JP7091926B2 - 車両挙動予測方法及び車両挙動予測装置 - Google Patents

車両挙動予測方法及び車両挙動予測装置 Download PDF

Info

Publication number
JP7091926B2
JP7091926B2 JP2018151344A JP2018151344A JP7091926B2 JP 7091926 B2 JP7091926 B2 JP 7091926B2 JP 2018151344 A JP2018151344 A JP 2018151344A JP 2018151344 A JP2018151344 A JP 2018151344A JP 7091926 B2 JP7091926 B2 JP 7091926B2
Authority
JP
Japan
Prior art keywords
vehicle
vehicle behavior
travel plan
travel
behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018151344A
Other languages
English (en)
Other versions
JP2020026188A (ja
Inventor
ファソン ジャン
忠嗣 玉正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2018151344A priority Critical patent/JP7091926B2/ja
Publication of JP2020026188A publication Critical patent/JP2020026188A/ja
Application granted granted Critical
Publication of JP7091926B2 publication Critical patent/JP7091926B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Vehicle Body Suspensions (AREA)

Description

本発明は、車両挙動予測方法及び車両挙動予測装置に関する。
特許文献1には、ファジーニューラルネットワークによって学習した制御ルールに従い、ダンパー速度、上下加速度、ピッチ加速度及びロール加速度に基づいて、緩衝装置の減衰係数を制御する車両サスペンションシステムが提案されている。
特表2005-538886号公報
特許文献1に記載の技術では、現在の状態量であるダンパー速度、上下加速度、ピッチ加速度及びロール加速度に基づいてサスペンションの特性を制御する。
しかしながら、車両の状態は動的に変化するため、現在の状態量に基づいて制御すると、車両の状態が変化した後に制御が始まるので制御遅れが生じる。
本発明は、車両挙動の制御遅れを軽減することを目的とする。
本発明の一態様に係る車両挙動予測方法では、車両の走行計画を決定し、走行計画に沿って走行する車両に発生する車両挙動をモデル化した予測モデルに、決定した走行計画を入力することにより、車両の車両挙動を予測する。
本発明の態様によれば、走行計画で予定された将来の走行シーンに応じて、これから自車両に発生する車両挙動を予測することができる。このように将来の走行シーンが車両挙動に及ぼす影響を反映させることにより、将来の車両挙動の予測精度を向上することができる。この結果、より精度の高い予測結果に基づいて制御を開始することができるので、車両挙動の制御遅れを軽減できる。
本発明の実施形態の走行支援装置の一例の概略構成図である。 図1のアクチュエータを有する能動型サスペンションの一例の概略構成図である。 圧力制御弁における指令電流と制御圧との関係を示す特性線図である。 図1のコントローラの機能構成の一例を示すブロック図である。 図4の状態予測器の学習処理の一例を示すフローチャートである。 図4のコントローラによる制御処理の一例を示すフローチャートである。 平坦路から不整路へ進入した場合のバネ上加速度の時間変化を示すグラフである。 平坦路から不整路へ進入した場合のバネ上速度の時間変化を示すグラフである。 平坦路から不整路へ進入した場合のバネ上変位の時間変化を示すグラフである。
以下、本発明の実施形態について、図面を参照しつつ説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
(構成)
図1を参照する。走行支援装置1は、自車両の車両挙動を予測し、予測した車両挙動に基づいて自車両に搭載されたアクチュエータを制御することにより、自車両の車両挙動を制御する。
走行支援装置1は、車外環境センサ2と、車両センサ3と、ナビゲーションシステム4と、走行制御装置5と、アクチュエータ6と、コントローラ7を備える。
車外環境センサ2は、自車両の外側の車外環境を検出するセンサである。
車外環境センサ2は、例えばレーザレンジファインダ(LRF:Laser Range-Finder)やレーダなどの測距装置であってよい。測距装置は、例えば、自車両周囲に存在する物体、自車両と物体との相対位置、自車両と物体との距離を検出する。
また、測距装置は、自車両の前方の路面までの距離を検出する。自車両が前方に進行するのに伴って自車両の前方の路面を走査することにより、路面荒さを測定できる。
測距装置は、検出した測距データを走行制御装置5及びコントローラ7へ出力する。
車外環境センサ2は、例えばステレオカメラや単眼カメラ等のカメラであってもよい。カメラは、自車両の周囲に存在する物体や、車線境界線(例えば白線)などの道路標示、縁石やガードレール等の地物、前方の路面などを撮影した撮影データを走行制御装置5及びコントローラ7へ出力する。
車両センサ3は、自車両のバネ上の車体の6軸運動、及びバネ下の上下方向、左右方向及び前後方向の3軸運動を自車両の現在の状態として検出する。以下、上下方向、左右方向及び前後方向の3軸運動を「バウンス」と表記する。
例えば車両センサ3は、バネ上のバウンスの加速度と、バネ上のピッチ角速度、ロール角速度、及びヨー角速度と、バネ下のバウンスの加速度を検出してよい。
車両センサ3は、バウンスの加速度に代えて変位を検出してもよく速度を検出してもよい。
車両センサ3は、ピッチ角速度、ロール角速度、及びヨー角速度に代えて、ピッチ角変位、ロール角変位、及びヨー角変位を検出してもよく、ピッチ角加速度、ロール角加速度、及びヨー角加速度を検出してもよい。
また、車両センサ3は、自車両の車輪速を検出する車輪速センサを含んでもよい。
さらに、車両センサ3は、自車両の車室内の状態として、車室内の乗員の配置、重さ及び動き、並びに車室内の荷物の配置、重さ、動きを検出するカメラや圧力センサを含んでもよい。
車両センサ3は、自車両の現在の状態を示す車両状態信号を走行制御装置5及びコントローラ7へ出力する。
ナビゲーションシステム4は、自車両の現在位置と、その現在位置における道路地図情報を認識し、乗員が入力した目的地までの走行経路を設定する。
ナビゲーションシステム4は、ナビコントローラと、測位装置と、地図データベースと、通信部を備える。
ナビコントローラは、ナビゲーションシステム4の情報処理動作を制御する電子制御ユニット(ECU:Electronic Control Unit)である。
測位装置は、自車両の現在位置を測定する。測位装置は、例えば複数の航法衛星から電波を受信して自車両の現在位置を取得するGPS受信機や、GPS受信機以外の他の全地球型測位システム(GNSS)受信機である。測位装置は、慣性航法装置であってもよい。
地図データベースは、地図情報を記憶している。地図情報には、ノードとリンクで示される道路地図と、道路地図座標における道路種別(例えば一般道路や高速道路)、道路幅、道路形状、勾配、車線数、法定速度(制限速度)に関する情報とが少なくとも含まれている。例えば、道路地図における道路は道路ごとにリンク番号で識別されており、リンク番号ごとに道路種別、道路幅、道路形状、勾配、車線数、法定速度(制限速度)に関する情報が対応づけられている。さらに、各道路の車線ごとにリンク番号は設定されている。
通信部は、自車両の外部の通信装置との間で無線通信を行う。通信部による通信方式は、例えば公衆携帯電話網による無線通信や、車車間通信、路車間通信、又は衛星通信であってよい。
ナビゲーションシステム4は、通信部によって外部装置から道路地図データや、自車両の外側の車外環境の情報を取得してもよい。ナビゲーションシステム4は、例えば車外環境として、自車両の周囲の風の向きや風の強さの情報を取得してよい。
ナビゲーションシステム4は、自車両の現在位置から乗員が入力した目的地までの走行経路(予定の経路)を設定し、この走行経路に従って乗員に経路案内を行う。
さらにナビゲーションシステム4は、設定した走行経路の情報を、自車両の将来の走行計画として走行制御装置5及びコントローラ7へ出力する。
例えば、ナビゲーションシステム4は、設定した走行経路の地図情報を走行制御装置5及びコントローラ7へ出力する。
さらに、ナビゲーションシステム4は、通信部によって外部装置から取得した車外環境の情報をコントローラ7へ出力する。
アクチュエータ6は、走行制御装置5又はコントローラ7からの電気的な制御信号を機械的な運動に変換して自車両の車両挙動を制御する駆動装置である。
例えば、アクチュエータ6は、自動運転時に走行制御装置5からの制御信号に応じて自車両の操舵角度、アクセル開度、制動量を変更するためのステアリングアクチュエータ、アクセル開度アクチュエータ、ブレーキ制御アクチュエータであってもよい。
また、例えばアクチュエータ6は、車体側部材と車輪側部材との間に介装された能動型サスペンション8に設けられ、コントローラ7からの制御信号に応じて作動圧が調整される油圧シリンダであってもよい。
図2を参照する。参照符号10は車体側部材を、参照符号11FL~11RRは前左~後右車輪をそれぞれ示す。
能動型サスペンション8は、車体側部材10と車輪11FL~11RRの各車輪側部材14との間に各々介装されたアクチュエータとしての油圧シリンダ18FL~18RRと、これら油圧シリンダ18FL~18RRの作動圧を個別に調整する圧力制御弁20FL~20RRを備える。
また、能動型サスペンション8は、これら圧力制御弁20FL~20RRに所定圧力の作動油を供給側配管21Sを介して供給すると共に、圧力制御弁20FL~20RRからの戻り油を戻り側配管21Rを通じて回収する油圧源22と、この油圧源22及び圧力制御弁20FL~20RR間の供給側配管21Sに介挿された蓄圧用のアキュムレータ24F,24Rを備える。
油圧シリンダ18FL~18RRのそれぞれは、シリンダチューブ18aを有し、このシリンダチューブ18aには、軸方向に貫通孔を有するピストン18cにより隔設された下側の圧力室Lが形成され、ピストン18cの上下面の受圧面積差と内圧とに応じた推力を発生する。そして、シリンダチューブ18aの下端が車輪側部材14に取付けられ、ピストンロッド18bの上端が車体側部材10に取付けられている。
また、圧力室Lの各々は、油圧配管38を介して圧力制御弁20FL~20RRの出力ポートに接続されている。また、油圧シリンダ18FL~18RRの圧力室Lの各々は、絞り弁32を介してバネ下振動吸収用のアキュムレータ34に接続されている。また、油圧シリンダ18FL~18RRの各々のバネ上,バネ下相当間には、比較的低いバネ定数であって車体の静荷重を支持するコイルスプリング36が配設されている。
圧力制御弁20FL~20RRのそれぞれは、スプールを摺動自在に内装した円筒状の弁ハウジングとこれに一体的に設けられた比例ソレノイドとを有する3ポート比例電磁減圧弁で構成されている。
比例ソレノイドの励磁コイルに供給する指令電流i(制御量)を調整することにより、弁ハウジング内に収容されたポペットの移動距離、すなわちスプールの位置が制御される。これにより、供給ポート及び出力ポート又は出力ポート及び戻りポートを介して油圧源22と油圧シリンダ18FL~18RRとの間で流通する作動油が制御されるようになっている。
図3は、励磁コイルに加えられる指令電流i(:iFL~iRR)と圧力制御弁20FL(~20RR)の出力ポートから出力される制御圧Pとの関係を示す。ノイズを考慮した最小電流値iMINのときには、制御圧Pは最低制御圧PMINとなり、この状態から電流値iを増加させると、電流値iに比例して直線的に制御圧Pが増加し、最大電流値iMAXのときには、油圧源22の設定ライン圧に相当する最高制御圧PMAXとなる。参照符号iNは中立指令電流,参照符号PNは中立制御圧を示す。
図1を参照する。走行制御装置5は、自車の自動運転制御を行う電子制御ユニットである。この「自動運転」は、自車両の走行制御を全て自動で行う「完全自動運転」のみならず、走行制御を部分的に自動で行う「部分自動運転」や「運転支援」も含む概念である。
走行制御装置5は、自車両の自動運転時に、車外環境センサ2から入力した測距データや自車両周囲の撮影データ、車両センサ3から入力した車両状態信号に基づいて、ナビゲーションシステム4により設定された走行経路を自車に走行させる走行軌道(トラジェクトリ)を生成する。
走行軌道を生成する際に、走行制御装置5は、まず走行経路上を自動で自車に走行させるための運転行動計画を決定する。
運転行動計画とは、自車両を走行させるレーン(車線)と、このレーンを走行させるのに要する運転行動とを定めた、中長距離の範囲におけるレーンレベル(車線レベル)での運転行動の計画である。例えば運転行動計画は、前方に存在する交差点を右折するシーンにおいて、交差点の手前何m地点で右折レーンに車線変更するか等の運転行動を定めた計画である。
そして、走行制御装置5は、運転行動計画に従って自車両を走行させるための軌道候補を、自車両の運動特性などに基づいて生成する。走行制御装置5は、軌道候補の各々の将来リスクを評価して、最適な軌道を選択し、自車に走行させる走行軌道として設定する。走行軌道は、目標操舵角のほか、速度計画やそのための加減速を含む。
走行制御装置5は、選択した走行軌道に基づいてアクチュエータ6(例えば、ステアリングアクチュエータ、アクセル開度アクチュエータ、及び/又はブレーキ制御アクチュエータ)を制御する。
具体的には、走行制御装置5は、走行軌道を追従する一連の車両挙動を発生するアクチュエータ6の制御量の時系列を算出して、算出した制御量をアクチュエータ6へ逐次出力する。
以下、走行制御装置5により算出されるアクチュエータ6の制御量を「ACR制御量」と表記する。
走行制御装置5は、運転行動計画及び走行軌道を、自車両の走行計画としてコントローラ7へ出力する。
走行制御装置5は、ACR制御量の時系列を自車両の走行計画としてコントローラ7へ出力する。
さらに走行制御装置5は、走行制御装置5により行われる予定の自動運転制御の自動運転レベルを走行計画としてコントローラ7へ出力する。
自動運転レベルは、例えば、運転者による走行状態の監視を要しないレベルや、運転者による走行状態の監視を要するレベルを含んでよい。また、自動運転レベルは、例えば「完全自動運転」、「部分自動運転」、「運転支援」を含んでもよい。
一例として、アメリカ国家交通安全協会(NHTSA:National Highway Traffic Safety Administration)によって制定された基準に従う自動運転レベルによれば、運転者による走行状態の監視を要しないレベルは自動運転レベル3以上であり、運転者による走行状態の監視を要するレベルは自動運転レベル2以下であり、完全自動運転は、自動運転レベル3以上であり、部分自動運転は自動運転レベル2であり、運転支援は自動運転レベル1である。
コントローラ7は、車外環境センサ2から入力した測距データや自車両周囲の撮影データ、車両センサ3から入力した車両状態信号、ナビゲーションシステム4から入力した走行計画及び車外環境の情報、走行制御装置5から入力した走行計画に基づいてアクチュエータ6を駆動し、自車両の車両挙動を制御する電子制御ユニットである。
コントローラ7は、CPU(Central Processing Unit)、やMPU(Micro-Processing Unit)などのプロセッサと、記憶装置等の周辺部品とを含む。
記憶装置は、半導体記憶装置、磁気記憶装置及び光学記憶装置のいずれかを備えてよい。記憶装置は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
プロセッサは、記憶装置に格納されるコンピュータプログラムを実行することにより、以下に説明するコントローラ7の機能を実現する。
なお、汎用の半導体集積回路中に設定される機能的な論理回路でコントローラ7を実現してもよい。例えばコントローラ7は、フィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
本実施形態では、コントローラ7が、自車両の車両挙動を制御するアクチュエータとして能動型サスペンション8の油圧シリンダ18FL~18RRの作動圧を調整し、能動型サスペンション8の特性を変化させる例について説明する。
具体的には、コントローラ7は、圧力制御弁20FL~20RRの指令電流i(制御量)を調整して油圧シリンダ18FL~18RRが発生する推力を制御することにより、自車両の車体挙動を制御する。例えば車体の上下振動を抑制するように自車両の車体挙動を制御する。
図4を参照してコントローラ7の機能構成を説明する。コントローラ7は、実施形態の車両挙動予測装置40を構成する。車両挙動予測装置40は、車両情報取得部41と、車外情報取得部42と、走行計画取得部43と、モデル予測制御部44を備える。
車両情報取得部41は、車両センサ3から出力される車両状態信号に基づいて車両の状態を示す車両状態情報を取得する。
車両状態情報は、例えば、横方向加速度、並びにロール軸まわり及びヨー軸まわりの変位、速度及び加速度の情報を含んでよい。
車両状態信号が変位情報である場合、車両情報取得部41は、変位情報を微分することにより速度情報と加速度情報を取得できる。
車両状態信号が速度情報である場合、車両情報取得部41は、速度情報を積分することにより変位情報を取得し、速度情報を微分することにより加速度情報を取得できる。
車両状態信号が加速度情報である場合、車両情報取得部41は、加速度情報を積分することにより変位情報と速度情報を取得できる。
また、車両情報取得部41は、ACR制御量の現在値を車両状態情報として走行制御装置5から取得してよい。
また、車両情報取得部41は、車両状態情報は、車室内の乗員の配置、重さ及び動き、並びに車室内の配置、重さ、動きなどの車室内の状態を示す車内情報を取得する。
車両情報取得部41は、取得した車両状態情報及び車内情報をモデル予測制御部44へ出力する。
車外情報取得部42は、車外環境センサ2から出力される測距データや自車両周囲の撮影データ、及び車両センサ3から出力される車両状態信号に基づいて、自車両の外側の車外環境を示す車外環境情報を取得する。
車外環境情報は、例えば、自車両の前方の路面の路面荒さ、路面に発生している路面振動、自車両の前方の路面の路面摩擦係数を含んでよい。
車外情報取得部42は、車外環境センサ2から出力される測距データや自車両周囲の撮影データに基づいて、自車両の前方の路面の路面荒さ及び路面に発生している路面振動を取得する。
車外情報取得部42は、自車両の車輪速から自車両の加速度とタイヤのスリップ率を演算し、加速度とスリップ率の回帰係数に基づいて路面摩擦係数を取得する。
また、車外情報取得部42は、ナビゲーションシステム4の通信部によって外部装置から車外環境情報を取得してよい。例えば、車外情報取得部42は、自車両の周囲の風の向きや風の強さを示す車外環境情報を外部装置から取得してよい。
車外情報取得部42は、取得した車外環境情報をモデル予測制御部44へ出力する。
走行計画取得部43は、ナビゲーションシステム4により設定された設定経路、及びその地図情報を走行計画として取得する。
また、走行計画取得部43は、走行制御装置5が決定した運転行動計画、及び走行軌道を走行計画として取得する。
また、走行計画取得部43は、走行制御装置5が算出したACR制御量の時系列を、走行計画として取得する。
また、走行計画取得部43は、走行制御装置5により行われる予定の自動運転制御の自動運転レベルを走行計画として取得する。
さらに、走行計画取得部43は、走行制御装置5が決定した走行軌道上を自車両が走行した時に発生すると予測される横方向加速度の予測値を走行計画として算出する。
走行計画取得部43は、取得した走行計画をモデル予測制御部44へ出力する。
モデル予測制御部44は、上記の車両状態情報、車内情報、車外環境情報及び走行計画に基づくモデル予測制御を行い、能動型サスペンション8の圧力制御弁20FL~20RRの制御量を制御する。以下、モデル予測制御部44により制御される圧力制御弁20FL~20RRの制御量を単に「制御量」と表記する。
モデル予測制御では、現時刻から未来の有限区間(予測区間)にわたる制御対象の状態を予測する。
具体的には、予測区間の長さをTpとして、現時刻t0から時刻Tp先の区間の時刻t0、t0+1、…、t0+Tpにおける制御対象への入力に基づいて、時刻t0+1、t0+2、…、t0+Tp+1における制御対象の状態を予測する。
そして、予測した時刻t0+1、t0+2、…、t0+Tp+1における状態に基づいて、予測区間における制御性能を示す評価関数を算出し、この評価関数を最小にする制御量を、最適化問題等を用いて探索する。
モデル予測制御部44は、状態予測器50と、評価部51と、最適化部52と、を備える。
状態予測器50は、現時刻t0の自車両の状態及び自車両の周囲の車外環境と、時刻t0、t0+1、…、t0+Tpにおける自車両の走行計画及び制御量の候補を入力して、時刻t0+1、t0+2、…、t0+Tp+1における自車両の状態を車両挙動として予測する。
このため、状態予測器50は、自車両が走行する予定の走行計画(将来の走行計画)と、制御量と、現時刻の自車両の状態及び車外環境に応じて発生する自車両の車両挙動がモデル化された予測モデルを有する。
予測モデルは、例えば、自車両が走行する予定の走行計画と、制御量と、現時刻の自車両の状態及び車外環境に応じて発生する自車両の車両挙動が、微分方程式によって表現されたモデルであってよい。
また、予測モデルは、例えば、実際に走行計画に沿って自車両を走行させることにより、自車両が走行する予定の走行計画と、制御量と、現時刻の自車両の状態及び車外環境に応じて自車両に発生した車両挙動を学習した深層ニューラルネットワーク(DNN:Deep Neural Network)であってもよい。
状態予測器50は、車両情報取得部41から現時刻t0の車両状態情報及び車内情報を入力する。状態予測器50は、車外情報取得部42から現時刻t0の車外環境情報を入力する。
さらに状態予測器50は、走行計画取得部43から、時刻t0、t0+1、…、t0+Tpにおける自車両の走行計画を入力する。
自車両の走行計画は、例えば、自車両の速度計画、自車両の予定加減速度、走行軌道に沿って走行する自車両に生じる予定の横方向加速度、ACR制御量の時系列、自車両が走行する予定経路、及び予定自動運転レベルのいずれかを含む。
例えば自車両の速度計画及び予定加減速度は、走行制御装置5が決定した走行軌道により定まる、時刻t0、t0+1、…、t0+Tpにおけるそれぞれの速度及び加減速度である。
例えば自車両に生じる予定の横方向加速度は、走行制御装置5が決定した走行軌道を走行する自車両に、時刻t0、t0+1、…、t0+Tpで発生すると予測されるそれぞれの横方向加速度である。
例えばACR制御量の時系列は、時刻t0、t0+1、…、t0+Tpにアクチュエータ6へ出力される予定のACR制御量である。
例えば自車両が走行する予定経路は、ナビゲーションシステム4が設定した設定経路上を走行する自車両が、時刻t0、t0+1、…、t0+Tpにそれぞれ到達する位置やその地図情報である。
例えば予定自動運転レベルは、時刻t0、t0+1、…、t0+Tpにおいて走行制御装置5により行われる予定のそれぞれの自動運転レベルである。
また、状態予測器50は、時刻t0、t0+1、…、t0+Tpにおけるそれぞれの制御量の候補を最適化部52から入力する。
状態予測器50は、現時刻t0の車両状態情報、車内情報及び車外環境情報と、時刻t0、t0+1、…、t0+Tpにおける自車両の走行計画及び制御量の候補に基づいて、時刻t0+1、t0+2、…、t0+Tp+1における車体の状態量をそれぞれ予測する。例えば、状態予測器50は、バネ上のバウンスの変位、速度及び加速度、並びにピッチ軸、ロール軸及びヨー軸まわりの変位、速度及び加速度、バネ下のバウンスの変位、速度及び加速度を予測してよい。
状態予測器50は、予測した時刻t0+1、t0+2、…、t0+Tp+1における車体の状態量を評価部51へ出力する。
評価部51は、状態予測器50が予測した状態量に基づいて所定の評価関数を用いてコストを算出することにより、各時刻t0、t0+1、…、t0+Tpの制御量の候補の制御性能を評価する。ここで例えば、車体挙動を抑制するためバネ上の加速度やバネ上の速度を評価関数(コスト)として算出してよい。評価部51は、算出したコストを最適化部52へ出力する。
最適化部52は、評価部51が算出したコストを最小化するように、時刻t0、t0+1、…、t0+Tpにおけるそれぞれの制御量の候補を最適化する。
最適化部52は、例えば、評価関数の微分値を用いる反復手法に基づいて制御量の候補を最適化してよい。
また例えば、最適化部52は、試行錯誤的に最適解を直接探索する発見的手法に基づいて制御量の候補を最適化してもよい。発見的手法として、例えば遺伝的アルゴリズム、粒子群最適化、人工蜂コロニーアルゴリズムを使用してよい。
最適化部52は、探索によって最適化された時刻t0、t0+1、…、t0+Tpの制御量のうち時刻t0の制御量を、能動型サスペンション8の圧力制御弁20FL~20RRへ出力する。
(動作)
図5及び図6を参照して、実施形態の走行支援装置の動作を説明する。図5は、図4の状態予測器50の学習処理の一例を示すフローチャートである。
ステップS1では、自車両の走行計画を決定する。走行計画は、例えばナビゲーションシステム4及び走行制御装置5を用いて決定してもよく、オフラインで決定してもよい。
ステップS2では、車両センサ3及び車外環境センサ2によって、走行計画に沿って実際に走行した際の自車両の状態、及び自車両の外側の車外環境を検出する。
ステップS3では、走行計画に沿って走行した際に、能動型サスペンション8の圧力制御弁20FL~20RRに対して実際に行った制御の制御量を検出する。
ステップS4において、ステップS1で決定した走行計画、ステップS2で検出した自車両の状態、及び自車両の外側の車外環境、及びステップS3で検出した制御量の各データを保存する。
ステップS5では、ステップS4で保存した各データに基づいて、状態予測器50が備える予測モデルを学習する。
例えば、走行計画に沿って走行した期間内のそれぞれの時刻tiについて、時刻tiの自車両の状態及び自車両の周囲の車外環境と、時刻ti、ti+1、…、ti+Tpにおける自車両の走行計画及び制御量を予測モデルに入力し、時刻ti+1、ti+2、…、ti+Tp+1における自車両の状態を予測する。そして、予測結果と実際に検出した自車両の状態(教師データ)との誤差関数が最小となる解を探索して、予測モデルを学習させる。
図6は、図4のコントローラ7により行う能動型サスペンション8の制御処理の一例を示すフローチャートである。
ステップS10においてナビゲーションシステム4及び走行制御装置5は、自車両の走行計画を決定する。
ステップS11において車両センサ3及び車外環境センサ2は、自車両の状態、及び自車両の外側の車外環境を検出する。
ステップS12において最適化部52は、時刻t0、t0+1、…、t0+Tpにおける制御量の候補の初期値を決定する。
ステップS13において状態予測器50は、現時刻t0の車両状態情報、車内情報及び車外環境情報と、時刻t0、t0+1、…、t0+Tpにおける自車両の走行計画及び制御量の候補に基づいて、時刻t0+1、t0+2、…、t0+Tp+1における車体の状態量をそれぞれ予測する。
ステップS14において評価部51は、状態予測器50が予測した状態量に基づいて所定の評価関数を用いてコストを算出することにより、時刻t0、t0+1、…、t0+Tpの制御量の候補の制御性能を評価する。
ステップS15において最適化部52は、評価部51が算出したコストに基づいて、時刻t0、t0+1、…、t0+Tpの制御量の候補が最適化されたか否かを判定する。例えば最適化部52は、コストが閾値以下になった場合やコストが最小値になった場合に制御量の候補が最適化されたと判定してよい。
制御量の候補が最適化されない場合(ステップS15:N)に処理はステップS16へ進む。
ステップS16において最適化部52は、所定の最適化アルゴリズムにしたがって制御量の候補を再計算する。その後に処理はステップS13に戻る。
制御量の候補が最適化された場合(ステップS15:Y)に、最適化部52は、時刻t0の制御量を能動型サスペンション8の圧力制御弁20FL~20RRへ出力する。その後に処理は終了する。
(実施形態の効果)
(1)ナビゲーションシステム4及び走行制御装置5は、自車両の将来の走行計画を決定する。モデル予測制御部44は、将来の走行計画に沿って走行する前記車両に発生する車両挙動をモデル化した予測モデルを有する状態予測器50に、ナビゲーションシステム4及び走行制御装置5が決定した将来の走行計画を入力することにより、自車両の車両挙動を予測する。
自車両がこれから走行する将来の走行計画を用いることにより、走行計画で予定された将来の走行シーンに応じて自車両に発生する車両挙動を予測することができる。
将来の走行シーンが車両挙動に及ぼす影響を反映させることにより、将来の車両挙動の予測精度を向上することができる。この結果、より精度の高い予測結果に基づいて制御を開始することができるので、車両挙動の制御遅れを軽減できる。
このため、走行計画に合わせた最適な車両挙動を実現できる。例えば、能動型サスペンション8の油圧シリンダ18FL~18RRを制御する場合、走行計画に合わせた最適なサスペンション特性を得ることができる。
図7A~図7Cは、交差点を曲がって平坦路から不整路へ進入した場合のバネ上加速度、バネ上速度、バネ上変位の時間変化を示すグラフである。
破線は、走行計画を用いないで能動型サスペンションを制御した場合の波形を示す。
路面荒さを測定する車外環境センサ2は、自車両の位置から所定の予見距離だけ前方の位置の路面変位を検出する。したがって、交差点を曲がって不整路へ進入すると、自車両が予見距離だけ進むまでの期間(T1~T2)は、路面荒さの情報が使用できない。このため、能動型サスペンションの制御に遅れが生じてバネ上の運動が大きくなる。
実線は、走行計画を入力とする予測モデルを用いて能動型サスペンションを制御した場合の波形を示す。
この場合、不整路へ進入することが走行計画で予定されており、不整路を走行した自車両に生じる車両挙動は学習されているので、遅くとも不整路への進入時刻T1には、不整路を走行する自車両の車両挙動を予測することができる。このため、不整路への進入直後の時刻T1から能動型サスペンションの制御の誤差を低減して、バネ上の運動を抑えることができる。
(2)状態予測器50に入力される走行計画は、自車両を走行させる予定の経路を含んでよい。これにより、自車両がこれから走行する経路に合わせて車両挙動を制御できる。
(3)状態予測器50に入力される走行計画は、自車両の速度計画を含んでよい。これにより、自車両の車速計画に合わせて車両挙動を制御できる。
(変形例)
(1)上記実施形態では、コントローラ7は、自車両の車両挙動を制御するアクチュエータとして能動型サスペンション8の油圧シリンダ18FL~18RRの作動圧を調整した。
これに代えて、コントローラ7は、ステアリングアクチュエータ、アクセル開度アクチュエータ、ブレーキ制御アクチュエータのいずれかの制御量を制御してもよい。この場合、コントローラ7は、走行制御装置5に代わってこれらのアクチュエータの制御量を制御してよい。
(2)モデル予測制御部44による自車両の状態予測に使用される、車両状態情報、車外環境情報と、走行計画のデータはそれぞれ異なる優先度を有していてもよい。
例えば、車両状態情報の優先度を最も高く設定し、走行計画の優先度を二番目に高く設定し、車外環境情報の優先度を最も低く設定してもよい。
状態予測器50は、優先度が低いデータの影響よりも優先度が高いデータの影響を予測結果により強く反映させてよい。例えば、状態予測器50が深層ニューラルネットワークを用いた予測モデルを有する場合には、優先度が低いデータが入力されるノードと中間層との結合係数よりも、優先度が高いデータが入力されるノードと中間層との結合係数よりを大きくしてよい。
これにより、自車両の状態予測に使用されるデータが予測結果に与える影響に優劣を設けることができる。
例えば、尤度が高いデータの優先度を尤度の低いデータの優先度よりも高く設定することによって、予測結果の精度を向上させることができる。
また、例えば、車外環境情報どうしの間に尤度の差がある場合には、尤度の高い車外環境情報の優先度を尤度の低い車外環境情報の優先度よりも高く設定してよい。これにより、車外環境を検出するセンサの尤度に差がある場合や、センサの尤度が変動する場合に、センサ信号が予測結果に与える影響を尤度に応じて調整することができる。
(3)上記実施形態では、状態予測器50は、自動運転に使用される走行計画を用いて自車両の状態を予測した。これに代えて、状態予測器50は手動運転時に運転者へのルート案内に使用される走行計画を用いて自車両の状態を予測してもよい。
1…走行支援装置、2…車外環境センサ、3…車両センサ、4…ナビゲーションシステム、5…走行制御装置、6…能動型サスペンション、7…コントローラ、8…能動型サスペンション、10…車体側部材、11FL…車輪、11RR…車輪、14…車輪側部材、18a…シリンダチューブ、18b…ピストンロッド、18c…ピストン、18FL…油圧シリンダ、18RR…油圧シリンダ、20FL…圧力制御弁、20RR…圧力制御弁、21R…側配管、21S…供給側配管、22…油圧源、24F…アキュムレータ、24R…アキュムレータ、32…弁、34…アキュムレータ、36…コイルスプリング、38…油圧配管、40…車両挙動予測装置、41…車両情報取得部、42…車外情報取得部、43…走行計画取得部43、44…モデル予測制御部、50…状態予測器、51…評価部、52…最適化部

Claims (6)

  1. 車両の将来の走行計画を決定し、
    前記将来の走行計画に沿って走行する前記車両に発生する車両挙動をモデル化した予測モデルに、決定した前記将来の走行計画を入力することにより、前記車両の車両挙動であるバウンス、ピッチ、ロール、ヨーを予測し、
    予測した前記車両挙動に基づいて前記車両の車両挙動を制御するアクチュエータの制御量を最適化し、
    最適化された前記制御量で前記アクチュエータを制御する、
    ことを特徴とする車両挙動予測方法。
  2. 前記アクチュエータは、能動型サスペンションであることを特徴とする請求項1に記載の車両挙動予測方法。
  3. 不整路へ進入することが前記将来の走行計画で予定されている場合は、前記不整路を走行した前記車両に生じた車両挙動の学習結果を用いて前記車両挙動を予測することを特徴とする請求項1又は2に記載の車両挙動予測方法。
  4. 前記将来の走行計画と、前記車両の状態を示す車両状態情報と、前記車両の外側の車外環境を示す車外環境情報とを前記予測モデルに入力することにより前記車両挙動を予測し、
    前記車両状態情報の優先度を最も高く設定し、前記将来の走行計画の優先度を二番目に高く設定し、前記車外環境情報の優先度を最も低く設定し、
    前記将来の走行計画と、前記車両状態情報と、前記車外環境情報のうち優先度がより低いものよりも優先度がより高いものの影響を前記予測モデルの予測結果により強く反映させる、
    ことを特徴とする請求項1~3のいずれか一項に記載の車両挙動予測方法。
  5. 車両の将来の走行計画を決定し、前記将来の走行計画に沿って走行する前記車両に発生する車両挙動をモデル化した予測モデルに、決定した前記将来の走行計画を入力することにより、前記車両の車両挙動であるバウンス、ピッチ、ロール、ヨーを予測し、予測した前記車両挙動に基づいて前記車両の車両挙動を制御するアクチュエータの制御量を最適化し、最適化された前記制御量で前記アクチュエータを制御する、コントローラを備えることを特徴とする車両挙動予測装置。
  6. 前記アクチュエータは、能動型サスペンションであることを特徴とする請求項5に記載の車両挙動予測装置。
JP2018151344A 2018-08-10 2018-08-10 車両挙動予測方法及び車両挙動予測装置 Active JP7091926B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018151344A JP7091926B2 (ja) 2018-08-10 2018-08-10 車両挙動予測方法及び車両挙動予測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018151344A JP7091926B2 (ja) 2018-08-10 2018-08-10 車両挙動予測方法及び車両挙動予測装置

Publications (2)

Publication Number Publication Date
JP2020026188A JP2020026188A (ja) 2020-02-20
JP7091926B2 true JP7091926B2 (ja) 2022-06-28

Family

ID=69621824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018151344A Active JP7091926B2 (ja) 2018-08-10 2018-08-10 車両挙動予測方法及び車両挙動予測装置

Country Status (1)

Country Link
JP (1) JP7091926B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102616457B1 (ko) * 2023-06-16 2023-12-21 에이디어스 주식회사 자율 주행 차량의 에어서스펜션 작동 플래닝 생성 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084110A (ja) 2015-10-28 2017-05-18 株式会社デンソーアイティーラボラトリ 車両用制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016382A (ja) * 2009-07-07 2011-01-27 Toyota Motor Corp 車両の減衰力制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084110A (ja) 2015-10-28 2017-05-18 株式会社デンソーアイティーラボラトリ 車両用制御装置

Also Published As

Publication number Publication date
JP2020026188A (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
JP7119742B2 (ja) 走行支援方法及び走行支援装置
US10828953B2 (en) Self-driving vehicle with integrated active suspension
US11126185B2 (en) Systems and methods for predicting vehicle trajectory
US10802492B2 (en) Vehicle path identification
US11447129B2 (en) System and method for predicting the movement of pedestrians
US10928827B2 (en) Systems and methods for generating a path for a vehicle
JP6791905B2 (ja) 交通に応じた動的車両制御のためのシステムおよび方法
US10766487B2 (en) Vehicle driving system
CN110874642B (zh) 学习装置、学习方法及存储介质
JP7044010B2 (ja) サスペンション特性調整方法及びサスペンション特性調整装置
CN111552284A (zh) 无人驾驶车辆的局部路径规划方法、装置、设备及介质
JP2023042576A (ja) 下流の交通状態に基づく車線変更の決定
EP3971526B1 (en) Path planning in autonomous driving environments
JP4899626B2 (ja) 走行制御装置
CN114555449A (zh) 车载装置以及驾驶辅助方法
US20190225218A1 (en) Vehicle control apparatus
JP7091926B2 (ja) 車両挙動予測方法及び車両挙動予測装置
CN111123948A (zh) 车辆多维感知融合控制方法、系统及汽车
CN117999204A (zh) 车辆控制装置、车辆控制方法、以及车辆控制系统
EP4270352A1 (en) Controlling a future traffic state on a road segment
US11904855B2 (en) Cooperative driving system and method
US20220144311A1 (en) Producing, for an autonomous vehicle, a route from an origination to a destination
US20210370905A1 (en) Control of hybrid vehicle engine start threshold in congested traffic conditions
CN114103958A (zh) 检测视场之外的物体
KR101400267B1 (ko) 무인자율차량 및 이의 야지주행방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R151 Written notification of patent or utility model registration

Ref document number: 7091926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151