JP2006342029A - Annealing furnace used for heat-treating metal fluoride single crystal and annealing method of metal fluoride single crystal - Google Patents

Annealing furnace used for heat-treating metal fluoride single crystal and annealing method of metal fluoride single crystal Download PDF

Info

Publication number
JP2006342029A
JP2006342029A JP2005170379A JP2005170379A JP2006342029A JP 2006342029 A JP2006342029 A JP 2006342029A JP 2005170379 A JP2005170379 A JP 2005170379A JP 2005170379 A JP2005170379 A JP 2005170379A JP 2006342029 A JP2006342029 A JP 2006342029A
Authority
JP
Japan
Prior art keywords
single crystal
heat insulating
metal fluoride
annealing
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005170379A
Other languages
Japanese (ja)
Inventor
Takeshi Yasumura
健 安村
Teruhiko Nawata
輝彦 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2005170379A priority Critical patent/JP2006342029A/en
Publication of JP2006342029A publication Critical patent/JP2006342029A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an annealing furnace and an annealing method, which are suitable for obtaining a metal fluoride single crystal having low double refraction and useful as an optical member of a semiconductor production apparatus, especially a large-sized metal fluoride single crystal having a diameter of >200 mm. <P>SOLUTION: The annealing furnace comprises a heat-insulating vessel (2) for covering the whole side periphery and the upper and lower parts of the fluoride metal single crystals (1) and a heater (4) arranged at the outside of the heat-insulating vessel (2). The heat-insulating vessel (2) is preferably constituted of a heat-insulating material having a coefficient of thermal conductivity in the thickness direction of ≤2 W/m×K<SP>-1</SP>. In such an annealing furnace, the temperature distribution in the heat-insulating vessel can be made narrow. Thereby, strain can be efficiently released even for a single crystal in which strain is hardly released and a large-sized single crystal having a small double refraction can be obtained by annealing a metal fluoride single crystal (e.g., calcium fluoride) by using the annealing furnace. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フッ化金属単結晶を熱処理するためのアニール炉及びアニール方法に係る。より詳しくは、半導体製造装置の光学部材として有用な、複屈折の小さいフッ化金属単結晶を得るのに適したアニール炉及びアニール方法に係る。   The present invention relates to an annealing furnace and an annealing method for heat-treating a metal fluoride single crystal. More specifically, the present invention relates to an annealing furnace and an annealing method suitable for obtaining a metal fluoride single crystal having a small birefringence that is useful as an optical member of a semiconductor manufacturing apparatus.

フッ化カルシウムや、フッ化バリウム等のフッ化金属の単結晶体は、広範囲の波長帯域にわたって高い透過率を有し、低分散で化学的安定性にも優れることから、紫外波長または真空紫外波長のレーザを用いた各種機器、カメラ、CVD装置等のレンズ、窓材等の光学材料として需要が広がってきている。とりわけ、フッ化カルシウム単結晶体は、光リソグラフィー技術において次世代の短波長光源として開発が進められているArFレーザ(193nm)やFレーザ(157nm)での光源の窓材、光源系レンズ、投影系レンズとして期待が寄せられている。 Single crystals of metal fluorides such as calcium fluoride and barium fluoride have high transmittance over a wide wavelength band, low dispersion and excellent chemical stability. Demand is growing as optical materials such as various devices using a laser, lenses for cameras, CVD devices, and window materials. In particular, a calcium fluoride single crystal is a light source window material, a light source lens, an ArF laser (193 nm) or an F 2 laser (157 nm), which is being developed as a next-generation short wavelength light source in the photolithography technology. Expectation is expected as a projection system lens.

従来、こうしたフッ化金属の単結晶体は、原料となるフッ化金属を一旦高温で融解して溶融液として、そこから結晶成長させて単結晶を得る方法で製造されてきた。このような融液成長で単結晶を製造する方法としては、代表的には坩堝降下法(ブリッジマン法と通称される)と単結晶引上げ法(チョクラルスキー法と通称される)が挙げられる。坩堝降下法とは、坩堝中の単結晶製造原料の溶融液を、坩堝ごと徐々に下降させながら冷却することにより、坩堝中に単結晶を育成させる方法である。   Conventionally, such a single crystal of a metal fluoride has been manufactured by a method in which a metal fluoride as a raw material is once melted at a high temperature to obtain a single crystal by growing a crystal from the melt. Typical methods for producing a single crystal by such melt growth include a crucible descent method (commonly referred to as the Bridgeman method) and a single crystal pulling method (commonly referred to as the Czochralski method). . The crucible lowering method is a method for growing a single crystal in a crucible by cooling a molten liquid of a single crystal production raw material in the crucible while gradually lowering the entire crucible.

一方、単結晶引上げ法とは、坩堝中の単結晶製造原料の溶融液面に、目的とする単結晶からなる種結晶を接触させ、次いで、その種結晶を坩堝の加熱域から徐々に引上げて冷却することにより、該種結晶の下方に単結晶を育成させる方法である。この方法で生じた単結晶は種結晶の部分のみが固定されており、他の部分が坩堝等と接触していないため、得られた単結晶が常に坩堝内壁と接触する坩堝降下法で得られる単結晶よりも歪みが小さいという利点がある。また優先成長方位である<111>方位以外の方位の単結晶を製造することが困難である坩堝降下法と異なり、単結晶引上げ法では、種結晶の結晶方位を選択することにより任意の結晶方位の単結晶を得ることができる。さらに大型の単結晶を成長させようとした場合、坩堝降下法では坩堝内壁に接した部分から不純物が混入、核となって部分的に多結晶化することが多く、その点でも単結晶引上げ法は優れた方法である(例えば、特許文献1、2参照)。   On the other hand, in the single crystal pulling method, a seed crystal consisting of a target single crystal is brought into contact with the melt surface of the single crystal production raw material in the crucible, and then the seed crystal is gradually pulled from the heating area of the crucible. In this method, a single crystal is grown under the seed crystal by cooling. The single crystal produced by this method is obtained by the crucible descent method in which only the seed crystal part is fixed and the other part is not in contact with the crucible or the like, so that the obtained single crystal is always in contact with the crucible inner wall. There is an advantage that distortion is smaller than that of a single crystal. In addition, unlike the crucible descent method, in which it is difficult to produce a single crystal with a direction other than the <111> orientation, which is the preferred growth orientation, the single crystal pulling method has an arbitrary crystal orientation by selecting the crystal orientation of the seed crystal. Can be obtained. When trying to grow a larger single crystal, in the crucible descent method, impurities often enter from the part in contact with the inner wall of the crucible and become a polycrystal partially as a nucleus. Is an excellent method (see, for example, Patent Documents 1 and 2).

しかしながら、このような歪みの少ない方法である単結晶引上げ法によっても、前記した光学的用途によっては未だ残留応力や歪みが大きすぎる場合がある。単結晶に大きな残留応力や歪みが存在すると、これらに起因した複屈折も大きくなり、該単結晶を極めて厳密な光学的物性を有する用途、特に投影系レンズに使用しようとすると問題が生じる場合がある。従って、用途に対して歪みの大きすぎる場合には、得られた単結晶をディスク状に加工した後、さらにアニールと呼ばれる熱処理を施すことにより残留応力や歪を除去することが行われている。   However, even with the single crystal pulling method, which is a method with little distortion, there are cases in which residual stress and distortion are still too large depending on the optical application described above. If there is a large residual stress or strain in the single crystal, the birefringence due to these will also increase, and problems may arise if the single crystal is used for applications having extremely strict optical properties, particularly projection system lenses. is there. Therefore, when the strain is too large for the intended use, after the obtained single crystal is processed into a disk shape, the residual stress and strain are removed by further performing a heat treatment called annealing.

該アニールにおいては、アニール対象である単結晶内部における温度分布ができるだけ平坦化されているほど良好な結果が得られ、そのような均熱性を得るための技術がいくつか提案されている。例えば、単結晶を収納した容器の外部側方に独立して温度制御の可能な2つ以上のヒーターを装備し、さらに上下には反射板を配置する方法(例えば、特許文献3参照)、単結晶を収納した容器をさらに気密可能な容器に収納し、この気密容器の外側の側部、底部及び天端部にそれぞれ独立して温度制御の可能なヒーターを配置する方法(例えば、特許文献4参照)、フッ化金属単結晶を収納した容器をさらに真空排気可能な気密容器に収納し、該気密容器の外部側方に配置するヒーターの長さを熱処理対象である単結晶の厚さ以上とする方法(例えば、特許文献5参照)、単結晶を収納した気密化容器の外部側方にヒーターを配し、熱の逃げやすい上下方向には断熱部材を配置する方法(例えば、特許文献6参照)、ディスク状の単結晶を非気密化容器に収納し、この容器の上部及び下部に主ヒーターを配して中心部までの熱伝達経路を短くする方法(例えば、特許文献7参照)などが提案されている。またアニールにより内部応力を緩和する方法としては、坩堝に入れた単結晶を熱処理炉内に配置するに際して、該単結晶に内部応力分布を補償するように外力を加えた状態で加熱する方法(例えば、特許文献8参照)も提案されている。   In the annealing, as the temperature distribution inside the single crystal to be annealed is made as flat as possible, a better result is obtained, and several techniques for obtaining such thermal uniformity have been proposed. For example, a method in which two or more heaters capable of independent temperature control are provided on the outer side of a container containing a single crystal, and reflectors are arranged above and below (for example, refer to Patent Document 3). A method in which a container containing crystals is housed in a further airtight container, and heaters capable of temperature control are arranged independently on the outer side, bottom and top of the airtight container (for example, Patent Document 4). See), the container containing the metal fluoride single crystal is further housed in an airtight container that can be evacuated, and the length of the heater disposed on the outer side of the airtight container is equal to or greater than the thickness of the single crystal to be heat-treated. A method (see, for example, Patent Document 5), a method in which a heater is disposed on the outer side of an airtight container containing a single crystal, and a heat insulating member is disposed in the vertical direction in which heat easily escapes (for example, see Patent Document 6). ) Disk-shaped single crystal Housed in airtight container, a method for shortening the heat transfer path to the center by disposing the main heater the top and bottom of the container (e.g., see Patent Document 7) it has been proposed. Further, as a method of relieving internal stress by annealing, when placing a single crystal in a crucible in a heat treatment furnace, heating the single crystal with external force applied to compensate the internal stress distribution (for example, Patent Document 8) has also been proposed.

通常フッ化金属単結晶のアニールは、真空中、あるいは不活性ガスやフッ素系ガス中で行われるため、上記各技術においても、通常はフッ化金属単結晶を入れた容器をさらに気密性の容器に入れ、この気密性の容器の外部からヒーターで加熱する方法が採用される。この気密性の容器は、ヒーターによる加熱効率を良好なものとし、さらに該容器本体が迅速に均等な温度分布となるよう、高密度カーボン、グラファイト、窒化硼素、炭化ケイ素等の熱伝導率の高い材料で形成される(例えば、特許文献7、9参照)。   Usually, annealing of a metal fluoride single crystal is performed in a vacuum or in an inert gas or a fluorine-based gas. Therefore, in each of the above techniques, a container containing a metal fluoride single crystal is usually a more airtight container. And a method of heating with a heater from the outside of the airtight container is employed. This hermetic container has high heat conductivity such as high density carbon, graphite, boron nitride, silicon carbide, etc. so that the heating efficiency by the heater is good and the container body has a uniform temperature distribution quickly. It is made of a material (see, for example, Patent Documents 7 and 9).

特開2004−182588号公報JP 2004-182588 A 特開2005−029455号公報JP 2005-029455 A 特開平10−231194号公報JP-A-10-231194 特開平10−265300号公報Japanese Patent Laid-Open No. 10-265300 特開2000−026198号公報JP 2000-026198 A 特開2000−034193号公報JP 2000-034193 A 特開2004−131368号公報JP 2004-131368 A 特開2000−281492号公報JP 2000-281492 A 特開2003−081700号公報 第0031段落Japanese Patent Laying-Open No. 2003-081700 Paragraph 0031

しかしながら、上記提案のような方法によりアニールを行っても、未だ単結晶内部における温度分布を平坦化することが困難であり、必ずしも十分に歪みが除去された複屈折の小さなフッ化金属単結晶が得られるとは限らず、歩留まりの向上が望まれていた。フッ化金属単結晶が大きくなるほど、結晶内に温度分布が生じやすくなるためこの問題は深刻であり、前記次世代光リソグラフィー技術用の光学材料としての有用性の高い大口径の単結晶、例えば200mmφ以上の単結晶で、かつ該用途に十分なほど複屈折の小さなものを得ることは困難であった。なお、このような用途においては、その複屈折が平均値で1nm/cm以下、特に0.6nm/cm以下であることが望まれている。   However, even if annealing is performed by the method as proposed above, it is still difficult to flatten the temperature distribution inside the single crystal, and a single-crystal fluoride metal single crystal having a small birefringence from which distortion has been sufficiently removed is not necessarily obtained. It was not always possible to obtain it, and an improvement in yield was desired. This problem becomes more serious as the metal fluoride single crystal becomes larger, because temperature distribution is more likely to occur in the crystal, and a large-diameter single crystal that is highly useful as an optical material for the next-generation photolithography technology, for example, 200 mmφ It was difficult to obtain the above single crystal and small birefringence sufficient for the application. In such applications, the birefringence is desired to be 1 nm / cm or less, particularly 0.6 nm / cm or less, on average.

特に(100)結晶は、同じ程度の歪みを有する場合には、測定される複屈折が(111)結晶に比べて数倍大きくなる。そのため(111)単結晶と同程度に複屈折の小さい(100)単結晶を得るためには、より高度に歪みを除去する必要がある。しかしながら従来の方法では、前記の如き光学材料用途に使用できるほど歪みの除去された(100)単結晶を得ることは極めて困難であった。   In particular, when the (100) crystal has the same degree of strain, the measured birefringence is several times larger than that of the (111) crystal. Therefore, in order to obtain a (100) single crystal having a birefringence as low as that of the (111) single crystal, it is necessary to remove strain more highly. However, with the conventional method, it has been extremely difficult to obtain a (100) single crystal from which distortion has been removed to such an extent that it can be used for optical material applications as described above.

本発明者らは上記課題に鑑み、アニール(熱処理)炉にてフッ化金属単結晶をアニールするに際して、該炉内に配置されたフッ化金属単結晶内における温度部分布が可能な限り平坦化できる方法につき鋭意検討を行った。そしてその結果、驚くべきことに、従来技術とは逆に、フッ化金属単結晶を収納した収納容器とヒーターとの間に、熱伝導性の低い部材をさらに配することにより、該単結晶の結晶内の温度部分が平均化され、よってアニール後には、極めて複屈折の小さいフッ化金属単結晶を効率よく得られることを見出し、さらに検討を進めた結果本発明を完成した。   In view of the above problems, the inventors of the present invention, when annealing a metal fluoride single crystal in an annealing (heat treatment) furnace, the temperature distribution in the metal fluoride single crystal disposed in the furnace is made as flat as possible. The method that can be done was studied earnestly. As a result, surprisingly, contrary to the prior art, by further disposing a member having low thermal conductivity between the storage container storing the metal fluoride single crystal and the heater, The temperature portion in the crystal was averaged, and therefore, after annealing, it was found that a metal fluoride single crystal having extremely low birefringence can be obtained efficiently, and further investigations were made. As a result, the present invention was completed.

即ち本発明は、フッ化金属単結晶の側部全周および上下を覆う断熱容器と、該断熱容器の外部に配置されたヒーターとを備える、フッ化金属単結晶を熱処理するために用いるアニール炉である。   That is, the present invention relates to an annealing furnace used for heat-treating a metal fluoride single crystal, comprising a heat insulating container that covers the entire circumference and upper and lower sides of the metal fluoride single crystal and a heater disposed outside the heat insulating container. It is.

他の発明は、フッ化金属単結晶を多段に収納可能な収納容器と、該収納容器の側部全周および上下を覆う断熱容器と、該断熱容器の外部に配置されたヒーターとを備える、複数のフッ化金属単結晶を同時に熱処理するために用いるアニール炉である。   Another invention includes a storage container capable of storing the metal fluoride single crystal in multiple stages, a heat insulating container covering the entire circumference and top and bottom sides of the storage container, and a heater disposed outside the heat insulating container. An annealing furnace used for simultaneously heat-treating a plurality of metal fluoride single crystals.

また他の発明は、上記断熱容器が2W・m−1・K−1以下の熱伝導率を有する材料で構成されている上記アニール炉であり、また他の発明は、断熱容器における側部断熱材の厚み方向の熱移動能力が、100W・m−2・K−1以下である上記アニール炉である。 Another invention is the annealing furnace in which the heat insulation container is made of a material having a thermal conductivity of 2 W · m −1 · K −1 or less, and the other invention is a side heat insulation in the heat insulation container. It is the said annealing furnace whose heat transfer capability of the thickness direction of material is 100 W * m <-2> * K < -1> or less.

さらに他の発明は、フッ化金属単結晶の側部全周及び上下を断熱材で覆い、該断熱材の外部からヒーターで加熱することを特徴とするフッ化金属単結晶のアニール方法である。   Yet another invention is an annealing method for a metal fluoride single crystal, wherein the entire circumference and upper and lower sides of the metal fluoride single crystal are covered with a heat insulating material and heated from the outside of the heat insulating material with a heater.

本発明によれば、フッ化金属単結晶をアニールするに際して、該フッ化金属単結晶内における温度部分布が極めて平坦化された状態で加熱できる。そのため、結晶が大きな場合でも、該結晶の内部応力や歪みの除去を確実に行うことができ、その結果、複屈折が十分に小さく、次世代光リソグラフィー技術用の光学材料としての有用性の高い大口径の単結晶を歩留まりよく得ることが可能となる。   According to the present invention, when annealing a metal fluoride single crystal, heating can be performed in a state where the temperature distribution in the metal fluoride single crystal is extremely flattened. Therefore, even when the crystal is large, the internal stress and strain of the crystal can be surely removed. As a result, the birefringence is sufficiently small, and it is highly useful as an optical material for next-generation photolithography technology. A large-diameter single crystal can be obtained with a high yield.

本発明のアニール炉は、フッ化金属単結晶を熱処理してその歪みや残留応力を除去するための熱処理炉である。   The annealing furnace of the present invention is a heat treatment furnace for heat-treating a metal fluoride single crystal to remove its distortion and residual stress.

該フッ化金属単結晶としては公知の如何なるフッ化金属単結晶でもよい。該フッ化金属単結晶を具体的に例示すると、当該フッ化金属を具体的に例示すると、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化ルビジウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウム、フッ化アルミニウム、フッ化バリウムリチウム、フッ化マグネシウムカリウム、フッ化アルミニウムリチウム、フッ化カルシウムストロンチウム、フッ化カリウムマグネシウム、フッ化ストロンチウムリチウム、フッ化セシウムカルシウム、フッ化リチウムカルシウムアルミニウム、フッ化リチウムストロンチウムアルミニウム、フッ化ランタノイド類等の単結晶が挙げられる。   The metal fluoride single crystal may be any known metal fluoride single crystal. Specific examples of the metal fluoride single crystal include lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, and fluoride. Barium, strontium fluoride, aluminum fluoride, lithium barium fluoride, potassium magnesium fluoride, lithium aluminum fluoride, calcium strontium fluoride, magnesium magnesium fluoride, lithium strontium fluoride, cesium calcium fluoride, lithium calcium calcium fluoride Single crystals of lithium strontium aluminum fluoride, lanthanoid fluorides, and the like.

上記フッ化金属のなかでも、本発明により得られる効果に対する要求の大きい短波長でのリソグラフィー用光学材料として用いられることが多いフッ化カルシウム、フッ化マグネシウム、フッ化バリウム、フッ化ストロンチウム等のフッ化アルカリ土類金属類や、フッ化バリウムリチウム、フッ化リチウムカルシウムアルミニウム等の製造に適用することが好ましく、フッ化アルカリ土類金属類の単結晶のアニールに適用することがより好ましく、フッ化アルカリ土類金属類に適用することがより好ましく、なかでもフッ化カルシウムを対象とすると本発明の効果が特に顕著である。   Among the above metal fluorides, fluorides such as calcium fluoride, magnesium fluoride, barium fluoride, and strontium fluoride, which are often used as optical materials for lithography at a short wavelength, which are highly demanded for the effects obtained by the present invention. It is preferably applied to the production of alkaline earth metal fluorides, barium lithium fluoride, lithium calcium calcium aluminum, etc., more preferably applied to single crystal annealing of alkaline earth metal fluorides, It is more preferable to apply to alkaline earth metals, and the effects of the present invention are particularly remarkable when calcium fluoride is the target.

上記のようなフッ化金属単結晶(アニール前)を得る方法も特に限定されず、結晶引上げ法(チョクラルスキー法)、坩堝降下法(ブリッジマン法)、帯溶融法(ゾーンメルティング法)、浮遊帯溶融法(フローティングゾーン法)等、公知の如何なる製造方法で得られた単結晶でもよく、例えば、結晶引上げ法としては、特開2005−29455号公報、特開2004−231502号公報、特開2004−182588号公報、特開2004−182587号公報、特開2003−183096号公報、特開2003−119095号公報、特開2002−60299号公報及び特開2002−234795号公報等に記載の製造方法及び装置が挙げられる。また坩堝降下法としては、特開平9−227293号公報、特開平9−315894号公報、特開2004−262742号公報等に記載の製造方法及び装置が挙げられる。   The method for obtaining a metal fluoride single crystal as described above (before annealing) is not particularly limited, and the crystal pulling method (Czochralski method), crucible descent method (Bridgeman method), zone melting method (zone melting method) In addition, a single crystal obtained by any known production method such as a floating zone melting method (floating zone method) may be used. For example, as a crystal pulling method, JP-A-2005-29455, JP-A-2004-231502, JP-A-2004-182588, JP-A-2004-182588, JP-A-2003-183096, JP-A-2003-119095, JP-A-2002-60299, JP-A-2002-23495, etc. The manufacturing method and apparatus of these are mentioned. Examples of the crucible lowering method include manufacturing methods and apparatuses described in JP-A-9-227293, JP-A-9-315894, JP-A-2004-262742, and the like.

代表的な結晶引上げ法を簡単に説明すると、まず、フッ化亜鉛、フッ化鉛、四フッ化炭素等のスカベンジャー存在下に加熱溶融して酸化物や水分等の不純物の大部分を除去したフッ化金属原料を、単結晶引上げ炉内の坩堝に投入する。   A typical crystal pulling method will be briefly described. First, a fluororesin in which most of impurities such as oxides and moisture are removed by heating and melting in the presence of a scavenger such as zinc fluoride, lead fluoride or carbon tetrafluoride. The metal halide raw material is put into a crucible in a single crystal pulling furnace.

該坩堝内に投入したフッ化金属原料は、溶融させるに先立って減圧下で加熱処理を施してさらに吸着水分を除去することが好ましい。十分に加熱を行って吸着水分を除去した後、フッ化金属原料を溶融させ、該融液から単結晶を引上げる。   Prior to melting, the metal fluoride raw material charged into the crucible is preferably subjected to a heat treatment under reduced pressure to further remove adsorbed moisture. After sufficiently heating and removing the adsorbed moisture, the metal fluoride raw material is melted and the single crystal is pulled up from the melt.

単結晶体の引き上げの際の温度は、対象となるフッ化金属に応じて決定され、例えば、坩堝底部の測定温度において、フッ化カルシウムの場合は、1440℃以上、好適には1440〜1520℃の温度で実施することが好ましく、フッ化バリウムの場合は、1300〜1400℃の温度で実施することが好ましい。また、該温度への昇温速度は10〜500℃/時間であることが好ましい。   The temperature at which the single crystal is pulled is determined according to the target metal fluoride. For example, at the measurement temperature of the bottom of the crucible, in the case of calcium fluoride, it is 1440 ° C. or higher, preferably 1440-1520 ° C. In the case of barium fluoride, it is preferably carried out at a temperature of 1300 to 1400 ° C. Moreover, it is preferable that the temperature increase rate to this temperature is 10-500 degreeC / hour.

上記加熱による水分の除去及び引上げの実施は、残留する水分の影響をなくすため、スカベンジャーの存在下で実施することが好ましい。スカベンジャーとしては、原料フッ化金属と共に仕込まれるフッ化亜鉛、フッ化鉛、ポリ四フッ化エチレンなどの固体スカベンジャーや、チャンバー内に雰囲気として導入される四フッ化炭素、三フッ化炭素、六フッ化エタンなどの気体スカベンジャーが使用される。固体スカベンジャーを使用することが好ましく、その使用量は、原料フッ化金属100重量部に対して0.005〜5重量部が好適である。   In order to eliminate the influence of residual moisture, the removal of water and the pulling up by the heating are preferably performed in the presence of a scavenger. Scavengers include solid scavengers such as zinc fluoride, lead fluoride, and polytetrafluoroethylene that are charged together with the raw metal fluoride, as well as carbon tetrafluoride, carbon trifluoride, and hexafluoride introduced into the chamber as an atmosphere. A gas scavenger such as ethane fluoride is used. It is preferable to use a solid scavenger, and the amount used is preferably 0.005 to 5 parts by weight with respect to 100 parts by weight of the raw metal fluoride.

引上げ法に用いる種結晶は、フッ化金属の単結晶体であり、種結晶体の育成面は、製造するアズグロウン単結晶体の結晶の主成長面に応じて、〔111〕面、〔100〕面等から適宜に採択すればよい。単結晶の育成中において、これら種結晶は、引き上げ軸を中心として回転させることが好ましく、回転速度は2〜20回/分であることが好ましい。また、上記種結晶の回転に併せて坩堝も、上記種結晶の回転方向と反対方向に同様の回転速度で回転させてもよい。このようにして所望の大きさの単結晶体を引上げた後、炉内から取り出せる程度の温度まで降温する。降温速度としては、0.1〜3℃/分が好ましい。   The seed crystal used for the pulling method is a single crystal of metal fluoride, and the growth surface of the seed crystal depends on the main growth surface of the crystal of the as-grown single crystal to be produced, depending on the [111] plane, [100] What is necessary is just to select from a surface etc. suitably. During the growth of the single crystal, these seed crystals are preferably rotated about the pulling axis, and the rotation speed is preferably 2 to 20 times / minute. In addition to the rotation of the seed crystal, the crucible may be rotated at the same rotational speed in the direction opposite to the rotation direction of the seed crystal. After pulling up a single crystal of a desired size in this way, the temperature is lowered to a temperature at which it can be taken out from the furnace. As a temperature-fall rate, 0.1-3 degree-C / min is preferable.

本発明のアニール炉によりアニールするフッ化金属単結晶体としては、炉から取り出した状態のインゴットでもよいが、より効率よくアニールするためには、該インゴットを適当な大きさに切断してディスク状とし、これをアニールすることが好ましい。また、切断後、アニール前に切断面等を研磨及び洗浄することも好適である。むろんディスク状以外にも必要に応じた形状に加工したものをアニールしてよい。   The metal fluoride single crystal to be annealed by the annealing furnace of the present invention may be an ingot taken out of the furnace, but in order to anneal more efficiently, the ingot is cut into an appropriate size to form a disk. It is preferable to anneal this. It is also preferable to polish and clean the cut surface after the cutting and before annealing. Of course, other than the disk shape, it may be annealed after processing into a required shape.

本発明のアニール炉は、フッ化金属単結晶の側部全周および上下を覆う断熱容器と、該断熱容器の外部に配置されたヒーターとを備えており、上記例のようにして得た、あるいは他の方法により得た歪や残留応力を有するフッ化金属単結晶をアニールし、該歪や残留応力を低減するために用いるものである。   The annealing furnace of the present invention was provided with a heat insulating container covering the entire circumference and upper and lower sides of the metal fluoride single crystal, and a heater disposed outside the heat insulating container, obtained as in the above example, Alternatively, a metal fluoride single crystal having strain and residual stress obtained by another method is annealed and used to reduce the strain and residual stress.

このような本発明のアニール炉について、以下図面を参照して説明する。図1は、本発明のアニール炉の代表的な実施態様を示す縦断面模式図、同じく図2は横断面模式図である。   Such an annealing furnace of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view showing a typical embodiment of the annealing furnace of the present invention, and FIG. 2 is a schematic cross sectional view.

図1、2に示すように、フッ化金属単結晶(1)は、該フッ化金属単結晶の側部全周および上下を全て覆う断熱容器(2)内に収納されている。図においては、複数のフッ化金属単結晶を同時にアニール可能なように、フッ化金属単結晶はさらに収納容器(3)に収納されている。   As shown in FIGS. 1 and 2, the metal fluoride single crystal (1) is stored in a heat insulating container (2) that covers the entire circumference and upper and lower sides of the metal fluoride single crystal. In the figure, the metal fluoride single crystal is further stored in the storage container (3) so that a plurality of metal fluoride single crystals can be annealed simultaneously.

本発明の断熱容器(2)を構成する断熱性材料(素材)としては、アニールの際に付与する温度下で使用可能な断熱性材料であれば、公知の如何なる断熱性材料を用いてもよいが、フッ化金属単結晶のアニールは、通常、最高温度が700℃以上、多くの場合には1000℃以上で行われるため、無機系の断熱性材料を用いるのが一般的である。無機系の断熱性材料としては、炭素、ケイ酸塩、ガラス、各種セラミックスなどが挙げられるが、高温耐熱性、断熱性、強度、フッ化金属単結晶の汚染防止等の観点から炭素系の断熱性材料が好ましい。炭素系の断熱性材料をより具体的に例示すると、ピッチ系グラファイト成型断熱材、ファイバー系グラファイト成型断熱材、カーボンフェルト系断熱材、ポーラスカーボン系断熱材等が挙げられる。   As the heat insulating material (raw material) constituting the heat insulating container (2) of the present invention, any known heat insulating material may be used as long as it is a heat insulating material that can be used at the temperature applied during annealing. However, since annealing of a metal fluoride single crystal is usually performed at a maximum temperature of 700 ° C. or higher, and in many cases 1000 ° C. or higher, it is common to use an inorganic heat insulating material. Examples of inorganic heat insulating materials include carbon, silicate, glass, and various ceramics. From the viewpoint of high temperature heat resistance, heat insulating properties, strength, contamination prevention of metal fluoride single crystals, etc. A material is preferred. Specific examples of carbon-based heat insulating materials include pitch-based graphite molded heat insulating materials, fiber-based graphite formed heat insulating materials, carbon felt-based heat insulating materials, porous carbon-based heat insulating materials, and the like.

本発明における断熱容器(2)において、本発明の効果をより良好に得るためには、その側部断熱材の厚み方向における熱移動能力が、100W・m−2・K−1以下であることが好ましく、1〜50W・m−2・K−1であるのが好ましい。なお本発明において、上記厚み方向の熱移動能力とは、厚み方向の1000℃(高温側)における熱伝導率(W・m−1・K−1)を、厚さ(m)で割った値をいう。 In the heat insulating container (2) in the present invention, in order to obtain the effect of the present invention more favorably, the heat transfer capability in the thickness direction of the side heat insulating material is 100 W · m −2 · K −1 or less. Is preferable, and it is preferable that it is 1-50W * m <-2 > * K < -1 >. In the present invention, the heat transfer capability in the thickness direction is a value obtained by dividing the thermal conductivity (W · m −1 · K −1 ) at 1000 ° C. (high temperature side) in the thickness direction by the thickness (m). Say.

側部断熱材を構成する部材の熱伝導率が小さいほど、また厚みが厚いほど上記熱移動能力は小さくなるが、厚みが厚すぎるとアニール炉の大きさが大きくなり、また通常は重量も重くなる。一方、厚みが薄すぎると、強度上の問題が生じて壊れやすくなる場合が多い。そのため、断熱容器(2)における側部断熱材の厚さは5〜200mmの範囲にあることが好ましく、10〜100mmの範囲にあることがより好ましい。   The heat transfer capacity decreases as the thermal conductivity of the member constituting the side heat insulating material decreases and the thickness increases. However, if the thickness is too thick, the size of the annealing furnace increases and usually the weight increases. Become. On the other hand, when the thickness is too thin, there is a problem in strength and often breaks easily. Therefore, the thickness of the side heat insulating material in the heat insulating container (2) is preferably in the range of 5 to 200 mm, and more preferably in the range of 10 to 100 mm.

通常の断熱性材料の熱伝導率は5W・m−1・K−1以下である。好ましくは熱伝導率が2W・m−1・K−1以下の断熱性材料、より好ましくは1W・m−1・K−1以下の断熱性材料、特に好ましくは0.1〜0.5W・m−1・K−1の断熱性材料を用いることにより、適度な厚みで好ましい範囲の熱移動能力を有する断熱容器とすることが容易となる。例えば、熱伝導率2W・m−1・K−1の断熱性材料を用いれば、厚さ20mm以上であれば熱移動能力が100W・m−2・K−1以下、40mm以上であれば熱移動能力が50W・m−2・K−1以下とすることができる。同様に熱伝導率0.5W・m−1・K−1の断熱性材料を用いると、厚さ5mm以上であれば、熱移動能力が100W・m−2・K−1以下となる。なお本発明において上記熱伝導率は高温側の温度が1000℃の場合の値である。また、繊維系の断熱材はその繊維の積層方向により熱伝導率が異なる場合が多いが、上記熱伝導率は、断熱容器の厚さ方向となる方向での熱伝導率である。 The heat conductivity of a normal heat insulating material is 5 W · m −1 · K −1 or less. Preferably, the heat conductivity is 2 W · m −1 · K −1 or less, more preferably 1 W · m −1 · K −1 or less, particularly preferably 0.1 to 0.5 W ·. By using a heat insulating material of m −1 · K −1 , it becomes easy to obtain a heat insulating container having an appropriate thickness and a preferable range of heat transfer capability. For example, if a heat insulating material having a thermal conductivity of 2 W · m −1 · K −1 is used, if the thickness is 20 mm or more, the heat transfer capability is 100 W · m −2 · K −1 or less, and if the thickness is 40 mm or more, heat is applied. The moving ability can be 50 W · m −2 · K −1 or less. Similarly, when a heat insulating material having a thermal conductivity of 0.5 W · m −1 · K −1 is used, if the thickness is 5 mm or more, the heat transfer capability is 100 W · m −2 · K −1 or less. In the present invention, the thermal conductivity is a value when the temperature on the high temperature side is 1000 ° C. In addition, the thermal conductivity of fiber-based heat insulating materials is often different depending on the fiber lamination direction, but the thermal conductivity is the thermal conductivity in the direction of the thickness direction of the heat insulating container.

また、断熱容器(2)の上下位置の断熱材も、側部断熱材と同様、2W・m−1・K−1以下の断熱性材料、好ましくは1W・m−1・K−1以下の断熱性材料、より好ましくは0.1〜0.5W・m−1・K−1の断熱性材料で形成されていることが好ましい。後述するように断熱容器(2)の側方のみにヒーターを配置する場合には、側部断熱材よりも熱移動能力が低くなるようにすることが好ましく、より好ましくは側部断熱材の1/2〜1/10程度とする。上下部の断熱材の厚さを厚くしたり、側部断熱材よりも熱伝導率の低い材質の断熱性材料を採用したり、これらを組み合わせたりすることにより、上下部の熱移動能力を低くすることができるが、断熱容器の製造が容易な点で、側部断熱材と同じ材質の断熱性材料を用いて、その厚さを2〜10倍程度にする方法が好ましい。 Moreover, the heat insulating material of the upper-lower position of a heat insulation container (2) is also 2 W * m < -1 > * K <-1> or less heat insulating material like the side part heat insulating material, Preferably it is 1 W * m <-1> * K <-1> or less. It is preferable to be formed of a heat insulating material, more preferably 0.1 to 0.5 W · m −1 · K −1 . As will be described later, when the heater is disposed only on the side of the heat insulating container (2), it is preferable that the heat transfer capability is lower than that of the side heat insulating material, and more preferably 1 of the side heat insulating material. / 2 to about 1/10. The heat transfer capacity of the upper and lower parts is reduced by increasing the thickness of the upper and lower heat insulating materials, adopting heat insulating materials with lower thermal conductivity than the side heat insulating materials, or combining them. However, it is preferable to use a heat insulating material that is the same material as the side heat insulating material so that the thickness thereof is about 2 to 10 times in that the heat insulating container can be easily manufactured.

本発明におけるアニール炉は上記断熱容器(2)の外部に、加熱のためのヒーター(4)が配置される。言い換えれば、ヒーター(4)とフッ化金属単結晶(1)の間に前記断熱容器(2)が存在しており、これによって、加熱した際のフッ化金属単結晶内の温度分布が従来のアニール炉に比べて改善され、より歪みを低減しやすく、複屈折の小さなものを得ることが可能となる。この効果は、温度分布の生じやすい大型の単結晶、特に直径が200mm以上であったり、厚さが50mm以上である単結晶をアニールする際に特に有用である。   In the annealing furnace according to the present invention, a heater (4) for heating is disposed outside the heat insulating container (2). In other words, the heat insulating container (2) exists between the heater (4) and the metal fluoride single crystal (1), and thus the temperature distribution in the metal fluoride single crystal when heated is the conventional temperature distribution. Compared to the annealing furnace, it is easier to reduce distortion and to obtain a material having a small birefringence. This effect is particularly useful when annealing a large single crystal in which temperature distribution is likely to occur, particularly a single crystal having a diameter of 200 mm or more or a thickness of 50 mm or more.

該ヒーターは、アニールを行う温度まで加熱可能なヒーターであれば特に制限されるものではなく、抵抗加熱式や誘導加熱式などのヒーターが用いられる。またその位置は断熱容器(2)の側方でも、上下方でも、それらを組み合わせた配置でもよい。複数のフッ化金属単結晶(1)を多段に収納してアニールを行う場合には、構造を簡単にし、かつ温度分布の発生を少なくする観点から、図1に示すように断熱容器(2)の側方に、断熱容器の高さとほぼ同じ長さか、もしくは長めのヒーター(4)を配置することが好ましい。さらに、より一層温度分布の発生を少なくするために、断熱容器の下方にも一部ヒーターが回り込むように配置することも好適である。   The heater is not particularly limited as long as it can be heated to a temperature at which annealing is performed, and a heater such as a resistance heating type or an induction heating type is used. Moreover, the arrangement | positioning which combined those may be sufficient as the position on the side of the heat insulation container (2), upper and lower sides. When annealing is performed by storing a plurality of metal fluoride single crystals (1) in multiple stages, from the viewpoint of simplifying the structure and reducing the occurrence of temperature distribution, as shown in FIG. It is preferable to arrange a heater (4) having a length substantially the same as the height of the heat insulating container or a longer side (4). Furthermore, in order to further reduce the occurrence of the temperature distribution, it is also preferable to arrange the heater so that a part of the heater also wraps under the heat insulating container.

断熱容器の側方に配置する場合、該断熱容器が可能な限りくまなく加熱されるように、図2に示した如く、断熱容器(2)の周囲を取り囲むように複数のヒーター(4)を配置することが好ましい。なお図2においては8本のヒーター(4)が配置されているが、むろん8本に制限されるものではない。ヒーターの数が多いほど、満遍なく均一に加熱できるが、一方でアニール炉の構造が複雑になり製造や整備の際のコストが高価なものとなる。従って複数のヒーターを配置する場合、その数は6〜48本であることが好ましく、8〜36本とすることがより好ましい。また棒状のヒーターに限らず、板状など如何なる形状のヒーターでも構わない。複数のヒーターを配置する場合、回転対称となる位置に配置するのが好ましい。   When arranged on the side of the heat insulating container, as shown in FIG. 2, a plurality of heaters (4) are provided so as to surround the heat insulating container (2) so that the heat insulating container is heated as much as possible. It is preferable to arrange. In FIG. 2, eight heaters (4) are arranged, but the number is not limited to eight. The larger the number of heaters, the more uniformly and uniformly it can be heated, but on the other hand, the structure of the annealing furnace becomes complicated and the cost for manufacturing and maintenance becomes expensive. Therefore, when arrange | positioning a some heater, it is preferable that the number is 6-48, and it is more preferable to set it as 8-36. Further, the heater is not limited to a rod-like heater, and may have any shape such as a plate. When arranging a plurality of heaters, it is preferable to arrange them at a rotationally symmetric position.

図1においては、複数のフッ化金属を同時にアニールできるように5段の構造の収納容器(3)を記載したが、この段数は必要に応じて適宜増減してよい。また、フッ化金属単結晶を縦方向に多段に収納するのではなく、水平位置に複数個配する構造のアニール炉としてもよいし、収納容器を用いずに耐熱性繊維等を用いて炉内に吊り下げる形式でもよい。さらにアニールするフッ化金属単結晶が1個だけである場合などには該収納容器を用いず、断熱容器中に直接配置する方法を採用することも可能である。構造の容易さや設置面積等の観点から、フッ化金属単結晶を多段(好ましくは3〜15段)に収納できる収納容器とすることが好ましい。   In FIG. 1, the storage container (3) having a five-stage structure is described so that a plurality of metal fluorides can be annealed simultaneously. However, the number of stages may be appropriately increased or decreased as necessary. In addition, an annealing furnace having a structure in which a plurality of metal fluoride single crystals are not stored in multiple stages in the vertical direction but arranged in a horizontal position may be used, or a heat resistant fiber or the like may be used in the furnace without using a storage container. It may be a form that hangs on. Furthermore, when only one metal fluoride single crystal to be annealed is used, it is possible to employ a method in which the storage container is not used but a direct arrangement in the heat insulating container. From the viewpoints of ease of structure, installation area, and the like, it is preferable to form a storage container that can store metal fluoride single crystals in multiple stages (preferably 3 to 15 stages).

また図3aに示すような収納容器(3’)の底に孔の空いたものを使用することや、図3bに示すように収納容器(3)とフッ化金属単結晶(1)の間に、角柱や円柱などの形状を有する小さなスペーサー(5)をいくつか配置することも好ましい態様である。このような構造の収納容器とすることにより、アニールの際の温度変化によるフッ化金属単結晶の熱膨張・収縮に伴う、収納容器とフッ化金属単結晶の間の摩擦が低減され、より複屈折の小さいフッ化金属単結晶を得られる傾向がある。   Also, use a container having a hole in the bottom of the storage container (3 ′) as shown in FIG. 3a, or between the storage container (3) and the metal fluoride single crystal (1) as shown in FIG. 3b. It is also a preferable aspect to arrange some small spacers (5) having a shape such as a prism or cylinder. By using the storage container having such a structure, friction between the storage container and the metal fluoride single crystal due to thermal expansion / contraction of the metal fluoride single crystal due to a temperature change during annealing is reduced, and more complex. There is a tendency to obtain a metal fluoride single crystal with low refraction.

該収納容器(3)は、アニールの際に付与する温度下で使用可能な断熱性材料であれば如何なる材質のものでもよく、またその熱伝導率も特に限定されず、前記断熱容器を構成する断熱性材料と同様に熱伝導率の低い材料で形成されたものでもよいし、逆に熱伝導率の高い材料で形成されたものでもよい。熱伝導率の低い材料はポーラスなものが多いため、強度に劣る傾向があり、それを避けるために結果として比較的熱伝導率の高い材料で形成されたものとなるのが通常である。   The storage container (3) may be made of any material as long as it is a heat-insulating material that can be used at a temperature applied during annealing, and its thermal conductivity is not particularly limited, and constitutes the heat-insulating container. It may be formed of a material having a low thermal conductivity like the heat insulating material, or may be formed of a material having a high thermal conductivity. Since many materials having low thermal conductivity are porous, they tend to be inferior in strength, and in order to avoid this, the material is usually formed of a material having relatively high thermal conductivity.

また、アニールに際してフッ化金属単結晶(1)の汚染を避けるために、該収納容器(3)を構成する材料としては炭素系のものであることが好ましい。耐熱性、強度及びフッ化金属単結晶の汚染の可能性を考慮すると、最も好ましいのは高純度の高密度グラファイト製の収納容器である。   Further, in order to avoid contamination of the metal fluoride single crystal (1) during annealing, the material constituting the storage container (3) is preferably a carbon-based material. Considering heat resistance, strength, and possibility of contamination of the metal fluoride single crystal, the most preferable is a storage container made of high-purity high-density graphite.

図1に示すように、本発明のアニール炉には、通常、全体を覆うチャンバー(6)が設けられており、さらに該チャンバー(6)と前記ヒーター(4)との間には、アニールに際してチャンバーの温度が危険にならない程度の断熱性を有する断熱材(7)が配置されるのが通常である(なお図2では、これらは略してある)。該断熱材(7)及びチャンバー(6)としては、公知のアニール炉に用いられる断熱材及びチャンバーを特に制限なく採用できる。例えば断熱材(7)としては、前記断熱容器を構成する材質と同様の断熱性材料を用いることができる。   As shown in FIG. 1, the annealing furnace of the present invention is usually provided with a chamber (6) covering the whole, and further, between the chamber (6) and the heater (4), an annealing is performed. It is usual to arrange a heat insulating material (7) having a heat insulating property such that the temperature of the chamber does not become dangerous (note that these are omitted in FIG. 2). As the heat insulating material (7) and the chamber (6), a heat insulating material and a chamber used in a known annealing furnace can be used without any particular limitation. For example, as the heat insulating material (7), a heat insulating material similar to the material constituting the heat insulating container can be used.

また、より温度分布を少なくするために、アニール中、フッ化金属単結晶を回転させることが好ましい。該回転は、フッ化金属単結晶(1)の中心軸をその軸とするように行われるのが一般的である。アニール炉の構造をできるだけ簡単にしつつ、このような回転を行わせるための代表的な態様としては、図1に示すような支持回転軸(8)を断熱容器(2)の下部に設け、該断熱容器(2)を回転可能とする方法が挙げられる。該支持回転軸(8)は、前記チャンバーとヒーターとの間に配される断熱材(7)及びチャンバー(6)を貫通して、断熱容器(2)を回転させるための駆動機構(図示しない)に接続される。該回転支持軸(8)の材質も特に限定されるわけではないが、より温度分布を小さくするためには、断熱性材料で形成されていることが好ましい。   In order to further reduce the temperature distribution, it is preferable to rotate the metal fluoride single crystal during annealing. The rotation is generally performed so that the central axis of the metal fluoride single crystal (1) is the axis. As a typical mode for performing such rotation while making the structure of the annealing furnace as simple as possible, a support rotation shaft (8) as shown in FIG. The method of making the heat insulation container (2) rotatable is mentioned. The support rotating shaft (8) penetrates the heat insulating material (7) and the chamber (6) disposed between the chamber and the heater, and drives a drive mechanism (not shown) for rotating the heat insulating container (2). ). The material of the rotating support shaft (8) is not particularly limited, but is preferably made of a heat insulating material in order to further reduce the temperature distribution.

本発明のアニール炉を用いてフッ化金属単結晶をアニールする場合、高真空下やアルゴンなどの不活性雰囲気下、または四フッ化炭素やフッ化水素等のスカベンジャー雰囲気下で行うことが通常である。雰囲気ガスの供給や排出手段は特に限定されず、フッ化金属単結晶が雰囲気ガスに必要十分に接触するような構造を採用すればよい。本発明のアニール炉における該ガス流通の代表的な実施態様を例示すれば、図1に示すように断熱容器の側方にヒーターを配置し、かつフッ化金属単結晶を回転させる場合には、断熱容器(2)の下部にガス導入孔(9)を、上部にガス排出孔(10)を設け、該ガス導入孔(9)を、前記支持回転軸(8)内を通って、図示されていない外部配管、ガス供給源(ガスボンベなど)に接続すればよい。このガス導入孔(9)から供給されたガスは、ガス排出孔(10)を経由、さらにチャンバーに設けられた排出部(図示しない)から炉外へと排出される。また図示していないが、収納容器(3)にもガス流通孔が設けられる。   When annealing a metal fluoride single crystal using the annealing furnace of the present invention, it is usually performed in a high vacuum, an inert atmosphere such as argon, or a scavenger atmosphere such as carbon tetrafluoride or hydrogen fluoride. is there. The means for supplying and discharging the atmospheric gas is not particularly limited, and a structure in which the metal fluoride single crystal is in sufficient contact with the atmospheric gas may be employed. To illustrate a typical embodiment of the gas flow in the annealing furnace of the present invention, when a heater is disposed on the side of the heat insulating container as shown in FIG. 1 and the metal fluoride single crystal is rotated, A gas introduction hole (9) is provided in the lower part of the heat insulating container (2), and a gas discharge hole (10) is provided in the upper part. The gas introduction hole (9) passes through the inside of the support rotary shaft (8) and is shown in the figure. What is necessary is just to connect to external piping and gas supply sources (gas cylinder etc.) which are not. The gas supplied from the gas introduction hole (9) passes through the gas discharge hole (10), and is further discharged out of the furnace from a discharge portion (not shown) provided in the chamber. Moreover, although not shown in figure, a gas distribution hole is also provided in a storage container (3).

なお、断熱容器(2)を構成するような断熱性材料はポーラスで気密性がほとんどない場合が多く、必ずしも雰囲気ガスの供給や排出のために流通孔を空ける必要はないが、雰囲気ガスの円滑な導入、排出のためには上記の如くガス流通孔を設けることが好ましい。   Note that the heat insulating material constituting the heat insulating container (2) is often porous and hardly airtight, and it is not always necessary to open a circulation hole for supplying or discharging the atmospheric gas. For such introduction and discharge, it is preferable to provide the gas circulation holes as described above.

前述の通り、本発明において、アニールの対象となるのはフッ化金属単結晶である。アニールの際の温度条件は対象となるフッ化金属の種類に応じて適宜設定すればよい。高温でアニールするほど短時間で歪が除去できる傾向にあるが、むろんアニールは対象物の融点未満の温度で行う必要がある。例えば、フッ化カルシウムをアニールする場合、フッ化カルシウムの融点が1420℃程度であるから、該温度未満、好適には1000〜1400℃(結晶の最高温度)、特に1100〜1350℃で行われる。   As described above, in the present invention, the object of annealing is a metal fluoride single crystal. What is necessary is just to set suitably the temperature conditions in the case of annealing according to the kind of metal fluoride used as object. Although the strain tends to be removed in a shorter time as the annealing is performed at a higher temperature, the annealing needs to be performed at a temperature lower than the melting point of the object. For example, when annealing calcium fluoride, since the melting point of calcium fluoride is about 1420 ° C., the temperature is lower than this temperature, preferably 1000 to 1400 ° C. (maximum temperature of crystal), particularly 1100 to 1350 ° C.

より良好な歪み除去効果を得、複屈折の小さな単結晶とするためには、降温速度は遅い方が好ましい。一方で、あまりに速度を遅くするとアニールにかかる時間が長くなり生産性が低下する。降温の速度が歪み除去効果に与える影響は高温になるほど顕著になるため、比較的高温の領域ではゆっくりと降温を行い、低温の領域では降温速度を早くすることが好ましい。また、昇温の際も、高温領域では相対的に昇温速度を遅くすることが好ましい。   In order to obtain a better strain removal effect and to obtain a single crystal having a small birefringence, it is preferable that the temperature decrease rate is low. On the other hand, if the speed is too slow, the time required for annealing becomes longer and the productivity is lowered. The influence of the rate of temperature drop on the strain removal effect becomes more pronounced as the temperature becomes higher. Therefore, it is preferable that the temperature drop is performed slowly in a relatively high temperature region and the temperature decrease rate is increased in a low temperature region. Also, when raising the temperature, it is preferable to relatively slow the temperature raising rate in the high temperature region.

一例として、フッ化カルシウムをアニールする場合、1000〜1400℃まで5〜200℃/hr(より好ましくは、500〜900℃までは10〜200℃/hr、それ以降は1〜5℃/hr)程度で昇温、その温度で0〜120分程度保持し、その後、500〜900℃程度まで0.1〜5℃/hr程度で降温、その後さらに1〜5℃/分程度で室温まで降温するアニール温度パターンが挙げられる。   As an example, when annealing calcium fluoride, it is 5 to 200 ° C./hr from 1000 to 1400 ° C. (more preferably, 10 to 200 ° C./hr up to 500 to 900 ° C., and 1 to 5 ° C./hr thereafter) The temperature is raised at about 0, held at that temperature for about 0 to 120 minutes, then lowered to about 500 to 900 ° C. at about 0.1 to 5 ° C./hr, then further lowered to about 1 to 5 ° C./minute to room temperature. An annealing temperature pattern may be mentioned.

このようにして本発明のアニール炉でアニールしたフッ化金属単結晶は、必要に応じて公知の方法で研削、研磨等を行って所定の形状、例えばレンズに仕上げればよい。本発明のアニール炉でアニールしたフッ化金属単結晶は極めて複屈折が小さくなり、このような光学材料用途として特に有用である。   Thus, the metal fluoride single crystal annealed in the annealing furnace of the present invention may be finished to a predetermined shape, for example, a lens by performing grinding, polishing or the like by a known method as necessary. The metal fluoride single crystal annealed in the annealing furnace of the present invention has extremely low birefringence and is particularly useful for such optical material applications.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to these Examples.

なお、本実施例、比較例に用いたフッ化金属単結晶は、特開2005−029455号公報に記載された方法(チョクラルスキー法)によりフッ化カルシウムのアズグロウン単結晶を製造し、これをスライス後、さらに所定の大きさに研削してディスク状としたものである。   In addition, the metal fluoride single crystal used for the present Example and the comparative example manufactured the as-grown single crystal of calcium fluoride by the method (Czochralski method) described in Unexamined-Japanese-Patent No. 2005-029455, After slicing, it is further ground to a predetermined size to form a disk.

このディスク状の単結晶は、表面を#2000研磨し、自動複屈折分布測定装置(Hinds instruments, Inc.製 EXICOR 450AT;光源633nm)に設置し、これを用いて複屈折を測定して、その最小自乗平均値と最大値とを求めた。この複屈折の測定は同じディスクについてアニール前とアニール後に行った。   The disk-shaped single crystal was polished on a surface of # 2000 and placed in an automatic birefringence distribution measuring apparatus (EXICOR 450AT; light source 633 nm, manufactured by Hinds instruments, Inc.), and the birefringence was measured using this. The least mean square value and the maximum value were obtained. This birefringence measurement was performed before and after annealing on the same disk.

実施例1、2
図1に模式図を示すような、断熱容器と多段の収納容器を内部に有し、断熱容器の側方に、該断熱容器を取り囲むように24本のヒーターが配置されたアニール炉を製造した。ここで、断熱容器は断熱性材料としてピッチ系グラファイトを用いて成形されたものであり、該断熱容器における側部断熱材の厚さ方向の1000℃における熱伝導率は0.3W・m−1・K−1であった。また、該断熱容器における側部断熱材の厚さは20mm、上部断熱材の厚さは60mm、下部断熱材の厚さは100mmとした。従って、側部断熱材の熱移動能力は、15W・m−2・K−1となる。
Examples 1 and 2
As shown in FIG. 1, an annealing furnace having a heat insulating container and a multistage storage container inside, and having 24 heaters arranged on the side of the heat insulating container so as to surround the heat insulating container was manufactured. . Here, the heat insulating container is formed using pitch-based graphite as the heat insulating material, and the thermal conductivity at 1000 ° C. in the thickness direction of the side heat insulating material in the heat insulating container is 0.3 W · m −1. -K- 1 . Moreover, the thickness of the side heat insulating material in this heat insulation container was 20 mm, the thickness of the upper heat insulating material was 60 mm, and the thickness of the lower heat insulating material was 100 mm. Accordingly, the heat transfer capability of the side heat insulating material is 15 W · m −2 · K −1 .

また、収納容器は5段とし、各々のフッ化金属単結晶収納空間は、内径310mm、高さ80mmとなるようにした。該収納容器は厚さ15mmの高密度グラファイト製であり、各々の収納空間相互及び収納容器外とのガスの流通が可能なように、上段の収納空間の下方(床)からその下の収納空間の上方(天井)へ貫通する貫通孔を各々8つ設けた。   In addition, the storage container has five stages, and each metal fluoride single crystal storage space has an inner diameter of 310 mm and a height of 80 mm. The storage container is made of high-density graphite having a thickness of 15 mm. The storage space below the upper storage space (floor) from the lower storage space so that gas can flow between each storage space and outside the storage container. Eight through holes penetrating above (ceiling) are provided.

該構造のアニール炉における収納容器中、最上段の収納空間に直径約200mm、厚さ20mmの(100)フッ化カルシウム単結晶(実施例1)を、3段目には直径約145mm、厚さ40mmの(100)フッ化カルシウム単結晶(実施例2)を配置した。   (100) Calcium fluoride single crystal (Example 1) having a diameter of about 200 mm and a thickness of 20 mm is placed in the uppermost storage space of the storage container in the annealing furnace having the structure, and the diameter of the third stage is about 145 mm and the thickness. A 40 mm (100) calcium fluoride single crystal (Example 2) was placed.

炉内を10−4Pa程度に減圧しつつ200℃まで10℃/hrで昇温、30分間保持して炉内をベーキングした。ついで、10℃/hrで昇温し600℃に到達した時点で、四フッ化炭素ガスを2.5L/minの速度で炉内が常圧になるまで導入した。引き続き10℃/hrで1150℃まで昇温し、30分間保持した後、700℃までは1℃/hr、700〜300℃では4℃/hr、その後は10℃/hrで室温付近まで降温した。 While reducing the pressure in the furnace to about 10 −4 Pa, the temperature was raised to 200 ° C. at 10 ° C./hr and held for 30 minutes, and the furnace was baked. Then, when the temperature was raised at 10 ° C./hr and reached 600 ° C., carbon tetrafluoride gas was introduced at a rate of 2.5 L / min until the inside of the furnace became normal pressure. Subsequently, the temperature was raised to 1150 ° C. at 10 ° C./hr and held for 30 minutes, then 1 ° C./hr to 700 ° C., 4 ° C./hr at 700 to 300 ° C., and then lowered to near room temperature at 10 ° C./hr. .

このようにしてアニールしたフッ化カルシウム単結晶の複屈折を、アニール前とアニール後とで比較した結果を表1に示す。   Table 1 shows the result of comparing the birefringence of the calcium fluoride single crystal thus annealed before and after annealing.

比較例1、2
実施例1で用いたアニール炉において、ピッチ系グラファイト製の断熱容器に代えて、壁厚が10mmで厚さ方向の熱伝導率が約50W・m−1・K−1(1000℃において)の高密度グラファイト製の容器を設置した。この容器の側部方向の熱移動能力は、5000W・m−2・K−1となる。
Comparative Examples 1 and 2
In the annealing furnace used in Example 1, instead of the heat insulating container made of pitch-based graphite, the wall thickness is 10 mm and the thermal conductivity in the thickness direction is about 50 W · m −1 · K −1 (at 1000 ° C.). A container made of high-density graphite was installed. The heat transfer capability in the side direction of the container is 5000 W · m −2 · K −1 .

収納容器の最上段に直径約200mm、厚さ20mmの(100)フッ化カルシウム単結晶(比較例1)を、3段目には直径約140mm、厚さ40mmの(100)フッ化カルシウム単結晶(比較例2)を配置し、実施例1と同じ条件で、アニールを行った。アニール前後のフッ化カルシウム単結晶の複屈折を測定した結果を表1に示す。   A (100) calcium fluoride single crystal (Comparative Example 1) having a diameter of about 200 mm and a thickness of 20 mm is provided on the uppermost stage of the storage container, and a (100) calcium fluoride single crystal having a diameter of about 140 mm and a thickness of 40 mm is provided on the third stage. (Comparative Example 2) was placed and annealed under the same conditions as in Example 1. Table 1 shows the results of measuring the birefringence of the calcium fluoride single crystal before and after annealing.

Figure 2006342029
Figure 2006342029


実施例3、4
実施例1、2と同じアニール炉を用い、収納容器の上から2段目に直径約270mm、厚さ50mmの(111)フッ化カルシウム単結晶(実施例3)を、4段目に直径約140mm、厚さ20mmの(100)フッ化カルシウム単結晶(実施例4)を配置し、実施例1と同じ条件で、アニールを行った。アニール前後のフッ化カルシウム単結晶の歪み(複屈折)を測定した結果を表2に示す。

Examples 3 and 4
Using the same annealing furnace as in Examples 1 and 2, the (111) calcium fluoride single crystal (Example 3) having a diameter of about 270 mm and a thickness of 50 mm was placed on the second stage from the top of the container, and the diameter was about 4th stage. A (100) calcium fluoride single crystal (Example 4) having a thickness of 140 mm and a thickness of 20 mm was placed, and annealing was performed under the same conditions as in Example 1. Table 2 shows the results of measuring the strain (birefringence) of the calcium fluoride single crystal before and after annealing.

Figure 2006342029
Figure 2006342029


実施例5〜8
実施例1と同じアニール炉を用い、収納容器の上から順に4段目まで表3に示すフッ化カルシウム単結晶を配置し、実施例1と同じ条件でアニールを行った。アニール前後のフッ化カルシウム単結晶の複屈折を測定した結果を表3に示す。なお収納された順に上から実施例5、6、7及び8である。

Examples 5-8
Using the same annealing furnace as in Example 1, the calcium fluoride single crystals shown in Table 3 were arranged in order from the top of the storage container up to the fourth stage, and annealing was performed under the same conditions as in Example 1. Table 3 shows the results of measuring the birefringence of the calcium fluoride single crystal before and after annealing. In addition, it is Example 5, 6, 7 and 8 from the top in the order stored.

Figure 2006342029
Figure 2006342029


実施例9
実施例1と同じアニール炉を用い、収納容器の上から5段目に直径約190mm、厚さ29mmの(100)フッ化カルシウム単結晶を配置した。昇温速度を40℃/hr、最高温度を1350℃とした以外は、実施例1と同様の方法で1350℃まで昇温、30分間保持し、ついで、4℃/hrで600℃まで降温し、その後15℃/hrで室温付近まで降温した。アニールを行った。アニール前後のフッ化カルシウム単結晶の複屈折を測定した結果を表4に示す。

Example 9
Using the same annealing furnace as in Example 1, a (100) calcium fluoride single crystal having a diameter of about 190 mm and a thickness of 29 mm was arranged on the fifth stage from the top of the storage container. The temperature was raised to 1350 ° C. and held for 30 minutes in the same manner as in Example 1 except that the temperature raising rate was 40 ° C./hr and the maximum temperature was 1350 ° C. Then, the temperature was lowered to 600 ° C. at 4 ° C./hr. Thereafter, the temperature was lowered to about room temperature at 15 ° C./hr. Annealing was performed. Table 4 shows the results of measuring the birefringence of the calcium fluoride single crystal before and after annealing.

実施例10
実施例1と同じアニール炉を用い、収納容器の上から5段目に直径約140mm、厚さ27mmの(100)フッ化カルシウム単結晶を配置した。昇温速度を40℃/hr、最高温度を1000℃とした以外は、実施例1と同様の方法で1000℃まで昇温、30分間保持し、ついで、900℃までは0.5℃/hrで、800℃までは0.7℃/hrで、500℃までは1℃/hrで、300℃までは2℃/hrで、その後5℃/hrで室温付近まで降温した。アニールを行った。アニール前後のフッ化カルシウム単結晶の複屈折を測定した結果を表4に示す。
Example 10
Using the same annealing furnace as in Example 1, a (100) calcium fluoride single crystal having a diameter of about 140 mm and a thickness of 27 mm was arranged on the fifth stage from the top of the storage container. The temperature was raised to 1000 ° C. and held for 30 minutes in the same manner as in Example 1 except that the temperature raising rate was 40 ° C./hr and the maximum temperature was 1000 ° C. Then, 0.5 ° C./hr up to 900 ° C. Then, the temperature was lowered to 800 ° C. at 0.7 ° C./hr, to 500 ° C. at 1 ° C./hr, to 300 ° C. at 2 ° C./hr, and then at 5 ° C./hr to near room temperature. Annealing was performed. Table 4 shows the results of measuring the birefringence of the calcium fluoride single crystal before and after annealing.

Figure 2006342029
Figure 2006342029

本発明のアニール炉の代表的な一態様を示した縦断面模式図である。It is the longitudinal cross-sectional schematic diagram which showed the typical one aspect | mode of the annealing furnace of this invention. 本発明のアニール炉の代表的な一態様を示した横断面模式図である。It is the cross-sectional schematic diagram which showed the typical one aspect | mode of the annealing furnace of this invention. 本発明のアニール炉においてフッ化金属単結晶を収納する際に用いる収納容器の代表的態様を示す模式図である。It is a schematic diagram which shows the typical aspect of the storage container used when storing a metal fluoride single crystal in the annealing furnace of this invention.

符号の説明Explanation of symbols

1:フッ化金属単結晶
2:断熱容器
3、3’:収納容器
4:ヒーター
5:スペーサー
6:チャンバー
7:断熱材
8:支持回転軸
9:ガス導入孔
10:ガス排出孔
1: Metal fluoride single crystal 2: Heat insulating container 3, 3 ′: Storage container 4: Heater 5: Spacer 6: Chamber 7: Heat insulating material 8: Support rotating shaft 9: Gas introduction hole 10: Gas discharge hole

Claims (5)

フッ化金属単結晶の側部全周および上下を覆う断熱容器と、該断熱容器の外部に配置されたヒーターとを備える、フッ化金属単結晶を熱処理するために用いるアニール炉。   An annealing furnace used for heat-treating a metal fluoride single crystal, comprising a heat insulating container that covers the entire circumference and upper and lower sides of the metal fluoride single crystal, and a heater disposed outside the heat insulating container. フッ化金属単結晶を多段に収納可能な収納容器と、該収納容器の側部全周および上下を覆う断熱容器と、該断熱容器の外部に配置されたヒーターとを備える、複数のフッ化金属単結晶を同時に熱処理するために用いるアニール炉。   A plurality of metal fluorides, comprising: a storage container capable of storing a metal fluoride single crystal in multiple stages; a heat insulating container covering the entire circumference and upper and lower sides of the storage container; and a heater disposed outside the heat insulating container. An annealing furnace used to heat treat single crystals simultaneously. 断熱容器が2W・m−1・K−1以下の熱伝導率を有する材料で構成されていることを特徴とする請求項1又は2記載のアニール炉。 The annealing furnace according to claim 1 or 2, wherein the heat insulating container is made of a material having a thermal conductivity of 2 W · m -1 · K -1 or less. 断熱容器における側部断熱材の厚み方向の熱移動能力が100W・m−2・K−1以下である請求項1乃至3記載のアニール炉。 The annealing furnace according to any one of claims 1 to 3, wherein the heat transfer capability in the thickness direction of the side heat insulating material in the heat insulating container is 100 W · m -2 · K -1 or less. フッ化金属単結晶の側部全周及び上下を断熱材で覆い、該断熱材の外部からヒーターで加熱することを特徴とするフッ化金属単結晶のアニール方法。
An annealing method for a metal fluoride single crystal, wherein the entire circumference and upper and lower sides of the metal fluoride single crystal are covered with a heat insulating material and heated by a heater from the outside of the heat insulating material.
JP2005170379A 2005-06-10 2005-06-10 Annealing furnace used for heat-treating metal fluoride single crystal and annealing method of metal fluoride single crystal Pending JP2006342029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005170379A JP2006342029A (en) 2005-06-10 2005-06-10 Annealing furnace used for heat-treating metal fluoride single crystal and annealing method of metal fluoride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005170379A JP2006342029A (en) 2005-06-10 2005-06-10 Annealing furnace used for heat-treating metal fluoride single crystal and annealing method of metal fluoride single crystal

Publications (1)

Publication Number Publication Date
JP2006342029A true JP2006342029A (en) 2006-12-21

Family

ID=37639267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005170379A Pending JP2006342029A (en) 2005-06-10 2005-06-10 Annealing furnace used for heat-treating metal fluoride single crystal and annealing method of metal fluoride single crystal

Country Status (1)

Country Link
JP (1) JP2006342029A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156165A (en) * 2006-12-25 2008-07-10 Mitsui Mining & Smelting Co Ltd Method for producing fluorite
JP2008156164A (en) * 2006-12-25 2008-07-10 Mitsui Mining & Smelting Co Ltd Fluorite
WO2012011373A1 (en) * 2010-07-22 2012-01-26 日本結晶光学株式会社 Fluorite production method
US8784970B2 (en) 2010-07-22 2014-07-22 Nihon Kessho Kogaku Co., Ltd. Fluorite
JP2019202915A (en) * 2018-05-24 2019-11-28 住友金属鉱山株式会社 Heat treatment method for oxide single crystal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156165A (en) * 2006-12-25 2008-07-10 Mitsui Mining & Smelting Co Ltd Method for producing fluorite
JP2008156164A (en) * 2006-12-25 2008-07-10 Mitsui Mining & Smelting Co Ltd Fluorite
WO2012011373A1 (en) * 2010-07-22 2012-01-26 日本結晶光学株式会社 Fluorite production method
JP5260797B2 (en) * 2010-07-22 2013-08-14 日本結晶光学株式会社 Fluorite manufacturing method
US8784970B2 (en) 2010-07-22 2014-07-22 Nihon Kessho Kogaku Co., Ltd. Fluorite
US9322954B2 (en) 2010-07-22 2016-04-26 Nihon Kessho Kogaku Co., Ltd. Fluorite production method
US9448330B2 (en) 2010-07-22 2016-09-20 Nihon Kessho Kogaku Co., Ltd. Fluorite
JP2019202915A (en) * 2018-05-24 2019-11-28 住友金属鉱山株式会社 Heat treatment method for oxide single crystal
JP7095403B2 (en) 2018-05-24 2022-07-05 住友金属鉱山株式会社 Heat treatment method for oxide single crystal

Similar Documents

Publication Publication Date Title
KR102253607B1 (en) Heat shield member, single crystal pulling device, and single crystal silicon ingot manufacturing method
JP2006342029A (en) Annealing furnace used for heat-treating metal fluoride single crystal and annealing method of metal fluoride single crystal
JP4863710B2 (en) Pulling apparatus for producing metal fluoride single crystal and method for producing metal fluoride single crystal using the apparatus
JP4668068B2 (en) Metal fluoride single crystal pulling apparatus and method for producing metal fluoride single crystal using the apparatus
US8555674B2 (en) Quartz glass crucible for silicon single crystal pulling operation and process for manufacturing the same
JP4301921B2 (en) Single crystal pulling equipment for metal fluoride
JP4425181B2 (en) Method for producing metal fluoride single crystal
JP2014162673A (en) Sapphire single crystal core and manufacturing method of the same
JP4425185B2 (en) Annealing method of metal fluoride single crystal
EP1424408B1 (en) Single crystal pulling apparatus for metal fluoride
JP2004231502A (en) As-grown single crystal body of barium fluoride
JP4456849B2 (en) As-grown single crystal of calcium fluoride
JP2007284324A (en) Manufacturing device and manufacturing method for semiconductor single crystal
CN113774484A (en) Gallium oxide crystal growth method and combined crucible for growing gallium oxide crystal
JP2011225423A (en) Double crucible structure used for metal fluoride single crystal growing furnace, and metal fluoride single crystal growing furnace
JP4484208B2 (en) Method for producing metal fluoride single crystal
JP4500531B2 (en) As-grown single crystal of alkaline earth metal fluoride
JP2010042968A (en) Method for producing silicon single crystal
JP2013060335A (en) METHOD FOR PRODUCING MgF2 SINGLE CRYSTAL
KR20040044363A (en) As-Grown Single Crystal of Calcium Fluoride
JP4821623B2 (en) Single crystal growth crucible and fluoride crystal grown by this crucible
JP4425186B2 (en) Heat treatment method of metal fluoride single crystal
JP2007308349A (en) METHOD FOR HEAT-TREATING BaLiF3 CRYSTAL
JP2007326730A (en) Apparatus for pulling metal fluoride single crystal
JP2012036054A (en) Method for producing metal fluoride single crystal