JP7073579B2 - 鞍乗り型車両のクラッチ制御装置およびクラッチ制御方法 - Google Patents
鞍乗り型車両のクラッチ制御装置およびクラッチ制御方法 Download PDFInfo
- Publication number
- JP7073579B2 JP7073579B2 JP2021509002A JP2021509002A JP7073579B2 JP 7073579 B2 JP7073579 B2 JP 7073579B2 JP 2021509002 A JP2021509002 A JP 2021509002A JP 2021509002 A JP2021509002 A JP 2021509002A JP 7073579 B2 JP7073579 B2 JP 7073579B2
- Authority
- JP
- Japan
- Prior art keywords
- clutch
- rate
- engine
- threshold value
- clutch device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 39
- 230000005540 biological transmission Effects 0.000 claims description 33
- 239000000446 fuel Substances 0.000 claims description 16
- 230000007935 neutral effect Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 description 33
- 239000003921 oil Substances 0.000 description 15
- 230000007246 mechanism Effects 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000008859 change Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000001514 detection method Methods 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 239000010720 hydraulic oil Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007562 laser obscuration time method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D25/00—Fluid-actuated clutches
- F16D25/08—Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/02—Control by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/36—Inputs being a function of speed
- F16H59/38—Inputs being a function of speed of gearing elements
- F16H59/42—Input shaft speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/02—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/68—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
- F16H61/682—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings with interruption of drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/40—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
- F16H63/46—Signals to a clutch outside the gearbox
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
- Control Of Transmission Device (AREA)
Description
本発明は、鞍乗り型車両のクラッチ制御装置およびクラッチ制御方法に関する。
本発明は、2019年3月27日に、日本に出願された特願2019-060895号に基づき優先権を主張し、その内容をここに援用する。
本発明は、2019年3月27日に、日本に出願された特願2019-060895号に基づき優先権を主張し、その内容をここに援用する。
従来、クラッチの接続を自動で行うクラッチ制御装置が知られている。例えば、特許文献1では、車両が発進状態であることが検出されたときの変速段とアクセル開度とに基づきファジィ推論を行い、その結果に応じてクラッチを制御している。
しかしながら、様々なパラメーターの検出結果に応じて複雑な制御を実行する必要があり、ECUなどの制御部に過度の負荷がかかる可能性がある。
そこで本発明は、鞍乗り型車両のクラッチ制御装置およびクラッチ制御方法において、制御部に過度の負荷がかかることを抑制することを目的とする。
上記課題の解決手段として、本発明の態様は以下の構成を有する。
(1)本発明の態様に係る鞍乗り型車両のクラッチ制御装置は、エンジン(13)と駆動輪(12)との間の動力伝達を断接するクラッチ装置(26)と、エンジン回転数を含むパラメーターに基づいて前記クラッチ装置(26)を制御する制御部(60)と、を備え、前記制御部(60)は、前記エンジン回転数がNe閾値を超えている場合、通常レート(NR)よりも弱い接続レートで前記クラッチ装置(26)を接続状態とする高回転用レート(HR)に切り替える。
(1)本発明の態様に係る鞍乗り型車両のクラッチ制御装置は、エンジン(13)と駆動輪(12)との間の動力伝達を断接するクラッチ装置(26)と、エンジン回転数を含むパラメーターに基づいて前記クラッチ装置(26)を制御する制御部(60)と、を備え、前記制御部(60)は、前記エンジン回転数がNe閾値を超えている場合、通常レート(NR)よりも弱い接続レートで前記クラッチ装置(26)を接続状態とする高回転用レート(HR)に切り替える。
(2)上記(1)に記載の鞍乗り型車両のクラッチ制御装置では、前記高回転用レート(HR)は、前記通常レート(NR)よりも弱い接続レートの第一レート(HR1)と、前記第一レート(HR1)よりも強い接続レートの第二レート(HR2)と、を有し、前記制御部(60)は、前記高回転用レート(HR)で前記クラッチ装置(26)が制御されている場合、前記第一レート(HR1)で前記クラッチ装置(26)が制御されてから所定時間経過後に前記第二レート(HR2)に切り替えてもよい。
(3)上記(1)または(2)に記載の鞍乗り型車両のクラッチ制御装置では、前記制御部(60)は、ギアポジションがニュートラルギアからインギアへ変更された後にアイドル状態が所定時間続いた場合、前記高回転用レート(HR)に切り替えることを止めてもよい。
(4)上記(1)から(3)のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置では、前記制御部(60)は、前記高回転用レート(HR)で前記クラッチ装置(26)が制御されているときにスロットル開度がTh閾値以下になった場合、前記通常レート(NR)に戻してもよい。
(5)上記(1)から(4)のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置では、前記制御部(60)は、前記エンジン回転数が前記Ne閾値よりも高い第二Ne閾値を超えている場合、前記エンジン(13)への燃料供給を止めてもよい。
(6)本発明の態様に係る鞍乗り型車両のクラッチ制御方法は、エンジン(13)と駆動輪(12)との間の動力伝達を断接するクラッチ装置(26)を、エンジン回転数を含むパラメーターに基づいて前記クラッチ装置(26)を制御する制御ステップを含み、前記制御ステップでは、前記エンジン回転数がNe閾値を超えている場合、通常レート(NR)よりも弱い接続レートで前記クラッチ装置(26)を接続状態とする高回転用レート(HR)に切り替えることを特徴とする。
本発明の上記(1)に記載の鞍乗り型車両のクラッチ制御装置によれば、制御部は、エンジン回転数がNe閾値を超えている場合、通常レートよりも弱い接続レートでクラッチ装置を接続状態とする高回転用レートに切り替えることで、以下の効果を奏する。
クラッチ装置の接続レートが通常レートおよび高回転用レートの2種類のみであるため、簡易な制御を実行することができる。したがって、制御部に過度の負荷がかかることを抑制することができる。加えて、エンジン回転数が高回転の場合は通常レートよりも弱い接続レートでクラッチ接続を行うため、クラッチ接続時に運転者へ与える衝撃を抑制し、スムーズな駆動伝達を提供することができる。
クラッチ装置の接続レートが通常レートおよび高回転用レートの2種類のみであるため、簡易な制御を実行することができる。したがって、制御部に過度の負荷がかかることを抑制することができる。加えて、エンジン回転数が高回転の場合は通常レートよりも弱い接続レートでクラッチ接続を行うため、クラッチ接続時に運転者へ与える衝撃を抑制し、スムーズな駆動伝達を提供することができる。
本発明の上記(2)に記載の鞍乗り型車両のクラッチ制御装置によれば、制御部は、高回転用レートでクラッチ装置が制御されている場合、第一レートでクラッチ装置が制御されてから所定時間経過後に第二レートに切り替えることで、以下の効果を奏する。
第一レートから第二レートへの切り替えをタイマカウントのみで制御することができるため、制御部に過度の負荷がかかることをより一層抑制することができる。
第一レートから第二レートへの切り替えをタイマカウントのみで制御することができるため、制御部に過度の負荷がかかることをより一層抑制することができる。
本発明の上記(3)に記載の鞍乗り型車両のクラッチ制御装置によれば、制御部は、ギアポジションがニュートラルギアからインギアへ変更された後にアイドル状態が所定時間続いた場合、高回転用レートに切り替えることを止めることで、以下の効果を奏する。
アイドル停車中に発進する場合、クラッチ装置の接続レートが通常レートに維持されるため、運転者の意図通りの発進が可能となる。
アイドル停車中に発進する場合、クラッチ装置の接続レートが通常レートに維持されるため、運転者の意図通りの発進が可能となる。
本発明の上記(4)に記載の鞍乗り型車両のクラッチ制御装置によれば、制御部は、高回転用レートでクラッチ装置が制御されているときにスロットル開度がTh閾値以下になった場合、通常レートに戻すことで、以下の効果を奏する。
スロットルを戻すことによって通常レートに戻されるため、運転者の任意の発進が可能となる。
スロットルを戻すことによって通常レートに戻されるため、運転者の任意の発進が可能となる。
本発明の上記(5)に記載の鞍乗り型車両のクラッチ制御装置によれば、制御部は、エンジン回転数がNe閾値よりも高い第二Ne閾値を超えている場合、エンジンへの燃料供給を止めることで、以下の効果を奏する。
クラッチ接続に対してエンジン回転数が過度に高い場合は、エンジンの燃料供給を止めることによってエンジン回転数を強制的に落とすことができる。
クラッチ接続に対してエンジン回転数が過度に高い場合は、エンジンの燃料供給を止めることによってエンジン回転数を強制的に落とすことができる。
本発明の上記(6)に記載の鞍乗り型車両のクラッチ制御方法によれば、制御ステップでは、エンジン回転数がNe閾値を超えている場合、通常レートよりも弱い接続レートでクラッチ装置を接続状態とする高回転用レートに切り替えることで、以下の効果を奏する。
クラッチ装置の接続レートが通常レートおよび高回転用レートの2種類のみであるため、簡易な制御を実行することができる。したがって、制御部に過度の負荷がかかることを抑制することができる。加えて、エンジン回転数が高回転の場合は通常レートよりも弱い接続レートでクラッチ接続を行うため、クラッチ接続時に運転者へ与える衝撃を抑制し、スムーズな駆動伝達を提供することができる。
クラッチ装置の接続レートが通常レートおよび高回転用レートの2種類のみであるため、簡易な制御を実行することができる。したがって、制御部に過度の負荷がかかることを抑制することができる。加えて、エンジン回転数が高回転の場合は通常レートよりも弱い接続レートでクラッチ接続を行うため、クラッチ接続時に運転者へ与える衝撃を抑制し、スムーズな駆動伝達を提供することができる。
以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。また以下の説明に用いる図中適所には、車両前方を示す矢印FR、車両左方を示す矢印LH、車両上方を示す矢印UPが示されている。
<車両全体>
図1に示すように、本実施形態は、鞍乗り型車両の一例としての自動二輪車1に適用されている。自動二輪車1の前輪2は、左右一対のフロントフォーク3の下端部に支持されている。左右フロントフォーク3の上部は、ステアリングステム4を介して、車体フレーム5の前端部のヘッドパイプ6に支持されている。ステアリングステム4のトップブリッジ上には、バータイプの操向ハンドル4aが取り付けられている。
図1に示すように、本実施形態は、鞍乗り型車両の一例としての自動二輪車1に適用されている。自動二輪車1の前輪2は、左右一対のフロントフォーク3の下端部に支持されている。左右フロントフォーク3の上部は、ステアリングステム4を介して、車体フレーム5の前端部のヘッドパイプ6に支持されている。ステアリングステム4のトップブリッジ上には、バータイプの操向ハンドル4aが取り付けられている。
車体フレーム5は、ヘッドパイプ6と、ヘッドパイプ6から車幅方向(左右方向)中央を下後方へ延びるメインチューブ7と、メインチューブ7の後端部の下方に連なる左右ピボットフレーム8と、メインチューブ7および左右ピボットフレーム8の後方に連なるシートフレーム9と、を備えている。左右ピボットフレーム8には、スイングアーム11の前端部が揺動可能に枢支されている。スイングアーム11の後端部には、自動二輪車1の後輪12が支持されている。
左右メインチューブ7の上方には、燃料タンク18が支持されている。燃料タンク18の後方でシートフレーム9の上方には、前シート19および後シートカバー19aが前後に並んで支持されている。シートフレーム9の周囲は、リヤカウル9aに覆われている。
左右メインチューブ7の下方には、自動二輪車1の原動機を含むパワーユニットPUが懸架されている。パワーユニットPUは、後輪12と例えばチェーン式伝動機構を介して連係されている。
左右メインチューブ7の下方には、自動二輪車1の原動機を含むパワーユニットPUが懸架されている。パワーユニットPUは、後輪12と例えばチェーン式伝動機構を介して連係されている。
パワーユニットPUは、その前側に位置するエンジン(内燃機関、原動機)13と後側に位置する変速機21とを一体に有している。エンジン13は、例えばクランクシャフト14の回転軸を車幅方向に沿わせた複数気筒エンジンである。エンジン13は、クランクケース15の前部から上方に起立するシリンダ16を備える。クランクケース15の後部は、変速機21を収容する変速機ケース17とされている。
<変速機>
図2に示すように、変速機21は、メインシャフト22およびカウンタシャフト23ならびに両シャフト22,23に跨る変速ギア群24を有する有段式のトランスミッションである。カウンタシャフト23は、変速機21(パワーユニットPU)の出力軸を構成している。カウンタシャフト23の端部は、クランクケース15の後部左側に突出している。カウンタシャフト23の突出端部は、ドライブスプロケット27を含むチェーン式伝動機構を介して後輪12に連結されている(図1参照)。
図2に示すように、変速機21は、メインシャフト22およびカウンタシャフト23ならびに両シャフト22,23に跨る変速ギア群24を有する有段式のトランスミッションである。カウンタシャフト23は、変速機21(パワーユニットPU)の出力軸を構成している。カウンタシャフト23の端部は、クランクケース15の後部左側に突出している。カウンタシャフト23の突出端部は、ドライブスプロケット27を含むチェーン式伝動機構を介して後輪12に連結されている(図1参照)。
変速ギア群24は、両シャフト22,23にそれぞれ支持された変速段数分のギアを有する。変速機21は、両シャフト22,23間で変速ギア群24の対応するギア対同士が常に噛み合った常時噛み合い式とされる。両シャフト22,23に支持された複数のギアは、対応するシャフトに対して回転可能なフリーギアと、対応するシャフトにスプライン嵌合するスライドギア(シフター)とに分類される。これらフリーギア及びスライドギアの一方には軸方向で凸のドグが、他方にはドグを係合させるべく軸方向で凹のスロットがそれぞれ設けられている。すなわち、変速機21は、いわゆるドグミッションである。
変速機21のメインシャフト22及びカウンタシャフト23は、クランクシャフト14(図1参照)の後方で前後に並んで配置されている。メインシャフト22の右端部には、クラッチアクチュエータ50(図3参照)により作動するクラッチ装置26が同軸配置されている。クラッチ装置26は、例えば湿式多板クラッチである。すなわち、クラッチ装置26は、クラッチアクチュエータ50からの油圧供給によって動力伝達可能な接続状態となり、クラッチアクチュエータ50からの油圧供給がなくなると動力伝達不能な切断状態に戻る、いわゆるノーマルオープンクラッチである。
クランクシャフト14の回転動力は、クラッチ装置26を介してメインシャフト22に伝達され、メインシャフト22から変速ギア群24の任意のギア対を介してカウンタシャフト23に伝達される。
クラッチ装置26は、バックトルクリミッターを備えていてもよい。バックトルクリミッターは、クラッチ装置26に設けたカム機構に規定以上のバックトルクが作用すると、クラッチ容量を機械的に低下させる。
クラッチ装置26は、バックトルクリミッターを備えていてもよい。バックトルクリミッターは、クラッチ装置26に設けたカム機構に規定以上のバックトルクが作用すると、クラッチ容量を機械的に低下させる。
変速機21の後上方には、変速ギア群24のギア対を切り替えるチェンジ機構25が収容されている。チェンジ機構25は、両シャフト22,23と実質的に平行な中空円筒状のシフトドラム36を備える。シフトドラム36の外周には、リード溝のパターンが形成されている。チェンジ機構25は、シフトドラム36の回転により、リード溝のパターンに応じて複数のシフトフォーク36aを作動させる。これにより、変速ギア群24における両シャフト22,23間の動力伝達に用いるギア対を切り替える。
チェンジ機構25は、シフトドラム36と実質的に平行なシフトスピンドル31を有している。シフトスピンドル31の回転時には、シフトスピンドル31に固定されたシフトアーム31aがシフトドラム36を回転させ、リード溝のパターンに応じてシフトフォーク36aを軸方向移動させる。これにより、変速ギア群24の内の動力伝達可能なギア対を切り替える(すなわち、変速段を切り替える。)。
シフトスピンドル31は、チェンジ機構25を操作可能とするためにクランクケース15の車幅方向外側(左方)に軸外側部31bを突出させている(図1参照)。シフトスピンドル31の軸外側部31bには、シフト荷重センサ42(シフト操作検知手段、図1参照)が同軸に取り付けられている。シフトスピンドル31の軸外側部31b(またはシフト荷重センサ42の回転軸)には、揺動レバー33が取り付けられている。揺動レバー33は、シフトスピンドル31(または回転軸)にクランプ固定される基端部33aと、基端部33aから後方へ延びる部分の先端部33bと、を有する。揺動レバー33の先端部33bには、リンクロッド34の上端部が上ボールジョイント34aを介して揺動自在に連結されている。リンクロッド34の下端部は、運転者が足操作するシフトペダル32(図1参照)に、下ボールジョイント(不図示)を介して揺動自在に連結されている。
図1に示すように、シフトペダル32の前端部は、クランクケース15の下部に左右方向に沿う軸を介して上下揺動可能に支持されている。シフトペダル32の後端部には、ステップ32aに載せた運転者の足先を掛けるペダル部が設けられている。シフトペダル32の前後中間部には、リンクロッド34の下端部が連結されている。
ここで、自動二輪車1は、変速機21の変速操作(シフトペダル32の足操作)のみを運転者が行い、クラッチ装置26の断接操作はシフトペダル32の操作に応じて電気制御により自動で行うようにした、いわゆるセミオートマチックの変速システム(自動クラッチ式変速システム)を採用している。
<変速システム>
図4に示すように、上記変速システムは、クラッチアクチュエータ50、ECU60(Electronic Control Unit、制御部)および各種センサ41~45を備えている。
ECU60は、シフトドラム36の回転角から変速段を検知するギアポジションセンサ41、およびシフトスピンドル31に入力された操作トルクを検知するシフト荷重センサ42(例えばトルクセンサ)からの検知情報、ならびにスロットル開度センサ43、車速センサ44およびエンジン回転数センサ45等からの各種の車両状態検知情報等に基づいて、クラッチアクチュエータ50を作動制御するとともに、点火装置46および燃料噴射装置47を作動制御する。エンジン回転数は、スロットルバルブ及びアクセルグリップを含むスロットルバイワイヤ(throttle by wire:TBW)により制御される。
図4に示すように、上記変速システムは、クラッチアクチュエータ50、ECU60(Electronic Control Unit、制御部)および各種センサ41~45を備えている。
ECU60は、シフトドラム36の回転角から変速段を検知するギアポジションセンサ41、およびシフトスピンドル31に入力された操作トルクを検知するシフト荷重センサ42(例えばトルクセンサ)からの検知情報、ならびにスロットル開度センサ43、車速センサ44およびエンジン回転数センサ45等からの各種の車両状態検知情報等に基づいて、クラッチアクチュエータ50を作動制御するとともに、点火装置46および燃料噴射装置47を作動制御する。エンジン回転数は、スロットルバルブ及びアクセルグリップを含むスロットルバイワイヤ(throttle by wire:TBW)により制御される。
ECU60には、油圧センサ57,58(図3参照)、シフト操作検知スイッチ(シフトニュートラルスイッチ)48、および車体の状況(動き)を検出するジャイロセンサ49からの検知情報も入力される。ジャイロセンサ49は、IMU(inertial measurement unit:慣性計測装置)である。ジャイロセンサ49は、検知方向の加速度成分に応じた信号をECU60に出力する。ジャイロセンサ49は、ECU60に内蔵されてもよい。図中符号60Aは本実施形態のクラッチ制御装置を示している。
図3を併せて参照し、クラッチアクチュエータ50は、ECU60により作動制御されることで、クラッチ装置26を断接する液圧を制御可能とする。クラッチアクチュエータ50は、駆動源としてのモータ52(例えば電気モータ)と、モータ52により駆動されるマスターシリンダ51と、を備えている。クラッチアクチュエータ50は、マスターシリンダ51および油圧給排ポート50pの間に設けられる油圧回路装置53とともに、一体のクラッチ制御ユニット50Aを構成している。
ECU60は、予め設定された演算プログラムに基づいて、クラッチ装置26を断接するためにスレーブシリンダ28に供給する油圧の目標値(以下「目標油圧」ともいう。)を演算する。ECU60は、下流側油圧センサ58で検出されるスレーブシリンダ28側の油圧(スレーブ油圧)が目標油圧に近づくように、クラッチ制御ユニット50Aを制御する。
ECU60は、予め設定された演算プログラムに基づいて、クラッチ装置26を断接するためにスレーブシリンダ28に供給する油圧の目標値(以下「目標油圧」ともいう。)を演算する。ECU60は、下流側油圧センサ58で検出されるスレーブシリンダ28側の油圧(スレーブ油圧)が目標油圧に近づくように、クラッチ制御ユニット50Aを制御する。
マスターシリンダ51は、シリンダ本体51a内のピストン51bをモータ52の駆動によりストロークさせて、シリンダ本体51a内の作動油をスレーブシリンダ28に対して給排可能とする。図中符号55はボールネジ機構としての変換機構、符号54はモータ52および変換機構55に跨る伝達機構、符号51eはマスターシリンダ51に接続されるリザーバをそれぞれ示す。
油圧回路装置53は、マスターシリンダ51からクラッチ装置26側(スレーブシリンダ28側)へ延びる主油路(油圧給排油路)53mの中間部位を開通又は遮断するバルブ機構(ソレノイドバルブ56)を有している。油圧回路装置53の主油路53mは、ソレノイドバルブ56よりもマスターシリンダ51側となる上流側油路53aと、ソレノイドバルブ56よりもスレーブシリンダ28側となる下流側油路53bと、に分けられる。油圧回路装置53はさらに、ソレノイドバルブ56を迂回して上流側油路53aと下流側油路53bとを連通するバイパス油路53cを備えている。
ソレノイドバルブ56は、いわゆるノーマルオープンバルブである。バイパス油路53cには、上流側から下流側への方向のみ作動油を流通させるワンウェイバルブ53c1が設けられている。ソレノイドバルブ56の上流側には、上流側油路53aの油圧を検出する上流側油圧センサ57が設けられている。ソレノイドバルブ56の下流側には、下流側油路53bの油圧を検出する下流側油圧センサ58が設けられている。
図1に示すように、クラッチ制御ユニット50Aは、例えばリヤカウル9a内に収容されている。スレーブシリンダ28は、クランクケース15の後部左側に取り付けられている。クラッチ制御ユニット50Aとスレーブシリンダ28とは、油圧配管53e(図3参照)を介して接続されている。
図2に示すように、スレーブシリンダ28は、メインシャフト22の左方に同軸配置されている。スレーブシリンダ28は、クラッチアクチュエータ50からの油圧供給時には、メインシャフト22内を貫通するプッシュロッド28aを右方へ押圧する。スレーブシリンダ28は、プッシュロッド28aを右方へ押圧することで、該プッシュロッド28aを介してクラッチ装置26を接続状態へ作動させる。スレーブシリンダ28は、前記油圧供給が無くなると、プッシュロッド28aの押圧を解除し、クラッチ装置26を切断状態に戻す。
クラッチ装置26を接続状態に維持するには油圧供給を継続する必要があるが、その分だけ電力を消費することとなる。そこで、図3に示すように、クラッチ制御ユニット50Aの油圧回路装置53にソレノイドバルブ56を設け、クラッチ装置26側への油圧供給後にソレノイドバルブ56を閉じている。これにより、クラッチ装置26側への供給油圧を維持し、圧力低下分だけ油圧を補う(リーク分だけリチャージする)構成として、エネルギー消費を抑えている。
<クラッチ制御モード>
図5に示すように、本実施形態のクラッチ制御装置60Aは、三種のクラッチ制御モードを有している。クラッチ制御モードは、自動制御を行うオートモードM1、手動操作を行うマニュアルモードM2、および一時的な手動操作を行うマニュアル介入モードM3、の三種のモード間で、クラッチ制御モード切替スイッチ59(図4参照)およびクラッチレバー4b(図1参照)の操作に応じて適宜遷移する。なお、マニュアルモードM2およびマニュアル介入モードM3を含む対象をマニュアル系M2Aという。クラッチ制御装置60Aは、クラッチレバー4bとクラッチ装置26とを電気的に接続したクラッチバイワイヤシステムとしても機能する。
図5に示すように、本実施形態のクラッチ制御装置60Aは、三種のクラッチ制御モードを有している。クラッチ制御モードは、自動制御を行うオートモードM1、手動操作を行うマニュアルモードM2、および一時的な手動操作を行うマニュアル介入モードM3、の三種のモード間で、クラッチ制御モード切替スイッチ59(図4参照)およびクラッチレバー4b(図1参照)の操作に応じて適宜遷移する。なお、マニュアルモードM2およびマニュアル介入モードM3を含む対象をマニュアル系M2Aという。クラッチ制御装置60Aは、クラッチレバー4bとクラッチ装置26とを電気的に接続したクラッチバイワイヤシステムとしても機能する。
オートモードM1は、自動発進・変速制御により走行状態に適したクラッチ容量を演算してクラッチ装置26を制御するモードである。マニュアルモードM2は、乗員によるクラッチ操作指示に応じてクラッチ容量を演算してクラッチ装置26を制御するモードである。マニュアル介入モードM3は、オートモードM1中に乗員からのクラッチ操作指示を受け付け、クラッチ操作指示からクラッチ容量を演算してクラッチ装置26を制御する一時的なマニュアル操作モードである。なお、マニュアル介入モードM3中に乗員がクラッチレバー4bの操作をやめる(完全にリリースする)と、オートモードM1に戻るよう設定されている。
本実施形態のクラッチ制御装置60Aは、モータを駆動してクラッチ制御油圧を発生する。このため、クラッチ制御装置60Aは、システム起動時には、オートモードM1でクラッチオフの状態(切断状態)から制御を始める。また、クラッチ制御装置60Aは、エンジン13停止時にはクラッチ操作が不要なので、オートモードM1でクラッチオフに戻るよう設定されている。
オートモードM1は、クラッチ制御を自動で行うことが基本であり、レバー操作レスで自動二輪車1を走行可能とする。オートモードM1では、スロットル開度、エンジン回転数、車速およびシフトセンサ出力により、クラッチ容量をコントロールしている。これにより、自動二輪車1をスロットル操作のみでエンストすることなく発進可能であり、かつシフト操作のみで変速可能である。ただし、アイドリング相当の極低速時には自動でクラッチ装置26が切断することがある。また、オートモードM1では、クラッチレバー4bを握ることでマニュアル介入モードM3となり、クラッチ装置26を任意に切ることも可能である。
一方、マニュアルモードM2では、乗員によるレバー操作により、クラッチ容量をコントロールする。オートモードM1とマニュアルモードM2とは、停車中にクラッチ制御モード切替スイッチ59(図4参照)を操作することで切り替え可能である。なお、クラッチ制御装置60Aは、マニュアル系M2A(マニュアルモードM2又はマニュアル介入モードM3)への遷移時にレバー操作が有効であることを示すインジケータを備えてもよい。
マニュアルモードM2は、クラッチ制御を手動で行うことが基本であり、クラッチレバー4bの作動角度に応じてクラッチ油圧を制御可能である。これにより、乗員の意思のままにクラッチ装置26の断接をコントロール可能であり、かつアイドリング相当の極低速時にもクラッチ装置26を接続して走行可能である。ただし、レバー操作によってはエンストすることがあり、かつスロットル操作のみでの自動発進も不可である。なお、マニュアルモードM2であっても、シフト操作時にはクラッチ制御が自動で介入する。
オートモードM1では、クラッチアクチュエータ50により自動でクラッチ装置26の断接が行われる。オートモードM1では、クラッチレバー4bに対するマニュアルクラッチ操作が行われることで、クラッチ装置26の自動制御に一時的に手動操作を介入させることが可能である(マニュアル介入モードM3)。
<クラッチ装置の接続レートの制御>
次に、本実施形態の自動二輪車のクラッチ装置の接続レートの制御について説明する。
本実施形態では、エンジン回転数がNe閾値を超えている場合、通常レートよりも弱い接続レートでクラッチ装置26(図2参照)を接続状態とする高回転用レートに切り替える。
次に、本実施形態の自動二輪車のクラッチ装置の接続レートの制御について説明する。
本実施形態では、エンジン回転数がNe閾値を超えている場合、通常レートよりも弱い接続レートでクラッチ装置26(図2参照)を接続状態とする高回転用レートに切り替える。
図6は、実施形態のクラッチ装置の接続レートの説明図である。図6の横軸は時間、縦軸はクラッチ油圧をそれぞれ示す。図中において、符号NRは通常レート、符号HRは高回転用レートをそれぞれ示す。図6の例では、通常レートNRは、曲線状の傾斜を有する。
高回転用レートHRは、通常レートNRよりも弱い接続レートの第一レートHR1と、第一レートHR1よりも強い接続レートの第二レートHR2と、を有する。接続レートは、クラッチ油圧の設定割合を意味する。第一レートHR1は、通常レートNRよりも緩やかな傾斜を有する。第二レートHR2は、第一レートHR1よりも急峻な傾斜を有する。
図6の例では、高回転用レートHRでクラッチ装置が制御されている場合、第一レートHR1でクラッチ装置が制御されてから所定時間経過後に第二レートHR2に切り替える。図中において、符号T1は高回転用レートHRの開始タイミング(以下「第一タイミング」ともいう。)、符号T2は第一レートHR1から第二レートHR2への切り替えタイミング(以下「第二タイミング」ともいう。)、符号T3は第二タイミングT2よりも後のタイミングをそれぞれ示す。第一レートHR1は、第一タイミングT1と第二タイミングT2との間に継続される。例えば、第一レートHR1の継続時間(以下単に「第一レート継続時間」ともいう。)は、1000msに設定される。
図7は、実施形態のクラッチ装置の接続レートの制御の説明図である。図中において、符号G11はスロットル開度、符号G12はドラム角度、符号G21はエンジン回転数(制御前エンジン回転数)、符号G22は制御後の後輪車輪速、符号G31はスレーブ油圧、符号G32は目標油圧、符号Igはインギアタイミング、符号Tcは燃料カット時間をそれぞれ示す。
図7の例では、エンジン回転数G21がNe閾値よりも高い第二閾値を超えている場合、エンジンへの燃料供給を止める。これにより、クラッチ接続に対してエンジン回転数が過度に高い場合は、エンジンの燃料供給を止めることによってエンジン回転数を強制的に落とすことができる(G21→G22)。すなわち、エンジンが吹け過ぎた場合は燃料カットされるため、エンジンの過度の吹け上がりを抑制することができる。例えば、Ne閾値は2000rpmに設定される。例えば、第二Ne閾値は5000rpmに設定される。
図8を参照し、クラッチ装置の接続レートの制御の一例について説明する。
まず、ステップS1において、ECU60は、ギアポジションがインギアであるか否かを判定する。例えば、ECU60は、車両が直立で停止しているときにギアポジションがニュートラル以外の変速段位置にある場合、インギアであると判定する。ステップS1でYES(インギアである)の場合、ステップS2に移行する。ステップS1でNO(インギアではない)の場合、処理を終了する。
まず、ステップS1において、ECU60は、ギアポジションがインギアであるか否かを判定する。例えば、ECU60は、車両が直立で停止しているときにギアポジションがニュートラル以外の変速段位置にある場合、インギアであると判定する。ステップS1でYES(インギアである)の場合、ステップS2に移行する。ステップS1でNO(インギアではない)の場合、処理を終了する。
ステップS2において、ECU60は、エンジン回転数がNe閾値以下かつスロットル開度がTh閾値以下であるか否かを判定する。例えば、Ne閾値は2000rpmに設定する。例えば、Ne閾値は、アイドル時の回転数プラスアルファ程度に設定する。例えば、Th閾値は0.8degに設定する。
ステップS2でYES(エンジン回転数がNe閾値以下かつスロットル開度がTh閾値以下)の場合、ステップS11に移行する。ステップS2でNO(エンジン回転数がNe閾値超過またはスロットル開度がTh閾値超過)の場合、ステップS3に移行する。
ステップS11において、ECU60は、通常レートでクラッチ接続する。
ステップS11において、ECU60は、通常レートでクラッチ接続する。
ステップS3において、ECU60は、タイマカウントを行う。例えば、ECU60は、ステップS2でNOと判定されてからの経過時間を計算する。ステップS3の後、ステップS4に移行する。
ステップS4において、ECU60は、タイマ満了したか否かを判定する。例えば、タイマは500msに設定する。ステップS4でYES(タイマ満了した)の場合、ステップS8に移行する。ステップS4でNO(タイマ満了していない)の場合、ステップS5に移行する。
ステップS5において、ECU60は、エンジン回転数が第二閾値を超えているか否かを判定する。ステップS5でYES(エンジン回転数が第二閾値超過)の場合、ステップS6に移行する。ステップS5でNO(エンジン回転数が第二閾値以下)の場合、ステップS7に移行する。
ステップS7において、ECU60は、第一レートでクラッチ接続する。
ステップS6において、ECU60は、第一レートでクラッチ接続するとともに、エンジン協調制御を行う。エンジン協調制御は、エンジンが吹け過ぎた場合に燃料カットを行う制御を意味する。
ステップS6において、ECU60は、第一レートでクラッチ接続するとともに、エンジン協調制御を行う。エンジン協調制御は、エンジンが吹け過ぎた場合に燃料カットを行う制御を意味する。
ステップS8において、ECU60は、エンジン回転数が第二閾値を超えているか否かを判定する。ステップS8でYES(エンジン回転数が第二閾値超過)の場合、ステップS9に移行する。ステップS8でNO(エンジン回転数が第二閾値以下)の場合、ステップS10に移行する。
ステップS10において、ECU60は、第二レートでクラッチ接続する。
ステップS9において、ECU60は、第二レートでクラッチ接続するとともに、エンジン協調制御を行う。
なお、上記閾値(Ne閾値、Th閾値およびクラッチ差回転)は、車両やエンジン特性によって変わる値であるが、上記各値±30%程度の範囲でそれぞれ設定してもよい。
ステップS9において、ECU60は、第二レートでクラッチ接続するとともに、エンジン協調制御を行う。
なお、上記閾値(Ne閾値、Th閾値およびクラッチ差回転)は、車両やエンジン特性によって変わる値であるが、上記各値±30%程度の範囲でそれぞれ設定してもよい。
図9を参照し、接続レート設定のロジックにフォーカスした、クラッチ装置の接続レートの制御の一例について説明する。
まず、ステップS21において、ECU60は、第一タイマ満了したか否かを判定する。例えば、第一タイマは500msに設定する。ステップS21でYES(第一タイマ満了した)の場合、ステップS30に移行する。ステップS21でNO(第一タイマ満了していない)の場合、ステップS22に移行する。
まず、ステップS21において、ECU60は、第一タイマ満了したか否かを判定する。例えば、第一タイマは500msに設定する。ステップS21でYES(第一タイマ満了した)の場合、ステップS30に移行する。ステップS21でNO(第一タイマ満了していない)の場合、ステップS22に移行する。
ステップS22において、ECU60は、フラグオン中にエンジン回転数がNe閾値以下またはエンジン回転数がクランク軸換算閾値以下であるか否かを判定する。フラグオン中は、クラッチ接続を高回転レートに切り替えるフラグが立っている最中であることを意味する。クランク軸換算閾値は、後輪の回転速度をクランク軸の回転速度に換算した回転数と設定値とを足し合わせた値を意味する。
例えば、Ne閾値は2000rpmに設定する。例えば、設定値は400rpmに設定する。例えば、Ne閾値および設定値のそれぞれは、アイドル時の回転数プラスアルファ程度に設定する。なお、停車状態では、エンジン回転数がそのまま差回転になるため、ステップS22は実質的にNe閾値のみで判定される。
ステップS22でYES(フラグオン中にエンジン回転数がNe閾値以下またはエンジン回転数がクランク軸換算閾値以下)の場合、ステップS30に移行する。ステップS22でNO(フラグオン中にエンジン回転数がNe閾値超過かつエンジン回転数がクランク軸換算閾値超過)の場合、ステップS23に移行する。
ステップS30において、ECU60は、フラグオフと判定する。フラグオフは、クラッチ接続を高回転レートに切り替えるフラグが立っていないことを意味する。すなわち、ステップS30に移行した場合、ECU60は、クラッチ接続を高回転レートに切り替えない。ステップS30の後、ステップS31に移行する。
ステップS31において、ECU60は、スレーブ油圧が目標油圧に近づくように制御するとともに、通常レートでクラッチ接続する。
ステップS23において、ECU60は、インギアであってエンジン回転数がNe閾値超過かつエンジン回転数がクランク軸換算閾値超過であるか否かを判定する。ステップS23でYES(インギアであってエンジン回転数がNe閾値超過かつエンジン回転数がクランク軸換算閾値超過)の場合、ステップS24に移行する。ステップS23でNO(インギアであってエンジン回転数がNe閾値以下またはエンジン回転数がクランク軸換算閾値以下)の場合、ステップS32に移行する。
ステップS32において、ECU60は、第一タイマカウントを行う。例えば、ECU60は、ステップS23でNOと判定されてからの経過時間を計算する。すなわち、ステップS32に移行した場合、ECU60は、アイドル状態が所定時間経過するかを判定する。ステップS32の後、ステップS33に移行する。
ステップS33において、ECU60は、フラグオフと判定する。ステップS33に移行した場合、ECU60は、クラッチ接続を高回転レートに切り替えない。すなわち、ECU60は、インギアしてアイドル状態が所定時間続いた場合、高回転レートに切り替えることを止める。ステップS33の後、ステップS34に移行する。
ステップS34において、ECU60は、スレーブ油圧が目標油圧に近づくように制御するとともに、通常レートでクラッチ接続する。
ステップS24において、ECU60は、スロットル開度がTh閾値超過であるか否かを判定する。例えば、Th閾値は0.8degに設定する。ステップS24でYES(スロットル開度がTh閾値超過)の場合、ステップS25に移行する。ステップS24でNO(スロットル開度がTh閾値以下)の場合、ステップS33に移行する。すなわち、ECU60は、クラッチ接続を高回転レートで行うときにスロットルが戻された場合、通常レートに戻す(図6の矢印参照)。
ステップS25において、ECU60は、フラグオンと判定する。フラグオンは、クラッチ接続を高回転レートに切り替えるフラグが立つことを意味する。すなわち、ステップS25に移行した場合、ECU60は、クラッチ接続を高回転レートに切り替える。ステップS25の後、ステップS26に移行する。
ステップS26において、ECU60は、第二タイマカウントを行う。例えば、ECU60は、ステップS24でYESと判定されてからの経過時間を計算する。ステップS26の後、ステップS27に移行する。
ステップS27において、ECU60は、第二タイマ満了したか否かを判定する。例えば、第二タイマ(第一レート継続時間)は1000msに設定する。ステップS27でYES(第二タイマ満了した)の場合、ステップS29に移行する。ステップS27でNO(第二タイマ満了していない)の場合、ステップS28に移行する。ECU60は、フラグオン中に所定時間経過した場合、クラッチ接続を第一レートから第二レートに切り替える。
ステップS28において、ECU60は、スレーブ油圧が目標油圧に近づくように制御するとともに、第一レートでクラッチ接続する。
ステップS29において、ECU60は、スレーブ油圧が目標油圧に近づくように制御するとともに、第二レートでクラッチ接続する。
なお、上記閾値(Ne閾値、Th閾値およびクラッチ差回転)は、車両やエンジン特性によって変わる値であるが、上記各値±30%程度の範囲でそれぞれ設定してもよい。
ステップS29において、ECU60は、スレーブ油圧が目標油圧に近づくように制御するとともに、第二レートでクラッチ接続する。
なお、上記閾値(Ne閾値、Th閾値およびクラッチ差回転)は、車両やエンジン特性によって変わる値であるが、上記各値±30%程度の範囲でそれぞれ設定してもよい。
図10を参照し、エンジン協調制御にフォーカスした、クラッチ装置の接続レートの制御の一例について説明する。
まず、ステップS101において、ECU60は、フラグオン中か否かを判定する。ステップS101におけるフラグは、図9のフローで算出するフラグである。ステップS101でYES(フラグオン中である)の場合、ステップS102に移行する。ステップS101でNO(フラグオン中ではない)の場合、ステップS104に移行する。
まず、ステップS101において、ECU60は、フラグオン中か否かを判定する。ステップS101におけるフラグは、図9のフローで算出するフラグである。ステップS101でYES(フラグオン中である)の場合、ステップS102に移行する。ステップS101でNO(フラグオン中ではない)の場合、ステップS104に移行する。
ステップS102において、ECU60は、エンジン回転数が第二Ne閾値超過かつエンジン回転数がクランク軸換算協調判定閾値超過であるか否かを判定する。第二閾値は、Ne閾値よりも高い値である。第二閾値は、エンジンが吹け過ぎた場合に燃料カットを行う判定値を意味する。クランク軸換算協調判定閾値は、後輪の回転速度をクランク軸の回転速度に換算したエンジン回転数とエンジン協調判定クラッチ差回転とを足し合わせた値を意味する。エンジン協調判定クラッチ差回転は、エンジンが吹け過ぎた場合に燃料カットを行う、クラッチ差回転判定値を意味する。
例えば、第二Ne閾値は5000rpmに設定する。例えば、第二Ne閾値は、燃料カットしてもエンストを回避可能なエンジン回転数であってエンジンの上ずり状態を抑制可能なエンジン回転数に設定する。第二Ne閾値は、エンストタフネス等のエンジン特性によって変化する値である。
例えば、エンジン協調判定クラッチ差回転は、1500rpmに設定する。例えば、エンジン協調判定クラッチ差回転は、燃料カットを止めても車体挙動に大きな変動が生じない程度の値に設定する。
例えば、エンジン協調判定クラッチ差回転は、1500rpmに設定する。例えば、エンジン協調判定クラッチ差回転は、燃料カットを止めても車体挙動に大きな変動が生じない程度の値に設定する。
ステップS102でYES(エンジン回転数が第二Ne閾値超過かつエンジン回転数がクランク軸換算協調判定閾値超過)の場合、ステップS103に移行する。ステップS102でNO(エンジン回転数が第二Ne閾値以下またはエンジン回転数がクランク軸換算協調判定閾値以下)の場合、ステップS104に移行する。
ステップS103において、ECU60は、エンジン協調制御を行う。
ステップS104において、ECU60は、エンジン通常制御を行う。エンジン通常制御は、エンジン協調制御を実行しない通常の制御を意味する。
なお、上記閾値(第二Ne閾値およびエンジン協調判定クラッチ差回転)は、車両やエンジン特性によって変わる値であるが、上記各値±30%程度の範囲でそれぞれ設定してもよい。
ステップS104において、ECU60は、エンジン通常制御を行う。エンジン通常制御は、エンジン協調制御を実行しない通常の制御を意味する。
なお、上記閾値(第二Ne閾値およびエンジン協調判定クラッチ差回転)は、車両やエンジン特性によって変わる値であるが、上記各値±30%程度の範囲でそれぞれ設定してもよい。
以上説明したように、上記実施形態の自動二輪車1のクラッチ制御装置60Aは、エンジン13と駆動輪12との間の動力伝達を断接するクラッチ装置26と、エンジン回転数を含むパラメーターに基づいてクラッチ装置26を制御するECU60と、を備え、ECU60は、エンジン回転数がNe閾値を超えている場合、通常レートNRよりも弱い接続レートでクラッチ装置26を接続状態とする高回転用レートHRに切り替える。
この構成によれば、クラッチ装置26の接続レートが通常レートNRおよび高回転用レートHRの2種類のみであるため、簡易な制御を実行することができる。したがって、ECU60に過度の負荷がかかることを抑制することができる。加えて、エンジン回転数が高回転の場合は通常レートNRよりも弱い接続レートでクラッチ接続を行うため、クラッチ接続時に運転者へ与える衝撃を抑制し、スムーズな駆動伝達を提供することができる。
この構成によれば、クラッチ装置26の接続レートが通常レートNRおよび高回転用レートHRの2種類のみであるため、簡易な制御を実行することができる。したがって、ECU60に過度の負荷がかかることを抑制することができる。加えて、エンジン回転数が高回転の場合は通常レートNRよりも弱い接続レートでクラッチ接続を行うため、クラッチ接続時に運転者へ与える衝撃を抑制し、スムーズな駆動伝達を提供することができる。
上記実施形態では、ECU60は、高回転用レートHRでクラッチ装置26が制御されている場合、第一レートHR1でクラッチ装置26が制御されてから所定時間経過後に第二レートHR2に切り替えることで、以下の効果を奏する。
第一レートHR1から第二レートHR2への切り替えをタイマカウントのみで制御することができるため、ECU60に過度の負荷がかかることをより一層抑制することができる。
第一レートHR1から第二レートHR2への切り替えをタイマカウントのみで制御することができるため、ECU60に過度の負荷がかかることをより一層抑制することができる。
上記実施形態では、ECU60は、ギアポジションがニュートラルギアからインギアへ変更された後にアイドル状態が所定時間続いた場合、高回転用レートHRに切り替えることを止めることで、以下の効果を奏する。
アイドル停車中に発進する場合、クラッチ装置26の接続レートが通常レートNRに維持されるため、運転者の意図通りの発進が可能となる。
アイドル停車中に発進する場合、クラッチ装置26の接続レートが通常レートNRに維持されるため、運転者の意図通りの発進が可能となる。
上記実施形態では、ECU60は、高回転用レートHRでクラッチ装置26が制御されているときにスロットル開度がTh閾値以下になった場合、通常レートNRに戻すことで、以下の効果を奏する。
スロットルを戻すことによって通常レートNRに戻されるため、運転者の任意の発進が可能となる。
スロットルを戻すことによって通常レートNRに戻されるため、運転者の任意の発進が可能となる。
上記実施形態では、ECU60は、エンジン回転数がNe閾値よりも高い第二Ne閾値を超えている場合、エンジン13への燃料供給を止めることで、以下の効果を奏する。
クラッチ接続に対してエンジン回転数が過度に高い場合は、エンジン13の燃料供給を止めることによってエンジン回転数を強制的に落とすことができる。
クラッチ接続に対してエンジン回転数が過度に高い場合は、エンジン13の燃料供給を止めることによってエンジン回転数を強制的に落とすことができる。
<変形例>
上記実施形態では、通常レートNRが曲線状の傾斜を有する例を挙げて説明したが、これに限らない。例えば、通常レートNRは、直線状の傾斜を有してもよい。
上記実施形態では、通常レートNRが曲線状の傾斜を有する例を挙げて説明したが、これに限らない。例えば、通常レートNRは、直線状の傾斜を有してもよい。
上記実施形態では、高回転用レートHRは、通常レートNRよりも弱い接続レートの第一レートHR1と、第一レートHR1よりも強い接続レートの第二レートHR2と、を有する例を挙げて説明したが、これに限らない。例えば、高回転用レートHRは、3種類以上の接続レートを有していてもよい。
例えば、高回転用レートHRは、通常レートNRよりも弱い単一の接続レートのみを有していてもよい。これにより、高回転用レートHRが複数種類の接続レートを有する場合と比較して、簡易な制御となるため、ECU60に過度の負荷がかかることをより一層抑制することができる。
例えば、高回転用レートHRは、通常レートNRよりも弱い単一の接続レートのみを有していてもよい。これにより、高回転用レートHRが複数種類の接続レートを有する場合と比較して、簡易な制御となるため、ECU60に過度の負荷がかかることをより一層抑制することができる。
なお、本発明は上記実施形態に限られるものではなく、例えば、前記鞍乗り型車両には、運転者が車体を跨いで乗車する車両全般が含まれ、自動二輪車(原動機付自転車及びスクータ型車両を含む)のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)の車両も含まれる。また、本発明は、自動二輪車のみならず、自動車等の四輪の車両にも適用可能である。
そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
1 自動二輪車(鞍乗り型車両)
12 後輪(駆動輪)
13 エンジン
26 クラッチ装置
60 ECU(制御部)
60A クラッチ制御装置
NR 通常レート
HR 高回転用レート
HR1 第一レート
HR2 第二レート
12 後輪(駆動輪)
13 エンジン
26 クラッチ装置
60 ECU(制御部)
60A クラッチ制御装置
NR 通常レート
HR 高回転用レート
HR1 第一レート
HR2 第二レート
Claims (6)
- エンジン(13)と駆動輪(12)との間の動力伝達を断接するクラッチ装置(26)と、
エンジン回転数を含むパラメーターに基づいて前記クラッチ装置(26)を制御する制御部(60)と、を備え、
前記制御部(60)は、前記エンジン回転数がNe閾値を超えている場合、通常レート(NR)よりも弱い接続レートで前記クラッチ装置(26)を接続状態とする高回転用レート(HR)に切り替えることを特徴とする鞍乗り型車両のクラッチ制御装置。 - 前記高回転用レート(HR)は、
前記通常レート(NR)よりも弱い接続レートの第一レート(HR1)と、
前記第一レート(HR1)よりも強い接続レートの第二レート(HR2)と、を有し、
前記制御部(60)は、前記高回転用レート(HR)で前記クラッチ装置(26)が制御されている場合、前記第一レート(HR1)で前記クラッチ装置(26)が制御されてから所定時間経過後に前記第二レート(HR2)に切り替えることを特徴とする請求項1に記載の鞍乗り型車両のクラッチ制御装置。 - 前記制御部(60)は、ギアポジションがニュートラルギアからインギアへ変更された後にアイドル状態が所定時間続いた場合、前記高回転用レート(HR)に切り替えることを止めることを特徴とする請求項1または2に記載の鞍乗り型車両のクラッチ制御装置。
- 前記制御部(60)は、前記高回転用レート(HR)で前記クラッチ装置(26)が制御されているときにスロットル開度がTh閾値以下になった場合、前記通常レート(NR)に戻すことを特徴とする請求項1から3のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置。
- 前記制御部(60)は、前記エンジン回転数が前記Ne閾値よりも高い第二Ne閾値を超えている場合、前記エンジン(13)への燃料供給を止めることを特徴とする請求項1から4のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置。
- エンジン(13)と駆動輪(12)との間の動力伝達を断接するクラッチ装置(26)を、エンジン回転数を含むパラメーターに基づいて前記クラッチ装置(26)を制御する制御ステップを含み、
前記制御ステップでは、前記エンジン回転数がNe閾値を超えている場合、通常レート(NR)よりも弱い接続レートで前記クラッチ装置(26)を接続状態とする高回転用レート(HR)に切り替えることを特徴とする鞍乗り型車両のクラッチ制御方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019060895 | 2019-03-27 | ||
JP2019060895 | 2019-03-27 | ||
PCT/JP2020/010539 WO2020195831A1 (ja) | 2019-03-27 | 2020-03-11 | 鞍乗り型車両のクラッチ制御装置およびクラッチ制御方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020195831A1 JPWO2020195831A1 (ja) | 2021-11-25 |
JP7073579B2 true JP7073579B2 (ja) | 2022-05-23 |
Family
ID=72610504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021509002A Active JP7073579B2 (ja) | 2019-03-27 | 2020-03-11 | 鞍乗り型車両のクラッチ制御装置およびクラッチ制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7073579B2 (ja) |
WO (1) | WO2020195831A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008232422A (ja) | 2007-02-23 | 2008-10-02 | Yamaha Motor Co Ltd | クラッチ制御装置、クラッチの制御方法、及び鞍乗型車両 |
WO2014136280A1 (ja) | 2013-03-06 | 2014-09-12 | トヨタ自動車株式会社 | 車両の油圧制御装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63101144A (ja) * | 1986-10-15 | 1988-05-06 | Daihatsu Motor Co Ltd | 自動変速機の発進制御装置 |
-
2020
- 2020-03-11 JP JP2021509002A patent/JP7073579B2/ja active Active
- 2020-03-11 WO PCT/JP2020/010539 patent/WO2020195831A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008232422A (ja) | 2007-02-23 | 2008-10-02 | Yamaha Motor Co Ltd | クラッチ制御装置、クラッチの制御方法、及び鞍乗型車両 |
WO2014136280A1 (ja) | 2013-03-06 | 2014-09-12 | トヨタ自動車株式会社 | 車両の油圧制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020195831A1 (ja) | 2021-11-25 |
WO2020195831A1 (ja) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6232915B2 (ja) | ハイブリッド二輪車 | |
JP6792495B2 (ja) | 変速制御装置 | |
JP7064874B2 (ja) | クラッチ制御装置およびクラッチ制御システム | |
WO2020213333A1 (ja) | クラッチ制御装置 | |
JP7059442B2 (ja) | 鞍乗り型車両のクラッチ制御装置およびクラッチ制御方法 | |
JP6756043B2 (ja) | 車両用変速システム | |
JP6845948B2 (ja) | 変速装置 | |
JP2019120293A (ja) | クラッチ制御装置 | |
JP7073579B2 (ja) | 鞍乗り型車両のクラッチ制御装置およびクラッチ制御方法 | |
US20070243972A1 (en) | Automatic gearshift control device and vehicle | |
WO2020189426A1 (ja) | クラッチ制御装置 | |
JP7003288B2 (ja) | クラッチ制御装置 | |
WO2020196045A1 (ja) | 鞍乗り型車両のクラッチ制御装置 | |
JP6982699B2 (ja) | 鞍乗り型車両の変速装置 | |
JP7068465B2 (ja) | クラッチ制御装置 | |
WO2020195779A1 (ja) | 鞍乗り型車両のクラッチ制御装置 | |
JP6826522B2 (ja) | クラッチ制御装置 | |
JP6726810B2 (ja) | クラッチ制御装置 | |
WO2020184552A1 (ja) | 変速装置および変速装置の制御方法 | |
JPWO2019087512A1 (ja) | クラッチ制御装置 | |
WO2020195895A1 (ja) | クラッチ制御装置 | |
JP6953633B2 (ja) | クラッチ制御装置 | |
JP7410913B2 (ja) | 車両 | |
WO2020195789A1 (ja) | クラッチ制御装置 | |
WO2019003978A1 (ja) | 車両用変速システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220511 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7073579 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |