JP7090686B2 - Manufacturing method for film forming equipment and electronic devices - Google Patents

Manufacturing method for film forming equipment and electronic devices Download PDF

Info

Publication number
JP7090686B2
JP7090686B2 JP2020200859A JP2020200859A JP7090686B2 JP 7090686 B2 JP7090686 B2 JP 7090686B2 JP 2020200859 A JP2020200859 A JP 2020200859A JP 2020200859 A JP2020200859 A JP 2020200859A JP 7090686 B2 JP7090686 B2 JP 7090686B2
Authority
JP
Japan
Prior art keywords
substrate
film forming
mask
forming apparatus
electrostatic chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020200859A
Other languages
Japanese (ja)
Other versions
JP2021102811A (en
Inventor
大介 青沼
洋紀 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Publication of JP2021102811A publication Critical patent/JP2021102811A/en
Application granted granted Critical
Publication of JP7090686B2 publication Critical patent/JP7090686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Description

本発明は、マスクを介して、所定のパターンで基板に蒸着材料を成膜するための成膜装置及びこれを用いて電子デバイスを製造する方法に関するものである。 The present invention relates to a film forming apparatus for forming a film-deposited material on a substrate in a predetermined pattern via a mask, and a method for manufacturing an electronic device using the film forming apparatus.

有機EL表示装置(有機ELディスプレイ)の製造においては、有機EL表示装置を構成する有機発光素子(有機EL素子;OLED)を形成する際に、成膜装置の蒸発源から蒸発した蒸着材料を、画素パターンが形成されたマスクを介して、基板に蒸着させることで、有機物層や金属層を形成する。 In the manufacture of an organic EL display device (organic EL display), when forming an organic light emitting element (organic EL element; OLED) constituting the organic EL display device, the vapor deposition material evaporated from the evaporation source of the film forming apparatus is used. An organic layer or a metal layer is formed by depositing a film on a substrate via a mask on which a pixel pattern is formed.

成膜装置においては、マスク上の画素パターンを高い精度で基板上に成膜するために、基板への蒸着が行われる前にマスクと基板の相対的位置を高い精度で調整し、マスクを基板の成膜面に密着させる。マスクを基板の成膜面に密着させるための一つの方法として、マグネット板などのような磁力印加手段を使用し、基板の上部から基板の下部の金属製マスクに磁力を加える方法が知られている。 In the film forming apparatus, in order to deposit the pixel pattern on the mask on the substrate with high accuracy, the relative positions of the mask and the substrate are adjusted with high accuracy before the film deposition on the substrate is performed, and the mask is placed on the substrate. Adhere to the film formation surface of. As one method for bringing the mask into close contact with the film-forming surface of the substrate, a method of applying a magnetic force from the upper part of the substrate to the metal mask at the lower part of the substrate by using a magnetic force applying means such as a magnet plate is known. There is.

特許文献1には、静電チャックを用いて基板を保持した状態で、磁力印加手段で基板とマスクを密着させる構成の成膜装置において、基板とマスクを隙間なく密着させるための技術が提案されている。 Patent Document 1 proposes a technique for closely adhering a substrate and a mask in a film forming apparatus having a structure in which the substrate and the mask are brought into close contact with each other by a magnetic force applying means while the substrate is held by using an electrostatic chuck. ing.

特開2019-116679号公報Japanese Unexamined Patent Publication No. 2019-116679

従来の成膜装置においては、基板に蒸着された材料の変質や劣化を抑制するために、冷却手段が、静電チャックと磁力印加手段の間に設置されている。ところが、このような成膜装置においては、磁力印加手段とマスク間の距離が遠くなるので、磁力印加手段によるマスクの吸着力が低下し、成膜精度を低下させる要因となり得る。 In the conventional film forming apparatus, a cooling means is installed between the electrostatic chuck and the magnetic force applying means in order to suppress deterioration and deterioration of the material deposited on the substrate. However, in such a film forming apparatus, since the distance between the magnetic force applying means and the mask becomes long, the attractive force of the mask by the magnetic force applying means is lowered, which may be a factor of lowering the film forming accuracy.

本発明は、磁力印加手段によるマスクの吸着力が低下することを抑制できる成膜装置及び電子デバイスの製造方法を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a film forming apparatus and an electronic device capable of suppressing a decrease in the attractive force of a mask by a magnetic force applying means.

本発明による成膜装置は、基板を保持する基板保持面を有する静電チャックと、前記基板保持面側に設置され、マスクを保持するためのマスク支持ユニットと、前記静電チャックに対して前記基板保持面の反対側に設置され、マスクに磁力を印加するための磁力印加手段と、前記静電チャックに対して前記基板保持面の反対側に設置され、基板を冷却するための冷却手段と、を備え、マスクを介して基板に蒸着材料を成膜する成膜装置において、前記磁力印加手段は、第1プレート部材と、前記第1プレート部材の前記静電チャックに対向する面上に設置されるマグネットとを有し、前記冷却手段は、前記第1プレート部材と前記静電チャックとの間に配置された第2プレート部材と、前記第2プレート部材の前記第1プレート部材に対向する面上に設置される冷却管とを有し、前記基板保持面に平行な面内において、前記マグネットの少なくとも一部は、前記冷却管の隣り合う2つの部分の間に配置されることを特徴とする。 The film forming apparatus according to the present invention has an electrostatic chuck having a substrate holding surface for holding a substrate, a mask support unit installed on the substrate holding surface side for holding a magnet, and the electrostatic chuck. A magnetic force applying means installed on the opposite side of the substrate holding surface to apply a magnetic force to the mask, and a cooling means installed on the opposite side of the substrate holding surface to the electrostatic chuck to cool the substrate. The magnetic force applying means is installed on the first plate member and the surface of the first plate member facing the electrostatic chuck in the film forming apparatus for forming a vapor deposition material on the substrate via a mask. The cooling means faces the second plate member arranged between the first plate member and the electrostatic chuck and the first plate member of the second plate member. It has a cooling tube installed on the surface, and is characterized in that at least a part of the magnet is arranged between two adjacent portions of the cooling tube in a plane parallel to the substrate holding surface. And.

本発明によれば、磁力印加手段によるマスクの吸着力が低下することを抑制することができる。 According to the present invention, it is possible to suppress a decrease in the attractive force of the mask by the magnetic force applying means.

図1は、電子デバイスの製造装置の一部の模式図である。FIG. 1 is a schematic diagram of a part of an electronic device manufacturing apparatus. 図2は、本発明の一実施形態による成膜装置の模式図である。FIG. 2 is a schematic view of a film forming apparatus according to an embodiment of the present invention. 図3は、本発明の一実施形態による成膜装置の冷却手段及び磁力印加手段の構成及び配置構造を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the configuration and arrangement structure of the cooling means and the magnetic force applying means of the film forming apparatus according to the embodiment of the present invention. 図4は、本発明の一実施形態による成膜装置の冷却手段及び磁力印加手段の構成及び配置構造を模式的に示す平面図である。FIG. 4 is a plan view schematically showing the configuration and arrangement structure of the cooling means and the magnetic force applying means of the film forming apparatus according to the embodiment of the present invention. 図5は、電子デバイスを示す模式図である。FIG. 5 is a schematic diagram showing an electronic device.

以下、図面を参照しつつ本発明の好適な実施形態及び実施例を説明する。ただし、以下の実施形態及び実施例は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲はそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特定的な記載がないかぎりは、本発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments and examples of the present invention will be described with reference to the drawings. However, the following embodiments and examples merely illustrate preferred configurations of the present invention, and the scope of the present invention is not limited to those configurations. Further, in the following description, unless there is a specific description, the hardware configuration and software configuration, processing flow, manufacturing conditions, dimensions, materials, shapes, etc. of the apparatus are limited to those of the present invention. Not a thing.

本発明は、基板の表面に各種材料を堆積させて成膜を行う装置に適用することができ、真空蒸着によって所望のパターンの薄膜(材料層)を形成する装置に好ましく適用することができる。基板の材料としては、ガラス、高分子材料のフィルム、金属、シリコンなどの任意の材料を選択することができ、基板は、例えば、ガラス基板上にポリイミドなどのフィルムが積層された基板又はシリコンウエハであってもよい。また、蒸着材料としては、有機材料、金属性材料(金属、金属酸化物など)などの任意の材料を選択してもよい。なお、真空蒸着装置以外にも、スパッタ装置やCVD(Chemical Vapor Deposition)装置を含む成膜装置にも、本発明を適用することができる。本発明の技術は、具体的には、有機電子デバイス(例えば、有機EL素子、薄膜太陽電池)、光学部材などの製造装置に適用可能である。その中でも、蒸着材料を蒸発させてマスクを介して基板に蒸着させることで有機EL素子を形成する有機EL素子の製造装置は、本発明の好ましい適用例の一つである。 The present invention can be applied to an apparatus for depositing various materials on the surface of a substrate to form a film, and can be preferably applied to an apparatus for forming a thin film (material layer) having a desired pattern by vacuum deposition. As the material of the substrate, any material such as glass, a film of a polymer material, metal, silicon and the like can be selected, and the substrate is, for example, a substrate in which a film such as polyimide is laminated on a glass substrate or a silicon wafer. It may be. Further, as the vapor deposition material, any material such as an organic material and a metallic material (metal, metal oxide, etc.) may be selected. In addition to the vacuum deposition apparatus, the present invention can be applied to a film forming apparatus including a sputtering apparatus and a CVD (Chemical Vapor Deposition) apparatus. Specifically, the technique of the present invention can be applied to manufacturing equipment such as an organic electronic device (for example, an organic EL element, a thin film solar cell), an optical member, and the like. Among them, an apparatus for manufacturing an organic EL element, which forms an organic EL element by evaporating a vapor-deposited material and depositing it on a substrate via a mask, is one of the preferred application examples of the present invention.

<電子デバイスの製造装置>
図1は、電子デバイスの製造装置の一部の構成を模式的に示す平面図である。
<Manufacturing equipment for electronic devices>
FIG. 1 is a plan view schematically showing a configuration of a part of an electronic device manufacturing apparatus.

図1の製造装置は、例えば、有機EL表示装置の表示パネルの製造に用いられる。VR
HMD用の表示パネルの場合、所定のサイズのシリコンウエハに有機EL素子の形成のための成膜を行った後、素子形成領域の間の領域(スクライブ領域)に沿って該シリコンウエハを切り出して、複数の小さなサイズのパネルを製作する。スマートフォン用の表示パネルの場合は、4.5世代の基板(約700mm×約900mm)や6世代のフルサイズ(約1500mm×約1850mm)又はハーフカットサイズ(約1500mm×約925mm)の基板に、有機EL素子の形成のための成膜を行った後、該基板を切り抜いて複数の小さなサイズのパネルを製作する。
The manufacturing apparatus of FIG. 1 is used, for example, for manufacturing a display panel of an organic EL display device. VR
In the case of a display panel for an HMD, a film is formed on a silicon wafer of a predetermined size for forming an organic EL element, and then the silicon wafer is cut out along a region (scribe region) between the element forming regions. , Make multiple small size panels. In the case of a display panel for smartphones, a 4.5th generation substrate (about 700mm x about 900mm), a 6th generation full size (about 1500mm x about 1850mm) or a half cut size (about 1500mm x about 925mm) substrate can be used. After forming a film for forming an organic EL element, the substrate is cut out to produce a plurality of small-sized panels.

電子デバイスの製造装置は、一般的に、複数のクラスタ装置1と、クラスタ装置の間を繋ぐ中継装置とを含む。 The electronic device manufacturing device generally includes a plurality of cluster devices 1 and a relay device that connects the cluster devices.

クラスタ装置1は、基板Wに対する処理(例えば、成膜)を行う複数の成膜装置11と、使用前後のマスクMを収納する複数のマスクストック装置12と、その中央に配置される搬送室13と、を具備する。搬送室13は、図1に示すように、複数の成膜装置11及びマスクストック装置12のそれぞれと接続される。 The cluster device 1 includes a plurality of film forming devices 11 for processing (for example, film forming) the substrate W, a plurality of mask stock devices 12 for accommodating masks M before and after use, and a transport chamber 13 arranged in the center thereof. And. As shown in FIG. 1, the transport chamber 13 is connected to each of the plurality of film forming apparatus 11 and the mask stock apparatus 12.

搬送室13内には、基板又はマスクを搬送する搬送ロボット14が配置されている。搬
送ロボット14は、上流側に配置された中継装置のパス室15から成膜装置11へと基板Wを搬送する。また、搬送ロボット14は、成膜装置11とマスクストック装置12との間でマスクMを搬送する。搬送ロボット14は、例えば、多関節アームに、基板W又はマスクMを保持するロボットハンドが取り付けられた構造を有するロボットである。
A transfer robot 14 that transfers a substrate or a mask is arranged in the transfer chamber 13. The transfer robot 14 transfers the substrate W from the pass chamber 15 of the relay device arranged on the upstream side to the film forming device 11. Further, the transfer robot 14 transfers the mask M between the film forming apparatus 11 and the mask stock apparatus 12. The transfer robot 14 is, for example, a robot having a structure in which a robot hand for holding a substrate W or a mask M is attached to an articulated arm.

成膜装置11(蒸着装置とも呼ぶ)では、蒸発源に収納された蒸着材料がヒータによって加熱されて蒸発し、マスクMを介して基板W上に蒸着される。搬送ロボット14との基板W/マスクMの受け渡し、基板WとマスクMの相対位置の調整(アライメント)、マスクM上への基板Wの固定、成膜(蒸着)などの一連の成膜プロセスは、成膜装置11によって行われる。 In the film forming apparatus 11 (also referred to as a vapor deposition apparatus), the vapor deposition material stored in the evaporation source is heated by a heater and evaporated, and is vapor-deposited on the substrate W via the mask M. A series of film formation processes such as transfer of the substrate W / mask M to and from the transfer robot 14, adjustment (alignment) of the relative position between the substrate W and the mask M, fixing of the substrate W on the mask M, and film formation (deposited film) , Performed by the film forming apparatus 11.

マスクストック装置12には、成膜装置11での成膜工程に使われる新しいマスクと、使用済みのマスクとが、二つのカセットに分けて収納される。搬送ロボット14は、使用済みのマスクを成膜装置11からマスクストック装置12のカセットに搬送し、マスクストック装置12の他のカセットから新しいマスクを成膜装置11に搬送する。 In the mask stock device 12, a new mask used in the film forming process in the film forming apparatus 11 and a used mask are separately stored in two cassettes. The transfer robot 14 transfers the used mask from the film forming apparatus 11 to the cassette of the mask stock device 12, and transfers a new mask from the other cassettes of the mask stock device 12 to the film forming apparatus 11.

クラスタ装置1には、基板Wの流れ方向において上流側から搬送されてきた基板Wを当該クラスタ装置1に搬送するパス室15と、当該クラスタ装置1で成膜処理が完了した基板Wを下流側のクラスタ装置に搬送するためのバッファー室16が連結して設けられる。搬送室13の搬送ロボット14は、上流側のパス室15から基板Wを受け取って、当該クラスタ装置1内の成膜装置11の一つ(例えば、成膜装置11a)に搬送する。また、搬送ロボット14は、成膜処理が完了した基板Wを複数の成膜装置11の一つ(例えば、成膜装置11b)から受け取って、下流側に連結して設けられたバッファー室16に搬送する。 The cluster device 1 has a pass chamber 15 for transporting the substrate W transported from the upstream side in the flow direction of the substrate W to the cluster device 1, and a substrate W for which the film formation process has been completed by the cluster device 1 is on the downstream side. A buffer chamber 16 for transporting to the cluster device of the above is connected and provided. The transfer robot 14 in the transfer chamber 13 receives the substrate W from the pass chamber 15 on the upstream side and transfers it to one of the film forming devices 11 (for example, the film forming device 11a) in the cluster device 1. Further, the transfer robot 14 receives the substrate W for which the film forming process has been completed from one of the plurality of film forming devices 11 (for example, the film forming device 11b), and connects the substrate W to the downstream side in a buffer chamber 16. Transport.

バッファー室16とその下流側のパス室15との間には、基板の向きを変える旋回室17が設置されてもよい。旋回室17には、バッファー室16から基板Wを受け取って基板Wを180°回転させ、パス室15に搬送するための搬送ロボット18が設けられる。これにより、上流側のクラスタ装置と下流側のクラスタ装置とで基板Wの向きが同じになり、基板処理が容易になる。 A swivel chamber 17 that changes the direction of the substrate may be installed between the buffer chamber 16 and the pass chamber 15 on the downstream side thereof. The swivel chamber 17 is provided with a transfer robot 18 for receiving the substrate W from the buffer chamber 16, rotating the substrate W by 180 °, and transporting the substrate W to the pass chamber 15. As a result, the orientation of the substrate W becomes the same between the cluster device on the upstream side and the cluster device on the downstream side, and the substrate processing becomes easy.

パス室15、バッファー室16、旋回室17は、クラスタ装置間を連結する、いわゆる中継装置であり、クラスタ装置の上流側及び/又は下流側に設置される中継装置は、パス室、バッファー室、旋回室のうち少なくとも1つを含む。 The pass chamber 15, the buffer chamber 16, and the swivel chamber 17 are so-called relay devices that connect the cluster devices, and the relay devices installed on the upstream side and / or the downstream side of the cluster device are the pass room, the buffer room, and the like. Includes at least one of the swivel chambers.

成膜装置11、マスクストック装置12、搬送室13、パス室15、バッファー室16、旋回室17などは、有機発光素子の製造の過程で、高真空状態に維持される。 The film forming apparatus 11, the mask stock apparatus 12, the transport chamber 13, the pass chamber 15, the buffer chamber 16, the swirl chamber 17, and the like are maintained in a high vacuum state in the process of manufacturing the organic light emitting element.

本実施例では、図1を参照して、電子デバイスの製造装置の構成について説明したが、本発明はこれに限定されず、他の種類の装置やチャンバーを有してもよく、これらの装置やチャンバー間の配置が変わってもよい。例えば、本発明は、基板WとマスクMを、成膜装置11ではなく、別の装置又はチャンバーで合着させた後、これをキャリアに乗せて、一列に並んだ複数の成膜装置を通して搬送させながら成膜工程を行うインラインタイプの製造装置にも適用することができる。 In the present embodiment, the configuration of the electronic device manufacturing apparatus has been described with reference to FIG. 1, but the present invention is not limited to this, and other types of apparatus and chambers may be provided, and these devices may be provided. And the arrangement between the chambers may change. For example, in the present invention, the substrate W and the mask M are coalesced by another device or chamber instead of the film forming apparatus 11, and then the substrate W and the mask M are placed on a carrier and conveyed through a plurality of film forming apparatus arranged in a row. It can also be applied to an in-line type manufacturing apparatus that performs a film forming process while performing the film forming process.

以下、成膜装置11の具体的な構成について説明する。 Hereinafter, a specific configuration of the film forming apparatus 11 will be described.

<成膜装置>
図2は、成膜装置11の構成を示す模式図である。以下の説明においては、基板Wの成膜面に平行な面(XY平面)において交差する2つの方向をX方向(第1方向)とY方向
(第2方向)とし、基板Wの成膜面に垂直な鉛直方向をZ方向(第3方向)とするXYZ直交座標系を用いる。また、Z軸まわりの回転角(回転方向)をθで表す。
<Film formation device>
FIG. 2 is a schematic view showing the configuration of the film forming apparatus 11. In the following description, the two intersecting directions on the plane (XY plane) parallel to the film forming surface of the substrate W are defined as the X direction (first direction) and the Y direction (second direction), and the film forming surface of the substrate W is defined. An XYZ Cartesian coordinate system is used in which the vertical direction perpendicular to is the Z direction (third direction). Further, the rotation angle (rotation direction) around the Z axis is represented by θ.

成膜装置11は、真空雰囲気又は窒素ガスなどの不活性ガス雰囲気に維持される真空容器21と、真空容器21の内部に設けられる、基板支持ユニット22と、マスク支持ユニット23と、静電チャック24と、蒸発源25とを含む。 The film forming apparatus 11 includes a vacuum vessel 21 maintained in a vacuum atmosphere or an atmosphere of an inert gas such as nitrogen gas, a substrate support unit 22 provided inside the vacuum vessel 21, a mask support unit 23, and an electrostatic chuck. 24 and the evaporation source 25.

基板支持ユニット22は、搬送室13に設けられた搬送ロボット14によって搬送される基板Wを受取って保持する手段であり、基板ホルダとも呼ばれる。 The board support unit 22 is a means for receiving and holding the board W transported by the transfer robot 14 provided in the transfer chamber 13, and is also called a substrate holder.

マスク支持ユニット23は、搬送ロボット14によって搬送されるマスクMを受取って保持する手段であり、マスクホルダとも呼ばれる。マスク支持ユニット23は、静電チャック24の基板吸着面(基板保持面)側に設けられている。 The mask support unit 23 is a means for receiving and holding the mask M conveyed by the transfer robot 14, and is also called a mask holder. The mask support unit 23 is provided on the substrate suction surface (substrate holding surface) side of the electrostatic chuck 24.

マスクMは、基板W上に形成する薄膜パターンに対応する開口を有し、マスク支持ユニット23によって支持される。特に、スマートフォン向けの有機EL素子を製造するのに用いられるマスクは、微細な開口のパターンが形成された金属製マスクであり、FMM(Fine Metal Mask)とも呼ばれる。 The mask M has an opening corresponding to the thin film pattern formed on the substrate W and is supported by the mask support unit 23. In particular, the mask used for manufacturing an organic EL element for smartphones is a metal mask in which a fine opening pattern is formed, and is also called FMM (Fine Metal Mask).

基板支持ユニット22の上方には、基板Wを吸着して固定するための基板吸着手段としての静電チャック24が設けられる。 Above the substrate support unit 22, an electrostatic chuck 24 is provided as a substrate adsorption means for adsorbing and fixing the substrate W.

静電チャック24は、電極と吸着面との間に相対的に抵抗が高い誘電体が介在して、電極と被吸着体との間のクーロン力によって吸着が行われるクーロン力タイプの静電チャックであってもよく、電極と吸着面との間に相対的に抵抗が低い誘電体が介在して、誘電体の吸着面と被吸着体との間に発生するジョンソン・ラーベック力によって吸着が行われるジョンソン・ラーベック力タイプの静電チャックであってもよく、不均一電界によって被吸着体を吸着するグラジエント力タイプの静電チャックであってもよい。 The electrostatic chuck 24 is a Coulomb force type electrostatic chuck in which a dielectric having a relatively high resistance is interposed between an electrode and an adsorption surface, and adsorption is performed by a Coulomb force between the electrode and the object to be adsorbed. However, a dielectric having a relatively low resistance is interposed between the electrode and the adsorption surface, and adsorption is performed by the Johnson-Labeck force generated between the adsorption surface of the dielectric and the object to be adsorbed. It may be a Johnson-Labeck force type electrostatic chuck, or a gradient force type electrostatic chuck that adsorbs an object to be adsorbed by a non-uniform electric field.

被吸着体が導体又は半導体(シリコンウエハ)である場合には、クーロン力タイプの静電チャック又はジョンソン・ラーベック力タイプの静電チャックを用いることが好ましい。被吸着体がガラスのような絶縁体である場合には、グラジエント力タイプの静電チャックを用いることが好ましい。 When the object to be adsorbed is a conductor or a semiconductor (silicon wafer), it is preferable to use a Coulomb force type electrostatic chuck or a Johnson-Labeck force type electrostatic chuck. When the object to be adsorbed is an insulator such as glass, it is preferable to use a gradient force type electrostatic chuck.

静電チャック24は、一つのプレートで形成されてもよく、吸着力を独立的に制御できる複数のサブプレートを有するように形成されてもよい。また、一つのプレートで形成される場合にも、その内部に複数の電極部を有し、一つのプレート内で電極部ごとに吸着力を独立的に制御することができるようにしてもよい。 The electrostatic chuck 24 may be formed of one plate or may be formed so as to have a plurality of sub-plates capable of independently controlling the suction force. Further, even when the plate is formed of one plate, a plurality of electrode portions may be provided inside the plate so that the adsorption force can be independently controlled for each electrode portion in one plate.

基板吸着手段として、静電引力による静電チャックの他に、粘着力による粘着式のチャックを使ってもよい。 As the substrate adsorption means, an adhesive chuck by adhesive force may be used in addition to the electrostatic chuck by electrostatic attraction.

成膜装置11は、静電チャック24の基板吸着面とは反対側に設置された冷却手段30と磁力印加手段32(図3参照)を備える。冷却手段30は、冷媒が流れる冷却管を有し、成膜動作中に基板W及び静電チャック24の温度上昇を抑制し、基板W上に堆積された有機材料の変質や劣化を抑制することができる。磁力印加手段32は、ヨーク板(第1プレート部材)と、ヨーク板に設けられた複数のマグネットを有し、磁力によってマスクMを引き寄せ、成膜時の基板WとマスクMの密着性を高めることができる。 The film forming apparatus 11 includes a cooling means 30 and a magnetic force applying means 32 (see FIG. 3) installed on the side opposite to the substrate suction surface of the electrostatic chuck 24. The cooling means 30 has a cooling tube through which the refrigerant flows, suppresses the temperature rise of the substrate W and the electrostatic chuck 24 during the film forming operation, and suppresses deterioration and deterioration of the organic material deposited on the substrate W. Can be done. The magnetic force applying means 32 has a yoke plate (first plate member) and a plurality of magnets provided on the yoke plate, and attracts the mask M by the magnetic force to improve the adhesion between the substrate W and the mask M at the time of film formation. be able to.

本発明の実施形態では、冷却手段30の冷却管と磁力印加手段32のマグネットは、静
電チャック24の基板吸着面に垂直な方向において、実質的に同じ領域に位置する。これにより、成膜装置11が冷却手段30を具備する場合でも、磁力印加手段32とマスクMとの間の距離が遠くならないので、磁力印加手段32によってマスクMに作用する磁力が低下することを抑制できる。
In the embodiment of the present invention, the cooling tube of the cooling means 30 and the magnet of the magnetic force applying means 32 are located in substantially the same region in the direction perpendicular to the substrate suction surface of the electrostatic chuck 24. As a result, even when the film forming apparatus 11 is provided with the cooling means 30, the distance between the magnetic force applying means 32 and the mask M is not long, so that the magnetic force acting on the mask M by the magnetic force applying means 32 is reduced. It can be suppressed.

蒸発源25は、基板に成膜される蒸着材料が収納されるるつぼ(不図示)、るつぼを加熱するためのヒータ(不図示)、蒸発源からの蒸発レートが一定になるまで蒸着材料が基板に飛散することを阻むシャッタ(不図示)などを含む。蒸発源25は、点(point)蒸発源や線状(linear)蒸発源、面状蒸発源など、用途に従って多様な構成を有することができる。 The evaporation source 25 includes a crucible (not shown) in which the vapor-film-deposited material formed on the substrate is stored, a heater for heating the crucible (not shown), and the vapor-filmed material on the substrate until the evaporation rate from the evaporation source becomes constant. Includes shutters (not shown) that prevent scattering. The evaporation source 25 can have various configurations depending on the application, such as a point evaporation source, a linear evaporation source, and a planar evaporation source.

成膜装置11は、基板に蒸着された膜の厚さを測定するための膜厚モニタ(不図示)及び膜厚算出ユニット(不図示)を含む。 The film forming apparatus 11 includes a film thickness monitor (not shown) and a film thickness calculation unit (not shown) for measuring the thickness of the film deposited on the substrate.

真空容器21の上部外側(大気側)には、基板支持ユニットアクチュエータ26、マスク支持ユニットアクチュエータ27、静電チャックアクチュエータ28、位置調整機構29などが設けられる。基板支持ユニットアクチュエータ26は、基板支持ユニット22を昇降(Z方向移動)させるための駆動手段である。マスク支持ユニットアクチュエータ27は、マスク支持ユニット23を昇降(Z方向移動)させるための駆動手段である。静電チャックアクチュエータ28は、静電チャック24を昇降(Z方向移動)させるための駆動手段である。 A substrate support unit actuator 26, a mask support unit actuator 27, an electrostatic chuck actuator 28, a position adjusting mechanism 29, and the like are provided on the upper outer side (atmosphere side) of the vacuum vessel 21. The board support unit actuator 26 is a driving means for raising and lowering (moving in the Z direction) the board support unit 22. The mask support unit actuator 27 is a driving means for raising and lowering (moving in the Z direction) the mask support unit 23. The electrostatic chuck actuator 28 is a driving means for raising and lowering (moving in the Z direction) the electrostatic chuck 24.

位置調整機構29は、基板WとマスクMとの相対位置を調整するための手段としてのアライメントステージ機構である。これらのアクチュエータと位置調整機構は、例えば、モータとボールねじ、又はモータとリニアガイドなどで構成される。位置調整機構29は、静電チャック24又は静電チャックアクチュエータ28全体を基板支持ユニット22及びマスク支持ユニット23に対して、XYθ方向(X方向、Y方向、回転方向の少なくとも一つの方向)に移動及び/又は回転させる。なお、本実施形態では、基板Wを吸着した状態で、静電チャック24をXYθ方向に位置調整することで、基板WとマスクMとの相対位置を調整する。ただし、位置調整機構29は、静電チャック24又は静電チャックアクチュエータ28ではなく、基板支持ユニット22又は基板支持ユニットアクチュエータ26及びマスク支持ユニット23又はマスク支持ユニットアクチュエータ27を静電チャック24に対してXYθ方向に相対的に移動させる構成としてもよい。 The position adjusting mechanism 29 is an alignment stage mechanism as a means for adjusting the relative position between the substrate W and the mask M. These actuators and the position adjusting mechanism are composed of, for example, a motor and a ball screw, or a motor and a linear guide. The position adjusting mechanism 29 moves the entire electrostatic chuck 24 or the electrostatic chuck actuator 28 in the XYθ direction (at least one direction of the X direction, the Y direction, and the rotation direction) with respect to the substrate support unit 22 and the mask support unit 23. And / or rotate. In this embodiment, the relative position between the substrate W and the mask M is adjusted by adjusting the position of the electrostatic chuck 24 in the XYθ direction while the substrate W is adsorbed. However, the position adjusting mechanism 29 is not the electrostatic chuck 24 or the electrostatic chuck actuator 28, but the substrate support unit 22 or the substrate support unit actuator 26 and the mask support unit 23 or the mask support unit actuator 27 with respect to the electrostatic chuck 24. It may be configured to move relatively in the XYθ direction.

真空容器21の外側上面には、真空容器21の上面に設けられた透明窓を介して、基板W及びマスクMに形成されたアライメントマークを撮影するためのアライメント用カメラ31が設置される。アライメント用カメラ31は、基板W及びマスクMに形成されたアライメントマークに対応する位置に設けられる。例えば、円形の基板Wにおいて矩形をなす4つのコーナーのうち、少なくとも対角上の二つのコーナー又は4つのコーナーすべてにアライメント用カメラ31を設置してもよい。 On the outer upper surface of the vacuum container 21, an alignment camera 31 for photographing the alignment marks formed on the substrate W and the mask M is installed through the transparent window provided on the upper surface of the vacuum container 21. The alignment camera 31 is provided at a position corresponding to the alignment mark formed on the substrate W and the mask M. For example, the alignment camera 31 may be installed at least at least two diagonal corners or all four corners among the four rectangular corners on the circular substrate W.

成膜装置11は、アライメント用カメラ31によってアライメントマークを撮影する際に、アライメントマークを照らす照明用光源をさらに含む。真空容器21の内部は暗いので、光源でアライメントマークを照明することにより、より鮮明な画像を取得することができる。このために、光源は、同軸照明であることが好ましいが、これに限定されない。光源は、真空容器21の外部上側に設置されて、上方からアライメントマークを照らしてもよく、又は下方からアライメントマークを照らすよう真空容器21の内部に設置されてもよい。 The film forming apparatus 11 further includes an illumination light source that illuminates the alignment mark when the alignment mark is photographed by the alignment camera 31. Since the inside of the vacuum container 21 is dark, a clearer image can be obtained by illuminating the alignment mark with a light source. For this reason, the light source is preferably, but not limited to, coaxial illumination. The light source may be installed on the outer upper side of the vacuum vessel 21 and illuminate the alignment mark from above, or may be installed inside the vacuum vessel 21 so as to illuminate the alignment mark from below.

成膜装置11は、制御部33を具備する。制御部33は、基板W/マスクMの搬送及び
アライメント、蒸発源25の制御、成膜動作の制御などの機能を有する。
The film forming apparatus 11 includes a control unit 33. The control unit 33 has functions such as transfer and alignment of the substrate W / mask M, control of the evaporation source 25, and control of film formation operation.

制御部33は、例えば、プロセッサ、メモリ、ストレージ、I/Oなどを持つコンピュータによって構成可能である。この場合、制御部33の機能はメモリ又はストレージに格納されたプログラムをプロセッサが実行することにより実現される。コンピュータとしては、汎用のパーソナルコンピュータを使用してもよく、組込み型のコンピュータ又はPLC(programmable logic controller)を使用してもよい。又は、制御部の機能の一部又は全部をASICやFPGAのような回路で構成してもよい。また、成膜装置ごとに制御部が設置されていてもよく、一つの制御部が複数の成膜装置を制御するように構成してもよい。 The control unit 33 can be configured by, for example, a computer having a processor, memory, storage, I / O, and the like. In this case, the function of the control unit 33 is realized by the processor executing the program stored in the memory or the storage. As the computer, a general-purpose personal computer may be used, or an embedded computer or a PLC (programmable logical controller) may be used. Alternatively, a part or all of the functions of the control unit may be configured by a circuit such as an ASIC or FPGA. Further, a control unit may be installed for each film forming apparatus, or one control unit may be configured to control a plurality of film forming apparatus.

<冷却手段及び磁力印加手段>
図3と図4は、本発明の一実施形態による成膜措置11において、冷却手段30と磁力印加手段32の構成及び配置構造を模式的に示す断面図と平面図である。
<Cooling means and magnetic force applying means>
3 and 4 are cross-sectional views and plan views schematically showing the configuration and arrangement structure of the cooling means 30 and the magnetic force applying means 32 in the film forming measure 11 according to the embodiment of the present invention.

冷却手段30は、冷媒が流れる冷却管30aと、被冷却体としての静電チャック24又は基板Wとの接触面積を増やすための冷却板30b(第2プレート部材)とを有し、静電チャック24の基板吸着面24a(基板保持面)の反対側に配置されている。 The cooling means 30 has a cooling pipe 30a through which the refrigerant flows, and a cooling plate 30b (second plate member) for increasing the contact area between the electrostatic chuck 24 as the object to be cooled or the substrate W, and the electrostatic chuck 30. It is arranged on the opposite side of the substrate suction surface 24a (substrate holding surface) of the 24.

冷媒は、冷却管30aの入口(IN)から流入されて、出口(OUT)から流出される。図4において、冷却管30aの入口(IN)と出口(OUT)の位置は、例示的なものである。冷却管30aを通して冷媒が流れることによって、その下部の静電チャック24及び、静電チャック24に吸着されている基板Wを冷却させることができる。 The refrigerant flows in from the inlet (IN) of the cooling pipe 30a and flows out from the outlet (OUT). In FIG. 4, the positions of the inlet (IN) and the outlet (OUT) of the cooling pipe 30a are exemplary. By flowing the refrigerant through the cooling pipe 30a, the electrostatic chuck 24 below the electrostatic chuck 24 and the substrate W adsorbed on the electrostatic chuck 24 can be cooled.

本発明の一実施形態による成膜装置11の冷却手段30において、冷却管30aの形状は線状である。ここで、線状とは、入口(IN)から出口(OUT)まで冷却管30aが途中で分かれることなく一つの路でつながっていることを意味する。冷却管30aが線状であることで、冷却管30a内を通って流れる冷媒の流れが停滞することがなく、効果的な冷却が可能となる。 In the cooling means 30 of the film forming apparatus 11 according to the embodiment of the present invention, the shape of the cooling pipe 30a is linear. Here, the linear shape means that the cooling pipes 30a are connected by one path from the inlet (IN) to the outlet (OUT) without being separated in the middle. Since the cooling pipe 30a is linear, the flow of the refrigerant flowing through the cooling pipe 30a is not stagnant, and effective cooling is possible.

具体的に、冷却手段30の冷却管30aは、静電チャック24と基板Wを効果的に冷却するよう、様々な形状で設けることができる。例えば、図4(a)に示すように、冷却管30aは、渦巻き状に構成してもよく、又は、図4(b)に示すように、ジグザグ状に構成してもよい。この構成によれば、冷却手段30における静電チャック24に対向する平面の全域にわたって冷媒の流れが存在するため、静電チャック24と基板(W)の全体を冷却することができる。 Specifically, the cooling pipe 30a of the cooling means 30 can be provided in various shapes so as to effectively cool the electrostatic chuck 24 and the substrate W. For example, as shown in FIG. 4A, the cooling pipe 30a may be configured in a spiral shape, or may be configured in a zigzag shape as shown in FIG. 4B. According to this configuration, since the flow of the refrigerant exists over the entire plane of the cooling means 30 facing the electrostatic chuck 24, the entire electrostatic chuck 24 and the substrate (W) can be cooled.

磁力印加手段32は、前述したように、ヨーク板(第1プレート部材)32bと、第1プレート部材32bに設けられ、磁力を発生する複数のマグネット32aを含む。磁力印加手段32も、冷却手段30と同様に、静電チャック24の基板吸着面24aの反対側に配置されている。マグネット32aによって生じた磁力によって、マスクMを静電チャック24の方に引き寄せて、基板Wに密着させることができる。 As described above, the magnetic force applying means 32 includes a yoke plate (first plate member) 32b and a plurality of magnets 32a provided on the first plate member 32b to generate magnetic force. The magnetic force applying means 32 is also arranged on the opposite side of the substrate suction surface 24a of the electrostatic chuck 24, like the cooling means 30. The magnetic force generated by the magnet 32a can attract the mask M toward the electrostatic chuck 24 and bring it into close contact with the substrate W.

本実施形態の一態様によれば、冷却手段30の冷却管30aは、磁力印加手段32の第1プレート部材32bに対して、静電チャック24に対向する面に設置されている。そして、冷却管30aは、静電チャック24の基板吸着面24aに垂直の方向において、マグネット32aと実質的に同じ領域に位置する。すなわち、基板吸着面24aと交差する交差方向において磁力印加手段32と冷却手段30は重複して配置される。特に本実施形態の一態様では、前記交差方向においてマグネット32aと冷却管30aは重複して配置されている。マグネット32aは、基板吸着面24aから離れる方向において冷却管30a
と同じ位置に設けられるため、マグネット32aの基板吸着面24a(又はマスクM)からの距離は冷却管30aの存在によって影響を受けない。この構成によると、マグネット32aとマスクMとの間の距離を近くすることができ、マグネット32aによってマスクMへ作用する磁力(引力)の大きさが弱まることがない。
According to one aspect of the present embodiment, the cooling pipe 30a of the cooling means 30 is installed on the surface facing the electrostatic chuck 24 with respect to the first plate member 32b of the magnetic force applying means 32. The cooling tube 30a is located in substantially the same region as the magnet 32a in the direction perpendicular to the substrate suction surface 24a of the electrostatic chuck 24. That is, the magnetic force applying means 32 and the cooling means 30 are arranged so as to overlap each other in the crossing direction intersecting the substrate suction surface 24a. In particular, in one aspect of the present embodiment, the magnet 32a and the cooling pipe 30a are arranged so as to overlap each other in the crossing direction. The magnet 32a has a cooling tube 30a in a direction away from the substrate suction surface 24a.
Since it is provided at the same position as the magnet 32a, the distance of the magnet 32a from the substrate suction surface 24a (or the mask M) is not affected by the presence of the cooling pipe 30a. According to this configuration, the distance between the magnet 32a and the mask M can be shortened, and the magnitude of the magnetic force (attractive force) acting on the mask M by the magnet 32a is not weakened.

マグネット32aの少なくとも一部は、図4に示すように、基板吸着面24aに平行な面内において、隣接する冷却管30aの間の領域に配置される。これによって、基板吸着面24aに平行な面内において、冷却管30aとマグネット32aは、図3に図示するように、交互に配置される。 As shown in FIG. 4, at least a part of the magnet 32a is arranged in a region between adjacent cooling pipes 30a in a plane parallel to the substrate suction surface 24a. As a result, the cooling tubes 30a and the magnets 32a are alternately arranged in the plane parallel to the substrate suction surface 24a, as shown in FIG.

本実施形態の一態様によれば、マグネット32aは、冷却管30aとともに第1プレート部材32bの静電チャック24に対向する面上に設置されるが、本発明は、これに限定されない。例えば、マグネット32aは、第1プレート部材32bに設けられ、冷却管30aは、第2プレート部材30bの、静電チャック32に対向する面の反対側の面に取り付けてもよい。 According to one aspect of the present embodiment, the magnet 32a is installed on the surface of the first plate member 32b facing the electrostatic chuck 24 together with the cooling pipe 30a, but the present invention is not limited thereto. For example, the magnet 32a may be provided on the first plate member 32b, and the cooling pipe 30a may be attached to the surface of the second plate member 30b opposite to the surface facing the electrostatic chuck 32.

本発明の成膜装置は、磁力印加手段及び冷却手段が、静電チャック24の基板吸着面に垂直な方向において、同じ領域に位置するので、冷却手段によって基板を冷却しながらも、磁力印加手段によってマスクに作用する磁力が低下することを抑制することができる。 In the film forming apparatus of the present invention, since the magnetic force applying means and the cooling means are located in the same region in the direction perpendicular to the substrate suction surface of the electrostatic chuck 24, the magnetic force applying means is used while cooling the substrate by the cooling means. It is possible to suppress a decrease in the magnetic force acting on the mask.

<電子デバイスの製造方法>
次に、本実施形態の成膜装置を用いた電子デバイスの製造方法の一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成及び製造方法を例示する。
<Manufacturing method of electronic devices>
Next, an example of a method for manufacturing an electronic device using the film forming apparatus of this embodiment will be described. Hereinafter, the configuration and manufacturing method of the organic EL display device will be illustrated as an example of the electronic device.

まず、製造する有機EL表示装置について説明する。図5(a)は有機EL表示装置60の全体図、図5(b)は1画素の断面構造を表している。 First, the organic EL display device to be manufactured will be described. FIG. 5A shows an overall view of the organic EL display device 60, and FIG. 5B shows a cross-sectional structure of one pixel.

図5(a)に示すように、有機EL表示装置60の表示領域61には、発光素子を複数備える画素62がマトリクス状に複数配置されている。発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域61において所望の色の表示を可能とする最小単位を指している。本実施例にかかる有機EL表示装置の場合、互いに異なる発光を示す第1発光素子62R、第2発光素子62G、第3発光素子62Bの組合せにより画素62が構成されている。画素62は、赤色発光素子と緑色発光素子と青色発光素子の組合せで構成されてもよく、また、黄色発光素子とシアン発光素子と白色発光素子の組み合わせで構成されてもよく、少なくとも1色以上であれば特に制限されるものではない。 As shown in FIG. 5A, a plurality of pixels 62 including a plurality of light emitting elements are arranged in a matrix in the display area 61 of the organic EL display device 60. Each of the light emitting elements has a structure including an organic layer sandwiched between a pair of electrodes. The pixel referred to here refers to the smallest unit capable of displaying a desired color in the display area 61. In the case of the organic EL display device according to this embodiment, the pixel 62 is composed of a combination of the first light emitting element 62R, the second light emitting element 62G, and the third light emitting element 62B, which emit light different from each other. The pixel 62 may be composed of a combination of a red light emitting element, a green light emitting element, and a blue light emitting element, or may be composed of a combination of a yellow light emitting element, a cyan light emitting element, and a white light emitting element, and may be composed of at least one color. If so, it is not particularly limited.

図5(b)は、図5(a)のA-B線における部分断面模式図である。画素62は、基板63上に、陽極64と、正孔輸送層65と、発光層66R、66G、66Bのいずれかと、電子輸送層67と、陰極68と、を備える有機EL素子を有している。これらのうち、正孔輸送層65、発光層66R、66G、66B、及び電子輸送層67が有機層に当たる。また、本実施形態では、発光層66Rは赤色を発する有機EL層、発光層66Gは緑色を発する有機EL層、発光層66Bは青色を発する有機EL層である。発光層66R、66G、66Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。また、陽極64は、発光素子ごとに分離して形成されている。正孔輸送層65と電子輸送層67と陰極68は、複数の発光素子62R、62G、62Bに対して共通に形成されていてもよいし、発光素子ごとに形成されていてもよい。なお、陽極64と陰極68とが異物によってショートするのを防ぐために、陽極64間に絶縁層69が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層70が設けら
れている。
5 (b) is a schematic partial cross-sectional view taken along the line AB of FIG. 5 (a). The pixel 62 has an organic EL element having an anode 64, a hole transport layer 65, any of the light emitting layers 66R, 66G, 66B, an electron transport layer 67, and a cathode 68 on the substrate 63. There is. Of these, the hole transport layer 65, the light emitting layer 66R, 66G, 66B, and the electron transport layer 67 correspond to the organic layer. Further, in the present embodiment, the light emitting layer 66R is an organic EL layer that emits red, the light emitting layer 66G is an organic EL layer that emits green, and the light emitting layer 66B is an organic EL layer that emits blue. The light emitting layers 66R, 66G, and 66B are formed in a pattern corresponding to a light emitting element (sometimes referred to as an organic EL element) that emits red, green, and blue, respectively. Further, the anode 64 is formed separately for each light emitting element. The hole transport layer 65, the electron transport layer 67, and the cathode 68 may be formed in common with the plurality of light emitting elements 62R, 62G, 62B, or may be formed for each light emitting element. An insulating layer 69 is provided between the anode 64 in order to prevent the anode 64 and the cathode 68 from being short-circuited by foreign matter. Further, since the organic EL layer is deteriorated by moisture and oxygen, a protective layer 70 for protecting the organic EL element from moisture and oxygen is provided.

図5(b)では正孔輸送層65や電子輸送層67が一つの層で示されているが、有機EL表示素子の構造によって、正孔ブロック層や電子ブロック層を含む複数の層で形成されてもよい。また、陽極64と正孔輸送層65との間には陽極64から正孔輸送層65への正孔の注入が円滑に行われるようにすることのできるエネルギーバンド構造を有する正孔注入層を形成することもできる。同様に、陰極68と電子輸送層67の間にも電子注入層が形成されことができる。 In FIG. 5B, the hole transport layer 65 and the electron transport layer 67 are shown as one layer, but they are formed of a plurality of layers including the hole block layer and the electron block layer due to the structure of the organic EL display element. May be done. Further, between the anode 64 and the hole transport layer 65, a hole injection layer having an energy band structure capable of smoothly injecting holes from the anode 64 into the hole transport layer 65 is provided. It can also be formed. Similarly, an electron injection layer can be formed between the cathode 68 and the electron transport layer 67.

次に、有機EL表示装置の製造方法の例について具体的に説明する。 Next, an example of a method for manufacturing an organic EL display device will be specifically described.

まず、有機EL表示装置を駆動するための回路(不図示)及び陽極64が形成された基板63を準備する。 First, a circuit board (not shown) for driving the organic EL display device and a substrate 63 on which the anode 64 is formed are prepared.

陽極64が形成された基板63の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、陽極64が形成された部分に開口が形成されるようにパターニングし絶縁層69を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。 Acrylic resin is formed by spin coating on the substrate 63 on which the anode 64 is formed, and the acrylic resin is patterned by a lithography method so that an opening is formed in the portion where the anode 64 is formed to form an insulating layer 69. .. This opening corresponds to a light emitting region where the light emitting element actually emits light.

絶縁層69がパターニングされた基板63を第1の有機材料成膜装置に搬入し、静電チャックにて基板を保持し、正孔輸送層65を、表示領域の陽極64の上に共通する層として成膜する。正孔輸送層65は真空蒸着により成膜される。実際には正孔輸送層65は表示領域61よりも大きなサイズに形成されるため、高精細なマスクは不要である。 The substrate 63 in which the insulating layer 69 is patterned is carried into the first organic material film forming apparatus, the substrate is held by an electrostatic chuck, and the hole transport layer 65 is a common layer on the anode 64 in the display region. To form a film. The hole transport layer 65 is formed by vacuum deposition. In reality, the hole transport layer 65 is formed in a size larger than that of the display region 61, so that a high-definition mask is unnecessary.

次に、正孔輸送層65までが形成された基板63を第2の有機材料成膜装置に搬入し、静電チャックにて保持する。基板とマスクとのアライメントを行い、静電チャック24に基板を介してマスクを吸着させた後、赤色を発する発光層66Rを成膜する。 Next, the substrate 63 on which the hole transport layer 65 is formed is carried into the second organic material film forming apparatus and held by an electrostatic chuck. After aligning the substrate and the mask and adsorbing the mask on the electrostatic chuck 24 via the substrate, a light emitting layer 66R that emits red color is formed.

発光層66Rの成膜と同様に、第3の有機材料成膜装置により緑色を発する発光層66Gを成膜し、さらに第4の有機材料成膜装置により青色を発する発光層66Bを成膜する。発光層66R、66G、66Bの成膜が完了した後、第5の成膜装置により表示領域61の全体に電子輸送層67を成膜する。電子輸送層67は、3色の発光層66R、66G、66Bに共通の層として形成される。 Similar to the film formation of the light emitting layer 66R, the light emitting layer 66G that emits green is formed by the third organic material film forming apparatus, and the light emitting layer 66B that emits blue is further formed by the fourth organic material forming apparatus. .. After the film formation of the light emitting layers 66R, 66G, and 66B is completed, the electron transport layer 67 is formed on the entire display region 61 by the fifth film forming apparatus. The electron transport layer 67 is formed as a layer common to the light emitting layers 66R, 66G, and 66B of three colors.

電子輸送層67まで形成された基板を金属性蒸着材料成膜装置で移動させて陰極68を成膜する。 The substrate formed up to the electron transport layer 67 is moved by a metallic vapor deposition material film forming apparatus to form a cathode 68.

絶縁層69がパターニングされた基板63を成膜装置に搬入してから保護層70の成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本例において、成膜装置間の基板の搬入搬出は、真空雰囲気又は不活性ガス雰囲気の下で行われる。 From the time when the substrate 63 in which the insulating layer 69 is patterned is carried into the film forming apparatus until the film formation of the protective layer 70 is completed, when the substrate 63 is exposed to an atmosphere containing moisture or oxygen, a light emitting layer made of an organic EL material is formed. It may be deteriorated by moisture and oxygen. Therefore, in this example, the loading and unloading of the substrate between the film forming apparatus is performed in a vacuum atmosphere or an inert gas atmosphere.

前記実施例は本発明の一例を示すものであり、本発明は前記実施例の構成に限定されないし、その技術思想の範囲内で適切に変形してもよい。 The embodiment shows an example of the present invention, and the present invention is not limited to the configuration of the above embodiment and may be appropriately modified within the scope of the technical idea.

22:基板支持ユニット、23:マスク支持ユニット、24:静電チャック、29:位置調整機構、30:冷却手段、30a:冷却管、31:アライメント用カメラ、32:磁力印加手段、32a:マグネット 22: Board support unit, 23: Mask support unit, 24: Electrostatic chuck, 29: Position adjustment mechanism, 30: Cooling means, 30a: Cooling tube, 31: Alignment camera, 32: Magnetic force applying means, 32a: Magnet

Claims (6)

基板を保持する基板保持面を有する静電チャックと、
前記基板保持面側に設置され、マスクを保持するためのマスク支持ユニットと、
前記静電チャックに対して前記基板保持面の反対側に設置され、マスクに磁力を印加するための磁力印加手段と、
前記静電チャックに対して前記基板保持面の反対側に設置され、基板を冷却するための冷却手段と、を備え、マスクを介して基板に蒸着材料を成膜する成膜装置において、
前記磁力印加手段は、第1プレート部材と、前記第1プレート部材の前記静電チャックに対向する面上に設置されるマグネットとを有し、
前記冷却手段は、前記第1プレート部材と前記静電チャックとの間に配置された第2プレート部材と、前記第2プレート部材の前記第1プレート部材に対向する面上に設置される冷却管とを有し、
前記基板保持面に平行な面内において、前記マグネットの少なくとも一部は、前記冷却管の隣り合う2つの部分の間に配置されることを特徴とする成膜装置。
An electrostatic chuck with a substrate holding surface that holds the substrate,
A mask support unit installed on the substrate holding surface side for holding the mask, and
A magnetic force applying means for applying a magnetic force to the mask, which is installed on the opposite side of the substrate holding surface with respect to the electrostatic chuck, and
In a film forming apparatus which is installed on the opposite side of the substrate holding surface with respect to the electrostatic chuck, has a cooling means for cooling the substrate, and forms a thin-film deposition material on the substrate via a mask.
The magnetic force applying means has a first plate member and a magnet installed on a surface of the first plate member facing the electrostatic chuck.
The cooling means includes a second plate member arranged between the first plate member and the electrostatic chuck, and a cooling pipe installed on a surface of the second plate member facing the first plate member. And have
A film forming apparatus, characterized in that at least a part of the magnet is arranged between two adjacent portions of the cooling tube in a plane parallel to the substrate holding surface .
前記基板保持面に平行な内において、前記マグネットと前記冷却管は、交互に配置されることを特徴とする請求項に記載の成膜装置。 The film forming apparatus according to claim 1 , wherein the magnet and the cooling tube are alternately arranged in a plane parallel to the substrate holding surface. 前記冷却管は、渦巻き状に配置されることを特徴とする請求項に記載の成膜装置。 The film forming apparatus according to claim 1 , wherein the cooling pipe is arranged in a spiral shape. 前記冷却管は、ジグザグ状に配置されることを特徴とする請求項に記載の成膜装置。 The film forming apparatus according to claim 1 , wherein the cooling pipes are arranged in a zigzag shape. 前記冷却管は、線状であることを特徴とする請求項に記載の成膜装置。 The film forming apparatus according to claim 1 , wherein the cooling tube is linear. 請求項1~請求項のいずれか一項に記載の成膜装置を用いて、電子デバイスを製造することを特徴とする電子デバイスの製造方法。
A method for manufacturing an electronic device, which comprises manufacturing an electronic device by using the film forming apparatus according to any one of claims 1 to 5 .
JP2020200859A 2019-12-24 2020-12-03 Manufacturing method for film forming equipment and electronic devices Active JP7090686B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190173918A KR20210081700A (en) 2019-12-24 2019-12-24 Film forming apparatus and electronic device manufacturing method using the same
KR10-2019-0173918 2019-12-24

Publications (2)

Publication Number Publication Date
JP2021102811A JP2021102811A (en) 2021-07-15
JP7090686B2 true JP7090686B2 (en) 2022-06-24

Family

ID=76709507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020200859A Active JP7090686B2 (en) 2019-12-24 2020-12-03 Manufacturing method for film forming equipment and electronic devices

Country Status (3)

Country Link
JP (1) JP7090686B2 (en)
KR (1) KR20210081700A (en)
CN (1) CN113106387B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084634A1 (en) * 2021-11-10 2023-05-19 シャープディスプレイテクノロジー株式会社 Vapor deposition device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075639A (en) 2000-08-29 2002-03-15 Sony Corp Pattern forming device, pattern forming method, manufacturing device and manufacturing method of organic electric field light emitting element display
CN101418433A (en) 2008-10-17 2009-04-29 湖南玉丰真空科学技术有限公司 Planar magnetron sputtering cathode capable of improving target material utilization rate
JP2019116679A (en) 2017-12-27 2019-07-18 キヤノントッキ株式会社 Film deposition apparatus, film deposition method, and method of manufacturing electronic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091913A (en) * 2002-07-10 2004-03-25 Sony Corp Film deposition system and film deposition method
JP4609759B2 (en) * 2005-03-24 2011-01-12 三井造船株式会社 Deposition equipment
WO2009069743A1 (en) * 2007-11-30 2009-06-04 Canon Anelva Corporation Substrate processing apparatus and substrate processing method
JP5424972B2 (en) * 2010-04-23 2014-02-26 株式会社アルバック Vacuum deposition equipment
JP2013204129A (en) * 2012-03-29 2013-10-07 Hitachi High-Technologies Corp Vacuum deposition device and vacuum deposition method
JP2014065959A (en) * 2012-09-27 2014-04-17 Hitachi High-Technologies Corp Vapor deposition apparatus, and installation method for vapor deposition apparatus
CN106637073A (en) * 2016-10-14 2017-05-10 深圳市华星光电技术有限公司 Vacuum evaporation device
KR102008581B1 (en) * 2017-11-29 2019-08-07 캐논 톡키 가부시키가이샤 Film forming apparatus, film forming method and manufacturing method of organic el display apparatus
KR101953038B1 (en) * 2017-12-13 2019-02-27 캐논 톡키 가부시키가이샤 Electrostatic chuck device, mask attaching device, film-forming apparatus, film-forming method, and method for manufacturing electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075639A (en) 2000-08-29 2002-03-15 Sony Corp Pattern forming device, pattern forming method, manufacturing device and manufacturing method of organic electric field light emitting element display
CN101418433A (en) 2008-10-17 2009-04-29 湖南玉丰真空科学技术有限公司 Planar magnetron sputtering cathode capable of improving target material utilization rate
JP2019116679A (en) 2017-12-27 2019-07-18 キヤノントッキ株式会社 Film deposition apparatus, film deposition method, and method of manufacturing electronic device

Also Published As

Publication number Publication date
CN113106387A (en) 2021-07-13
CN113106387B (en) 2023-05-19
KR20210081700A (en) 2021-07-02
JP2021102811A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP7271740B2 (en) Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method
JP7190997B2 (en) Adsorption and alignment method, adsorption system, film formation method, film formation apparatus, and electronic device manufacturing method
JP7090686B2 (en) Manufacturing method for film forming equipment and electronic devices
JP7069280B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
JP7082172B2 (en) Alignment device, film formation device, alignment method, film formation method, and manufacturing method of electronic devices
JP7007688B2 (en) Adsorption device, film forming device, adsorption method, film forming method and manufacturing method of electronic device
JP7278193B2 (en) Deposition equipment
JP2020070491A (en) Alignment device, film deposition, alignment method, film deposition method, and electronic device manufacturing method
JP7078696B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
KR102481907B1 (en) Film forming apparatus, film forming method and manufacturinh method of electronic device
JP7024044B2 (en) Film forming equipment, film forming method using this, and manufacturing method of electronic devices
KR102501615B1 (en) Film forming apparatus, film forming method, and manufacturing method of electronic device
KR20200014113A (en) Electrostatic chuk system, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device
KR102661368B1 (en) Electrostatic chuck, electrostatic chuck system, film forming apparatus, adsorption process, film forming method and electronic device manufacturing method
JP7271242B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
JP7224167B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
JP2020070490A (en) Adsorption and alignment method, adsorption system, film deposition method, film deposition device, and electronic device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220614

R150 Certificate of patent or registration of utility model

Ref document number: 7090686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150