JP7082711B2 - 情報処理装置及び情報処理方法 - Google Patents

情報処理装置及び情報処理方法 Download PDF

Info

Publication number
JP7082711B2
JP7082711B2 JP2021507271A JP2021507271A JP7082711B2 JP 7082711 B2 JP7082711 B2 JP 7082711B2 JP 2021507271 A JP2021507271 A JP 2021507271A JP 2021507271 A JP2021507271 A JP 2021507271A JP 7082711 B2 JP7082711 B2 JP 7082711B2
Authority
JP
Japan
Prior art keywords
instruction
equipment
information
inspection data
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021507271A
Other languages
English (en)
Other versions
JPWO2020189492A1 (ja
Inventor
脩介 渡邉
忠成 長榮
貢輝 福山
雅和 濱野
武史 山田
尚史 原
雄一朗 瀬川
康裕 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of JPWO2020189492A1 publication Critical patent/JPWO2020189492A1/ja
Application granted granted Critical
Publication of JP7082711B2 publication Critical patent/JP7082711B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/17Terrestrial scenes taken from planes or by drones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/21Rotary wings

Description

本発明は、設備の検査を支援する技術に関する。
設備の検査を支援する技術として、特許文献1には、点検対象の風車におけるナセルの向き及びブレードの位相を示す回転情報を取得し、回転情報に基づいて、点検用のデータを取得する無人機の飛行ルート(点検ルート)のデータを生成する技術が開示されている。
特開2018-21491号公報
基地局等の設備において、特許文献1の技術のようにドローン等の飛行体で検査データ(画像データ等)を取得して、取得された検査データを用いて設備を点検して修繕の必要がある箇所又は修繕が必要な可能性が高い箇所を見つける検査が行われている。検査での見落としを防ぐためには、なるべく詳細な検査データを取得することが望ましいが、詳細な検査データを増やすほど点検の負荷も大きくなる。
そこで、本発明は、飛行体を用いて取得する設備の検査データによる検査の見落としを防ぎつつ検査データの点検の負荷を抑えることを目的とする。
上記目的を達成するために、本発明は、検査対象の検査データを離れた位置から取得する機能を有する飛行体を設備に沿って飛行させながら当該設備の前記検査データを取得させる第1指示を行う第1指示部と、前記第1指示に従い取得された前記検査データに基づいて詳細な点検が必要と示される特定箇所の位置情報を取得する位置取得部と、前記飛行体に対して、前記第1指示により飛行した経路を戻るように飛行しながら、取得された前記位置情報が示す特定箇所については前記第1指示よりも情報量が多い前記検査データを取得させる第2指示を行う第2指示部とを備える情報処理装置を提供する。
本発明によれば、飛行体を用いて取得する設備の検査データによる検査の見落としを防ぎつつ検査データの点検の負荷を抑えることができる。
実施例に係る設備検査システムの全体構成の一例を表す図 サーバ装置のハードウェア構成の一例を表す図 ドローンのハードウェア構成の一例を表す図 プロポのハードウェア構成の一例を表す図 各装置が実現する機能構成を表す図 指示処理における各装置の動作手順の一例を表す図 ドローンの飛行経路及び撮影位置の一例を表す図 変形例の飛行経路の一例を表す図 変形例において実現される機能構成を表す図 係数テーブルの一例を表す図 変形例において実現される機能構成を表す図 劣化度テーブルの一例を表す図 撮影間隔テーブルの一例を表す図 変形例において実現される機能構成を表す図 変形例の撮影間隔テーブルの一例を表す図 変形例において実現される機能構成を表す図 変形例の撮影間隔テーブルの一例を表す図
[1]実施例
図1は実施例に係る設備検査システム1の全体構成の一例を表す。設備検査システム1は、検査対象の検査データを離れた位置から取得する検査機能を備える飛行体が取得した検査データに基づく設備の検査を支援するシステムである。検査データとは、対象の劣化(腐食、剥離、脱落、破断、ひび割れ、変形及び劣化による変色等)の有無を判断して、修繕の要否を判断するために用いられるデータである。
検査データとしては、例えば、光学映像(写真)データ、赤外線センサの測定データ及び超音波センサの測定データ等が用いられる。本実施例では、写真データが検査データとして用いられる。検査対象は、例えば、橋梁、建物及びトンネル等の一定の基準以上の劣化の有無の検査が定期的に必要とされる設備である。本実施例では、移動体通信の基地局(特にアンテナ設備)が検査対象である場合を説明する。
検査データに基づく劣化の有無及び修繕の要否の判断は、主に検査担当者によって行われる。検査担当者は、表示された検査データを見て劣化の有無等の判断を行ってもよいし、検査データをさらに分析する処理(画像処理等)をコンピュータに行わせてから劣化の有無等の判断を行ってもよい。なお、判断の主体を人に限定する必要はなく、例えばAI(Artificial Intelligence)に劣化の有無等を判断させてもよい。
設備検査システム1は、ネットワーク2と、サーバ装置10と、ドローン20と、プロポ30とを備える。ネットワーク2は、移動体通信網及びインターネット等を含む通信システムであり、自システムにアクセスする装置同士のデータのやり取りを中継する。ネットワーク2には、サーバ装置10が有線通信によりアクセスし(無線通信でもよい)、ドローン20及びプロポ30が無線通信によりアクセスしている。
ドローン20は、上述した検査機能として撮影機能を備えており、本実施例では、1以上の回転翼を回転させて飛行する回転翼機型の飛行体である。ドローン20は、操作者の操作に従って飛行することはもちろん、予め又はリアルタイムに指示された飛行経路を自律的に飛行することもできる。プロポ30は、プロポーショナル式の制御(比例制御)を行う装置であり、操作者がドローン20の操作に用いる。
本実施例では、ドローン20が主に自律飛行を行う例を説明するが、不測の事態が生じたときのために、操作者が近くにいて緊急時にはプロポ30で操作ができるようにしておくものとする。サーバ装置10は、ドローン20が設備を撮影する際の飛行及び撮影の指示を行うための各種の処理(詳しくは後述する)を行う。サーバ装置10は本発明の「情報処理装置」の一例である。
図2はサーバ装置10のハードウェア構成の一例を表す。サーバ装置10は、物理的には、プロセッサ11と、メモリ12と、ストレージ13と、通信装置14と、バス15などを含むコンピュータ装置として構成されてもよい。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。
また、各装置は、1つ又は複数含まれていてもよいし、一部の装置が含まれていなくてもよい。プロセッサ11は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ11は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。
例えば、ベースバンド信号処理部等は、プロセッサ11によって実現されてもよい。また、プロセッサ11は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ13及び通信装置14の少なくとも一方からメモリ12に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。
上述の各種処理は、1つのプロセッサ11によって実行される旨を説明してきたが、2以上のプロセッサ11により同時又は逐次に実行されてもよい。プロセッサ11は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。メモリ12は、コンピュータ読み取り可能な記録媒体である。
メモリ12は、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ12は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ12は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ13は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。
ストレージ13は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ12及びストレージ13の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。通信装置14は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)である。通信装置14は、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
例えば、上述の送受信アンテナ、アンプ部、送受信部、伝送路インターフェースなどは、通信装置14によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。また、プロセッサ11、メモリ12などの各装置は、情報を通信するためのバス15によって接続される。バス15は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
図3はドローン20のハードウェア構成の一例を表す。ドローン20は、物理的には、プロセッサ21と、メモリ22と、ストレージ23と、通信装置24と、飛行装置25と、センサ装置26と、バッテリー27と、カメラ28と、バス29などを含むコンピュータ装置として構成されてもよい。プロセッサ21等の図2に同名のハードウェアが表されているものは、性能及び仕様等の違いはあるが図2と同種のハードウェアである。
通信装置24は、ネットワーク2との通信に加え、プロポ30との通信を行う機能(例えば2.4GHz帯の電波による無線通信機能)を有する。飛行装置25は、モータ及びローター等を備え、自機を飛行させる装置である。飛行装置25は、空中において、あらゆる方向に自機を移動させたり、自機を静止(ホバリング)させたりすることができる。
センサ装置26は、飛行制御に必要な情報を取得するセンサ群を有する装置である。センサ装置26は、例えば、自機の位置(緯度及び経度)を測定する位置センサと、自機が向いている方向(ドローンには自機の正面方向が定められており、定められた正面方向が向いている方向)を測定する方向センサとを備える。また、センサ装置26は、自機の高度を測定する高度センサと、自機の速度を測定する速度センサとを備える。
また、センサ装置26は、3軸の角速度及び3方向の加速度を測定する慣性計測センサ(IMU(Inertial Measurement Unit))と、赤外線、超音波又はミリ波等により障害物を検知する障害物センサとを備える。バッテリー27は、電力を蓄積し、ドローン20の各部に電力を供給する装置である。カメラ28は、イメージセンサ及び光学系の部品等を備え、レンズが向いている方向にある物体を撮影する。
図4はプロポ30のハードウェア構成の一例を表す。プロポ30は、物理的には、プロセッサ31と、メモリ32と、ストレージ33と、通信装置34と、入力装置35と、出力装置36と、バス37などを含むコンピュータ装置として構成されてもよい。プロセッサ31等の図2に同名のハードウェアが表されているものは、性能及び仕様等の違いはあるが図2と同種のハードウェアである。
入力装置35は、外部からの入力を受け付ける入力デバイス(例えばスイッチ、ボタン及びセンサ等)である。特に、入力装置35は、左スティック351及び右スティック352を備え、各スティックへの操作をドローン20の前後方向、上下方向、左右方向、回転方向への移動操作として受け付ける。出力装置36は、外部への出力を実施する出力デバイス(例えばモニター361、スピーカー及びLED(Light Emitting Diode)ランプ等)である。なお、入力装置35及び出力装置36は、一体となった構成(例えばモニター361がタッチスクリーン)であってもよい。
上記の各装置は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよい。また、上記の各装置は、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ11は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
設備検査システム1が備える各装置における各機能は、各々のプロセッサ、メモリなどのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサが演算を行い、各々の通信装置による通信を制御したり、メモリ及びストレージにおけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
図5は各装置が実現する機能構成を表す。サーバ装置10は、設備情報記憶部101と、往路指示部102と、検査データ取得部103と、重点箇所特定部104と、位置情報取得部105と、復路指示部106とを備える。ドローン20は、往路動作制御部201と、検査データ生成部202と、復路動作制御部203とを備える。
設備情報記憶部101は、検査対象である設備に関する情報(設備情報)を記憶する機能であり、本実施例では、基地局に関する情報を設備情報として記憶する。設備情報記憶部101は、例えば、基地局に設置されたアンテナ設備の位置、撮影すべき方位及び地上からの高さ等の情報と、設備を識別する設備IDとを設備情報として記憶する。各設備情報は、検査対象である設備の検査データを取得するためにドローン20が飛行する経路及び向きを決定するために必要な情報である。
往路指示部102は、上記の検査機能(離れた位置から対象の検査データを取得する機能)を有するドローン20を設備に沿って飛行させながらその設備の検査データを取得させる第1指示を行う。往路指示部102は本発明の「第1指示部」の一例である。設備検査システム1においては、検査対象に沿った飛行経路をドローン20が往復しながら検査データを取得する。往路指示部102は、検査対象に沿った飛行経路のうちの往路における指示を第1指示として行う。
設備検査システム1においては、指示対象のドローン20のドローンID及び通信先(IPアドレス等)が予め登録されてサーバ装置10に互いに対応付けられて記憶されているものとする。例えばユーザが基地局の所在地にドローン20を持ち込んで検査を開始する際に、検査対象の設備の設備ID及び飛行させるドローンのドローンIDをプロポ30(スマートフォン等でもよい)に入力してサーバ装置10に送信させる。往路指示部102は、受信した設備IDを含む設備情報を設備情報記憶部101から読み出す。
往路指示部102は、読み出した設備情報が示す位置、高さ及び撮影すべき方位に基づいて、基地局のアンテナ設備を撮影するための飛行経路を決定する。往路指示部102は、例えば、アンテナ設備の位置から撮影すべき方位に所定の距離だけ離れた位置を地上からアンテナ設備の高さまで上昇する経路を往路の飛行経路として決定する。往路指示部102は、単純に真っすぐ上昇する飛行経路を決定してもよいし、設備情報にアンテナ設備の詳細な形状(例えば水平方向に出っ張った部分の長さ及び高さ等)が示されていれば、示された詳細な形状に沿って位置を変えながら上昇する飛行経路を決定してもよい。
往路指示部102は、決定した飛行経路を飛行しながら例えば所定の飛行距離の間隔である撮影間隔D1で撮影を行うこと(撮影後に撮影間隔D1だけ移動したら次の撮影を行うこと)を指示する往路指示データを生成し、受信したドローンIDに対応付けて記憶されている通信先に送信する。往路指示部102は、撮影間隔D1を、前回撮影時の画角の上端部に入っていた設備部分が今回撮影の画角の下端部に入るように定める。つまり、設備の撮影範囲が重なるように撮影間隔D1を定めることで、往路において設備の撮影漏れ(撮影されない部分)がないようにしている。
送信された往路指示データは、ドローン20の往路動作制御部201によって受信される。往路動作制御部201は、往路指示部102による第1指示に従い、往路における自機(特に飛行装置25及びカメラ28)の動作を制御する。往路動作制御部201は、例えば往路指示データを受信することを契機に自機を離陸させ、受信した往路指示データが示す飛行経路の起点まで飛行させる。その際、往路動作制御部201は、障害物があれば障害物センサで検知して迂回しながら飛行するよう制御する。
往路動作制御部201は、起点に到着すると、そこから往路の飛行経路に沿った飛行制御を開始し、指示された撮影間隔D1での撮影制御も開始する。往路動作制御部201は、撮影制御により撮影を行わせると、撮影を行わせた旨を検査データ生成部202に通知する。検査データ生成部202は、往路動作制御部201から通知を受け取ると、検査対象の設備の検査データを生成する。
検査データ生成部202は、例えば、通知を受け取ったときにカメラ28により撮影された画像の画像データに、検査対象の設備の設備ID、自機のドローンID、撮影日時、撮影時の自機の位置、方位及び高度を付与したデータを検査データとして生成する。検査データ生成部202は、生成した検査データをサーバ装置10に送信する。送信された検査データは、サーバ装置10の検査データ取得部103によって受信される。
検査データ取得部103は、受信した検査データを、設備に沿って飛行するドローン20によって生成された検査データとして取得する。検査データ取得部103は、取得した検査データを重点箇所特定部104に供給する。重点箇所特定部104は、供給された検査データに基づき、重点的な検査が必要な箇所(以下で「重点箇所」と言う)を特定する。重点箇所は本発明の「特定箇所」の一例である。
重点箇所とは、言い換えると、検査対象の設備において他の箇所に比べてより詳細な点検が必要な箇所のことである。重点箇所特定部104は、本実施例では、検査データが示す設備の画像を解析し、一定の基準以上劣化した状態(腐食、剥離、脱落、破断、ひび割れ及び変形等が生じた状態。以下「劣化状態」と言う)となっている箇所を重点箇所として特定する。
重点箇所特定部104は、例えば、各劣化状態において撮影される画像の特徴を定量的に表す劣化特徴情報を記憶しておき、撮影された画像に劣化特徴情報が示す特徴が所定のレベル以上現れている箇所を重点箇所として特定する。また、重点箇所特定部104は、過去に撮影された同一の設備の画像と比較して、同一の箇所の画像における特徴量の変化量が閾値以上である場合に、過去画像と比較した箇所を重点箇所として特定してもよい。
なお、重点箇所特定部104は、上記以外にも、画像から劣化箇所を検出する周知の技術(例えば特開2016-65809号公報又は特開2015-105905号公報等に記載の技術)を用いて重点箇所を特定してもよい。重点箇所特定部104は、重点箇所を特定すると、特定に用いた検査データを位置情報取得部105に供給する。
位置情報取得部105は、往路指示部102による第1指示に従い取得された検査データに基づいて詳細な点検が必要であることが示される箇所(上記の重点箇所)の位置を示す位置情報を取得する。位置情報取得部105は本発明の「位置取得部」の一例である。位置情報取得部105は、本実施例では、供給された検査データが示すドローン20の位置、方位及び高さを、詳細な点検が必要と示される重点箇所の位置情報として取得する。
検査データが示す位置、方位及び高さは、重点箇所が特定された画像が撮影されたときのドローン20の位置(撮影時の位置)、方位(撮影時の方位)及び高さ(撮影時の高さ)を示している。つまり、重点箇所は、撮影時の位置及び撮影時の高さから、撮影時の方位を向いたところに位置している。位置情報取得部105は、取得した位置情報(重点箇所を撮影したときのドローン20の位置、方位及び高さ)を復路指示部106に供給する。
また、復路指示部106には、往路指示部102から、決定された飛行経路と、往路指示データの送信先とが供給される。復路指示部106は、上記の検査機能を有するドローン20に対して、設備に沿って飛行しながらその設備の検査データを取得させる第2指示を行う。復路指示部106は本発明の「第2指示部」の一例である。復路指示部106は、上述した検査対象に沿った往復の飛行経路のうちの復路における指示を第2指示として
行う。
詳細には、復路指示部106は、第1指示により飛行した経路を戻るようにドローン20を飛行しながら、位置情報取得部105により取得された位置情報が示す重点箇所については第1指示よりも情報量が多くなるように検査データを取得させる指示を第2指示として行う。復路指示部106は、本実施例では、往路の終点から起点までの飛行経路を復路として戻る指示を第2指示として行う。
なお、復路では必ずしも往路の起点まで戻る必要はないので、復路指示部106は、途中から往路とは異なる経路で飛行する指示を第2指示として行ってもよい。また、復路指示部106は、往路の終点からそのまま折り返すのではなく、終点から少し往路を外れた経路を飛行して途中から往路に沿って戻る指示を第2指示として行ってもよい。要するに、第2指示に従い飛行した場合に検査データが十分に取得されるのであれば、往路と復路が完全に一致している必要はない。
本実施例では、上述したとおり、設備を撮影した画像データが検査データである。そこで、復路指示部106は、第1指示に従う撮影に比べて、例えば、重点箇所の撮影枚数を多くした画像データを含む検査データを取得させる指示を第2指示として行う。往路において上記のとおり撮影間隔D1で撮影が行われた場合、復路指示部106は、往路指示部102から供給された飛行経路を戻りながら、重点箇所については撮影間隔D1よりも短い距離の撮影間隔D2で撮影を行うことを指示する復路指示データを生成する。
復路指示部106は、往路指示部102から供給された送信先であるドローン20に対して復路指示データを送信する。復路指示データは、送信先のドローン20の復路動作制御部203によって受信される。復路動作制御部203は、復路指示部106による第2指示に従い、復路における自機(特に飛行装置25及びカメラ28)の動作を制御する。ドローン20は、往路動作制御部201の制御により飛行経路の終点まで達すると、そこで待機(ホバリング)する。
そして、復路動作制御部203は、例えば復路指示データを受信することを契機に復路の飛行経路の飛行を開始する。復路での飛行中、復路動作制御部203は、重点箇所以外の箇所(通常の点検が行われる箇所であり、以下「通常箇所」と言う)は撮影間隔D1で撮影し、重点箇所については撮影間隔D2で撮影する撮影制御を開始する。復路動作制御部203は、撮影対象が通常箇所から重点箇所に切り替わる際には、例えば切り替わった瞬間に最初の撮影を行い、そこから撮影間隔D2での撮影を行う。
また、復路動作制御部203は、撮影対象が重点箇所から通常箇所に切り替わる際には、同じく切り替わった瞬間に最初の撮影を行い、そこから撮影間隔D1での撮影を行う。なお、撮影対象が切り替わる際の撮影方法はこれに限らない。復路動作制御部203は、例えば撮影対象が通常箇所から重点箇所に切り替わる際に、撮影間隔D1のうちN%(0<N<100)が経過していれば、撮影間隔D2の(1-N)%が経過したときに次の撮影を行ってもよい(重点箇所から通常箇所への切り替えでも同様)。
復路動作制御部203は、撮影制御により撮影を行わせると、撮影を行わせた旨を検査データ生成部202に通知する。検査データ生成部202は、復路動作制御部203から通知を受け取ると、検査対象の設備の検査データを生成する。生成された復路の検査データは、往路の検査データと同様にサーバ装置10の検査データ取得部103によって取得される。
検査データ取得部103は、取得した往路及び復路の検査データを共に蓄積しておく。蓄積された検査データは、例えば設備検査の専門家によって分析され、現地での点検が必要な箇所及び現地での点検をするまでもなく即時の修繕(修理、補強、塗装又は交換等)が必要な箇所が特定される。特定された箇所については、作業員による点検及び補修の作業が行われる。
設備検査システム1が備える各装置は、上記の構成に基づいて、設備検査のためにドローン20の動作を指示する指示処理を行う。
図6は指示処理における各装置の動作手順の一例を表す。図6に表す動作手順は、例えば、ユーザがプロポ30に入力した設備ID及びドローンIDがサーバ装置10に送信されることを契機に開始される。
まず、サーバ装置10(往路指示部102)は、送信されてきた設備IDにより識別される設備(本実施例では基地局のアンテナ設備)の位置、高さ及び撮影すべき方位に基づいて飛行経路を決定する(ステップS11)。次に、サーバ装置10(往路指示部102)は、決定した飛行経路を飛行しながら撮影間隔D1で撮影を行うことを第1指示として示す往路指示データを生成し(ステップS12)、生成した往路指示データをドローン20に送信する(ステップS13)。
ドローン20(往路動作制御部201)は、送信されてきた往路指示データが示す飛行経路の起点まで移動するよう自機を制御する(ステップS14)。次に、ドローン20(往路動作制御部201)は、往路の飛行経路の移動を開始すると共に(ステップS21)、撮影間隔D1での撮影を開始する(ステップS22)。続いて、ドローン20(検査データ生成部202)は、検査対象の設備の検査データを生成し(ステップS23)、生成した検査データをサーバ装置10に送信する(ステップS24)。
図7はドローン20の飛行経路及び撮影位置の一例を表す。図7においては、基地局のアンテナ設備3の検査データが取得される。アンテナ設備3は、円錐台の形をした支柱4及びアンテナ5を有する。往路指示部102は、図7(a)に表すように、アンテナ5よりも下側では起点A1から鉛直上方に移動し、支柱4よりも出っ張ったアンテナ5の高さになるとアンテナ設備3から少し離れる方向に移動してから終点A2まで上昇する飛行経路B1での飛行を指示している。
また、往路指示部102は、飛行経路B1では、撮影間隔D1の撮影位置C1からC9までの9カ所での撮影を指示している。図7の例では、ドローン20は、水平の姿勢(自機の左右方向及び前後方向が水平方向に沿う姿勢)のときにレンズが水平方向に向くようにカメラ28の向きが固定されている。図7(a)では、撮影位置C4における撮影範囲E4及び撮影位置C5における撮影範囲E5が表されている。上述したように、撮影範囲E4及びE5に含まれるアンテナ設備3が重複して撮影漏れが生じないように撮影間隔D1が定められている。
サーバ装置10(検査データ取得部103)は、受信した検査データを、設備に沿って飛行するドローン20によって生成された検査データとして取得する(ステップS25)。次に、サーバ装置10(重点箇所特定部104)は、取得された検査データに基づき、検査対象の設備における重点箇所を特定する(ステップS26)。続いて、サーバ装置10(位置情報取得部105)は、重点箇所が特定された場合は、特定された重点箇所の位置情報を取得する(ステップS27)。
ドローン20のステップS23の動作(検査データを生成)からサーバ装置10のS27の動作(位置情報を取得)は、ドローン20が飛行経路B1の終点A2に到着する(ステップS28)まで繰り返し行われる。図7の例では、図7(b)に表す重点箇所F1及びF2が特定され、特定された重点箇所の位置情報が取得される。ドローン20は、指示された飛行経路B1の終点A2に到着すると、終点A2に到着した旨を知らせる通知データをサーバ装置10に送信する(ステップS29)。
サーバ装置10(復路指示部106)は、ステップS29において通知データを受信すると、飛行経路B1を戻りながら、重点箇所については撮影間隔D2(D2<D1)で撮影を行うことを指示する復路指示データを生成する(ステップS31)。復路指示部106は、重点箇所の位置を示すデータを復路指示データとして生成する。重点箇所の位置は、例えば、重点箇所を撮影可能なドローン20の位置によって表される。
復路指示部106は、重点箇所F1の位置及び範囲と、飛行経路B2のアンテナ設備3からの距離と、カメラ28の向き及び画角とに基づいて、カメラ28の撮影範囲に重点箇所が含まれる撮影位置を特定する。復路指示部106は、例えば、重点箇所F1の位置を示す復路指示データとして、飛行経路B2における撮影位置C12からC19までの範囲を示すデータを生成する。
重点箇所F1は、撮影位置C12における撮影範囲E12の下端側に含まれ、撮影位置C19における撮影範囲E19の上端側に含まれている。また、復路指示部106は、重点箇所F2の位置を示す復路指示データとして、飛行経路B2における撮影位置C22からC27までの範囲を示すデータを生成する。重点箇所F2は、撮影位置C22における撮影範囲E22の下端側に含まれ、撮影位置C27における撮影範囲E27の上端側に含まれている。
撮影位置C12からC19までの撮影間隔と、撮影位置C22からC27までの撮影間隔はいずれもD2となっている。また、撮影位置C12~C19及びC22~C27以外の撮影位置(例えば撮影位置C20及びC21)の撮影間隔は、往路と同じD1となっている。なお、重点箇所及び通常箇所の境目(例えば撮影位置C11及びC12)では、撮影間隔はD1以下で且つD2以上となっている。
サーバ装置10(復路指示部106)は、以上のとおり生成した往路指示データをドローン20に送信する(ステップS32)。ドローン20(復路動作制御部203)は、送信されてきた復路指示データが示す第2指示に従い、復路の飛行経路B2の移動を開始すると共に(ステップS33)、撮影間隔D1又はD2での撮影を開始する(ステップS34)。
次に、ドローン20(検査データ生成部202)は、検査対象の設備の検査データを生成し(ステップS35)、生成した検査データをサーバ装置10に送信する(ステップS36)。サーバ装置10(検査データ取得部103)は、受信した検査データを、設備に沿って飛行するドローン20によって生成された検査データとして取得する(ステップS37)。自機が終点A2に到着すると、ドローン20(復路動作制御部203)は、自機の動作制御を終了する(ステップS38)。
検査データの情報量が少ないほど検査の見落としが生じやすくなるが、一方で、検査データの情報量が多いほど検査担当者の負担は大きくなる。本実施例では、上記のとおり取得された検査データから特定される重点箇所についてだけ情報量を多くした検査データが復路において取得されるので、検査データが示す情報量を常に少なくする場合に比べて、ドローン20を用いて取得する設備の検査データによる検査の見落としを防ぐことができる。
一方で、本実施例では、検査データが示す情報量を常に多くする場合に比べて、検査データの点検の負荷を抑えることができる。ここでいう負荷とは、検査データに基づく劣化の有無及び修繕の要否の判断を行う際の負荷であり、例えば検査担当者の手間の大きさのことである。なお、検査データに基づく判断をコンピュータを用いて行う場合は、コンピュータの負荷も含まれる。
[2]変形例
上述した実施例は本発明の実施の一例に過ぎず、以下のように変形させてもよい。また、実施例及び各変形例は必要に応じてそれぞれ組み合わせてもよい。実施例及び各変形例を組み合わせる際は、各変形例について優先順位を付けて(各変形例を実施すると競合する事象が生じる場合にどちらを優先するかを決める順位付けをして)実施してもよい。
また、具体的な組み合わせ方法として、例えば共通する値(例えば撮影間隔)を求めるために異なるパラメータを用いる変形例を組み合わせて、各パラメータを共に用いて共通する値等を求めてもよい。また、個別に求めた値等を何らかの規則に従い合算して1つの値等を求めてもよい。また、共通する値を求める際に、用いられるパラメータ毎に異なる重み付けをしてもよい。
[2-1]飛行経路
検査データを取得する際の飛行経路は、実施例で述べたものに限らない。例えば図7の例では、主に鉛直方向に移動する飛行経路が用いられたが、例えば検査対象が橋梁及びトンネル等である場合、主に水平方向に移動する飛行経路が用いられてもよい。また、検査対象の構造によっては、鉛直方向、水平方向及び斜め方向を含む複雑な飛行経路が用いられてもよい。
いずれの場合も、往路指示部102及び復路指示部106は、設備に沿った飛行経路でドローン20を飛行させる指示を行う。また、図7の例では、往路の飛行経路B1及び復路の飛行経路B2の1組だけが用いられたが、設備によっては検査データを取得すべき方位(実施例では撮影すべき方位)が2以上ある場合がある。その場合は、サーバ装置10は、図6に表す指示処理の動作を、各方位について行えばよい。
[2-2]情報量の増加方法
第2指示で検査データの情報量を増加させる方法は、実施例で述べた方法(撮影間隔を短くする方法)に限らない。
例えばカメラ28が撮影する画像の拡大機能(ズーム機能)を備えている場合であれば、復路指示部106は、第1指示に従う撮影に比べて、重点箇所を拡大した画像データを含む検査データを取得させる指示を第2指示として行ってもよい。重点箇所を拡大して撮影することで、重点箇所については通常箇所に比べて詳細な点検が可能になる。特に、実施例のように撮影枚数を多くする場合に比べて、サイズが小さい劣化が生じた箇所を点検しやすくすることができる。
また、復路指示部106は、第1指示に従う撮影に比べて、重点箇所の撮影アングルを増やした画像データを含む検査データを取得させる指示を第2指示として行ってもよい。第1指示では重点箇所を正面からのみ撮影していたとすると、復路指示部106は、正面の他に斜め上から、斜め下から、斜め左から、斜め右からも重点箇所を撮影する指示を第2指示として行う。
ドローン20の復路動作制御部203は、自機の位置、傾き及び方位を変えることで、第2指示のとおりの撮影アングルで重点箇所を撮影する制御を行う。撮影アングルを増やした場合、実施例のように撮影枚数を多くする場合に比べて、立体的な形状の変化で現れる劣化(変形等)を点検しやすくすることができる。
なお、実施例のように撮影枚数を多くする方法は、カメラ28にズーム機能が不要である。また、撮影アングルを変えるためには飛行経路を変えたり姿勢を変えたりする必要があるが、撮影枚数を多くするだけであれば、飛行経路の変更等の複雑な動作制御をドローン20にさせる必要がない。つまり、撮影枚数を多くする方法は、他の方法に比べて実現が容易である。
なお、復路指示部106は、第2指示で検査データの情報量を増加させる方法を組み合わせてもよい。例えば、復路指示部106は、撮影間隔を短くする方法と重点箇所を拡大して撮影する方法とを両方行ってもよいし、さらに重点箇所の撮影アングルを増加させる方法も同時に行ってもよい。要するに、復路指示部106は、第1指示に従う撮影に比べて、重点箇所を拡大した画像データ、重点箇所の撮影枚数を多くした画像データ又は重点箇所の撮影アングルを増やした画像データの少なくともいずれか1つを含む検査データを取得させる指示を第2指示として行えばよい。
[2-3]撮影方法
往路指示部102及び復路指示部106は、実施例では、距離的な撮影間隔を指示して撮影を行わせたが、時間的な撮影間隔を指示して撮影を行わせてもよい。飛行速度が一定であれば、時間的な撮影間隔を短くすることで距離的な撮影間隔を短くすることができる。
反対に、時間的な撮影間隔が一定であれば、飛行速度を遅くすることで距離的な撮影間隔を短くすることができる。また、往路指示部102及び復路指示部106は、動画の撮影を指示してもよい。動画も、詳細には1秒間に数十枚の静止画像を撮影したもの(つまり時間的な撮影間隔が一定)であるから、移動速度を遅くするほど距離的な撮影間隔を短くすることができる。
上記のとおり飛行速度によって距離的な撮影間隔が変わる場合、復路指示部106は、重点箇所を撮影する際は第1指示よりも速度を低くして飛行する指示を第2指示として行ってもよい。この場合、往路及び復路において、カメラ28の撮影制御方法(時間的な撮影間隔)を変える必要がなく、飛行経路も変える必要がないから、例えば撮影アングルを変化させる場合に比べて、ドローン20の動作制御を容易にすることができる。
[2-4]ドローンと設備との距離
カメラ28がズーム機能を備えていない場合でも、ドローン20から設備までの距離を短くすることで拡大した画像を撮影することができる。そこで、復路指示部106は、重点箇所を撮影する際は第1指示よりも検査対象の設備に近づけてドローン20を飛行させる指示を第2指示として行ってもよい。
図8は本変形例の飛行経路の一例を表す。図8では、図7に表すアンテナ設備3と、重点箇所F1及びF2と、飛行経路B2(二点鎖線)とが表されている。図8の例では、復路指示部106は、重点箇所F1と高さが共通する区間では図7に表す飛行経路B2よりもアンテナ設備3に接近距離G1(往路よりも接近させる距離)だけ近づく途中経路B31と、重点箇所F2と高さが共通する区間では飛行経路B2よりもアンテナ設備3に同じく接近距離G1だけ近づく途中経路B32とを有する飛行経路B3を決定している。
接近距離G1は、ドローン20がアンテナ設備3に近づいても接触しない程度の距離である。ドローン20がズーム機能を備えていない場合であっても、飛行経路B3を飛行することで、第1指示による撮影に比べて重点箇所F1及びF2を拡大した画像を撮影することができる。なお、ドローン20と設備との距離が短くなるほど、例えば強い風が吹いたときにドローン20が設備に接触しやすくなる。そこで、復路指示部106は、風を考慮して飛行経路を決定してもよい。
図9は本変形例において実現される機能構成を表す。図9では、図5に表す各部に加えて風情報取得部107を備えるサーバ装置10aが表されている。風情報取得部107は、検査対象の設備の周辺の風速及び風向きを示す風情報を取得する。風情報取得部107は本発明の「風情報取得部」の一例である。本変形例では、往路指示部102が、検査対象の設備の位置を風情報取得部107に通知する。
風情報取得部107は、通知された設備の位置を含む地域における気象情報を天気予報サービス等の提供事業者のシステムから取得し、気象情報に含まれる風速及び風向きを風情報として取得する。なお、風情報取得部107は、検査対象の設備に設置された風速計又は現地に同行している作業者が所持する風速計を用いて測定された風情報を取得してもよい。風情報取得部107は、取得した風情報を復路指示部106に供給する。
復路指示部106は、ドローン20が設備に衝突する危険が大きいほど、ドローン20及び設備の距離を大きくする指示を第2指示として行う。設備への衝突の危険の大きさは、風情報取得部107により取得された風情報によって示される。具体的には、風情報が示す風向きがドローン20の飛行位置から設備に向かう方向と一致している場合に、風情報が示す風速が大きいほど、衝突の危険が大きくなる。
復路指示部106は、風速と距離係数とを対応付けた係数テーブルを用いて第2指示を行う。
図10は係数テーブルの一例を表す。図10の例では、「Th1未満」、「Th1以上Th2未満」及び「Th2以上」という風速に、「1.0」、「0.8」及び「0.6」という距離係数が対応付けられている。
復路指示部106は、まず、取得された風情報が示す風向きがドローン20の飛行位置から設備に向かう方向と一致しているか否かを判断する。復路指示部106は、一致していないと判断した場合は、例えば図8の例であれば接近距離G1だけ飛行経路を設備に近づける。復路指示部106は、一致していると判断した場合は、風情報が示す風速に係数テーブルで対応付けられている距離係数を接近距離G1に乗じた距離だけ飛行経路を設備に近づける。
飛行経路を設備に近づけた結果、ドローン20及びアンテナ設備3は、風速がTh1未満であれば接近距離G1だけ近づくが、風速がTh1以上Th2未満であれば接近距離G1×0.8の距離だけ近づき、風速がTh2以上であれば接近距離G1×0.6の距離だけ近づく。つまり、復路指示部106は、風速が大きいほどドローン20及び設備の距離を遠ざける。本変形例では、上記のとおり風情報に基づいてドローン20及び設備の距離を遠ざけることで、ドローン20及び設備の距離が一定である場合に比べて、ドローン20が設備に接触する危険を少なくすることができる。
[2-5]情報量の増加度
復路指示部106は、上記の各例において第1指示よりも情報量が多い検査データを取得させる指示を第2指示として行った。そして、第2指示において情報量を増やす度合いは、上記の風情報を用いる場合を除いてどれも一定であったが、情報量の増加度を変化させてもよい。
図11は本変形例において実現される機能構成を表す。図11では、図5に表す各部に加えて劣化度判定部108を備えるサーバ装置10bが表されている。劣化度判定部108は、検査対象の設備に関する情報に基づいてその設備の全体の劣化度を判定する。劣化度判定部108は本発明の「第1判定部」の一例である。本変形例では、往路指示部102が、検査対象の設備の設備IDを劣化度判定部108に通知する。
また、本変形例では、設備情報記憶部101が、例えば、各設備の設置年月日と、修繕履歴のある設備については修繕年月日とを設備情報として記憶する。劣化度判定部108は、通知された設備IDに対応付けて記憶されている設置年月日及び修繕年月日を読み出し、読み出した設置年月日等の情報に基づいて劣化度を判定する。劣化度判定部108は、例えば、劣化期間(設置年月日又は修繕年月日から経過した期間)と劣化度とを対応付けて劣化度テーブルを用いて判定を行う。
図12は劣化度テーブルの一例を表す。図12の例では、「Th11未満」、「Th11以上Th12未満」及び「Th12以上」という劣化期間に、「低」、「中」及び「高」という劣化度が対応付けられている。劣化度判定部108は、読み出した設置年月日及び修繕年月日のうち新しい方からの経過期間を劣化期間として定め、定めた劣化期間に劣化度テーブルにおいて対応付けられた劣化度を設備の劣化度として判定する。
劣化度判定部108は、判定した劣化度を復路指示部106に通知する。復路指示部106は、検査対象の設備について劣化度判定部108により判定された劣化度が高いほど重点箇所における情報量が多い検査データを取得させる指示を第2指示として行う。例えば実施例のように撮影枚数を増やすことで情報量を多くする場合は、劣化度と撮影間隔とを対応付けた撮影間隔テーブルが用いられる。
図13は撮影間隔テーブルの一例を表す。図13の例では、「低」、「中」及び「高」という劣化度に、「D11」、「D12」及び「D13」(D11>D12>D13。いずれも往路の撮影間隔D1よりも短い)という撮影間隔が対応付けられている。図13の撮影間隔テーブルを用いることで、復路指示部106は、判定された劣化度が高いほど撮影間隔を短くした画像、すなわち撮影枚数を多くした画像を重点箇所について撮影する指示を第2指示として行う。
また、復路指示部106は、重点箇所を拡大した画像を撮影させる場合は、判定された劣化度が高いほど拡大率を大きくした画像を重点箇所について撮影する指示を第2指示として行う。具体的には、例えば劣化度が「低」なら拡大率120%とし、「中」なら140%とし、「高」なら160%とするという具合である。
また、復路指示部106は、重点箇所の撮影アングルを増やす場合は、判定された劣化度が高いほど撮影アングルの数を増やした画像を重点箇所について撮影する指示を第2指示として行う。具体的には、例えば劣化度が「低」なら撮影アングルを3方向とし、「中」なら5方向とし、「高」なら7方向とするという具合である。
また、復路指示部106は、重点箇所の撮影時は速度を低くする場合は、判定された劣化度が高いほど重点箇所の撮影時の速度を低くする指示を第2指示として行う。具体的には、例えば劣化度が「低」なら速度10%減とし、「中」なら速度20%減とし、「高」なら速度30%減とするという具合である。
また、復路指示部106は、重点箇所の撮影時は設備に近づけてドローン20を飛行させる場合は、判定された劣化度が高いほど重点箇所の撮影時の接近距離を大きくする指示を第2指示として行う。具体的には、例えば劣化度が「高」なら最大の接近距離とし、「中」なら最大接近距離から10%減とし、「低」なら最大接近距離から20%減とするという具合である。
設備の劣化が進むほど、修繕を必要とする箇所を見逃した場合に、次の検査までに劣化が大きく進んでしまい、より大きな修繕が必要になる。従って、劣化が進んだ設備ほど修繕の必要がある箇所の見落としを防ぐことが望ましい。しかし、見落としを防ぐために検査データの情報量を常に多くすると検査データの点検の負荷が大きくなる。本変形例では、上記のとおり劣化度に応じて検査データの情報量を変化させることで、劣化が進んだ設備であっても、実施例のように検査の見落としを防ぎつつ検査データの点検の負荷を小さくすることができる。
[2-6]重点箇所の特定方法
実施例では、往路において取得された検査データに基づいてサーバ装置10(重点箇所特定部104)が画像を解析して重点箇所を特定したが、例えば人(作業者)が検査データを見て重点箇所を特定してもよい。重点箇所の特定は、ドローン20による撮影中に行われなければならない。そこで、例えば、サーバ装置10の検査データ取得部103は、検査データを取得したらすぐに取得した検査データを表示手段に表示させる。
作業者は、表示された検査データ(例えば画像データ)から重点箇所が含まれているか否かを判断し、含まれていると判断した重点箇所を特定する操作を行う。重点箇所を特定する操作は、例えば重点箇所を含む画像を示す検査データに重点箇所を含むことを示すフラグを立てる操作である。位置情報取得部105は、作業者の操作により特定された重点箇所の位置情報を取得する。本変形例で取得された位置情報も、実施例と同じく、取得された検査データが示す重点箇所の位置情報である。
[2-7]位置情報
位置情報取得部105が取得する位置情報は、実施例では、ドローン20の位置、方位及び高さによって重点箇所の位置を表したが、重点箇所の位置を直接表す情報であってもよい。例えば、実空間に定められた3次元座標系における重点箇所そのものの座標(例えば重点箇所の中心の座標。上端及び下端の座標でもよい)が位置情報として位置情報取得部105によって取得されてもよい。
重点箇所の座標が位置情報として取得された場合、例えば位置情報取得部105が、重点箇所を撮影したときのドローン20の位置、方位及び高さに加え、ドローン20と設備との距離と、撮影された画像における重点箇所の位置とに基づいて上記座標を算出する。位置情報取得部105は、算出した座標を重点箇所の位置情報として取得する。この場合の位置情報は、座標以外に、例えば設備から見た方位及び高さ(例えば「南向きの高さ5mの位置」など)で表されてもよい。要するに、重点箇所の位置が示されていれば、どのような情報が位置情報として取得されてもよい。
[2-8]劣化の種類
重点箇所特定部104は、往路で取得された検査データに基づき、劣化のある箇所を重点箇所として特定する。劣化には、腐食、剥離、脱落、破断、ひび割れ、変形及び劣化による変色等の種類がある。そして、劣化には、種類によって検査データから見つけやすいものと見つけにくいものとがある。
そこで、本変形例では、劣化の種類に合った情報量の検査データが取得される。
図14は本変形例において実現される機能構成を表す。図14では、図5に表す各部に加えて劣化種類判定部109を備えるサーバ装置10cが表されている。劣化種類判定部109は、位置情報取得部105により取得された位置情報が示す重点箇所における劣化の種類を判定する。劣化種類判定部109は本発明の「第2判定部」の一例である。
本変形例では、重点箇所特定部104が、例えば上述した劣化特徴情報を用いて重点箇所を特定し、重点箇所の特定に用いた劣化特徴情報(重点箇所に特徴が現れている劣化特徴情報)を劣化種類判定部109に供給する。劣化種類判定部109は、供給された劣化特徴情報が示す劣化状態を、重点箇所における劣化の種類として判定する。この場合、腐食、剥離、破断、ひび割れ及び劣化による変色等の種類が判定される。
また、重点箇所特定部104が、上述した過去に撮影された同一の設備の画像と比較する方法を用いる場合は、特徴量の変化量が閾値以上となった箇所の特徴量を劣化種類判定部109に供給する。劣化種類判定部109は、供給された特徴量が示す設備の画像上の面積が変わってなければ変形と判定し、設備の画像上の面積が変わっていれば脱落と判定する。劣化種類判定部109は、判定した劣化の種類を復路指示部106に通知する。
復路指示部106は、重点箇所について取得される検査データが示す情報量を、その重点箇所について劣化種類判定部109により判定された劣化の種類に対応付けられた量だけ多くする指示を第2指示として行う。例えば実施例のように撮影枚数を増やすことで情報量を多くする場合は、劣化の種類と撮影間隔とを対応付けた撮影間隔テーブルが用いられる。
図15は本変形例の撮影間隔テーブルの一例を表す。図15の例では、「脱落、劣化による変色」、「腐食、破断」及び「剥離、ひび割れ、変形」という劣化の種類に、「D21」、「D22」及び「D23」(D21>D22>D23。いずれも往路の撮影間隔D1よりも短い)という撮影間隔が対応付けられている。図15の撮影間隔テーブルを用いることで、復路指示部106は、判定された劣化の種類に対応付けられた撮影間隔となるまで往路よりも撮影間隔を短くした画像、すなわち撮影枚数を多くした画像を重点箇所について撮影する指示を第2指示として行う。
また、復路指示部106は、重点箇所を拡大した画像を撮影させる場合は、判定された劣化の種類に対応付けられた拡大率で拡大した画像を重点箇所について撮影する指示を第2指示として行う。具体的には、例えば劣化の種類が「脱落、劣化による変色」なら拡大率120%とし、「腐食、破断」なら140%とし、「剥離、ひび割れ、変形」なら160%とするという具合である。
また、復路指示部106は、重点箇所の撮影アングルを増やす場合は、判定された劣化の種類に対応付けられた数だけ撮影アングルを増やした画像を重点箇所について撮影する指示を第2指示として行う。具体的には、例えば劣化の種類が「脱落、劣化による変色」なら撮影アングルを3方向とし、「腐食、破断」なら5方向とし、「剥離、ひび割れ、変形」なら7方向とするという具合である。
また、復路指示部106は、重点箇所の撮影時は速度を低くする場合は、判定された劣化の種類に対応付けられた速度となるまで重点箇所の撮影時の速度を低くする指示を第2指示として行う。具体的には、例えば劣化の種類が「脱落、劣化による変色」なら速度10%減とし、「腐食、破断」なら速度20%減とし、「剥離、ひび割れ、変形」なら速度30%減とするという具合である。
また、復路指示部106は、重点箇所の撮影時は設備に近づけてドローン20を飛行させる場合は、判定された劣化の種類に対応付けられた距離となるまで重点箇所の撮影時の接近距離を大きくする指示を第2指示として行う。具体的には、例えば劣化の種類が「剥離、ひび割れ、変形」なら最大の接近距離とし、「腐食、破断」なら最大接近距離から10%減とし、「脱落、劣化による変色」なら最大接近距離から20%減とするという具合である。
例えば「剥離、ひび割れ」は、元の状態から0.1~1mm単位での変化を見つけなければならないため、より情報量を多くする必要がある。また、「変形」は、「脱落」に比べて見つけにくい劣化であるため、より情報量を多くする必要がある。反対に「脱落、劣化による変色」は見つけやすい劣化であるため情報量をそれほど多くしなくてもよい。「腐食、破断」は、「変形」と「脱落、劣化による変色」との中間程度の見つけやすさである。
上記のとおり、劣化の種類が異なると、重点箇所の見つけやすさも異なっている。そこで、本変形例のように情報量を多くする度合いを劣化の種類に基づいて決めることで、実施例と同様に、検査データの点検の負荷を小さくしつつ、見つけにくい種類の劣化が生じて修繕の必要がある箇所についても見落としを防ぐことができる。なお、上述した劣化の種類と見つけやすさの関係はあくまで一例であり、検査対象及び検査担当者によって異なる関係が用いられてもよい。
[2-9]構造物の種類
検査対象の設備に含まれる構造物には、例えば鉄塔、土台、電気設備、アンテナ及び梯子等の種類がある。各構造物は、自身の種類によって修繕の緊急性が異なる。そこで、修繕の緊急性に合った情報量の検査データが取得されるようにしてもよい。
図16は本変形例において実現される機能構成を表す。図16では、図5に表す各部に加えて構造物種類判定部110を備えるサーバ装置10dが表されている。構造物種類判定部110は、位置情報取得部105により取得された位置情報が示す重点箇所となっている構造物の種類を判定する。構造物種類判定部110は本発明の「第3判定部」の一例である。
本変形例では、設備情報記憶部101が、設備に含まれる各構造物の位置を示す設備情報を記憶している。そして、位置情報取得部105が、取得した位置情報を構造物種類判定部110に供給する。構造物種類判定部110は、位置情報が供給されると、設備情報記憶部101から該当する設備の設備情報を読み出し、供給された位置情報が示す重点箇所の位置の構造物を判定する。
構造物種類判定部110は、判定した構造物の種類を復路指示部106に通知する。復路指示部106は、重点箇所について取得される検査データが示す情報量を、その重点箇所について構造物種類判定部110により判定された構造物の種類に対応付けられた量だけ多くする指示を第2指示として行う。例えば実施例のように撮影枚数を増やすことで情報量を多くする場合は、構造物の種類と撮影間隔とを対応付けた撮影間隔テーブルが用いられる。
図17は本変形例の撮影間隔テーブルの一例を表す。図17の例では、「鉄塔、土台」、「梯子」及び「アンテナ、電気設備」という構造物の種類に、「D31」、「D32」及び「D33」(D31>D32>D33。いずれも往路の撮影間隔D1よりも短い)という撮影間隔が対応付けられている。図17の撮影間隔テーブルを用いることで、復路指示部106は、重点箇所となっている構造物の種類に対応付けられた撮影間隔となるまで往路よりも撮影間隔を短くした画像、すなわち撮影枚数を多くした画像を重点箇所について撮影する指示を第2指示として行う。
また、復路指示部106は、重点箇所を拡大した画像を撮影させる場合、重点箇所の撮影アングルを増やす場合、重点箇所の撮影時は速度を低くする場合及び重点箇所の撮影時は設備に近づけてドローン20を飛行させる場合については、上記変形例で設備の種類を用いた場合と同様にして第2の指示を行う。いずれの場合も、実施例と同様に、検査データの点検の負荷を小さくしつつ、修繕の緊急性の高い種類の構造物に劣化が生じた場合でも検査の見落としを防ぐことができる。
[2-10]複数の方向から検査データを取得
例えば鉄塔のように厚みが少ない設備の場合、表側に発生した劣化が裏側まで至っている可能性がある。また、表側と裏側に限らず、複数の方向から検査データが取得される場合、或る方向から見た箇所で発生した劣化が別の方向から見た箇所まで至っている可能性がある。
そこで、本変形例では、検査データ取得部103が、検査対象の設備の検査データを第1方向側及び第2方向側(第2方向は第1方向とは異なる方向)から取得する場合に、次のように第2の指示が行われる。復路指示部106は、第1方向側において位置情報取得部105により取得された位置情報が示す重点箇所に対応する第2方向側の箇所については、第2方向側から設備の検査データを取得する際に重点箇所に対応する箇所を示す位置情報が取得されなくとも第1指示よりも情報量が多い検査データを取得させる指示を第2指示として行う。
第1方向側の重点箇所に対応する第2方向側の箇所とは、例えば重点箇所の裏側の箇所又は重点箇所に隣接する箇所である。各箇所はいずれも、重点箇所から見てドローン20が飛行する方向に対して直交する方向(実施例のように鉛直方向が飛行する方向であれば同じ高さ)に存在する箇所である。例えば第1方向側からは劣化が目立つ状態で現れていても、第2方向側からは劣化がわずかしか現れていない場合がある。
その場合、第2方向側の劣化がわずかしか現れていない箇所について、往路の検査データからは重点箇所が特定されないことが起こり得る。すると、復路において情報量を多くした検査データが取得されず、わずかしか現れていない劣化が見逃される可能性がある。本変形例では、第1方向側で重点箇所が特定されれば、第2方向側についても情報量を多くした検査データが取得されるので、本変形例の第2指示を行わない場合に比べて、上記のように劣化がわずかしか現れていない箇所であっても劣化を見つけやすくすることができる。
[2-11]操作飛行
実施例では、ドローン20が自律的に飛行したが、操作者がプロポ30等を用いて操作してドローン20を飛行させてもよい。操作者の操作でドローン20を飛行させる場合、第1指示及び第2指示は操作者に対して行われる。
具体的には、往路指示部102が往路指示データをプロポ30に送信し、プロポ30が往路指示データの示す第1指示の内容を表示することで、第1指示が操作者に対して伝えられる。また、復路指示部106が復路指示データをプロポ30に送信し、プロポ30が復路指示データの示す第2指示の内容を表示することで、第2指示が操作者に対して伝えられる。
なお、往路は自律飛行を行い、復路は操作による飛行を行ってもよいし、反対に往路は操作による飛行を行い、復路は自律飛行を行ってもよい。また、重点箇所においてだけ操作による飛行又は自律飛行を行ってもよい。要するに、第1指示及び第2指示に従った飛行及び検査データの取得が行われるのであれば、ドローン20が自律的に動作をしても操作者の操作に従い動作をしてもどちらでもよい。
[2-12]飛行体
実施例では、自律飛行を行う飛行体として回転翼機型の飛行体が用いられたが、例えば飛行機型の飛行体であってもよいし、ヘリコプター型の飛行体であってもよい。要するに、第1指示及び第2指示に従い飛行することが可能であり、且つ、検査データを取得する機能を有する飛行体であればよい。
[2-13]各機能を実現する装置
図5等に表す各機能を実現する装置は、上述した装置に限らない。例えば、サーバ装置10が実現する機能をプロポ30又はユーザが利用するスマートフォン等のユーザ端末が実現してもよい。その場合はプロポ30又はユーザ端末が本発明の「情報処理装置」の一例となる。また、十分な処理能力を有していれば、ドローン20自身が図5等に表す各機能を実現してもよい。その場合はドローン20が本発明の「情報処理装置」の一例となる。要するに、設備検査システム1の全体で図5等に表す各機能が実現されていればよい。
[2-14]発明のカテゴリ
本発明は、サーバ装置10等の情報処理装置の他、各情報処理装置及びドローン20のような飛行体を備える情報処理システム(設備検査システム1はその一例)としても捉えられる。また、本発明は、各情報処理装置が実施する処理を実現するための情報処理方法としても捉えられるし、各情報処理装置を制御するコンピュータを機能させるためのプログラムとしても捉えられる。本発明として捉えられるプログラムは、プログラムを記憶させた光ディスク等の記録媒体の形態で提供されてもよいし、インターネット等のネットワークを介してコンピュータにダウンロードさせ、ダウンロードしたプログラムをインストールして利用可能にするなどの形態で提供されてもよい。
[2-15]機能ブロック
なお、上記実施例の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。
すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
[2-16]入出力の方向
情報等(※「情報、信号」の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
[2-17]入出力された情報等の扱い
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
[2-18]判定方法
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
[2-19]情報の通知、シグナリング
情報の通知は、本開示において説明した態様/実施例に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
[2-20]処理手順等
本開示において説明した各態様/実施例の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
[2-21]入出力された情報等の扱い
入出力された情報等は特定の場所(例えばメモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
[2-22]ソフトウェア
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
[2-23]情報、信号
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
[2-24]システム、ネットワーク
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
[2-25]パラメータ、チャネルの名称
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
[2-26]「判断」、「決定」
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。
また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
[2-27]「に基づいて」の意味
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
[2-28]「異なる」
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
[2-29]「及び」、「又は」
本開示において、「A及びB」でも「A又はB」でも実施可能な構成については、一方の表現で記載された構成を、他方の表現で記載された構成として用いてもよい。例えば「A及びB」と記載されている場合、他の記載との不整合が生じず実施可能であれば、「A又はB」として用いてもよい。
[2-30]態様のバリエーション等
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
1…設備検査システム、10…サーバ装置、20…ドローン、30…プロポ、101…設備情報記憶部、102…往路指示部、103…検査データ取得部、104…重点箇所特定部、105…位置情報取得部、106…復路指示部、107…風情報取得部、108…劣化度判定部、109…劣化種類判定部、110…構造物種類判定部、201…往路動作制御部、202…検査データ生成部、203…復路動作制御部。

Claims (10)

  1. 検査対象の検査データを離れた位置から取得する機能を有する飛行体を設備に沿って飛行させながら当該設備の前記検査データを取得させる第1指示を行う第1指示部と、
    前記第1指示に従い取得された前記検査データに基づいて詳細な点検が必要と示される特定箇所の位置情報を取得する位置取得部と、
    前記飛行体に対して、前記第1指示により飛行した経路を戻るように飛行しながら、取得された前記位置情報が示す特定箇所については前記第1指示よりも情報量が多い前記検査データを取得させる第2指示を行う第2指示部と
    を備える情報処理装置。
  2. 前記検査データは、前記設備を撮影した画像データであり、
    前記第2指示部は、前記第1指示に従う撮影に比べて、前記特定箇所を拡大した画像データ、前記特定箇所の撮影枚数を多くした画像データ又は前記特定箇所の撮影アングルを増やした画像データの少なくともいずれか1つを含む前記検査データを取得させる指示を前記第2指示として行う
    請求項1に記載の情報処理装置。
  3. 前記第2指示部は、前記特定箇所を撮影する際は前記第1指示よりも速度を低くして飛行する指示を前記第2指示として行う
    請求項1又は2に記載の情報処理装置。
  4. 前記設備に関する情報に基づいて当該設備の全体の劣化度を判定する第1判定部を備え、
    前記第2指示部は、前記設備について判定された劣化度が高いほど前記特定箇所における情報量が多くなるように前記検査データを取得させる指示を前記第2指示として行う
    請求項1から3のいずれか1項に記載の情報処理装置。
  5. 取得された前記位置情報が示す特定箇所における劣化の種類を判定する第2判定部を備え、
    前記第2指示部は、前記特定箇所について取得される検査データが示す情報量を、当該特定箇所について判定された前記劣化の種類に対応付けられた量だけ多くする指示を前記第2指示として行う
    請求項1から4のいずれか1項に記載の情報処理装置。
  6. 取得された前記位置情報が示す特定箇所の構造物の種類を判定する第3判定部を備え、
    前記第2指示部は、前記特定箇所について取得される検査データが示す情報量を、当該特定箇所について判定された前記構造物の種類に対応付けられた量だけ多くする指示を前記第2指示として行う
    請求項1から5のいずれか1項に記載の情報処理装置。
  7. 前記第2指示部は、前記特定箇所を撮影する際は前記第1指示よりも前記設備に近づけて前記飛行体を飛行させる指示を前記第2指示として行う
    請求項1から6のいずれか1項に記載の情報処理装置。
  8. 前記設備の周辺の風速及び風向きを示す風情報を取得する風情報取得部を備え、
    前記第2指示部は、取得された前記風情報により示される前記飛行体が前記設備に衝突する危険が大きいほど、前記飛行体及び前記設備の距離を大きくする指示を前記第2指示として行う
    請求項7に記載の情報処理装置。
  9. 前記第2指示部は、前記設備の検査データを第1方向側及び第2方向側から取得する場合、前記第1方向側において取得された前記位置情報が示す特定箇所に対応する前記第2方向側の箇所については、前記第2方向側から前記設備の検査データを取得する際に前記特定箇所を示す前記位置情報が取得されなくとも前記第1指示よりも情報量が多い前記検査データを取得させる指示を前記第2指示として行う
    請求項1から8のいずれか1項に記載の情報処理装置。
  10. 検査対象の検査データを離れた位置から取得する機能を有する飛行体を設備に沿って飛行させながら当該設備の前記検査データを取得させる第1指示を行うステップと、
    前記第1指示に従い取得された前記検査データに基づいて詳細な点検が必要と示される特定箇所の位置情報を取得するステップと、
    前記飛行体に対して、前記第1指示により飛行した経路を戻るように飛行しながら、取得された前記位置情報が示す特定箇所については前記第1指示よりも情報量が多い前記検査データを取得させる第2指示を行うステップと
    を有する情報処理方法。
JP2021507271A 2019-03-18 2020-03-12 情報処理装置及び情報処理方法 Active JP7082711B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019049807 2019-03-18
JP2019049807 2019-03-18
PCT/JP2020/010790 WO2020189492A1 (ja) 2019-03-18 2020-03-12 情報処理装置及び情報処理方法

Publications (2)

Publication Number Publication Date
JPWO2020189492A1 JPWO2020189492A1 (ja) 2021-12-09
JP7082711B2 true JP7082711B2 (ja) 2022-06-08

Family

ID=72519828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021507271A Active JP7082711B2 (ja) 2019-03-18 2020-03-12 情報処理装置及び情報処理方法

Country Status (3)

Country Link
US (1) US20220254154A1 (ja)
JP (1) JP7082711B2 (ja)
WO (1) WO2020189492A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023059178A1 (en) * 2021-10-06 2023-04-13 Maxis Broadband Sdn. Bhd. Methods, systems, and devices for inspecting structures and objects
CN116109956A (zh) * 2023-04-12 2023-05-12 安徽省空安信息技术有限公司 一种无人机自适应变焦高精度目标检测智能巡检方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163106A1 (ja) 2014-04-25 2015-10-29 ソニー株式会社 制御装置、撮像装置、制御方法、撮像方法及びコンピュータプログラム
JP2017169122A (ja) 2016-03-17 2017-09-21 日本電気株式会社 制御装置、監視システム、制御方法およびコンピュータプログラム
JP6484695B1 (ja) 2017-12-27 2019-03-13 株式会社新来島どっく 船舶ブロック継手溶接不具合箇所マーキング方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090012A (ja) * 2016-11-30 2018-06-14 キヤノンマーケティングジャパン株式会社 無人航空機制御システム、無人航空機制御システムの制御方法、およびプログラム
JP6918672B2 (ja) * 2017-10-11 2021-08-11 株式会社日立システムズ 劣化診断システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163106A1 (ja) 2014-04-25 2015-10-29 ソニー株式会社 制御装置、撮像装置、制御方法、撮像方法及びコンピュータプログラム
JP2017169122A (ja) 2016-03-17 2017-09-21 日本電気株式会社 制御装置、監視システム、制御方法およびコンピュータプログラム
JP6484695B1 (ja) 2017-12-27 2019-03-13 株式会社新来島どっく 船舶ブロック継手溶接不具合箇所マーキング方法

Also Published As

Publication number Publication date
JPWO2020189492A1 (ja) 2021-12-09
WO2020189492A1 (ja) 2020-09-24
US20220254154A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
CN110069071B (zh) 无人机导航方法与装置、存储介质、电子设备
JP7082711B2 (ja) 情報処理装置及び情報処理方法
KR20180026883A (ko) 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체
WO2020153171A1 (ja) 情報処理装置
JPWO2019146580A1 (ja) 情報処理装置及び情報処理方法
JP2019175166A (ja) 飛行装置、飛行システム、飛行方法及びプログラム
JPWO2019225313A1 (ja) 監視装置及びプログラム
JP7186280B2 (ja) 情報処理装置及びプログラム
JP7171364B2 (ja) 情報処理装置
US20210357620A1 (en) System, moving object, and information processing apparatus
JPWO2019054027A1 (ja) 飛行制御システム及び飛行制御装置
JP7216046B2 (ja) 巡視点検システム
JP7050809B2 (ja) 情報処理装置
JPWO2020153170A1 (ja) 情報処理装置
WO2020189607A1 (ja) 情報処理装置
CN112731971B (zh) 控制无人机降落的方法、装置、可读存储介质及电子设备
JP7106424B2 (ja) 情報処理装置
CN116583714A (zh) 用于调度和导航无人驾驶飞行器的系统和方法
JP2020067880A (ja) 情報処理装置
JP7130409B2 (ja) 管制装置
JP7270030B2 (ja) 情報処理装置
US20220147901A1 (en) Information processing apparatus
JP7267397B2 (ja) 情報処理装置及び情報処理方法
JP7165278B2 (ja) 管理装置、管理方法及びプログラム
US11580468B2 (en) Information processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220527

R150 Certificate of patent or registration of utility model

Ref document number: 7082711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150