Small mass 6 Flat hearth base 7 Outer cylinder with the upper end closed 8 Upper member 9 Lower member 10 Upper member 11 Middle member 12 Lower member

Claims (6)

引き上げ法により育成された酸化物単結晶インゴットをセラミック製の容器に収容し、加熱炉内に設置された平坦状炉床台に上記容器を載置して容器内の酸化物単結晶インゴットを熱処理する酸化物単結晶の熱処理方法において、
上記酸化物単結晶インゴットと同一材料で構成された塊径2mm以上10mm未満の小塊群が内底面に敷き詰められかつ該小塊群を介し酸化物単結晶インゴットが収容される内側容器と、該内側容器の外径より大きい内径を有しかつ内側容器に収容された酸化物単結晶インゴットの外周面を囲むように配置される外側筒体とで、上記セラミック製の容器を構成し、かつ、
上記平坦状炉床台と、該炉床台に載置される内側容器並びに外側筒体との間に板状スペーサを介在させ、該板状スペーサに内側容器外底面の中央部へ加熱炉内の加熱空気を給排する通気口を形成して、露出する内側容器外底面に加熱炉内の加熱された空気を供給すると共に、上記内側容器と外側筒体との隙間から加熱された空気を外側筒体内に供給して酸化物単結晶インゴットを熱処理することを特徴とする酸化物単結晶の熱処理方法。
The oxide single crystal ingot grown by the pulling method is housed in a ceramic container, and the above container is placed on a flat hearth pedestal installed in a heating furnace to heat the oxide single crystal ingot in the container. In the heat treatment method for oxide single crystals
An inner container composed of the same material as the oxide single crystal ingot and having a mass diameter of 2 mm or more and less than 10 mm spread on the inner bottom surface and accommodating the oxide single crystal ingot via the small mass group, and the inner container. The ceramic container is composed of an outer cylinder having an inner diameter larger than the outer diameter of the inner container and arranged so as to surround the outer peripheral surface of the oxide single crystal ingot housed in the inner container.
A plate-shaped spacer is interposed between the flat hearth pedestal and the inner container and the outer cylinder placed on the hearth pedestal, and the plate-shaped spacer is placed in the heating furnace to the center of the outer bottom surface of the inner container. By forming a vent to supply and discharge the heated air, the heated air in the heating furnace is supplied to the exposed outer bottom surface of the inner container, and the heated air is sent from the gap between the inner container and the outer cylinder. A method for heat-treating an oxide single crystal, which comprises supplying it into an outer cylinder and heat-treating the oxide single crystal ingot.
板状スペーサが上記容器と同一のセラミック材料で構成されることを特徴とする請求項1に記載の酸化物単結晶の熱処理方法。 The method for heat-treating an oxide single crystal according to claim 1, wherein the plate-shaped spacer is made of the same ceramic material as the container. 上記板状スペーサと接する内側容器外底面の面積が該外底面全面積の10%以上50%以下であることを特徴とする請求項1または2に記載の酸化物単結晶の熱処理方法。 The heat treatment method for an oxide single crystal according to claim 1 or 2, wherein the area of the outer bottom surface of the inner container in contact with the plate-shaped spacer is 10% or more and 50% or less of the total area of the outer bottom surface. 露出する上記内側容器外底面の中央部に加熱された空気を給排する2箇所以上の通気口が対称的に形成されるように複数の板材で上記板状スペーサを構成することを特徴とする請求項1~3のいずれかに記載の酸化物単結晶の熱処理方法。 It is characterized in that the plate-shaped spacer is formed of a plurality of plate materials so that two or more vents for supplying and discharging heated air are symmetrically formed in the central portion of the outer bottom surface of the exposed inner container. The method for heat-treating an oxide single crystal according to any one of claims 1 to 3. 上記板状スペーサの厚さが10mm以上に設定されていることを特徴とする請求項1~4のいずれかに記載の酸化物単結晶の熱処理方法。 The method for heat-treating an oxide single crystal according to any one of claims 1 to 4, wherein the thickness of the plate-shaped spacer is set to 10 mm or more. 上記酸化物単結晶がタンタル酸リチウム単結晶またはニオブ酸リチウム単結晶で構成されることを特徴とする請求項1~5のいずれかに記載の酸化物単結晶の熱処理方法。 The heat treatment method for an oxide single crystal according to any one of claims 1 to 5, wherein the oxide single crystal is composed of a lithium tantalate single crystal or a lithium niobate single crystal.
JP2018099524A 2018-05-24 2018-05-24 Heat treatment method for oxide single crystal Active JP7095403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018099524A JP7095403B2 (en) 2018-05-24 2018-05-24 Heat treatment method for oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018099524A JP7095403B2 (en) 2018-05-24 2018-05-24 Heat treatment method for oxide single crystal

Publications (2)

Publication Number Publication Date
JP2019202915A JP2019202915A (en) 2019-11-28
JP7095403B2 true JP7095403B2 (en) 2022-07-05

Family

ID=68726109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018099524A Active JP7095403B2 (en) 2018-05-24 2018-05-24 Heat treatment method for oxide single crystal

Country Status (1)

Country Link
JP (1) JP7095403B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198762A (en) 2000-12-27 2002-07-12 Kyocera Corp Single crystal wafer and its manufacturing method
JP2005330122A (en) 2004-05-18 2005-12-02 Canon Inc Apparatus and method for heat treating fluoride crystal
JP2006342029A (en) 2005-06-10 2006-12-21 Tokuyama Corp Annealing furnace used for heat-treating metal fluoride single crystal and annealing method of metal fluoride single crystal
CN101956236A (en) 2010-10-21 2011-01-26 哈尔滨工程大学 Big-size doped lithium niobate crystal and preparation method thereof
JP2017193453A (en) 2016-04-18 2017-10-26 住友金属鉱山株式会社 Heat treatment method of oxide single crystal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545900A (en) * 1977-06-16 1979-01-17 Toshiba Corp Method of heat treating single crystal
JPS573800A (en) * 1980-06-05 1982-01-09 Toshiba Corp Heat-treating method of single crystal
JPS59227799A (en) * 1983-06-07 1984-12-21 Fujitsu Ltd Method for annealing oxide single crystal
JP3132956B2 (en) * 1993-12-27 2001-02-05 信越化学工業株式会社 Method for producing oxide single crystal
JP3785674B2 (en) * 1996-02-28 2006-06-14 住友電気工業株式会社 Crystal heat treatment method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198762A (en) 2000-12-27 2002-07-12 Kyocera Corp Single crystal wafer and its manufacturing method
JP2005330122A (en) 2004-05-18 2005-12-02 Canon Inc Apparatus and method for heat treating fluoride crystal
JP2006342029A (en) 2005-06-10 2006-12-21 Tokuyama Corp Annealing furnace used for heat-treating metal fluoride single crystal and annealing method of metal fluoride single crystal
CN101956236A (en) 2010-10-21 2011-01-26 哈尔滨工程大学 Big-size doped lithium niobate crystal and preparation method thereof
JP2017193453A (en) 2016-04-18 2017-10-26 住友金属鉱山株式会社 Heat treatment method of oxide single crystal

Also Published As

Publication number Publication date
JP2019202915A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
CN103088417B (en) A kind of polycrystalline cast ingot high efficient crucible and preparation method thereof
TWI547603B (en) Apparatus and method for producing a multicrystalline material having large grain sizes
JP6759020B2 (en) Silicon single crystal manufacturing method and quartz crucible for silicon single crystal manufacturing after modification treatment
JP7095403B2 (en) Heat treatment method for oxide single crystal
CN111206282A (en) Production method of 8-inch lithium niobate crystal
CN1198973C (en) Apparatus and method for making single crystal
JP5417965B2 (en) Single crystal growth method
JP2019147698A (en) Apparatus and method for growing crystal
JP4151474B2 (en) Method for producing single crystal and single crystal
JP5685894B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP2017193453A (en) Heat treatment method of oxide single crystal
JP7294063B2 (en) Oxide single crystal growth method
JP2019127411A (en) Method for making single domain of lithium niobate monocrystal
JP2018135228A (en) METHOD FOR GROWING LiTaO3 SINGLE CRYSTAL AND METHOD FOR PROCESSING LiTaO3 SINGLE CRYSTAL
JP2010265150A (en) Method for producing sapphire single crystal and method for producing seed crystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
TWI791486B (en) Manufacturing method of polysilicon
JP2016222471A (en) Production method of single crystal
JP6866706B2 (en) Heating element module and growing device including heating element module
JP2018100202A (en) METHOD FOR GROWING LiNbO3 SINGLE CRYSTAL
JP2021031341A (en) Production method of lithium tantalate single crystal
JP7023458B2 (en) Single crystal growth method
JP7310347B2 (en) Method for growing lithium niobate single crystal
JP2019043788A (en) Method and apparatus for growing single crystal
JP4142931B2 (en) Granular silicon crystal production apparatus and production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7095403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150