JP7087693B2 - Light emitting device and its manufacturing method - Google Patents

Light emitting device and its manufacturing method Download PDF

Info

Publication number
JP7087693B2
JP7087693B2 JP2018109364A JP2018109364A JP7087693B2 JP 7087693 B2 JP7087693 B2 JP 7087693B2 JP 2018109364 A JP2018109364 A JP 2018109364A JP 2018109364 A JP2018109364 A JP 2018109364A JP 7087693 B2 JP7087693 B2 JP 7087693B2
Authority
JP
Japan
Prior art keywords
region
layer
electrode
light emitting
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018109364A
Other languages
Japanese (ja)
Other versions
JP2019212834A (en
Inventor
順也 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2018109364A priority Critical patent/JP7087693B2/en
Priority to TW108117170A priority patent/TWI807028B/en
Priority to CN201910454453.4A priority patent/CN110581207A/en
Publication of JP2019212834A publication Critical patent/JP2019212834A/en
Application granted granted Critical
Publication of JP7087693B2 publication Critical patent/JP7087693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes

Description

本発明は、発光素子及びその製造方法に関する。 The present invention relates to a light emitting device and a method for manufacturing the same.

チップオンボード(COB)などの製品は、LED素子からの放熱性に優れ、照明等の用途において採用される、LEDチップ実装方法である。COBなどにLEDを実装する場合、チップを直接ボードに接合するフリップ実装が必須である。フリップ実装を実現するためには、発光素子の一方の面に極性の異なる通電用パッドを設けたフリップチップを作製する必要がある。また、通電用パッドが設けられた面の反対側の面は、光取り出し機能を有する材料で構成する必要がある。 Products such as chip-on-board (COB) are excellent in heat dissipation from LED elements, and are LED chip mounting methods adopted in applications such as lighting. When mounting an LED on a COB or the like, flip mounting in which the chip is directly bonded to the board is indispensable. In order to realize flip mounting, it is necessary to manufacture flip chips in which energizing pads having different polarities are provided on one surface of a light emitting element. Further, the surface opposite to the surface on which the energizing pad is provided needs to be made of a material having a light extraction function.

黄色~赤色LEDでフリップチップを作製する場合、発光層にはAlGaInP系の材料が用いられる。AlGaInP系材料はバルク結晶が存在せず、LED部はエピタキシャル法で形成されるため、出発基板はAlGaInPとは異なる材料が選択される。出発基板としてはGaAsやGeが選択される場合が多く、これらの基板は可視光に対して光吸収の特性を有するため、フリップチップを作製する場合、出発基板は除去される。しかし、発光層を形成するエピタキシャル層は極薄膜のため、出発基板除去後に自立することができない。したがって、発光層の発光波長に対して略透明で窓層としての機能を有し、自立させるために十分の厚さを有する支持基板としての機能を有する材料・構成で、出発基板と置換する。
この場合、上面に極性の異なる2電極を有する発光素子のフリップ実装を行う際に、電極面が同一の高さを有することは実装を容易ならしめる。
When a flip chip is manufactured from a yellow to red LED, an AlGaInP-based material is used for the light emitting layer. Since bulk crystals do not exist in the AlGaInP-based material and the LED portion is formed by the epitaxial method, a material different from AlGaInP is selected as the starting substrate. GaAs and Ge are often selected as the starting substrate, and since these substrates have the property of absorbing light with respect to visible light, the starting substrate is removed when the flip chip is manufactured. However, since the epitaxial layer forming the light emitting layer is an extremely thin film, it cannot stand on its own after the starting substrate is removed. Therefore, a material / configuration that is substantially transparent to the emission wavelength of the light emitting layer, has a function as a window layer, and has a function as a support substrate having a sufficient thickness to be self-supporting is used to replace the starting substrate.
In this case, when flip-mounting a light emitting element having two electrodes having different polarities on the upper surface, having the same height on the electrode surfaces facilitates the mounting.

特許文献1には、同一高さを有する2電極を設けるために、発光層上部に絶縁膜を設け、その上に極性の異なる電極を形成する技術が開示されている。
特許文献2には、柱状の半導体層領域を形成し、柱状の半導体領域部分に発光層上の電極と極性の異なる電極を形成することが記載されている。
Patent Document 1 discloses a technique in which an insulating film is provided on the upper part of a light emitting layer and electrodes having different polarities are formed on the insulating film in order to provide two electrodes having the same height.
Patent Document 2 describes that a columnar semiconductor layer region is formed, and an electrode having a polarity different from that of an electrode on the light emitting layer is formed in the columnar semiconductor region portion.

特開2005-322722号公報Japanese Unexamined Patent Publication No. 2005-322722 特許6291400号Patent No. 6291400

しかし、特許文献1に記載の技術では、絶縁膜上に形成した電極の密着強度を、半導体に直接コンタクトを取った場合と同程度まで高めることが難しく、剥離不良を発生させやすい。また、絶縁膜と金属の線膨脹係数の差から、通電により素子温度が変化した際に金属膜の膨張、収縮により絶縁不良を発生させやすい問題があった。 However, in the technique described in Patent Document 1, it is difficult to increase the adhesion strength of the electrode formed on the insulating film to the same level as when the electrode is directly contacted with the semiconductor, and peeling failure is likely to occur. Further, due to the difference in the linear expansion coefficient between the insulating film and the metal, there is a problem that insulation failure is likely to occur due to expansion and contraction of the metal film when the element temperature changes due to energization.

特許文献2に記載の技術では、発光層上に形成された電極と異なる極性の電極が柱状半導体層上へ直接形成されており、電極と半導体との接着強度は、前述の特許文献1に記載の技術に比べて十分に確保できる利点がある。一方、柱状の半導体側面に電気抵抗が十分に低い電極層を形成する必要があるが、柱状の半導体部分の隙間は狭く、蒸着法により均一な金属膜を形成することは難しい。また、十分な厚さと品質のシード層を形成できなければ、メッキ法により前述の側面部分に電気抵抗の十分低い金属層を形成することは難しい。 In the technique described in Patent Document 2, an electrode having a polarity different from that of the electrode formed on the light emitting layer is directly formed on the columnar semiconductor layer, and the adhesive strength between the electrode and the semiconductor is described in the above-mentioned Patent Document 1. There is an advantage that it can be sufficiently secured compared to the technology of. On the other hand, it is necessary to form an electrode layer having a sufficiently low electric resistance on the side surface of the columnar semiconductor, but the gap between the columnar semiconductor portions is narrow, and it is difficult to form a uniform metal film by the vapor deposition method. Further, unless a seed layer having a sufficient thickness and quality can be formed, it is difficult to form a metal layer having a sufficiently low electric resistance on the above-mentioned side surface portion by the plating method.

本発明は、上記課題に鑑みなされたものであり、極性の異なる電極を略同一の高さに形成し、かつ、十分低い電気抵抗を有し、断線不良や剥離不良が抑制され、傾きのないフリップ実装を可能とする発光素子及び発光素子の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and electrodes having different polarities are formed at substantially the same height, have sufficiently low electrical resistance, suppress wire breakage and peeling failure, and have no inclination. It is an object of the present invention to provide a light emitting element capable of flip mounting and a method for manufacturing the light emitting element.

本発明は、上記課題を達成するためになされたものであり、窓層兼支持基板と、前記窓層兼支持基板上に設けられ、前記窓層兼支持基板側から第二導電型の第二半導体層、活性層、第一導電型の第一半導体層をこの順に含む発光層部とを有する発光素子において、前記発光素子は、前記第二半導体層、前記活性層、前記第一半導体層、前記第一半導体層と接する第一電極を有する第1の領域と、前記第二半導体層、前記活性層、前記第一半導体層を有する第2の領域と、前記第2の領域を囲むように少なくとも前記第一半導体層と前記活性層が除去された、前記第1の領域と前記第2の領域とを分離する第3の領域と、前記第2の領域の頂部と、該第2の領域の側面部と、前記第3の領域の少なくとも一部とにわたって被覆するとともに、前記第3の領域で前記第二半導体層または窓層兼支持基板と接する第二電極とを有し、前記第3の領域における前記第二電極の被膜面積が300μm以上である発光素子を提供する。 The present invention has been made to achieve the above-mentioned problems, and is provided on the window layer / support substrate and the window layer / support substrate, and is a second conductive type second from the window layer / support substrate side. In a light emitting element having a semiconductor layer, an active layer, and a light emitting layer portion including a first conductive type first semiconductor layer in this order, the light emitting element includes the second semiconductor layer, the active layer, and the first semiconductor layer. A first region having a first electrode in contact with the first semiconductor layer, a second region having the second semiconductor layer, the active layer, and the first semiconductor layer, and the second region so as to surround the second region. A third region from which at least the first semiconductor layer and the active layer have been removed, a third region separating the first region and the second region, the top of the second region, and the second region. It has a second electrode that covers at least a part of the third region and is in contact with the second semiconductor layer or the window layer / support substrate in the third region. Provided is a light emitting element having a coating area of the second electrode of 300 μm 2 or more in the region of.

このような発光素子によれば、極性の異なる電極が略同一の高さに形成され、かつ、十分低い電気抵抗を有し、断線不良や剥離不良が抑制され、傾きのないフリップ実装を可能とするものとなる。 According to such a light emitting element, electrodes having different polarities are formed at substantially the same height, have sufficiently low electrical resistance, suppress disconnection defects and peeling defects, and enable flip mounting without inclination. Will be.

このとき、前記窓層兼支持基板が、GaAs1-z(0.0≦z≦0.1)であり、前記発光層部が(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)である発光素子とすることができる。 At this time, the window layer and support substrate is GaAs z P 1-z (0.0 ≦ z ≦ 0.1), and the light emitting layer portion is (Al x Ga 1-x ) y In 1-y P. The light emitting element can be (0.0 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6).

これにより、発光効率が良いとともに、断線不良や剥離不良がより抑制されたものとなる。 As a result, the luminous efficiency is good, and the disconnection defect and the peeling defect are further suppressed.

このとき、発光素子の製造方法であって、出発基板上に少なくとも第一半導体層、活性層、第二半導体層をこの順でエピタキシャル成長により発光層部を形成する工程と、窓層兼支持基板をエピタキシャル成長または貼り合わせにより形成する工程と、前記出発基板を除去して前記第一半導体層を露出させる工程と、前記第一半導体層の表面の一部に第一電極を形成する工程と、前記第一電極を含む第1の領域と、前記第一電極を含まず前記第一半導体層と前記活性層を有する第2の領域であって、前記第一半導体層と前記活性層とが前記第1の領域とは分離された前記第2の領域とを形成するように、前記第2の領域の周囲の少なくとも前記第一半導体層と前記活性層を除去して第3の領域を形成する工程と、前記第2の領域の頂部と、前記第2の領域の側面部と、前記第3の領域の少なくとも一部とにわたって第二電極を形成する工程とを有し、前記第3の領域における第二電極の被膜面積を300μm以上とする発光素子の製造方法を提供することができる。 At this time, in the method of manufacturing a light emitting element, a step of forming a light emitting layer portion by epitaxial growth of at least a first semiconductor layer, an active layer, and a second semiconductor layer on a starting substrate in this order, and a window layer and support substrate are provided. A step of forming by epitaxial growth or laminating, a step of removing the starting substrate to expose the first semiconductor layer, a step of forming a first electrode on a part of the surface of the first semiconductor layer, and the first step. A first region including one electrode and a second region not including the first electrode and having the first semiconductor layer and the active layer, wherein the first semiconductor layer and the active layer are the first. A step of removing at least the first semiconductor layer and the active layer around the second region to form a third region so as to form the second region separated from the region. The step of forming the second electrode over the top of the second region, the side surface of the second region, and at least a part of the third region, the third in the third region. It is possible to provide a method for manufacturing a light emitting element having a coating area of two electrodes of 300 μm 2 or more.

これにより、極性の異なる電極を略同一の高さに形成し、かつ、十分低い電気抵抗を有し、断線不良や剥離不良が抑制され、傾きのないフリップ実装を可能とする発光素子を極めて容易に製造することができる。 As a result, electrodes having different polarities are formed at substantially the same height, and a sufficiently low electric resistance is suppressed. Can be manufactured to.

このとき、前記窓層兼支持基板を、GaAs1-z(0.0≦z≦0.1)、前記発光層部を(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)とする発光素子の製造方法とすることができる。 At this time, the window layer and support substrate is GaAs z P 1-z (0.0 ≦ z ≦ 0.1), and the light emitting layer portion is (Al x Ga 1-x ) y In 1-y P (0). It is possible to use a method for manufacturing a light emitting element in which 0.0 ≦ x ≦ 1.0 and 0.4 ≦ y ≦ 0.6).

これにより、発光効率が良いとともに、断線不良や剥離不良がより抑制された発光素子を製造することができる。 As a result, it is possible to manufacture a light emitting element having good luminous efficiency and further suppressed disconnection failure and peeling failure.

以上のように、本発明の発光素子によれば、極性の異なる電極が略同一の高さに形成され、かつ、十分低い電気抵抗を有し、断線不良や剥離不良が抑制され、傾きのないフリップ実装を可能とするものとなる。また、本発明の発光素子の製造方法によれば、極性の異なる電極を略同一の高さに形成し、かつ、十分低い電気抵抗を有し、断線不良や剥離不良が抑制され、傾きのないフリップ実装を可能とする発光素子を極めて容易に製造することが可能になる。 As described above, according to the light emitting element of the present invention, electrodes having different polarities are formed at substantially the same height, have sufficiently low electrical resistance, suppress wire breakage and peeling failure, and have no inclination. It enables flip mounting. Further, according to the method for manufacturing a light emitting element of the present invention, electrodes having different polarities are formed at substantially the same height, and the electric resistance is sufficiently low, disconnection defects and peeling defects are suppressed, and there is no inclination. It becomes possible to manufacture a light emitting element that enables flip mounting extremely easily.

第一の実施形態に係る発光素子製造工程途中の積層構造を示す。The laminated structure in the middle of the light emitting element manufacturing process which concerns on 1st Embodiment is shown. 第一の実施形態に係る発光素子を示す。The light emitting element which concerns on the 1st Embodiment is shown. 第一の実施形態に係る発光素子のチップデザインの設計上面図及び断面図を示す。The design top view and the sectional view of the chip design of the light emitting element which concerns on 1st Embodiment are shown. 第二の実施形態に係る発光素子製造工程途中の積層構造を示す。The laminated structure in the middle of the light emitting element manufacturing process which concerns on the 2nd Embodiment is shown. 第二の実施形態に係る発光素子を示す。The light emitting element which concerns on the 2nd Embodiment is shown. 第二の実施形態に係る発光素子のチップデザインの設計上面図及び断面図を示す。The design top view and the sectional view of the chip design of the light emitting element which concerns on the 2nd Embodiment are shown. 第三の実施形態に係る発光素子製造工程途中の積層構造を示す。The laminated structure in the middle of the light emitting element manufacturing process which concerns on 3rd Embodiment is shown. 第三の実施形態に係る発光素子を示す。The light emitting element which concerns on the 3rd Embodiment is shown. 第三の実施形態に係る発光素子のチップデザインの設計上面図及び断面図を示す。The design top view and the sectional view of the chip design of the light emitting element which concerns on 3rd Embodiment are shown. 比較例1に係る発光素子を示す。The light emitting element which concerns on Comparative Example 1 is shown. 比較例1に係る発光素子のチップデザインの設計上面図及び断面図を示す。The design top view and the sectional view of the chip design of the light emitting element which concerns on Comparative Example 1 are shown. 比較例2に係る発光素子を示す。The light emitting element which concerns on the comparative example 2 is shown. 実施例1-3と比較例1の、実装時のダイス傾き発生不良率を示す。The defective rate of dice tilt occurrence at the time of mounting in Examples 1-3 and Comparative Example 1 is shown. 実施例1-3と比較例2の、第二電極に起因する断線不良率を示す。The disconnection defect rate due to the second electrode of Example 1-3 and Comparative Example 2 is shown. 実施例1-3と比較例2の、実装時の電極剥離による実装不良を示す。The mounting defects of Example 1-3 and Comparative Example 2 due to electrode peeling during mounting are shown. 実施例1-6と比較例1、3、4の、被膜面積とVF(順方向電圧)との関係を示す。The relationship between the coating area and the VF (forward voltage) of Examples 1-6 and Comparative Examples 1, 3 and 4 is shown.

以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

上述のように、極性の異なる電極を同一の高さに形成し、かつ、十分低い電気抵抗を有し、断線不良や剥離不良が抑制され、傾きのないフリップ実装を可能とする発光素子及び発光素子の製造方法が求められていた。 As described above, a light emitting element and light emitting element having electrodes having different polarities formed at the same height, having sufficiently low electric resistance, suppressing disconnection failure and peeling failure, and enabling flip mounting without inclination. There has been a demand for a method for manufacturing an element.

本発明者らは、上記課題について鋭意検討を重ねた結果、窓層兼支持基板と、前記窓層兼支持基板上に設けられ、前記窓層兼支持基板側から第二導電型の第二半導体層、活性層、第一導電型の第一半導体層をこの順に含む発光層部とを有する発光素子において、前記発光素子は、前記第二半導体層、前記活性層、前記第一半導体層、前記第一半導体層と接する第一電極を有する第1の領域と、前記第二半導体層、前記活性層、前記第一半導体層を有する第2の領域と、前記第2の領域を囲むように少なくとも前記第一半導体層と前記活性層が除去された、前記第1の領域と前記第2の領域とを分離する第3の領域と、前記第2の領域の頂部と、該第2の領域の側面部と、前記第3の領域の少なくとも一部とにわたって被覆するとともに、前記第3の領域で前記第二半導体層または窓層兼支持基板と接する第二電極とを有し、前記第3の領域における前記第二電極の被膜面積が300μm以上である発光素子により、より低い電気抵抗を有し、断線不良や剥離不良がより抑制されたものとなることを見出し、本発明を完成した。 As a result of diligent studies on the above problems, the present inventors have provided the window layer / support substrate and the window layer / support substrate, and the second conductive type second semiconductor is provided from the window layer / support substrate side. In a light emitting element having a layer, an active layer, and a light emitting layer portion including a first conductive type first semiconductor layer in this order, the light emitting element is the second semiconductor layer, the active layer, the first semiconductor layer, and the above. At least a first region having a first electrode in contact with the first semiconductor layer, a second region having the second semiconductor layer, the active layer, and the first semiconductor layer, and the second region so as to surround the second region. A third region from which the first semiconductor layer and the active layer have been removed, a third region separating the first region and the second region, the top of the second region, and the second region. The third region has a side surface portion and a second electrode that covers at least a part of the third region and is in contact with the second semiconductor layer or the window layer / support substrate in the third region. The present invention has been completed by finding that a light emitting element having a coating area of the second electrode of 300 μm 2 or more in the region has a lower electric resistance and further suppresses disconnection defects and peeling defects.

また、本発明者らは、発光素子の製造方法であって、出発基板上に少なくとも第一半導体層、活性層、第二半導体層をこの順でエピタキシャル成長により発光層部を形成する工程と、窓層兼支持基板をエピタキシャル成長または貼り合わせにより形成する工程と、前記出発基板を除去して前記第一半導体層を露出させる工程と、前記第一半導体層の表面の一部に第一電極を形成する工程と、前記第一電極を含む第1の領域と、前記第一電極を含まず前記第一半導体層と前記活性層を有する第2の領域であって、前記第一半導体層と前記活性層とが前記第1の領域とは分離された前記第2の領域とを形成するように、前記第2の領域の周囲の少なくとも前記第一半導体層と前記活性層を除去して第3の領域を形成する工程と、前記第2の領域の頂部と、前記第2の領域の側面部と、前記第3の領域の少なくとも一部とにわたって第二電極を形成する工程とを有し、前記第3の領域における第二電極の被膜面積を300μm以上とする発光素子の製造方法により、極性の異なる電極を略同一の高さに形成し、かつ、十分低い電気抵抗を有し、断線不良や剥離不良が抑制され、傾きのないフリップ実装を可能とする発光素子を極めて容易に製造することができることを見出し、本発明を完成した。 Further, the present inventors are a method for manufacturing a light emitting element, which is a step of forming a light emitting layer portion by epitaxial growth of at least a first semiconductor layer, an active layer, and a second semiconductor layer on a starting substrate in this order, and a window. A step of forming a layer / support substrate by epitaxial growth or laminating, a step of removing the starting substrate to expose the first semiconductor layer, and a step of forming a first electrode on a part of the surface of the first semiconductor layer. The step, the first region including the first electrode, the second region not including the first electrode and having the first semiconductor layer and the active layer, the first semiconductor layer and the active layer. The third region is obtained by removing at least the first semiconductor layer and the active layer around the second region so as to form the second region separated from the first region. The step of forming the second electrode over the top of the second region, the side surface portion of the second region, and at least a part of the third region. By the method of manufacturing a light emitting element in which the coating area of the second electrode in the region 3 is 300 μm 2 or more, electrodes having different polarities are formed at substantially the same height, and the electric resistance is sufficiently low. We have found that it is extremely easy to manufacture a light emitting element that suppresses peeling defects and enables flip mounting without tilting, and completed the present invention.

以下、図面を参照して説明する。 Hereinafter, description will be given with reference to the drawings.

(第一の実施形態)
図1に本実施形態に係る発光素子製造工程途中の積層構造、図2に本実施形態に係る発光素子、図3に本実施形態に係る発光素子のチップデザインの設計上面図及び断面図を示す。
例えばAlGaInP系エピタキシャルウェーハ001は、[001]方向に15度傾斜した出発基板としてのGaAs基板100上に、有機金属気相成長法(MOVPE)法により、例えば(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)からなる下部(n型)クラッド層である第一半導体層101、(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)からなる活性層102、(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)からなる上部(p型)クラッド層である第二半導体層103、GaIn1-yP(0.0≦y≦1.0)から成る中間組成層104、0.5μm以上の厚さを有するGaP窓層105を順次積層して得ることができる。このうち、第一半導体層101、活性層102、第二半導体層103を含む部分が発光層部107となる。なお、作製方法はMOVPEに限定されるものではなく、分子線エピタキシー(MBE)法や、化学線エピタキシー(CBE)法で作製しても良い。
(First embodiment)
FIG. 1 shows a laminated structure in the middle of the light emitting element manufacturing process according to the present embodiment, FIG. 2 shows a light emitting element according to the present embodiment, and FIG. 3 shows a design top view and a cross-sectional view of a chip design of the light emitting element according to the present embodiment. ..
For example, the AlGaInP-based epitaxial wafer 001 is placed on a GaAs substrate 100 as a starting substrate inclined by 15 degrees in the [001] direction by an organic metal vapor phase growth method (MOVPE), for example, (Al x Ga 1-x ) y In. First semiconductor layer 101, which is a lower (n-type) clad layer composed of 1-y P (0.0 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6), (Al x Ga 1-x ). An active layer 102 composed of y In 1-y P (0.0 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6), (Al x Ga 1-x ) y In 1-y P (0. Second semiconductor layer 103, which is an upper (p-type) clad layer composed of 0 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6), Gay In 1-y P (0.0 ≦ y ≦ 1) It can be obtained by sequentially laminating an intermediate composition layer 104 composed of 0.0) and a GaP window layer 105 having a thickness of 0.5 μm or more. Of these, the portion including the first semiconductor layer 101, the active layer 102, and the second semiconductor layer 103 is the light emitting layer portion 107. The production method is not limited to MOVPE, and may be produced by a molecular beam epitaxy (MBE) method or a chemical beam epitaxy (CBE) method.

次にGaP窓層105に接して、例えば100μmの厚さを有するGaAs1-z(0.0≦z≦0.1)窓層兼支持基板106を形成する。窓層兼支持基板106はMOVPE法、MBE法あるいは、安価で成長速度も速いハイドライド気相成長(HVPE)法により形成することができる。 Next, in contact with the GaP window layer 105, a GaAs z P 1-z (0.0 ≦ z ≦ 0.1) window layer and support substrate 106 having a thickness of, for example, 100 μm is formed. The window layer / support substrate 106 can be formed by the MOVPE method, the MBE method, or the hydride vapor phase growth (HVPE) method, which is inexpensive and has a high growth rate.

窓層兼支持基板106形成後、化学的エッチングによりAlGaInP系エピタキシャルウェーハ001の出発基板であるGaAs基板100を除去したウェーハ011を形成する(図2参照)。化学的エッチング液はAlGaInP系材料とエッチング選択性があるものが好ましく、一般にはアンモニア含有エッチャントで除去する。 After the window layer and support substrate 106 is formed, the wafer 011 from which the GaAs substrate 100, which is the starting substrate of the AlGaInP-based epitaxial wafer 001, is removed is formed by chemical etching (see FIG. 2). The chemical etching solution is preferably an AlGaInP-based material and has etching selectivity, and is generally removed with an ammonia-containing etchant.

GaAs基板100除去後、ウェーハ011の第一半導体層101上に第一電極151を形成する。また、第一半導体層101、活性層102、第二半導体層103等を残した第2の領域125を形成するように、少なくとも第一半導体層101及び活性層102を、第2の領域125を囲むように除去して、第3の領域120を形成する。これにより、第一電極151を有する第1の領域111、第2の領域125、第3の領域120を有する構造体が形成される。なお、図2においては、第3の領域120が窓層兼支持基板106まで達する場合を例示しているが、第二半導体層103あるいは中間組成層104あるいはGaP窓層105で停止しても良い。 After removing the GaAs substrate 100, the first electrode 151 is formed on the first semiconductor layer 101 of the wafer 011. Further, at least the first semiconductor layer 101 and the active layer 102 are formed in the second region 125 so as to form the second region 125 in which the first semiconductor layer 101, the active layer 102, the second semiconductor layer 103 and the like are left. It is removed so as to surround it to form a third region 120. As a result, a structure having a first region 111 having a first electrode 151, a second region 125, and a third region 120 is formed. Although FIG. 2 illustrates the case where the third region 120 reaches the window layer and support substrate 106, it may be stopped at the second semiconductor layer 103, the intermediate composition layer 104, or the GaP window layer 105. ..

次に、第2の領域125の頂部125Aと、側面部125Bと、第3の領域120の底部120Aの少なくとも一部とにわたって被覆するように第二電極161を形成する。図2では、第1の領域111側の側面部125Cに第二電極161が形成されていない場合を例示しているが、側面部125Cに金属電極が形成されることを否定するものではなく、側面部125Cに第二電極161が形成されていても良い。
第1の領域111の第一半導体層101の上面と、第2の領域125の第一半導体層101の上面である頂部125Aの高さは略同一であるので、第一電極151の上面と第二電極161上面の高さも、略同一にすることができる。
Next, the second electrode 161 is formed so as to cover at least a part of the top portion 125A of the second region 125, the side surface portion 125B, and the bottom portion 120A of the third region 120. FIG. 2 illustrates a case where the second electrode 161 is not formed on the side surface portion 125C on the first region 111 side, but it does not deny that the metal electrode is formed on the side surface portion 125C. The second electrode 161 may be formed on the side surface portion 125C.
Since the heights of the top surface 125A, which is the upper surface of the first semiconductor layer 101 of the second region 125, and the upper surface of the first semiconductor layer 101 of the first region 111 are substantially the same, the height of the top surface 125A is substantially the same as that of the upper surface of the first electrode 151. The height of the upper surface of the two electrodes 161 can also be substantially the same.

ここで、第3の領域120における第二電極161が形成された底部120Aの被膜面積を、300μm以上とする。さらに700μm以上とすることがより好ましい。このように、第2の領域125を設け、第2の領域125の頂部125Aと、第2の領域125の側面部125Bと、第3の領域120の底部120Aの少なくとも一部とにわたって被覆するように第二電極161を形成し、第二電極161が形成された底部120Aの被膜面積を300μm以上とすることで、十分低い電気抵抗を有し、断線不良や剥離不良が抑制され、傾きのないフリップ実装を可能とする発光素子とすることができる。
また、底部120Aの被膜面積の上限は特に限定されないが、被膜面積を大きくすると発光部の面積が相対的に小さくなり効率が悪くなるため、7000μm以下とすることが好ましい。これは、後述の第二の実施形態、第三の実施形態においても同様である。
Here, the coating area of the bottom portion 120A on which the second electrode 161 is formed in the third region 120 is set to 300 μm 2 or more. Further, it is more preferably 700 μm 2 or more. Thus, the second region 125 is provided to cover at least a portion of the top 125A of the second region 125, the side surface 125B of the second region 125, and the bottom 120A of the third region 120. By forming the second electrode 161 on the surface and setting the coating area of the bottom 120A on which the second electrode 161 is formed to 300 μm 2 or more, the electric resistance is sufficiently low, disconnection failure and peeling failure are suppressed, and the inclination is increased. It can be a light emitting element that enables no flip mounting.
Further, the upper limit of the coating area of the bottom portion 120A is not particularly limited, but if the coating area is increased, the area of the light emitting portion becomes relatively small and the efficiency deteriorates, so that it is preferably 7000 μm 2 or less. This also applies to the second embodiment and the third embodiment described later.

次に、第1の領域111のうち、第一電極151が設けられていない部分の少なくとも一部に、誘電体部140を設ける。これにより、第1の領域111と第3の領域120の間にある側壁130の少なくとも一部に誘電体部140を設けた発光素子A01を得ることができる。発光素子A01に設けられた、第一電極151、誘電体部140、第二電極161の位置関係は、図3の上面図及び断面図に示すとおりである。 Next, the dielectric portion 140 is provided in at least a part of the first region 111 where the first electrode 151 is not provided. As a result, it is possible to obtain a light emitting element A01 in which the dielectric portion 140 is provided in at least a part of the side wall 130 between the first region 111 and the third region 120. The positional relationship between the first electrode 151, the dielectric portion 140, and the second electrode 161 provided on the light emitting element A01 is as shown in the top view and the cross-sectional view of FIG.

本実施形態では、誘電体部140が、第1の領域111の第一電極151部以外の上面及び側壁130の全てを被覆する場合を例示しているが、必ずしも全てを被覆する必要はなく、一部のみを被覆するようにしても良い。 In the present embodiment, the case where the dielectric portion 140 covers all of the upper surface and the side wall 130 other than the first electrode 151 portion of the first region 111 is illustrated, but it is not always necessary to cover all of them. It may be possible to cover only a part.

本実施形態では、第1の領域111において、誘電体部140が単層の構造を例示しているが、誘電体部140と第1の領域111との間に光反射膜あるいは光反射部を設けても良く、あるいは、誘電体部140の第1の領域111に接しない面側に光反射膜あるいは光反射部を設けても良い。 In the present embodiment, the structure in which the dielectric portion 140 is a single layer is exemplified in the first region 111, but a light reflecting film or a light reflecting portion is provided between the dielectric portion 140 and the first region 111. Alternatively, the light reflecting film or the light reflecting portion may be provided on the surface side of the dielectric portion 140 that does not come into contact with the first region 111.

本実施形態では、第1の領域111が平坦な面を有する場合を例示しているが、凹凸を有する面を有していても同様の効果が得られることは言うまでもない。凹凸を有する面に関しては、ウェットエッチングによる単純粗面、ファセット面を有するファセット粗面、数十μm~数百nmのピッチを有するフォトリソによるパターン化されたパターン化粗面、数~数百nmのピッチのトレンチ形状を有するフォトニック粗面のいずれの場合も含まれる。 In the present embodiment, the case where the first region 111 has a flat surface is illustrated, but it goes without saying that the same effect can be obtained even if the first region 111 has a surface having irregularities. For surfaces with irregularities, simple rough surface by wet etching, facet rough surface with facet surface, patterned rough surface with photolithography having a pitch of several tens of μm to several hundred nm, and several to several hundred nm. Any case of a photonic rough surface having a pitch trench shape is included.

本実施形態では、側壁130、第3の領域120が凹凸の無いフラットな面として例示しているが、凹凸を有する面であっても良い。 In the present embodiment, the side wall 130 and the third region 120 are exemplified as a flat surface without unevenness, but a surface having unevenness may be used.

本実施形態では、窓層兼支持基板106が平坦な面を有する場合を例示しているが、凹凸を有する面を有していても同様の効果が得られることは言うまでもない。凹凸を有する面に関しては、ウェットエッチングによる単純粗面、ファセット面を有するファセット粗面、数十μm~数百nmのピッチを有するフォトリソによるパターン化されたパターン化粗面、数~数百nmのピッチのトレンチ形状を有するフォトニック粗面のいずれの場合も含まれる。 In the present embodiment, the case where the window layer / support substrate 106 has a flat surface is illustrated, but it goes without saying that the same effect can be obtained even if the window layer / support substrate 106 has a surface having irregularities. For surfaces with irregularities, simple rough surface by wet etching, facet rough surface with facet surface, patterned rough surface with photolithography having a pitch of several tens of μm to several hundred nm, and several to several hundred nm. Any case of a photonic rough surface having a pitch trench shape is included.

本実施形態では、窓層兼支持基板106の表面に他の膜を形成することは記載していないが、誘電体からなる反射防止膜を設けても良い。 In the present embodiment, it is not described that another film is formed on the surface of the window layer / support substrate 106, but an antireflection film made of a dielectric may be provided.

発光素子A01を形成した後、必要に応じて第一電極151、第二電極161上にAuバンプを形成し、GaPでの光吸収特性を有するレーザーを線状に照射してスクライブ処理し、欠陥線を形成した後ブレーキング処理を行い、個別ダイス化する。あるいは、線状にダイヤモンドにてけがいてスクライブ処理し、欠陥転位線を形成後、ブレーキング処理をして個別ダイス化する。 After forming the light emitting element A01, Au bumps are formed on the first electrode 151 and the second electrode 161 as needed, and a laser having light absorption characteristics in GaP is linearly irradiated to perform scribing treatment, resulting in defects. After forming the line, braking processing is performed to make individual dies. Alternatively, it is linearly injured with diamond and scribed to form a defect dislocation line, and then braked to make individual dice.

発光素子A01を駆動基板に直接実装する場合は、スクライブ・ブレーキング処理を行わず直接実装基板に実装されるため、前記スクライブ・ブレーキング処理を行わない。また、スクライブ・ブレーキング処理を行わなくても、発明の効果は同じである。 When the light emitting element A01 is directly mounted on the drive board, the scribe braking process is not performed because the light emitting element A01 is mounted directly on the mounting board without performing the scribe braking process. Further, the effect of the invention is the same even if the scribe braking process is not performed.

個別ダイス化後、Auバンプを介して駆動基板に実装する。その際、ダイスに超音波もしくは150℃以上の温度、あるいはその両者の条件にて圧着することで実現することができる。 After making individual dice, it is mounted on the drive board via Au bumps. At that time, it can be realized by crimping the die with ultrasonic waves, a temperature of 150 ° C. or higher, or both conditions.

(第二の実施形態)
図4に第二の実施形態に係る発光素子製造工程途中の積層構造、図5に第二の実施形態に係る発光素子、図6に第二の実施形態に係る発光素子のチップデザインの設計上面図及び断面図を示す。
(Second embodiment)
FIG. 4 shows a laminated structure in the middle of the light emitting element manufacturing process according to the second embodiment, FIG. 5 shows the light emitting element according to the second embodiment, and FIG. 6 shows the design top surface of the chip design of the light emitting element according to the second embodiment. The figure and the sectional view are shown.

例えばAlGaInP系エピタキシャルウェーハ002は、[001]方向に15度傾斜した出発基板としてのGaAs基板200上に、有機金属気相成長法(MOVPE)法を用いて、例えば(AlGa1-x)yIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)からなる下部(n型)クラッド層である第一半導体層201、(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)からなる活性層202、(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)からなる上部(p型)クラッド層である第二半導体層203、0.5μm以上の厚さを有するGaP窓層205を順次積層して得ることができる。このうち、第一半導体層201、活性層202、第二半導体層203を含む部分が発光層部207となる。作製方法はMOVPEに限定されるものではなく、分子線エピタキシー(MBE)法や、化学線エピタキシー(CBE)法で作製しても良い。 For example, the AlGaInP-based epitaxial wafer 002 uses the organic metal vapor phase growth method (MOVPE) method on a GaAs substrate 200 as a starting substrate inclined by 15 degrees in the [001] direction, for example (Al x Ga 1-x ). First semiconductor layer 201, (Al x Ga 1-x ), which is a lower (n-type) clad layer composed of yIn 1-y P (0.0 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6) ) Y In 1-y P (0.0 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6) in the active layer 202, (Al x Ga 1-x ) y In 1-y P (0) The second semiconductor layer 203, which is an upper (p-type) clad layer composed of 0.0 ≦ x ≦ 1.0 and 0.4 ≦ y ≦ 0.6), and the GaP window layer 205 having a thickness of 0.5 μm or more are provided. It can be obtained by sequentially laminating. Of these, the portion including the first semiconductor layer 201, the active layer 202, and the second semiconductor layer 203 is the light emitting layer portion 207. The production method is not limited to MOVPE, and may be produced by a molecular beam epitaxy (MBE) method or a chemical beam epitaxy (CBE) method.

GaP窓層205形成後、GaP窓層205に接して第一接着増強層209を形成する。接着増強層は、発光波長に対して透明なSiO、SiNやITOなどが選択できる。次に例えばGaP等の透明基板250を準備し、第二接着増強層259を形成する。接着増強層は発光波長に対して透明なSiO、SiNやITOなどが選択できる。
本実施形態においては、透明基板250としてGaPを例示したが、GaPに限定されるものではなく、サファイア、石英、窒化ガリウム、酸化ガリウム、酸化チタン、その他発光波長に対して透光性のある材料ならどれでも選択可能である。
After the formation of the GaP window layer 205, the first adhesion enhancing layer 209 is formed in contact with the GaP window layer 205. For the adhesion enhancing layer, SiO 2 , SiN x , ITO, etc., which are transparent to the emission wavelength, can be selected. Next, for example, a transparent substrate 250 such as GaP is prepared to form a second adhesive strengthening layer 259. For the adhesion enhancing layer, SiO 2 , SiN x , ITO, etc., which are transparent to the emission wavelength, can be selected.
In the present embodiment, GaP is exemplified as the transparent substrate 250, but the present invention is not limited to GaP, and is not limited to GaP, but is sapphire, quartz, gallium nitride, gallium oxide, titanium oxide, and other materials that are translucent with respect to emission wavelengths. Any can be selected.

第一接着増強層209及び第二接着増強層259を形成した後、第一接着増強層209、第二接着増強層259の少なくとも一方にBCB接着剤260をスピンコートにて塗布し、第一接着増強層209と、第二接着増強層259とが相対するように重ね合わせ、150℃以上の熱と100N以上の圧力を加えて接着し、接合する。これら、GaP窓層205、第一接着増強層209、BCB接着剤260、第二接着増強層259及び透明基板250が、窓層兼支持基板206である。なお、本実施形態では、第一接着増強層209、第二接着増強層259を形成した場合を例示しているが、形成しなくても良い。 After forming the first adhesion-enhancing layer 209 and the second adhesion-enhancing layer 259, BCB adhesive 260 is applied to at least one of the first adhesion-enhancing layer 209 and the second adhesion-enhancing layer 259 by a spin coat, and the first adhesion is performed. The reinforcing layer 209 and the second adhesive reinforcing layer 259 are superposed so as to face each other, and are bonded and bonded by applying heat of 150 ° C. or higher and a pressure of 100 N or higher. The GaP window layer 205, the first adhesive strengthening layer 209, the BCB adhesive 260, the second adhesive strengthening layer 259, and the transparent substrate 250 are the window layer and support substrate 206. In this embodiment, the case where the first adhesive strengthening layer 209 and the second adhesive strengthening layer 259 are formed is illustrated, but it is not necessary to form them.

接合後、透明基板250を結合したAlGaInP系エピタキシャルウェーハ(この構造体は図示していない)から、化学的エッチングにより出発基板であるGaAs基板200を除去してウェーハ021を形成する。化学的エッチング液は、AlGaInP系材料とエッチング選択性があるものが好ましく、一般にはアンモニア含有エッチャントで除去する。 After joining, the GaAs substrate 200, which is the starting substrate, is removed from the AlGaInP-based epitaxial wafer (this structure is not shown) to which the transparent substrate 250 is bonded by chemical etching to form the wafer 022. The chemical etching solution preferably has etching selectivity with an AlGaInP-based material, and is generally removed with an ammonia-containing etchant.

GaAs基板200除去後、ウェーハ021の第一半導体層201上に第一電極251を形成する。また、第一半導体層201、活性層202、第二半導体層203等を残した第2の領域225を形成するように、少なくとも第一半導体層201及び活性層202を、第2の領域225を囲むように除去して第3の領域220を形成する。これにより、第一電極251を有する第1の領域211、第2の領域225、第3の領域220を有する構造体が形成される。なお、図5においては、第3の領域220が窓層205まで達する場合を例示しているが、第二半導体層203で停止しても良い。 After removing the GaAs substrate 200, the first electrode 251 is formed on the first semiconductor layer 201 of the wafer 021. Further, at least the first semiconductor layer 201 and the active layer 202 are formed in the second region 225 so as to form the second region 225 in which the first semiconductor layer 201, the active layer 202, the second semiconductor layer 203 and the like are left. It is removed so as to surround it to form a third region 220. As a result, a structure having a first region 211 having a first electrode 251, a second region 225, and a third region 220 is formed. Although FIG. 5 illustrates the case where the third region 220 reaches the window layer 205, it may be stopped at the second semiconductor layer 203.

次に、第2の領域225の頂部225Aと、側面部225Bと、第3の領域220の底部220Aの少なくとも一部とにわたって被覆するように第二電極261を形成する。図5では第1の領域211側の側面部225Cに第二電極261が形成されていない場合を例示しているが、側面部225Cに金属電極が形成されることを否定するものではなく、側面部225Cに第二電極261が形成されていても良い。
第1の領域211の第一半導体層201の上面と、第2の領域225の第一半導体層201の上面である頂部225Aの高さは略同一であるので、第一電極251の上面と第二電極261上面の高さも、略同一にすることができる。
Next, the second electrode 261 is formed so as to cover at least a part of the top portion 225A of the second region 225, the side surface portion 225B, and the bottom portion 220A of the third region 220. FIG. 5 illustrates a case where the second electrode 261 is not formed on the side surface portion 225C on the first region 211 side, but it does not deny that the metal electrode is formed on the side surface portion 225C, and the side surface is not denied. The second electrode 261 may be formed in the portion 225C.
Since the heights of the top surface 225A, which is the upper surface of the first semiconductor layer 201 of the second region 225, and the upper surface of the first semiconductor layer 201 of the first region 211 are substantially the same, the height of the top surface 225A is substantially the same as that of the upper surface of the first electrode 251. The height of the upper surface of the two electrodes 261 can also be substantially the same.

ここで、第3の領域220における第二電極261が形成された底部220Aの面積を、300μm以上とする。更に700μm以上とすることがより好ましい。このように第2の領域225を設け、第2の領域225の頂部225Aと、第2の領域225の側面部225Bと、第3の領域220の底部220Aの少なくとも一部とにわたって被覆するように第二電極261を形成し、第二電極261が形成された底部220Aの被膜面積を300μm以上とすることで十分低い電気抵抗を有し、断線不良や剥離不良が抑制され、傾きのないフリップ実装を可能とする発光素子とすることができる。 Here, the area of the bottom 220A on which the second electrode 261 is formed in the third region 220 is set to 300 μm 2 or more. Further, it is more preferably 700 μm 2 or more. Thus, the second region 225 is provided so as to cover the top 225A of the second region 225, the side surface portion 225B of the second region 225, and at least a part of the bottom 220A of the third region 220. By forming the second electrode 261 and setting the coating area of the bottom 220A on which the second electrode 261 is formed to be 300 μm 2 or more, it has sufficiently low electrical resistance, disconnection failure and peeling failure are suppressed, and flip without inclination. It can be a light emitting element that can be mounted.

次に、第1の領域211のうち、第一電極251が設けられていない部分の少なくとも一部に、誘電体部240を設ける。これにより、第1の領域211と第3の領域220の間にある側壁230の少なくとも一部に誘電体部240を設けた発光素子A02を得る。発光素子A02に設けられた、第一電極251、誘電体部240、第二電極261の位置関係は、図6の上面図及び断面図に示すとおりである。 Next, the dielectric portion 240 is provided in at least a part of the first region 211 where the first electrode 251 is not provided. As a result, a light emitting element A02 having a dielectric portion 240 provided on at least a part of the side wall 230 between the first region 211 and the third region 220 is obtained. The positional relationship between the first electrode 251 and the dielectric portion 240 and the second electrode 261 provided on the light emitting element A02 is as shown in the top view and the cross-sectional view of FIG.

本実施形態では、誘電体部240が第1の領域211の第一電極251部以外の上面及び側壁230全てを被覆する場合を例示しているが、必ずしも全てを被覆する必要はなく、一部のみを被覆するようにしても良い。 In the present embodiment, the case where the dielectric portion 240 covers all the upper surface and the side wall 230 other than the first electrode 251 portion of the first region 211 is illustrated, but it is not always necessary to cover all of them, and a part of them is covered. You may try to cover only.

本実施形態では、第1の領域211において、誘電体部240が単層の構造を例示しているが、誘電体部240と第1の領域211との間に光反射膜あるいは光反射部を設けても良く、あるいは、誘電体部240の第1の領域211に接しない面側に光反射膜あるいは光反射部を設けても良い。 In the present embodiment, in the first region 211, the dielectric portion 240 exemplifies the structure of a single layer, but a light reflecting film or a light reflecting portion is provided between the dielectric portion 240 and the first region 211. Alternatively, the light reflecting film or the light reflecting portion may be provided on the surface side of the dielectric portion 240 that does not come into contact with the first region 211.

本実施形態では、第1の領域211が、平坦な面を有する場合を例示しているが、凹凸を有する面を有していても良い。凹凸を有する面に関しては、ウェットエッチングによる単純粗面、ファセット面を有するファセット粗面、数十μm~数百nmのピッチを有するフォトリソによるパターン化されたパターン化粗面、数~数百nmのピッチのトレンチ形状を有するフォトニック粗面のいずれの場合も含まれる。 In the present embodiment, the case where the first region 211 has a flat surface is illustrated, but a surface having irregularities may be provided. For surfaces with irregularities, simple rough surface by wet etching, facet rough surface with facet surface, patterned rough surface with photolithography having a pitch of several tens of μm to several hundred nm, and several to several hundred nm. Any case of a photonic rough surface having a pitch trench shape is included.

本実施形態では、側壁230、第3の領域220は凹凸の無いフラットな面として例示しているが、凹凸を有する面であっても良い。 In the present embodiment, the side wall 230 and the third region 220 are exemplified as a flat surface without unevenness, but may be a surface having unevenness.

本実施形態では、窓層兼支持基板206が平坦な面を有する場合を例示しているが、凹凸を有する面を有していても良い。凹凸を有する面に関しては、ウェットエッチングによる単純粗面、ファセット面を有するファセット粗面、数十μm~数百nmのピッチを有するフォトリソによるパターン化されたパターン化粗面、数~数百nmのピッチのトレンチ形状を有するフォトニック粗面のいずれの場合も含まれる。 In the present embodiment, the case where the window layer / support substrate 206 has a flat surface is illustrated, but a surface having irregularities may be provided. For surfaces with irregularities, simple rough surface by wet etching, facet rough surface with facet surface, patterned rough surface with photolithography having a pitch of several tens of μm to several hundred nm, and several to several hundred nm. Any case of a photonic rough surface having a pitch trench shape is included.

本実施形態では、窓層兼支持基板206の表面に他の膜を形成することは記載していないが、誘電体から成る反射防止膜を設けても良い。 In the present embodiment, it is not described that another film is formed on the surface of the window layer / support substrate 206, but an antireflection film made of a dielectric may be provided.

発光素子A02を形成した後、必要に応じて第一電極251、第二電極261上にAuバンプを形成し、GaPでの光吸収特性を有するレーザーを線状に照射してスクライブ処理し、欠陥線を形成した後ブレーキング処理を行い、個別ダイス化する。あるいは、線状にダイヤモンドにてけがいてスクライブ処理し、欠陥転位線を形成後、ブレーキング処理をして個別ダイス化する。 After forming the light emitting element A02, Au bumps are formed on the first electrode 251 and the second electrode 261 as needed, and a laser having light absorption characteristics in GaP is linearly irradiated to perform scribing treatment, resulting in defects. After forming the line, braking processing is performed to make individual dies. Alternatively, it is linearly injured with diamond and scribed to form a defect dislocation line, and then braked to make individual dice.

発光素子A02を駆動基板に直接実装する場合は、スクライブ・ブレーキング処理を行わず直接実装基板に実装されるため、スクライブ・ブレーキング処理を行わない。また、スクライブ・ブレーキング処理を行わなくても、発明の効果は同じである。 When the light emitting element A02 is directly mounted on the drive board, the scribe braking process is not performed because the light emitting element A02 is mounted directly on the mounting board without performing the scribe braking process. Further, the effect of the invention is the same even if the scribe braking process is not performed.

個別ダイス化後、Auバンプを介して駆動基板に実装する。その際、ダイスに超音波もしくは150℃以上の温度、あるいはその両者の条件にて圧着することで実現することができる。 After making individual dice, it is mounted on the drive board via Au bumps. At that time, it can be realized by crimping the die with ultrasonic waves, a temperature of 150 ° C. or higher, or both conditions.

(第三の実施形態)
図7に第三の実施形態に係る発光素子製造工程途中の積層構造、図8に第三の実施形態に係る発光素子、図9に第三の実施形態に係る発光素子のチップデザインの設計上面図及び断面図を示す。
(Third embodiment)
FIG. 7 shows a laminated structure in the middle of the light emitting element manufacturing process according to the third embodiment, FIG. 8 shows the light emitting element according to the third embodiment, and FIG. 9 shows the design top surface of the chip design of the light emitting element according to the third embodiment. The figure and the sectional view are shown.

例えばAlGaInP系エピタキシャルウェーハ003は、[001]方向に15度傾斜した出発基板としてのGaAs基板300上に有機金属気相成長法(MOVPE)法にて、例えば(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)からなる下部(n型)クラッド層である第一半導体層301、(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)からなる活性層302、(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)からなる上部(p型)クラッド層である第二半導体層303、0.5μm以上の厚さを有するGaP窓層305を順次積層して得ることができる。このうち、第一半導体層301、活性層302、第二半導体層303を含む部分が発光層部307となる。作製方法はMOVPEに限定されるものではなく、分子線エピタキシー(MBE)法や、化学線エピタキシー(CBE)法で作製しても良い。 For example, the AlGaInP-based epitaxial wafer 003 is placed on a GaAs substrate 300 as a starting substrate inclined by 15 degrees in the [001] direction by a metalorganic vapor phase growth method (MOVPE) method, for example, (Al x Ga 1-x ) y In. First semiconductor layer 301, (Al x Ga 1-x ), which is a lower (n-type) clad layer composed of 1-y P (0.0 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6). Active layer 302 composed of y In 1-y P (0.0 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6), (Al x Ga 1-x ) y In 1-y P (0. The second semiconductor layer 303, which is an upper (p-type) clad layer composed of 0 ≦ x ≦ 1.0 and 0.4 ≦ y ≦ 0.6), and the GaP window layer 305 having a thickness of 0.5 μm or more are sequentially formed. It can be obtained by stacking. Of these, the portion including the first semiconductor layer 301, the active layer 302, and the second semiconductor layer 303 is the light emitting layer portion 307. The production method is not limited to MOVPE, and may be produced by a molecular beam epitaxy (MBE) method or a chemical beam epitaxy (CBE) method.

次に例えばGaP等からなる透明基板350とAlGaInP系エピタキシャルウェーハ003をOH基含有液でウェット処理する。ウェット処理後、透明基板350とAlGaInP系エピタキシャルウェーハ003のGaP窓層305とを相対する様に重ね合わせ、150℃以上の熱と100N以上の圧力を加えて、接合する。透明基板350及びGaP窓層305が、窓層兼支持基板306である。
本実施形態においては、透明基板350としてGaPを例示したが、GaPに限定されるものではなく、サファイア、石英、窒化ガリウム、酸化ガリウム、酸化チタン、その他発光波長に対して透光性のある材料ならどれでも選択可能である。
Next, for example, a transparent substrate 350 made of GaP or the like and an AlGaInP-based epitaxial wafer 003 are wet-treated with an OH group-containing liquid. After the wet treatment, the transparent substrate 350 and the GaP window layer 305 of the AlGaInP-based epitaxial wafer 003 are superposed so as to face each other, and heat of 150 ° C. or higher and a pressure of 100 N or higher are applied to join them. The transparent substrate 350 and the GaP window layer 305 are the window layer and support substrate 306.
In the present embodiment, GaP is exemplified as the transparent substrate 350, but the present invention is not limited to GaP, and sapphire, quartz, gallium nitride, gallium oxide, titanium oxide, and other materials that are translucent with respect to emission wavelengths. Any can be selected.

接合後、化学的エッチングによりAlGaInP系エピタキシャルウェーハ003のGaAs基板300を除去して、ウェーハ031を形成する。化学的エッチング液はAlGaInP系材料とエッチング選択性があるものが好ましく、一般にはアンモニア含有エッチャントで除去する。 After joining, the GaAs substrate 300 of the AlGaInP-based epitaxial wafer 003 is removed by chemical etching to form the wafer 031. The chemical etching solution is preferably an AlGaInP-based material and has etching selectivity, and is generally removed with an ammonia-containing etchant.

GaAs基板300除去後、ウェーハ031の第一半導体層301上に第一電極351を形成する。また、第一半導体層301、活性層302、第二半導体層303等を残した第2の領域325を形成するように、少なくとも第一半導体層301及び活性層302を、第2の領域325を囲むように除去して、第3の領域320を形成する。これにより、第一電極351を有する第1の領域311、第2の領域325、第3の領域320を有する構造体が形成される。なお、図8においては、第3の領域320がGaP窓層305まで達する場合を例示しているが、第二半導体層303で停止しても良い。 After removing the GaAs substrate 300, the first electrode 351 is formed on the first semiconductor layer 301 of the wafer 031. Further, at least the first semiconductor layer 301 and the active layer 302 are formed in the second region 325 so as to form the second region 325 in which the first semiconductor layer 301, the active layer 302, the second semiconductor layer 303 and the like are left. It is removed so as to surround it to form a third region 320. As a result, a structure having a first region 311 having a first electrode 351 and a second region 325 and a third region 320 is formed. Although FIG. 8 illustrates the case where the third region 320 reaches the GaP window layer 305, it may be stopped at the second semiconductor layer 303.

第2の領域325の頂部325Aと、側面部325Bと、第3の領域320の底部320Aの少なくとも一部とにわたって被覆するように第二電極361を形成する。図では第1の領域311側の側面部325Cに第二電極361が形成されていない場合を例示しているが、側面部325Cに金属電極が形成されることを否定するものではなく、側面部325Cに第二電極361が形成されていても良い。
第1の領域311の第一半導体層301の上面と、第2の領域325の第一半導体層301の上面である頂部325Aの高さは略同一であるので、第一電極351の上面と第二電極361上面の高さも、略同一にすることができる。
The second electrode 361 is formed so as to cover at least a part of the top portion 325A of the second region 325, the side surface portion 325B, and the bottom portion 320A of the third region 320. The figure illustrates a case where the second electrode 361 is not formed on the side surface portion 325C on the first region 311 side, but it does not deny that the metal electrode is formed on the side surface portion 325C, and the side surface portion. The second electrode 361 may be formed on the 325C.
Since the heights of the top surface 325A, which is the upper surface of the first semiconductor layer 301 of the second region 325 and the upper surface of the first semiconductor layer 301 of the first region 311 are substantially the same, the height of the top surface 325A is substantially the same as that of the upper surface of the first electrode 351. The height of the upper surface of the two electrodes 361 can also be substantially the same.

ここで、第3の領域320における第二電極361が形成された底部320Aの面積を、300μm以上とする。更に700μm以上とすることがより好ましい。このように第2の領域325を設け、第2の領域325の頂部325Aと、第2の領域325の側面部325Bと、第3の領域320の底部320Aの少なくとも一部とにわたって被覆するように第二電極361を形成し、第二電極361が形成された底部320Aの被膜面積を300μm以上とすることで十分低い電気抵抗を有し、断線不良や剥離不良が抑制され、傾きのないフリップ実装を可能とする発光素子とすることができる。 Here, the area of the bottom 320A on which the second electrode 361 is formed in the third region 320 is set to 300 μm 2 or more. Further, it is more preferably 700 μm 2 or more. Thus, the second region 325 is provided so as to cover the top 325A of the second region 325, the side surface 325B of the second region 325, and at least a part of the bottom 320A of the third region 320. By forming the second electrode 361 and setting the coating area of the bottom 320A on which the second electrode 361 is formed to be 300 μm 2 or more, it has sufficiently low electrical resistance, disconnection failure and peeling failure are suppressed, and flip without inclination. It can be a light emitting element that can be mounted.

次に、第1の領域311のうち、第一電極351が設けられていない部分の少なくとも一部に、誘電体部340を設ける。これにより、第1の領域311と第3の領域320の間にある側壁330の少なくとも一部に誘電体部340を設けた発光素子A03を得る。発光素子A03に設けられた、第一電極351、誘電体部340、第二電極361の位置関係は、図9の上面図及び断面図に示すとおりである。 Next, the dielectric portion 340 is provided in at least a part of the first region 311 where the first electrode 351 is not provided. As a result, a light emitting device A03 having a dielectric portion 340 provided at least a part of the side wall 330 between the first region 311 and the third region 320 is obtained. The positional relationship between the first electrode 351 and the dielectric portion 340 and the second electrode 361 provided on the light emitting element A03 is as shown in the top view and the cross-sectional view of FIG.

本実施形態では、誘電体部340が第1の領域311の第一電極351部以外の上面及び側壁330の全てを被覆する場合を例示しているが、必ずしも全てを被覆する必要はなく、一部のみを被覆するようにしても良い。 In the present embodiment, the case where the dielectric portion 340 covers all of the upper surface and the side wall 330 other than the first electrode 351 portion of the first region 311 is illustrated, but it is not always necessary to cover all of them. It may be possible to cover only the portion.

本実施形態では、第1の領域311において、誘電体部340が単層の構造を例示しているが、誘電体部340と第1の領域311との間に光反射膜あるいは光反射部を設けても良く、あるいは、誘電体部340の第1の領域311に接しない面側に光反射膜あるいは光反射部を設けても良い。 In the present embodiment, in the first region 311 the dielectric portion 340 exemplifies the structure of a single layer, but a light reflecting film or a light reflecting portion is provided between the dielectric portion 340 and the first region 311. Alternatively, the light reflecting film or the light reflecting portion may be provided on the surface side of the dielectric portion 340 that does not come into contact with the first region 311.

本実施形態では、第1の領域311が平坦な面を有する場合を例示しているが、凹凸を有する面を有していても良い。凹凸を有する面に関しては、ウェットエッチングによる単純粗面、ファセット面を有するファセット粗面、数十μm~数百nmのピッチを有するフォトリソによるパターン化されたパターン化粗面、数~数百nmのピッチのトレンチ形状を有するフォトニック粗面のいずれの場合も含まれる。 In the present embodiment, the case where the first region 311 has a flat surface is illustrated, but a surface having irregularities may be provided. For surfaces with irregularities, simple rough surface by wet etching, facet rough surface with facet surface, patterned rough surface with photolithography having a pitch of several tens of μm to several hundred nm, and several to several hundred nm. Any case of a photonic rough surface having a pitch trench shape is included.

本実施形態では、側壁330、第3の領域320は凹凸の無いフラットな面として例示しているが、凹凸を有する面であっても良い。 In the present embodiment, the side wall 330 and the third region 320 are exemplified as a flat surface without unevenness, but may be a surface having unevenness.

本実施形態では、窓層兼支持基板306が平坦な面を有する場合を例示しているが、凹凸を有する面を有していても同様の効果が得られることは言うまでもない。凹凸を有する面に関しては、ウェットエッチングによる単純粗面、ファセット面を有するファセット粗面、数十μm~数百nmのピッチを有するフォトリソによるパターン化されたパターン化粗面、数~数百nmのピッチのトレンチ形状を有するフォトニック粗面のいずれの場合も含まれる。 In the present embodiment, the case where the window layer / support substrate 306 has a flat surface is illustrated, but it goes without saying that the same effect can be obtained even if the window layer / support substrate 306 has a surface having irregularities. For surfaces with irregularities, simple rough surface by wet etching, facet rough surface with facet surface, patterned rough surface with photolithography having a pitch of several tens of μm to several hundred nm, and several to several hundred nm. Any case of a photonic rough surface having a pitch trench shape is included.

本実施形態では、窓層兼支持基板306表面に他の膜を形成することは記載していないが、誘電体から成る反射防止膜を設けても良い。 In the present embodiment, it is not described that another film is formed on the surface of the window layer / support substrate 306, but an antireflection film made of a dielectric may be provided.

発光素子A03を形成した後、必要に応じて第一電極351、第二電極361上にAuバンプを形成し、GaPでの光吸収特性を有するレーザーを線状に照射してスクライブ処理し、欠陥線を形成した後ブレーキング処理を行い、個別ダイス化する。あるいは、線状にダイヤモンドにてけがいてスクライブ処理し、欠陥転位線を形成後、ブレーキング処理をして個別ダイス化する。 After forming the light emitting element A03, Au bumps are formed on the first electrode 351 and the second electrode 361 as needed, and a laser having light absorption characteristics in GaP is linearly irradiated to perform scribing treatment, resulting in defects. After forming the line, braking processing is performed to make individual dies. Alternatively, it is linearly injured with diamond and scribed to form a defect dislocation line, and then braked to make individual dice.

発光素子A03を駆動基板に直接実装する場合は、スクライブ・ブレーキング処理を行わず直接実装基板に実装されるため、スクライブ・ブレーキング処理を行わない。また、スクライブ・ブレーキング処理を行わなくても、発明の効果は同じである。 When the light emitting element A03 is directly mounted on the drive board, the scribe braking process is not performed because the light emitting element A03 is mounted directly on the mounting board without performing the scribe braking process. Further, the effect of the invention is the same even if the scribe braking process is not performed.

個別ダイス化後、Auバンプを介して駆動基板に実装する。その際、ダイスに超音波もしくは150℃以上の温度、あるいはその両者の条件にて圧着することで実現することができる。 After making individual dice, it is mounted on the drive board via Au bumps. At that time, it can be realized by crimping the die with ultrasonic waves, a temperature of 150 ° C. or higher, or both conditions.

以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but this is not limited to the present invention.

(実施例1)
第一の実施形態(図1-3)に基づいて、発光素子の製造を行った。
出発基板としてGaAs(001)からなる基板(出発基板)を準備し、この基板上に、機能層たるダブルヘテロ層(発光層)をMOVPE法にて形成した。発光層は、下部クラッド層(第一半導体層)、活性層、上部クラッド層(第二半導体層)を順次積層したものとした。
第一半導体層及び第二半導体層としては、(AlGa1-xIn1-yP(0.6≦x≦1.0、0.4≦y≦0.6)の組成を選択した。
第一半導体層は、n型AlInPクラッド層を0.7μm(ドーピング濃度3.0×1017/cm)、n型Al0.85GaInP層を0.3μm(ドーピング濃度1.0×1017/cm)の2層構造とした。
活性層は、(AlGa1-xIn1-yP(0.15≦x≦0.80、0.4≦y≦0.6)から選択され、波長によって組成x及びyは変更した。本実施例において活性層は、多重活性層を用いた。活性層及び障壁層の膜厚は求める波長により変更され、それぞれ4~12nmの範囲で波長に合わせて調整した。
第二半導体層は、p型AlInPクラッド層を0.9μm(ドーピング濃度3.0×1017/cm)、p型Al0.6GaInP層を0.1μm(ドーピング濃度1.0×1017/cm)の2層構造とした。
発光層上には、GaInPからなる中間組成層を成膜した。次に中間組成層上に厚さ1.0μmのGaP窓層を順次積層した。GaP窓層に接して100μmの厚さを有するGaPエピタキシャル層(窓層兼支持基板)を形成した。窓層兼支持基板は、ハイドライド気相成長(HVPE)法にて形成した。
次にGaAs基板をアンモニア含有エッチャントにより除去した。引き続きエッチストップ層を除去した。
次に、第一半導体層及び活性層の一部を切り欠き、第二半導体層の一部を露出させた。
次に切り欠かれた側面を被覆するように、誘電体層を形成し、開口部を設けた。誘電体層はSiOとし、TEOSとOを使用するP-CVD法にて製膜した。開口部は誘電体層を成膜後、フォトリソグラフィー法によりマスク部を形成し、露出部をBHFによるウェットエッチング法にて形成した。
GaAs基板除去後、第一半導体層上に第一電極を形成した。また、第一半導体層、活性層、第二半導体層等を残した分離部である第2の領域を形成するように、第2の領域を囲むように第一半導体層層及び活性層を除去して、第3の領域を形成した。そして第2の領域の頂部、第2の領域の側面部、第3の領域の底部の一部を被覆するように第二電極を形成した(図2-3参照)。
ここで、第二電極が形成された底部の被膜面積を314μmとした。
GaPでの光吸収特性を有するレーザーを線状に照射してスクライブ処理し、欠陥線を形成した後ブレーキング処理を行い、個別ダイス化した。
個別ダイス化後、Auバンプを介して駆動基板に実装した。
(Example 1)
A light emitting device was manufactured based on the first embodiment (FIG. 1-3).
A substrate (starting substrate) made of GaAs (001) was prepared as a starting substrate, and a double hetero layer (light emitting layer) as a functional layer was formed on this substrate by the MOVPE method. The light emitting layer was formed by sequentially laminating a lower clad layer (first semiconductor layer), an active layer, and an upper clad layer (second semiconductor layer).
As the first semiconductor layer and the second semiconductor layer, the composition of (Al x Ga 1-x ) y In 1-y P (0.6 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6) is used. Selected.
As for the first semiconductor layer, the n-type AlInP clad layer is 0.7 μm (doping concentration 3.0 × 10 17 / cm 3 ), and the n-type Al 0.85 GaInP layer is 0.3 μm (doping concentration 1.0 × 10 17 ). It has a two-layer structure of / cm 3 ).
The active layer is selected from (Al x Ga 1-x ) y In 1-y P (0.15 ≦ x ≦ 0.80, 0.4 ≦ y ≦ 0.6), and the compositions x and y are determined according to the wavelength. changed. In this example, a multiple active layer was used as the active layer. The film thicknesses of the active layer and the barrier layer were changed depending on the desired wavelength, and were adjusted according to the wavelength in the range of 4 to 12 nm, respectively.
As for the second semiconductor layer, the p-type AlInP clad layer is 0.9 μm (doping concentration 3.0 × 10 17 / cm 3 ), and the p-type Al 0.6 GaInP layer is 0.1 μm (doping concentration 1.0 × 10 17 ). It has a two-layer structure of / cm 3 ).
An intermediate composition layer made of GaInP was formed on the light emitting layer. Next, a GaP window layer having a thickness of 1.0 μm was sequentially laminated on the intermediate composition layer. A GaP epitaxial layer (window layer and support substrate) having a thickness of 100 μm was formed in contact with the GaP window layer. The window layer and support substrate was formed by a hydride vapor phase deposition (HVPE) method.
Next, the GaAs substrate was removed with an ammonia-containing etchant. The etch stop layer was subsequently removed.
Next, a part of the first semiconductor layer and the active layer was cut out to expose a part of the second semiconductor layer.
Next, a dielectric layer was formed so as to cover the notched side surface, and an opening was provided. The dielectric layer was SiO 2 , and a film was formed by a P-CVD method using TEOS and O 2 . After forming a dielectric layer on the opening, a mask portion was formed by a photolithography method, and an exposed portion was formed by a wet etching method using BHF.
After removing the GaAs substrate, the first electrode was formed on the first semiconductor layer. Further, the first semiconductor layer layer and the active layer are removed so as to surround the second region so as to form a second region which is a separation portion where the first semiconductor layer, the active layer, the second semiconductor layer, etc. are left. Then, a third region was formed. Then, the second electrode was formed so as to cover a part of the top of the second region, the side surface of the second region, and the bottom of the third region (see FIG. 2-3).
Here, the coating area of the bottom on which the second electrode was formed was set to 314 μm 2 .
A laser having a light absorption characteristic in GaP was linearly irradiated to perform scribe treatment, and after forming defective lines, braking treatment was performed to form individual dice.
After making individual dies, they were mounted on the drive board via Au bumps.

(実施例2)
第二電極が形成された底部の被膜面積を491μmとしたこと以外は実施例1と同じ条件で発光素子を製造し、駆動基板に実装した。
(Example 2)
A light emitting device was manufactured under the same conditions as in Example 1 except that the coating area of the bottom on which the second electrode was formed was 491 μm 2 , and mounted on a drive substrate.

(実施例3)
第二電極が形成された底部の被膜面積を707μmとしたこと以外は実施例1と同じ条件で発光素子を製造し、駆動基板に実装した。
(Example 3)
A light emitting device was manufactured under the same conditions as in Example 1 except that the coating area of the bottom on which the second electrode was formed was 707 μm 2 , and mounted on a drive substrate.

(実施例4)
第二電極が形成された底部の被膜面積を962μmとしたこと以外は実施例1と同じ条件で発光素子を製造し、駆動基板に実装した。
(Example 4)
A light emitting device was manufactured under the same conditions as in Example 1 except that the coating area of the bottom on which the second electrode was formed was 962 μm 2 , and mounted on a drive substrate.

(実施例5)
第二電極が形成された底部の被膜面積を1257μmとしたこと以外は実施例1と同じ条件で発光素子を製造し、駆動基板に実装した。
(Example 5)
A light emitting device was manufactured under the same conditions as in Example 1 except that the coating area of the bottom on which the second electrode was formed was 1257 μm 2 , and mounted on a drive substrate.

(実施例6)
第二電極が形成された底部の被膜面積を1590μmとしたこと以外は実施例1と同じ条件で発光素子を製造し、駆動基板に実装した。
(Example 6)
A light emitting device was manufactured under the same conditions as in Example 1 except that the coating area of the bottom on which the second electrode was formed was 1590 μm 2 , and mounted on a drive substrate.

(比較例1)
図10に示すように、実施例1における第2の領域に相当する部分を形成せず、第二電極461を厚く形成し、第2電極が形成された底部の面積を7665μmとした点を除き、実施例1と同じ条件で発光素子A04を形成し、駆動基板に実装した。図11に、比較例1のチップデザインの設計上面図及び断面図を示す。
(Comparative Example 1)
As shown in FIG. 10, the point corresponding to the second region in Example 1 was not formed, the second electrode 461 was formed thickly, and the area of the bottom on which the second electrode was formed was 7665 μm 2 . Except for this, the light emitting element A04 was formed under the same conditions as in Example 1 and mounted on the drive substrate. FIG. 11 shows a design top view and a cross-sectional view of the chip design of Comparative Example 1.

(比較例2)
図12に示すように、実施例1における第2の領域に相当する部分を形成せず、絶縁膜540上から窓兼支持基板506にわたって第二電極561を形成したことを除き、実施例1と同じ条件で発光素子A05を形成し、駆動基板に実装した。
(Comparative Example 2)
As shown in FIG. 12, the second electrode 561 is formed from the insulating film 540 over the window / support substrate 506 without forming the portion corresponding to the second region in the first embodiment. The light emitting element A05 was formed under the same conditions and mounted on the drive substrate.

(比較例3)
第二電極が形成された底部の被膜面積を177μmとしたこと以外は実施例1と同じ条件で発光素子を製造し、駆動基板に実装した。
(Comparative Example 3)
A light emitting device was manufactured under the same conditions as in Example 1 except that the coating area of the bottom on which the second electrode was formed was 177 μm 2 , and mounted on a drive substrate.

(比較例4)
第二電極が形成された底部の被膜面積を113μmとしたこと以外は実施例1と同じ条件で発光素子を製造し、駆動基板に実装した。
(Comparative Example 4)
A light emitting device was manufactured under the same conditions as in Example 1 except that the coating area of the bottom on which the second electrode was formed was 113 μm 2 , and mounted on a drive substrate.

図13に、実施例1~3及び比較例1における、実装時のダイスの傾き発生不良率を示す。比較例1においては、第一電極と第二電極の高さばらつきが大きいため、傾き不良が発生しやすい。一方、実施例1~3においては、第一電極と第二電極の高低差のばらつきが小さいため、不良発生率は小さくなっている。 FIG. 13 shows the tilt occurrence defect rate of the dice at the time of mounting in Examples 1 to 3 and Comparative Example 1. In Comparative Example 1, since the height variation between the first electrode and the second electrode is large, tilt failure is likely to occur. On the other hand, in Examples 1 to 3, since the variation in the height difference between the first electrode and the second electrode is small, the defect occurrence rate is small.

なお、比較例1においては、第二電極の高さを第一電極の高さに極力合わせるように調整を行うことは可能だが、深く掘った面から高さを合わせることは難しく、ウェーハ面内のばらつきもあるため、原理的に第一電極と第二電極の高さを合わせることは極めて困難である。第一電極と第二電極の高さの差があると、高低差によってダイス光取り出し面の傾きが発生し、指向角がずれる不良が発生しやすくなる。 In Comparative Example 1, it is possible to adjust the height of the second electrode to match the height of the first electrode as much as possible, but it is difficult to match the height from the deeply dug surface, and it is in the wafer surface. It is extremely difficult to match the heights of the first electrode and the second electrode in principle because of the variation in the height. If there is a difference in height between the first electrode and the second electrode, the dice light extraction surface is tilted due to the height difference, and defects such as deviation of the directivity angle are likely to occur.

図14に、実施例1~3と比較例2における、第二電極に起因する断線不良率を示す。比較例2においては、絶縁膜上に第二電極が形成されており、プロセス中の熱による膨張係数差に起因する断線、あるいは動作中における発光素子の発熱に起因する断線が大量に発生している。一方、実施例1~3においては、熱に起因する断線不良はほぼ発生しておらず、良好かつ安定的に第二電極が形成できていることが分かる。 FIG. 14 shows the disconnection defect rate due to the second electrode in Examples 1 to 3 and Comparative Example 2. In Comparative Example 2, the second electrode is formed on the insulating film, and a large amount of disconnection occurs due to the difference in expansion coefficient due to heat during the process or the heat generation of the light emitting element during operation. There is. On the other hand, in Examples 1 to 3, it can be seen that the disconnection defect due to heat hardly occurs, and the second electrode can be formed satisfactorily and stably.

図15に、実施例1~3及び比較例2における、実装時の電極の剥離により実装不良が発生する割合を示す。比較例2においては、絶縁膜と電極との界面での剥離が大量に発生し、不良率を上昇させるが、実施例1~3においては、剥離を発生させる界面がないため、不良が発生せず、大幅に改善していることが分かる。 FIG. 15 shows the rate at which mounting defects occur due to peeling of electrodes during mounting in Examples 1 to 3 and Comparative Example 2. In Comparative Example 2, a large amount of peeling occurs at the interface between the insulating film and the electrode, which increases the defect rate. However, in Examples 1 to 3, since there is no interface that causes peeling, defects occur. It can be seen that there is a significant improvement.

表1に、実施例1~6及び比較例1、3、4における、IF=20mA時の順方向電圧(順電圧;VF)の測定結果を示す。 Table 1 shows the measurement results of the forward voltage (forward voltage; VF) at IF = 20 mA in Examples 1 to 6 and Comparative Examples 1, 3 and 4.

Figure 0007087693000001
Figure 0007087693000001

図16に、実施例1~6及び比較例1、3、4における、底部の被膜面積(コンタクト面積)と、平均順方向電圧(順電圧;VF)の関係を示す。底部の被膜面積をコンタクト面積として横軸に、IF=20mA時のVFを縦軸に示した。コンタクト面積の減少によってVFが増大(上昇)する傾向があるのが分かる。実施例1~6においては、300μm以上のコンタクト面積領域を設けることでVF≦2.35Vを実現している。しかし、比較例3、4においてはコンタクト面積領域が300μm未満であるため、VFが極めて高くなった。なお、比較例1は第二電極461を厚く形成したものであるが、コンタクト面積領域が300μm以上であるため、VF=2.18Vと、低いVFが得られている。 FIG. 16 shows the relationship between the coating area (contact area) at the bottom and the average forward voltage (forward voltage; VF) in Examples 1 to 6 and Comparative Examples 1, 3 and 4. The coating area at the bottom is shown on the horizontal axis as the contact area, and the VF at IF = 20 mA is shown on the vertical axis. It can be seen that the VF tends to increase (increase) as the contact area decreases. In Examples 1 to 6, VF ≦ 2.35V is realized by providing a contact area area of 300 μm 2 or more. However, in Comparative Examples 3 and 4, since the contact area area was less than 300 μm 2 , the VF was extremely high. In Comparative Example 1, the second electrode 461 is thickly formed, but since the contact area region is 300 μm 2 or more, a low VF of VF = 2.18V is obtained.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any one having substantially the same structure as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.

100…GaAs基板(出発基板)、 101…第一半導体層、 102…活性層、
103…第二半導体層、 104…中間組成層、 105…GaP窓層、
106…窓層兼支持基板、 107…発光層部、
001…AlGaInP系エピタキシャルウェーハ、
011…出発基板を除去したウェーハ、 111…第1の領域、
120…第3の領域、 120A…底部、
125…第2の領域、 125A…頂部、 125B…側面部、 125C…側面部、
130…側壁、 140…誘電体部、 151…第一電極、 161…第二電極、
A01…発光素子、
200…GaAs基板(出発基板)、 201…第一半導体層、 202…活性層、
203…第二半導体層、 205…GaP窓層、 206…窓層兼支持基板、
207…発光層部、 209…第一接着増強層、
002…AlGaInP系エピタキシャルウェーハ、
021…出発基板を除去したウェーハ、 211…第1の領域、
220…第3の領域、 220A…底部、
225…第2の領域、225A…頂部、 225B…側面部、 225C…側面部、
230…側壁、 240…誘電体部、 250…透明基板、 251…第一電極、
259…第二接着増強層、 260…BCB接着剤、 261…第二電極、
A02…発光素子、
300…GaAs基板(出発基板)、 301…第一半導体層、 302…活性層、
303…第二半導体層、 305…GaP窓層、 306…窓層兼支持基板、
307…発光層部 003…AlGaInP系エピタキシャルウェーハ、
031…出発基板を除去したウェーハ、 311…第1の領域、 320…第3の領域、
320A…底部、 325…第2の領域、 325A…頂部、
325B…側面部、 325C…側面部、 330…側壁、 340…誘電体部、
350…透明基板、 351…第一電極、
361…第二電極、 A03…発光素子、
461…第二電極、 A04…発光素子、
506…窓層兼支持基板、 540…誘電体部、 561…第二電極、
A05…発光素子。
100 ... GaAs substrate (starting substrate), 101 ... first semiconductor layer, 102 ... active layer,
103 ... Second semiconductor layer, 104 ... Intermediate composition layer, 105 ... GaP window layer,
106 ... Window layer and support substrate, 107 ... Light emitting layer part,
001 ... AlGaInP-based epitaxial wafer,
011 ... Wafer from which the starting substrate has been removed, 111 ... First region,
120 ... third area, 120A ... bottom,
125 ... second area, 125A ... top, 125B ... side, 125C ... side,
130 ... side wall, 140 ... dielectric part, 151 ... first electrode, 161 ... second electrode,
A01 ... Light emitting element,
200 ... GaAs substrate (starting substrate), 201 ... first semiconductor layer, 202 ... active layer,
203 ... Second semiconductor layer, 205 ... GaP window layer, 206 ... Window layer and support substrate,
207 ... Light emitting layer portion, 209 ... First adhesion enhancing layer,
002 ... AlGaInP-based epitaxial wafer,
021 ... Wafer from which the starting substrate has been removed, 211 ... First region,
220 ... third area, 220A ... bottom,
225 ... second area, 225A ... top, 225B ... side, 225C ... side,
230 ... Side wall, 240 ... Dielectric part, 250 ... Transparent substrate, 251 ... First electrode,
259 ... Second Adhesive Strengthening Layer, 260 ... BCB Adhesive, 261 ... Second Electrode,
A02 ... Light emitting element,
300 ... GaAs substrate (starting substrate), 301 ... first semiconductor layer, 302 ... active layer,
303 ... Second semiconductor layer, 305 ... GaP window layer, 306 ... Window layer and support substrate,
307 ... Light emitting layer part 003 ... AlGaInP-based epitaxial wafer,
031 ... Wafer from which the starting substrate has been removed, 311 ... First region, 320 ... Third region,
320A ... bottom, 325 ... second region, 325A ... top,
325B ... side surface, 325C ... side surface, 330 ... side wall, 340 ... dielectric part,
350 ... transparent substrate, 351 ... first electrode,
361 ... Second electrode, A03 ... Light emitting element,
461 ... Second electrode, A04 ... Light emitting element,
506 ... Window layer and support substrate, 540 ... Dielectric part, 561 ... Second electrode,
A05 ... Light emitting element.

Claims (4)

窓層兼支持基板と、前記窓層兼支持基板上に設けられ、前記窓層兼支持基板側から第二導電型の第二半導体層、活性層、第一導電型の第一半導体層をこの順に含む発光層部とを有する発光素子において、
前記発光素子は、前記第二半導体層、前記活性層、前記第一半導体層、前記第一半導体層と接する第一電極を有する第1の領域と、
前記第二半導体層、前記活性層、前記第一半導体層を有する第2の領域と、
前記第2の領域を囲むように少なくとも前記第一半導体層と前記活性層と前記窓層兼支持基板の一部が除去された、前記第1の領域と前記第2の領域とを分離する第3の領域と、
前記第2の領域の頂部と、該第2の領域の側面部と、前記第3の領域の少なくとも一部とにわたって被覆するとともに、前記第3の領域で前記第二半導体層または窓層兼支持基板と接する第二電極とを有し、
前記第3の領域における前記第二電極の被膜面積が300μm以上であり、
前記発光層部が(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)であり、
前記第1の領域のうち、前記第一電極が設けられていない部分の少なくとも一部に、誘電体部を有し、
前記第二電極は、前記第1の領域と前記第2の領域の間の前記第3の領域には設けられていないことを特徴とする発光素子。
The window layer / support substrate and the second conductive type second semiconductor layer, the active layer, and the first conductive type first semiconductor layer provided on the window layer / support substrate from the window layer / support substrate side. In a light emitting element having a light emitting layer portion included in order,
The light emitting device includes a second semiconductor layer, an active layer, a first semiconductor layer, and a first region having a first electrode in contact with the first semiconductor layer.
The second semiconductor layer, the active layer, the second region having the first semiconductor layer, and
The first region and the second region are separated from each other by removing at least a part of the first semiconductor layer, the active layer, and the window layer / supporting substrate so as to surround the second region. Area 3 and
It covers the top of the second region, the side surface of the second region, and at least a part of the third region, and also supports the second semiconductor layer or the window layer in the third region. It has a second electrode in contact with the substrate and has
The coating area of the second electrode in the third region is 300 μm 2 or more, and the coating area is 300 μm 2.
The light emitting layer portion is (Al x Ga 1-x ) y In 1-y P (0.0 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6).
In the first region, at least a part of the portion where the first electrode is not provided has a dielectric portion.
The light emitting element is characterized in that the second electrode is not provided in the third region between the first region and the second region .
前記窓層兼支持基板が、GaAs1-z(0.0≦z≦0.1)であることを特徴とする請求項1に記載の発光素子。 The light emitting element according to claim 1, wherein the window layer / support substrate is GaAs z P 1-z (0.0 ≦ z ≦ 0.1). 発光素子の製造方法であって、
出発基板上に少なくとも第一半導体層、活性層、第二半導体層をこの順でエピタキシャル成長により発光層部を形成する工程と、
窓層兼支持基板をエピタキシャル成長または貼り合わせにより形成する工程と、
前記出発基板を除去して前記第一半導体層を露出させる工程と、
前記第一半導体層の表面の一部に第一電極を形成する工程と、
前記第一電極を含む第1の領域と、前記第一電極を含まず前記第一半導体層と前記活性層を有する第2の領域であって、前記第一半導体層と前記活性層とが前記第1の領域とは分離された前記第2の領域とを形成するように、前記第2の領域の周囲の少なくとも前記第一半導体層と前記活性層と前記窓層兼支持基板の一部を除去して第3の領域を形成する工程と、
前記第1の領域と前記第2の領域の間の前記第3の領域には第二電極を形成せず、前記第2の領域の頂部と、前記第2の領域の側面部と、前記第3の領域の少なくとも一部とにわたって前記第二電極を形成する工程とを有し、
前記第3の領域における第二電極の被膜面積を300μm以上とし、
前記発光層部を(AlGa1-xIn1-yP(0.0≦x≦1.0、0.4≦y≦0.6)とし、
前記第1の領域のうち、前記第一電極が設けられていない部分の少なくとも一部に、誘電体部を形成することを特徴とする発光素子の製造方法。
It is a manufacturing method of a light emitting element.
A step of forming a light emitting layer portion by epitaxially growing at least a first semiconductor layer, an active layer, and a second semiconductor layer on a starting substrate in this order.
The process of forming the window layer and support substrate by epitaxial growth or bonding,
The step of removing the starting substrate to expose the first semiconductor layer and
The step of forming the first electrode on a part of the surface of the first semiconductor layer and
The first region including the first electrode and the second region not including the first electrode and having the first semiconductor layer and the active layer, wherein the first semiconductor layer and the active layer are the same. At least a part of the first semiconductor layer, the active layer, and the window layer / support substrate around the second region so as to form the second region separated from the first region. The process of removing to form a third region,
No second electrode is formed in the third region between the first region and the second region, and the top of the second region, the side surface portion of the second region, and the second region are formed. It has a step of forming the second electrode over at least a part of the region of 3.
The coating area of the second electrode in the third region is set to 300 μm 2 or more.
The light emitting layer portion is defined as (Al x Ga 1-x ) y In 1-y P (0.0 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6).
A method for manufacturing a light emitting device, characterized in that a dielectric portion is formed in at least a part of a portion of the first region where the first electrode is not provided.
前記窓層兼支持基板を、GaAs1-z(0.0≦z≦0.1)とすることを特徴とする請求項3に記載の発光素子の製造方法。
The method for manufacturing a light emitting element according to claim 3, wherein the window layer and support substrate is GaAs z P 1-z (0.0 ≦ z ≦ 0.1).
JP2018109364A 2018-06-07 2018-06-07 Light emitting device and its manufacturing method Active JP7087693B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018109364A JP7087693B2 (en) 2018-06-07 2018-06-07 Light emitting device and its manufacturing method
TW108117170A TWI807028B (en) 2018-06-07 2019-05-17 Light emitting element and its manufacturing method
CN201910454453.4A CN110581207A (en) 2018-06-07 2019-05-29 Light emitting assembly and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018109364A JP7087693B2 (en) 2018-06-07 2018-06-07 Light emitting device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019212834A JP2019212834A (en) 2019-12-12
JP7087693B2 true JP7087693B2 (en) 2022-06-21

Family

ID=68810980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018109364A Active JP7087693B2 (en) 2018-06-07 2018-06-07 Light emitting device and its manufacturing method

Country Status (3)

Country Link
JP (1) JP7087693B2 (en)
CN (1) CN110581207A (en)
TW (1) TWI807028B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725247B (en) * 2021-08-20 2023-11-21 上海天马微电子有限公司 Display panel, manufacturing method thereof and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129764A (en) 2009-12-18 2011-06-30 Showa Denko Kk Flip-chip light-emitting diode and method of manufacturing the same
JP2011142308A (en) 2009-12-08 2011-07-21 Dowa Electronics Materials Co Ltd Light emitting element and method for manufacturing the same
JP2012164782A (en) 2011-02-07 2012-08-30 Nichia Chem Ind Ltd Semiconductor light-emitting element
CN102832302A (en) 2012-08-31 2012-12-19 扬州中科半导体照明有限公司 Method for manufacturing N electrode of GaN-based light-emitting diode (LED)
JP2015005551A (en) 2013-06-19 2015-01-08 信越半導体株式会社 Light emitting element
US20150091041A1 (en) 2013-09-27 2015-04-02 Ju Heon YOON Semiconductor light emitting device and semiconductor light emitting apparatus including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789273A (en) * 1980-11-25 1982-06-03 Hitachi Ltd Manufacture of light emitting element
JPS57192088A (en) * 1981-05-22 1982-11-26 Hitachi Ltd Manufacture of light emitting diode
JPS63301573A (en) * 1987-05-31 1988-12-08 Shimadzu Corp Light emitting diode
US9461212B2 (en) * 2012-07-02 2016-10-04 Seoul Viosys Co., Ltd. Light emitting diode module for surface mount technology and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142308A (en) 2009-12-08 2011-07-21 Dowa Electronics Materials Co Ltd Light emitting element and method for manufacturing the same
JP2011129764A (en) 2009-12-18 2011-06-30 Showa Denko Kk Flip-chip light-emitting diode and method of manufacturing the same
JP2012164782A (en) 2011-02-07 2012-08-30 Nichia Chem Ind Ltd Semiconductor light-emitting element
CN102832302A (en) 2012-08-31 2012-12-19 扬州中科半导体照明有限公司 Method for manufacturing N electrode of GaN-based light-emitting diode (LED)
JP2015005551A (en) 2013-06-19 2015-01-08 信越半導体株式会社 Light emitting element
US20150091041A1 (en) 2013-09-27 2015-04-02 Ju Heon YOON Semiconductor light emitting device and semiconductor light emitting apparatus including the same

Also Published As

Publication number Publication date
TW202002330A (en) 2020-01-01
JP2019212834A (en) 2019-12-12
TWI807028B (en) 2023-07-01
CN110581207A (en) 2019-12-17

Similar Documents

Publication Publication Date Title
TWI645558B (en) Miniature light emitting diode device and manufacturing method thereof
JP6720472B2 (en) Method of manufacturing light emitting device
US20060214173A1 (en) Light emitting diodes and methods of fabrication
TWI559573B (en) Light emitting diode
KR20060131327A (en) Method of manufacturing light emitting diode
JP2005150675A (en) Semiconductor light-emitting diode and its manufacturing method
JP2006253172A (en) Semiconductor light emitting element, semiconductor light emitting apparatus and method of manufacturing semiconductor light emitting element
JP2007266571A (en) Led chip, its manufacturing method, and light emitting device
KR102022659B1 (en) High efficiency light emitting diode and method of fabricating the same
JP6068165B2 (en) Semiconductor optical device and method of manufacturing semiconductor optical device
JP6760141B2 (en) Light emitting element and its manufacturing method
TWI416763B (en) A light-emitting element, a method of manufacturing the same, and a light-emitting device
KR20050089120A (en) Light emitting diode and manufacturing method of the same
JP2012174902A (en) Method of manufacturing nitride semiconductor light-emitting element
JP2008172226A (en) Method of forming light-emitting diode device
KR20140068474A (en) Method for separating substrate and method for fabricating light-emitting diode chip using the same
JP7087693B2 (en) Light emitting device and its manufacturing method
JP2009004524A (en) Nitride-based semiconductor laser element and manufacturing method of nitride-based semiconductor laser element
CN114788003A (en) Method for forming monolithic light emitting diode precursor
KR20090105462A (en) Vertical structured group 3 nitride-based light emitting diode and its fabrication methods
JP2011192752A (en) Method of manufacturing semiconductor element
KR20090115902A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP2014120511A (en) Method of manufacturing semiconductor device; and semiconductor device
JP2006269807A (en) Semiconductor light-emitting diode
JP5404808B2 (en) Light emitting element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7087693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150