JP7089436B2 - 異常監視システム、異常監視装置及びプログラム - Google Patents

異常監視システム、異常監視装置及びプログラム Download PDF

Info

Publication number
JP7089436B2
JP7089436B2 JP2018151737A JP2018151737A JP7089436B2 JP 7089436 B2 JP7089436 B2 JP 7089436B2 JP 2018151737 A JP2018151737 A JP 2018151737A JP 2018151737 A JP2018151737 A JP 2018151737A JP 7089436 B2 JP7089436 B2 JP 7089436B2
Authority
JP
Japan
Prior art keywords
abnormality
power generation
visible light
generation facility
light image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018151737A
Other languages
English (en)
Other versions
JP2020028179A (ja
Inventor
俊平 多久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2018151737A priority Critical patent/JP7089436B2/ja
Publication of JP2020028179A publication Critical patent/JP2020028179A/ja
Application granted granted Critical
Publication of JP7089436B2 publication Critical patent/JP7089436B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、異常監視システム、異常監視装置及びプログラムに関する。
複数の太陽電池で構成される発電設備(以下「太陽光発電設備」ともいう。)を、長期的に安全に運用するには、定期的な点検が推奨される。しかし、太陽電池の最小単位(以下「セル」という。)の1つに異常が生じても発電設備全体としての発電量に変化が現れない。また、発電設備全体の発電量が天気に応じて変動する。このため、セルの異常は見過ごされてきた。
国際公開第2015/162637号
本発明は、太陽電池を単位とする異常の検知を可能とする手法を提供することを目的とし、一部の発明においては、さらに異常の原因又は異常の緊急度合いの推定を可能とする手法の提供を目的とする。
請求項1に記載の発明は、複数の太陽電池で構成される発電設備を上空から撮像した可視光画像基づいて、当該発電設備を構成する特定の前記太陽電池の異常を検知する検知装置を有する異常監視システムであり、前記検知装置は、前記発電設備の可視光画像のうち影が重なる領域部分で閾値を越える発熱が認められる場合、当該領域部分に位置する前記太陽電池の異常を検知する、異常監視システムである。
請求項2に記載の発明は、前記検知装置は、異常の原因の候補として、前記太陽電池内のバイパスダイオードの故障を出力する、請求項に記載の異常監視システムである。
請求項3に記載の発明は、前記検知装置は、可視光画像に基づいて異常が検出された場合でも、過去に撮像された可視光画像について検出された異常に比して、異常の程度が改善しているときは、異常への対応の優先度を低く設定する、請求項1に記載の異常監視システムである。
請求項に記載の発明は、前記検知装置は、前記発電設備を上空から撮像した赤外線画像に基づいて異常が検出された場合でも、過去に撮像された熱赤外線画像について検出された異常に比して、異常の程度が改善しているときは、異常への対応の優先度を低く設定する、請求項1に記載の異常監視システムである。
請求項5に記載の発明は、宅街に設置されている前記発電設備を上空から撮像した前記可視光画像を取得する取得装置を更に有する、請求項1に記載の異常監視システムである。
請求項に記載の発明は、住宅街に存在する前記発電設備を上空の人工衛星から撮像した衛星画像を取得する取得装置を更に有する、請求項に記載の異常監視システムである。
請求項に記載の発明は、複数の太陽電池で構成される発電設備を上空から撮像した可視光画像基づいて、当該発電設備を構成する特定の当該太陽電池の異常を検知する検知手段を有し、前記検知手段は、前記発電設備の可視光画像のうち影が重なる領域部分で閾値を越える発熱が認められる場合、当該領域部分に位置する前記太陽電池の異常を検知する、異常監視装置である。
請求項に記載の発明は、コンピュータに、複数の太陽電池で構成される発電設備を上空から撮像した可視光画像基づいて、当該発電設備を構成する特定の当該太陽電池の異常を検知する機能を実現させるためのプログラムであり、前記検知する機能は、前記発電設備の可視光画像のうち影が重なる領域部分で閾値を越える発熱が認められる場合、当該領域部分に位置する前記太陽電池の異常を検知する、プログラムである。
請求項1記載の発明によれば、熱赤外線画像だけでは検知できない異常を検知することができる。
請求項記載の発明によれば、異常の原因の候補を出力できる。
請求項3記載の発明によれば、異常への対応の緊急度合いを出力できる。
請求項記載の発明によれば、異常への対応の緊急度合いを出力できる。
請求項5記載の発明によれば、住宅街に設置されている太陽電池の異常を検知できる。
請求項記載の発明によれば、画像を撮像する際の制約が少ないため高頻度で画像を撮像できる。
請求項記載の発明によれば、太陽電池を単位とする異常の検知を可能とする手法を提供できる。
請求項記載の発明によれば、太陽電池を単位とする異常の検知を可能とする手法を提供できる。
太陽光発電設備の異常を検知するシステムの構成例を示す図である。 太陽光発電設備の例を示す図である。 クラスタ間をバイパスするバイパスダイオードの接続例を説明する図である。(A)は電流が流れ難いクラスタを含まない場合の電流の流れを示し、(B)は電流が流れ難いクラスタが含まれる場合の電流の流れを示す。 監視サーバのハードウェア構成の例を示す図である。 監視サーバの機能構成の例を示す図である。 本実施の形態で使用する監視処理の一部を示すフローチャートである。 本実施の形態で使用する監視処理の残りを示すフローチャートである。 太陽光発電設備に上空の雲が重なって写っている可視光画像の例を示す図である。 太陽光発電設備の表面に影が写り込んでいる可視光画像の例を示す図である。 影が重なっている領域で温度異常が検知されたセルと影が重なっていない領域で温度異常が検知されたセルの例を説明する図である。 対応の優先度が低い外観異常の例を示す図である。(A)は前回撮像された可視光画像を示し、(B)は今回撮像された可視光画像を示す。 対応の優先度が高い外観異常の例を示す図である。(A)は前回撮像された可視光画像を示し、(B)は今回撮像された可視光画像を示す。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
<システムの全体構成>
図1は、太陽光発電設備の異常を検知するシステムの構成例を示す図である。以下では、このシステムを、異常監視システム1という。
異常監視システム1は、軌道上から地上を撮像する人工衛星10と、人工衛星10と通信する地上局20と、人工衛星10で撮像された画像データを解析して契約者の太陽光発電設備42の状態を監視する監視サーバ30とを有している。
図1では、人工衛星10を1台だけ描いているが、同じ場所を撮像可能な複数台の人工衛星10を使用してもよい。人工衛星10が1日地球を周回する回数や軌道の高度は任意である。人工衛星10は、例えば太陽同期準回帰軌道で運用される。
人工衛星10には、地上の可視光画像を撮像する可視光カメラ11と、地上の熱赤外線画像を撮像する熱赤外線カメラ12とが搭載されている。各カメラで撮像された画像は、不図示のトランスポンダを通じて地上局20に送信される。
可視光カメラ11と熱赤外線カメラ12は、同じ場所を撮像する。本実施の形態の場合、可視光カメラ11と熱赤外線カメラ12は、同じ場所を同時刻に撮像する。
図1では、人工衛星10によって撮像される2種類の画像のうち可視光画像40だけを表している。
ここでの可視光画像40には、複数の住宅41が含まれている。すなわち、可視光画像40は、住宅街の画像である。住宅街は、ドローンの飛行に許可が必要とされる地区の一例である。ドローンの飛行に許可が必要な地区には、例えば人口が集中している地区、空港等とその周辺等が含まれる。
図1に示す可視光画像40には、太陽光発電設備42を屋根に取り付けた住宅41が含まれている。
なお、人工衛星10が撮像する全ての画像に太陽光発電設備42を屋根に取り付けた住宅41が含まれるとは限らない。
また、人工衛星10が撮像する場所は、住居地に限らず、商業地、工業地、山林等でもよい。
また、本実施の形態における人工衛星10が撮像する太陽光発電設備42の規模に制約はない。従って、住宅41の屋根に取り付けられる太陽光発電設備42に限らず、ビルやマンションの屋上に取り付けられた太陽光発電設備42、山林や地上に設置された太陽光発電設備42も監視サービスの対象に含めてもよい。
監視サーバ30は、太陽光発電設備42の状態の監視サービスの提供に使用される。監視サーバ30は、オンプレミス型でもクラウド型でもよい。いずれにしても、監視サービスの提供者は、監視サーバ30を用いて、契約の対象になった太陽光発電設備42の状態を監視し、異常の有無や異常の原因として可能性が高い候補を出力する。
監視サーバ30は、検知装置及び検知手段の一例であるとともに、異常監視装置の一例でもある。
<太陽光発電設備の構成例>
ここでは、監視の対象である太陽光発電設備42について説明する。
図2は、太陽光発電設備42の例を示す図である。図2に示す太陽光発電設備42は、いわゆる太陽電池アレイに対応する。
図2に示すように、太陽電池の最小単位はセルと呼ばれる。1セルは、1辺が例えば15cmの大きさを有し、セル単位で、入射した光エネルギーの強度に比例した電気を発生する。従って、上空の雲、周囲の自然物や人工物が太陽光発電設備42の一部に影を作る場合にも、入射される光エネルギーの強度に応じた電気の発生が可能である。
図2の場合には、24個のセルを直列に接続した集合体をクラスタと呼び、更に3個のクラスタを直列に接続した集合体をモジュールと呼ぶ。なお、4個から10個のモジュールを直列に接続した集合体をストリングと呼び、さらに複数のストリングの集合体を太陽電池アレイと呼ぶ。図2に示す太陽光発電設備42は、太陽電池アレイに対応する。
図3は、クラスタ間をバイパスするバイパスダイオードDの接続例を説明する図である。(A)は電流が流れ難いクラスタを含まない場合の電流の流れを示し、(B)は電流が流れ難いクラスタが含まれる場合の電流の流れを示す。
図3に示すように、バイパスダイオードDは、対応するクラスタに対して並列に接続されている。クラスタ内の電流の流れが正常である場合、(A)に示すように、電流は72個のセルを直列に流れる。
これに対し、(B)の場合、2つ目のクラスタに異常セルが含まれる。異常セルがあると、2つ目のクラスタ内における電流の流れが悪くなる。影がかかって発電量が低下した場合も同様である。この場合、(B)に示すように、1つ目のクラスタから出力された電流は、2つ目のクラスタに対して並列に接続されているバイパスダイオードDを介して3つ目のクラスタに流れる。
なお、いずれのクラスタについても流れが悪くなった場合には、前段からの電流は、3つ全てのバイパスダイオードDを直列に流れ、次段へと出力される。
<監視サーバ30の構成例>
図4は、監視サーバ30のハードウェア構成の例を示す図である。
監視サーバ30は、プログラム(基本ソフトウェアを含む)の実行を通じて装置全体を制御するCPU(Central Processing Unit)301と、BIOS(Basic Input Output System)を記憶するROM(Read Only Memory)302と、プログラムの実行領域として使用されるRAM(Random Access Memory)303とを有している。
CPU301、ROM302、RAM303は、いわゆるコンピュータを構成し、各種の情報処理を実行する。なお、ROM302は、例えば不揮発性の半導体メモリによって構成される。
また、監視サーバ30は、基本ソフトウェアや各種のデータベース(DB)を格納するハードディスク装置(HDD)304を有している。
本実施の形態の場合、ハードディスク装置304には、例えば監視サービスの加入者の情報を保存するサービス加入者データベース(サービス加入者DB)304A、人工衛星10で撮像された可視光画像を保存する可視光画像データベース(可視光画像DB)304B、人工衛星10で撮像された熱赤外線画像を保存する熱赤外線画像データベース(熱赤外線画像DB)304Cが保存されている。
もっとも、これらのデータベースは、監視サーバ30に内蔵されている必要はなく、その一部又は全部が外部のストレージ装置に保存されていてもよい。外部ストレージ装置との接続はインターネット経由でもよい。
ここでのサービス加入者データベース304Aは、太陽光発電設備42(図1参照)の状態を監視するサービス専用に用意された加入者データベースに限らない。
例えば太陽光発電設備42の状態の監視が特定のサービスの加入者に対する追加のサービスとして提供される場合には、サービス加入者データベース304Aとして、特定のサービスの加入者の情報を管理する加入者データベースを含めてもよい。
ここでの特定のサービスには、例えばガス供給サービス、電気供給サービスがある。以下では、監視サービスの提供を受けるユーザを契約の形態で区別せず、単に監視サービスの加入者という。
なお、サービス加入者データベース304Aには、監視の対象である太陽光発電設備42の設置場所を特定する情報が含まれる。設置場所を特定する情報には、例えば所在地、緯度と経度、加入者の住所を用いてもよい。
また、サービス加入者データベース304Aには、異常の発生の有無、異常を検知した日時、異常が検知されたセルの位置、異常の原因、検知された異常の確認や補修の進捗情報、修理の履歴、設置年等も加入者毎に記憶される。
また、可視光画像データベース304Bは、予め定めた期間の間に撮像された可視光画像を保存する。個々の可視光画像には、撮像の日時、撮像に使用された人工衛星10、撮像された地上の範囲を規定する情報、解像度(又は分解能)等の情報が紐付けられている。
解像度は、1セルの1辺以下を識別できることが望ましい。ただし、画像処理によって同等の性能が実現されるのであれば、解像度は、1セルの1辺以上でもよい。
熱赤外線画像データベース304Cは、保存の対象が熱赤外線画像であることを除き、可視光画像データベース304Bと同様である。
本実施の形態では、可視光画像データベース304Bと熱赤外線画像データベース304Cを別に用意しているが区別せず保存してもよい。以下では、人工衛星10で撮像された可視光画像と熱赤外線画像とを衛星画像ということがある。
この他、図4に示す監視サーバ30には、ユーザインターフェースとしての表示部305と操作入力部306、外部との通信に使用される通信インターフェース(通信IF)307が設けられている。
表示部305と操作入力部306は、監視サーバ30に対して外付けされていてもよいし、通信インターフェース307を通じて監視サーバ30に接続されている外部の端末の一部でもよい。
図5は、監視サーバ30の機能構成の例を示す図である。
図5に示す機能構成は、CPU301等で構成されるコンピュータによるプログラムの実行を通じて実現される。
監視サーバ30は、サービス加入者データベース304Aから加入者情報を取得する加入者情報取得部311と、解析の対象とする画像を特定する解析画像特定部312と、特定された可視光画像を解析する可視光画像解析部313と、特定された熱赤外線画像を解析する熱赤外線画像解析部314として機能する。
本実施の形態の場合、計算資源を有効に活用するため、加入者情報取得部311によって、監視サービスの加入者の情報を取得し、監視の対象とする太陽光発電設備42が設置されている場所を特定する。
解析画像特定部312は、加入者に紐付けられている太陽光発電設備42が設置されている場所を含む可視光画像と熱赤外線画像を特定する。本実施の形態の場合、解析画像特定部312は、各画像から解析の対象である太陽光発電設備42に対応する部分画像も特定する。特定された部分画像は、可視光画像解析部313と熱赤外線画像解析部314によって解析される。
可視光画像解析部313は、解析の対象である可視光画像から監視サービスの対象である太陽光発電設備42の部分画像を特定し、解析処理を実行する。太陽光発電設備42の特定には、事前に与えられた太陽光発電設備42の設置に関する情報を用いてもよいし、人工知能等を用いて生成された学習モデルを使用してもよいし、予め用意された抽出アルゴリズムを使用してもよい。本実施の形態における可視光画像解析部313は、太陽光発電設備42を構成するセル毎に解析処理を実行する。
本実施の形態における可視光画像解析部313には、解析機能として、例えば雲の重なりの有無を検知する雲有無検知部313Aと、影の重なりを検知する影領域検知部313Bと、外観の異常を検知する外観異常検知部313Cと、外観の異常に対する対応の緊急度を判定する異常度合い判定部313Dが用意されている。
雲有無検知部313Aは、上空の雲で隠れている太陽光発電設備42(又はセル)に対応する部分画像を解析の対象から除外する。雲が重なっている部分では地上の情報を取得できないが、画像の全体が雲で隠れていない限り、雲の隙間から確認できる地上の部分画像を目印に、加入者の太陽光発電設備42が含まれる画像領域を特定可能である。なお、雲が重なっている部分では画像からセルの位置を特定できないので、雲が位置する部分画像を単純に解析の対象から除外してもよい。
影領域検知部313Bは、太陽光発電設備42に対応する画像から、自然物や人工物の影が重なっているセルと重なっていないセルを区別して検知する。影が重なっている部分のセルの輝度は、影が重なっていない部分のセルよりも暗く見える。
外観異常検知部313Cは、太陽光発電設備42に対応する画像を解析し、外観上の異常を検知する。外観上の異常には、例えば異物の付着、外傷等が想定される。異物には、葉っぱや砂塵のように風によって容易に飛ばされるもの、鳥のフンのように長期に付着するもの等がある。
異常度合い判定部313Dは、外観上の異常の度合いの判定に用いられる。本実施の形態の場合、異常度合い判定部313Dは、過去に撮像された画像との比較に基づいて、検知された異常の時間変化を検出し、緊急性の度合いを判定する。異常の程度に変化がないか進行している場合には緊急度合いは高く、異常の程度が改善されている場合には緊急度合いは低い。
熱赤外線画像解析部314は、解析の対象である熱赤外線画像から監視サービスの対象である太陽光発電設備42の部分画像を特定し、解析処理を実行する。なお、太陽光発電設備42の部分画像の特定には、可視光画像解析部313による特定の結果を使用してもよい。
本実施の形態における熱赤外線画像解析部314には、解析機能として、温度異常検知部314Aが用意されている。
温度異常検知部314Aによる温度異常の検知では、画像から測定される温度の絶対値を閾値と比較する手法を用いてもよいし、検知の対象であるセルの温度とその周囲のセルの温度との差分値を閾値と比較する手法を用いてもよい。温度異常検知部314Aは、温度の絶対値又は温度の差分値が閾値を越える場合に、セルの温度が異常であると検知する。
<監視処理動作の例>
以下では、図6~図12を使用して、加入者の太陽光発電設備42を撮像した衛星画像から異常を監視するために実行される処理動作を説明する。
ここで、図6及び図7は、監視処理動作の例を説明する図である。図6は、本実施の形態で使用する監視処理の一部を示すフローチャートである。図7は、本実施の形態で使用する監視処理の残りを示すフローチャートである。図6及び図7に示す記号のSは、ステップを意味している。
図6及び図7に示す処理は、特定の加入者についての太陽光発電設備42(図1参照)に対応する部分画像が特定された後に実行される。
監視サーバ30(図1参照)は、監視対象である太陽光発電設備42の可視光画像を使用し、処理対象のセルと雲との重なりの有無を判定する(ステップ1)。本実施の形態の場合、画像認識によって雲と認識された範囲内に位置するセルは、雲が重なっていると判定される。因みに、周囲の木々等のために死角に位置するセルも、雲が重なっているものとして扱う。
図8は、太陽光発電設備42に上空の雲43が重なって写っている可視光画像40の例を示す図である。図中の正方形がセルに対応する。図8に示すように、雲43が重なる部分では、太陽光発電設備42を構成するセルを認識することはできない。
図6の説明に戻る。
次に、監視サーバ30は、雲が重なるか否かを確認する(ステップ2)。
処理対象とするセルに雲が重なる場合、ステップ2で肯定結果が得られる。この場合、監視サーバ30は、処理対象であるセルを解析対象から除外する(ステップ3)。この除外により、解析に用いられる計算資源への負荷が低減される。
一方、処理対象とするセルに雲が重ならない場合、ステップ2で否定結果が得られる。この場合、監視サーバ30は、監視対象である太陽光発電設備42の可視光画像を使用し、処理対象のセルと影の重なりの有無を判定する(ステップ4)。ここでの影には、上空の雲の影も含まれる。
図9は、太陽光発電設備42の表面に影44が写り込んでいる可視光画像40の例を示す図である。図中の正方形がセルに対応する。図9に示すように、影44が重なる部分でも、太陽光発電設備42を構成するセルの認識が可能である。影44が重なるセルの輝度は、影44が重ならないセルの輝度よりも低い。
図6の説明に戻る。
次に、監視サーバ30は、影が重なるか否かを確認する(ステップ5)。
処理対象とするセルに影が重なる場合、ステップ5で肯定結果が得られる。この場合、監視サーバ30は、熱赤外線画像を使用し、処理対象であるセルについて温度異常の有無を判定する(ステップ6)。ここでの判定は、測定された温度又は周囲のセルとの温度差と予め定めた閾値との比較により行われる。
前述したように、バイパスダイオードD(図3参照)が機能していれば、影がかかったセルを含むクラスタには電流が流れないはずである。逆に、影がかかったセルを含むクラスタに電流が流れていれば、バイパスダイオードDの故障が疑われる。なお、電流が流れていることは、クラスタ内のセルに通電による発熱が認められることで確かめられる。なお、発電していないセルに電流が流れて発熱すると、セルが破損する原因になる。
次に、監視サーバ30は、温度異常か否かを確認する(ステップ7)。
影が重なっているセルに温度異常が検知された場合、ステップ7で肯定結果が得られる。
この場合、監視サーバ30は、異常検知を出力する(ステップ8)。ここでの異常検知には、異常の原因が含まれても良い。例えば異常の原因として、バイパスダイオードDの故障の可能性を示唆する情報が含まれる。この後、監視サーバ30は、別のセルを処理対象として、ステップ1から判定を繰り返す。
一方、影が重なっているセルに温度異常が検知されない場合、ステップ7で否定結果が得られる。この場合、監視サーバ30は、正常検知を出力する(ステップ9)。この後、監視サーバ30は、別のセルを処理対象として、ステップ1から判定を繰り返す。
ところで、ステップ5で否定結果が得られた場合、監視サーバ30は、熱赤外線画像を使用し、処理対象であるセルについて温度異常の有無を判定する(ステップ10)。ステップ10で処理対象となるセルは、影が重なっていないセルである。ここでの判定も、測定された温度又は周囲のセルとの温度差と予め定めた閾値との比較により行われる。
次に、監視サーバ30は、温度異常か否かを確認する(ステップ11)。
影が重なっていないセルに温度異常が検知されない場合、ステップ11で否定結果が得られる。この場合、監視サーバ30は、正常検知を出力する(ステップ12)。この後、監視サーバ30は、別のセルを処理対象として、ステップ1から判定を繰り返す。
一方、影が重なっていないセルに温度異常が検知された場合、ステップ11で肯定結果が得られる。この場合、監視サーバ30は、異常検知を出力する(ステップ13)。
図10は、影が重なっている領域で温度異常が検知されたセル45と影が重なっていない領域で温度異常が検知されたセル46の例を説明する図である。図10の場合、影44が重なる領域内で2つのセルに温度異常が認められ、影44が重ならない領域内で1つのセルに温度異常が認められている。
図7の説明に戻る。
影が重なっていないセルで温度異常が検知された場合、監視サーバ30は、可視光画像を用い、セルの外観の異常の有無を判定する(ステップ14)。具体的には、付着物などの異物や外傷などの有無が判定される。
次に、監視サーバ30は、異常があるか否かを確認する(ステップ15)。
外観に異常が見つからない場合、ステップ15で否定結果が得られる。この場合、監視サーバ30は、温度異常の原因は、セル内部の問題の可能性が高いと判定結果を出力する(ステップ16)。この出力の後、監視サーバ30は、別のセルを処理対象として、ステップ1から判定を繰り返す。
外観に異常が見つかった場合、ステップ15で肯定結果が得られる。この場合、監視サーバ30は、温度異常の原因は、セル表面の問題の可能性が高いとの判定結果を出力する(ステップ17)。
次に、監視サーバ30は、該当セルに対応する過去の可視光画像を取得する(ステップ18)。人工衛星10(図1参照)の場合には、周期的に同じ場所を撮像することが可能であるので、特定の太陽光発電設備42(図1参照)に対して撮像日時が異なる複数の衛星画像が保存されている。本実施の形態の場合、監視サーバ30は、同じ太陽光発電設備42について保存されている可視光画像の中から前回撮像された可視光画像を取得する。
この後、監視サーバ30は、今回の可視光画像と前回の可視光画像を比較して、外観異常の度合いの変化を判定する(ステップ19)。例えば前回と今回とで外観異常の内容が同じ(類似を含む)又は異なるか、外観異常の面積や長さが増えているか減っているか等が判定される。
続いて、監視サーバ30は、外観異常に対する対応の緊急性が高いか否かを判定する(ステップ20)。
例えば外観異常が鳥のフンの付着や一時的な飛来物に起因する場合、対応の緊急性は低い。この場合、監視サーバ30は、ステップ21に進み、外観異常への対応の優先度を低く設定する。なお、優先度の設定後、監視サーバ30は、別のセルを処理対象として、ステップ1から判定を繰り返す。
図11は、対応の優先度が低い外観異常の例を示す図である。(A)は前回撮像された可視光画像40を示し、(B)は今回撮像された可視光画像40を示す。図11の場合、前回の撮像日と今回の撮像日とで4日の差がある。
図11の場合、可視光画像40で検知された外観異常47の大きさが、前回よりも今回の方が小さくなっている。このような事象は、外観異常が風雨などで洗い流される類の汚れである場合に生じる。この種の異常は、急いで対応しなくても問題がないので、対応の優先度が低く設定される。
図7の説明に戻る。
一方、外観異常がガラスの破損などに起因する場合、対応の緊急性は高い。この場合、監視サーバ30は、ステップ22に進み、外観異常への対応の優先度を高く設定する。なお、優先度の設定後、監視サーバ30は、別のセルを処理対象として、ステップ1から判定を繰り返す。
図12は、対応の優先度が高い外観異常の例を示す図である。(A)は前回撮像された可視光画像40を示し、(B)は今回撮像された可視光画像40を示す。図12の場合も、前回の撮像日と今回の撮像日との差は4日である。
図12の場合、可視光画像40で検知された外観異常47の大きさが、前回よりも今回の方が大きくなっている。このような事象は、外観異常が風雨などで洗い流される類の汚れではなく、表面ガラスの破損の場合に生じる。この種の異常は、急いで対応する必要があるので、対応の優先度が高く設定される。
<まとめ>
以上説明したように、本実施の形態の場合には、太陽光発電設備42(図1参照)の異常の検知に、可視光カメラ11(図1参照)と熱赤外線カメラ12(図1参照)を搭載する人工衛星10(図1参照)を用いるため、検査範囲についてドローンの場合のような制約がない。例えばドローンを用いる場合には、検査対象である太陽光発電設備42が存在する場所に人を派遣し、飛行中のドローンの目視による監視、許可の申請等が必要となるが、人工衛星10を用いる場合には、それらの制約がない。
また、故障はいつ発生するか分からないため、太陽光発電設備42の異常を検知するサービスを提供するには、継続的又は定期的な検査が効果的である。この観点からも、住宅地のような許可を必要とする空域に何度もドローンを飛ばす必要がない本実施の形態による検査手法は、太陽光発電設備42の異常の検知に有利である。
また、本実施の形態の場合には、太陽光発電設備42が交通の不便な場所に設置されている場合でも、高頻度で検査を行うことができる。勿論、高頻度での検査は、住宅地等に設置された太陽光発電設備42の検査にも有利である。
また、本実施の形態の場合には、同時刻に撮像された可視光画像と熱赤外線画像を用いるので、可能性が高い異常の原因を特定することが可能である。例えばバイパスダイオードの故障であるのか、セル内部の問題であるのか、セル表面の汚れが原因であるのか、セル表面の破損が原因であるのかを特定できる。
このため、現地に人を派遣する場合でも、特定された原因に応じた能力を備える作業員を派遣することが可能になる。例えば鳥のフンなどが原因と分かっていれば清掃業者を手配でき、内部の故障やセル表面の破損である場合には、部品の修理や交換の能力を備える作業者を手配できる。因みに、特定された原因と優先度の情報は、管理サービスを提供する事業者の従業員だけでなく、加入者に対して通知又は提示されてもよい。
<他の実施の形態>
以上、本発明の実施の形態について説明したが、本発明の技術的範囲は上述の実施の形態に記載の範囲に限定されない。上述の実施の形態に、種々の変更又は改良を加えたものも、本発明の技術的範囲に含まれることは、特許請求の範囲の記載から明らかである。
(1)前述の実施の形態では、基本的に1台の人工衛星10(図1参照)で撮像された可視光画像及び熱赤外線画像を用いているが、複数台の人工衛星10で撮像された可視光画像及び熱赤外線画像を用いてもよい。例えば同日又は同じ時間帯に撮像された複数の可視光画像及び熱赤外線画像のうち雲や影の影響がない画像を選択的に使用して異常の有無を検知してもよい。
(2)前述の実施の形態で温度異常の判定に用いる閾値は、衛星画像の解像度に応じて変更してもよい。
(3)衛星画像は、撮像と同時に地上局20(図1参照)に伝送してもよいし、人工衛星10(図1参照)に蓄積された画像をまとめて伝送してもよい。
(4)前述の実施の形態では、基本的に1つの国又は地域内で監視サービスを提供する場合を想定しているが、人工衛星10は地球を周回しているため、人工衛星10が通過する全ての国や地域を対象に監視サービスを提供してもよい。
(5)前述の実施の形態では、基本的に1セルを単位に異常の有無を解析しているが、複数個のセルを単位として異常の有無を判定してもよい。
(6)前述の実施の形態では、人工衛星10を用いて可視光画像と熱赤外線画像の両方を撮像しているが、いずれか一方だけを撮像してもよい。その場合でも、いずれか一方の画像だけを用いて異常の検知、異常の原因、異常への対応の緊急度合いを判断することができる。例えば可視光画像だけを用いる場合でも、異なる日時に撮像された複数の可視光画像の比較により、外観上の異常の程度の進行具合を検知し、対応の緊急度合いを判断してもよい。また例えば熱赤外線画像だけを用いる場合でも、異なる日時に撮像された複数の熱赤外線画像の比較により、発熱異常の進行具合を検知し、対応の緊急度合いを判断してもよい。例えば特定のセルとその周辺のセルとの温度差が継時的に大きくなるようであれば劣化が進展していると判断し、温度差が徐々に小さくなる又は無くなる場合には一時的な異常と判断できる。
(7)前述の実施の形態においては、人工衛星10で撮像された太陽光発電設備の可視光画像と熱赤外線画像を処して異常を検知しているが(例えば図6及び図7参照)、いわゆるドローンによって撮像された可視光画像と熱赤外線画像を処理の対象としてもよい。
1…異常監視システム、10…人工衛星、11…可視光カメラ、12…熱赤外線カメラ、20…地上局、30…監視サーバ、40…可視光画像、41…住宅、42…太陽光発電設備、304A…サービス加入者データベース、304B…可視光画像データベース、304C…熱赤外線画像データベース、311…加入者情報取得部、312…解析画像特定部、313…可視光画像解析部、313A…雲有無検知部、313B…影領域検知部、313C…外観異常検知部、313D…異常度合い判定部、314…熱赤外線画像解析部、314A…温度異常検知部、D…バイパスダイオード

Claims (8)

  1. 複数の太陽電池で構成される発電設備を上空から撮像した可視光画像に基づいて、当該発電設備を構成する特定の前記太陽電池の異常を検知する検知装置
    を有する異常監視システムであり、
    前記検知装置は、前記発電設備の可視光画像のうち影が重なる領域部分で閾値を越える発熱が認められる場合、当該領域部分に位置する前記太陽電池の異常を検知する異常監視システム。
  2. 前記検知装置は、異常の原因の候補として、前記太陽電池内のバイパスダイオードの故障を出力する、請求項に記載の異常監視システム。
  3. 前記検知装置は、可視光画像に基づいて異常が検出された場合でも、過去に撮像された可視光画像について検出された異常に比して、異常の程度が改善しているときは、異常への対応の優先度を低く設定する、請求項1に記載の異常監視システム。
  4. 前記検知装置は、前記発電設備を上空から撮像した赤外線画像に基づいて異常が検出された場合でも、過去に撮像された熱赤外線画像について検出された異常に比して、異常の程度が改善しているときは、異常への対応の優先度を低く設定する、請求項1に記載の異常監視システム。
  5. 宅街に設置されている前記発電設備を上空から撮像した前記可視光画像を取得する取得装置を更に有する、請求項1に記載の異常監視システム。
  6. 住宅街に存在する前記発電設備を上空の人工衛星から撮像した衛星画像を取得する取得装置を更に有する、請求項に記載の異常監視システム。
  7. 複数の太陽電池で構成される発電設備を上空から撮像した可視光画像基づいて、当該発電設備を構成する特定の当該太陽電池の異常を検知する検知手段
    を有し、
    前記検知手段は、前記発電設備の可視光画像のうち影が重なる領域部分で閾値を越える発熱が認められる場合、当該領域部分に位置する前記太陽電池の異常を検知する、異常監視装置。
  8. コンピュータに、
    複数の太陽電池で構成される発電設備を上空から撮像した可視光画像基づいて、当該発電設備を構成する特定の当該太陽電池の異常を検知する機能
    実現させるためのプログラムであり、
    前記検知する機能は、前記発電設備の可視光画像のうち影が重なる領域部分で閾値を越える発熱が認められる場合、当該領域部分に位置する前記太陽電池の異常を検知する、プログラム
JP2018151737A 2018-08-10 2018-08-10 異常監視システム、異常監視装置及びプログラム Active JP7089436B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018151737A JP7089436B2 (ja) 2018-08-10 2018-08-10 異常監視システム、異常監視装置及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018151737A JP7089436B2 (ja) 2018-08-10 2018-08-10 異常監視システム、異常監視装置及びプログラム

Publications (2)

Publication Number Publication Date
JP2020028179A JP2020028179A (ja) 2020-02-20
JP7089436B2 true JP7089436B2 (ja) 2022-06-22

Family

ID=69620531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018151737A Active JP7089436B2 (ja) 2018-08-10 2018-08-10 異常監視システム、異常監視装置及びプログラム

Country Status (1)

Country Link
JP (1) JP7089436B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434136B2 (ja) * 2020-11-06 2024-02-20 株式会社東芝 太陽光発電設備点検システム
CN116124837A (zh) * 2023-04-17 2023-05-16 广东科翔电子科技股份有限公司 一种pcb外观检测方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024204A (ja) 1999-07-06 2001-01-26 Canon Inc 太陽電池モジュールの検査装置ならびに検査方法
JP2014106852A (ja) 2012-11-29 2014-06-09 Kyocera Corp パワーコンディショナの制御方法およびパワーコンディショナ
JP2016181946A (ja) 2015-03-23 2016-10-13 日産自動車株式会社 光給電システム、光給電システムの異常検出方法
JP2016187240A (ja) 2015-03-27 2016-10-27 太平洋工業株式会社 ホットスポット検出装置
JP2017041953A (ja) 2015-08-19 2017-02-23 シャープ株式会社 太陽光発電装置の監視装置および太陽光発電装置の監視方法
JP2017104003A (ja) 2015-11-20 2017-06-08 学校法人日本大学 高温領域抽出装置
JP2017215239A (ja) 2016-06-01 2017-12-07 ティー・エス・ビー株式会社 太陽電池検査システム
US20180003656A1 (en) 2016-06-30 2018-01-04 Unmanned Innovation Inc. Solar panel inspection using unmanned aerial vehicles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024204A (ja) 1999-07-06 2001-01-26 Canon Inc 太陽電池モジュールの検査装置ならびに検査方法
JP2014106852A (ja) 2012-11-29 2014-06-09 Kyocera Corp パワーコンディショナの制御方法およびパワーコンディショナ
JP2016181946A (ja) 2015-03-23 2016-10-13 日産自動車株式会社 光給電システム、光給電システムの異常検出方法
JP2016187240A (ja) 2015-03-27 2016-10-27 太平洋工業株式会社 ホットスポット検出装置
JP2017041953A (ja) 2015-08-19 2017-02-23 シャープ株式会社 太陽光発電装置の監視装置および太陽光発電装置の監視方法
JP2017104003A (ja) 2015-11-20 2017-06-08 学校法人日本大学 高温領域抽出装置
JP2017215239A (ja) 2016-06-01 2017-12-07 ティー・エス・ビー株式会社 太陽電池検査システム
US20180003656A1 (en) 2016-06-30 2018-01-04 Unmanned Innovation Inc. Solar panel inspection using unmanned aerial vehicles

Also Published As

Publication number Publication date
JP2020028179A (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
KR102159692B1 (ko) 빅데이터 분석을 통한 태양광 발전량 예측 장치 및 방법
US10354386B1 (en) Remote sensing of structure damage
US11275376B2 (en) Large scale unmanned monitoring device assessment of utility system components
US11620891B2 (en) Method and system for determining area of fire and estimating progression of fire
KR102054163B1 (ko) 태양광 발전량 예측 시스템 및 이를 포함하는 태양광 발전 장치
JP7089436B2 (ja) 異常監視システム、異常監視装置及びプログラム
CN114664048B (zh) 一种基于卫星遥感监测的火情监测及火灾预警方法
CN107133685B (zh) 光伏发电系统发电量的预测方法及预测系统
Haba Monitoring solar panels using machine learning techniques
CN111160611A (zh) 能耗预估方法、装置、计算机设备和存储介质
CN112753162B (zh) 发电系统的异常与否确定装置及方法
KR20220055082A (ko) 열화상 이미지의 태양광 모듈 단위 데이터 학습을 통한 딥러닝 기반 결함 검출 시스템 및 방법
US10489863B1 (en) Roof inspection systems and methods
KR20080004376A (ko) 태양 에너지 계통 관리 시스템
JP2006174609A (ja) 太陽光発電における発電データ管理方法
KR102582747B1 (ko) 태양광 발전 장치의 통합 관리 시스템
JP2015106169A (ja) 家屋管理装置
US11900470B1 (en) Systems and methods for acquiring insurance related informatics
Park et al. Precise Inspection Method of Solar Photovoltaic Panel Using Optical and Thermal Infrared Sensor Image Taken by Drones
Bosch et al. A ground system for early forest fire detection based on infrared signal processing
JP7224640B2 (ja) 気象情報を用いない太陽光発電装置の異常判定方法及び装置
KR102363732B1 (ko) 태양광 발전량 예측 시스템
CN114926424A (zh) 一种检测方法和电子设备
Karthikeyan et al. Edge AI–Based Aerial Monitoring
Zhao Photovoltaic (PV) Solar Panel Identification and Fault Detection Using Unmanned Aerial Vehicles (UAVs): A Case Study of a 0.5 MW PV System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220610

R150 Certificate of patent or registration of utility model

Ref document number: 7089436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150