JP7073151B2 - ショベル、ショベルの制御方法及びプログラム - Google Patents

ショベル、ショベルの制御方法及びプログラム Download PDF

Info

Publication number
JP7073151B2
JP7073151B2 JP2018051696A JP2018051696A JP7073151B2 JP 7073151 B2 JP7073151 B2 JP 7073151B2 JP 2018051696 A JP2018051696 A JP 2018051696A JP 2018051696 A JP2018051696 A JP 2018051696A JP 7073151 B2 JP7073151 B2 JP 7073151B2
Authority
JP
Japan
Prior art keywords
ground
hardness
sensor
attachment
estimation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018051696A
Other languages
English (en)
Other versions
JP2019163621A (ja
Inventor
正樹 小川
蒙萌 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2018051696A priority Critical patent/JP7073151B2/ja
Publication of JP2019163621A publication Critical patent/JP2019163621A/ja
Application granted granted Critical
Publication of JP7073151B2 publication Critical patent/JP7073151B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Component Parts Of Construction Machinery (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Measurement Of Force In General (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本開示は、ショベル、ショベルの制御方法及びプログラムに関する。
従来、アウトリガーシリンダやブームシリンダ等のシリンダ圧に基づいて、地盤の強度を算出するショベルが知られている(例えば、特許文献1参照)。
特開2000-136524号公報
しかしながら、上記のショベルでは、駆動する際の作動油がシリンダ内に流入する圧力を検出してしまうため、地盤の硬さを精度よく算出することが困難である。
そこで、上記課題に鑑み、地盤の硬さを高い精度で推定することが可能なショベルを提供することを目的とする。
本発明の実施形態に係るショベルは、下部走行体と、前記下部走行体に旋回可能に搭載される上部旋回体と、前記上部旋回体に取り付けられるアタッチメントと、前記アタッチメントに取り付けられる歪みセンサ又は加速度センサを含むセンサと、前記センサの検出値により地盤の硬さを推定する硬さ推定部と、を有し、前記硬さ推定部は、前記アタッチメントを所定速度及び所定角度で地面に接触させる所定動作を行ったときの前記センサの検出値と、前記所定動作を行ったときの前記センサの検出値と前記地盤の硬さとが対応付けされたデータとに基づいて、前記地盤の硬さを推定する硬さ推定部と、を有する。
本発明の実施形態によれば、地盤の硬さを高い精度で推定することが可能なショベルを提供することができる。
本発明の実施形態のショベルの側面図 ショベルの駆動制御系の構成例を示す図 姿勢制御処理の一例のフローチャート アーム閉じ動作を行ったときの歪み量の時間変化を示す図 アーム閉じ動作を行ったときの加速度の時間変化を示す図 表示装置の画像表示部に表示される施工図の一例を示す図
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
最初に、図1を参照して、本発明の実施形態のショベルの全体構成について説明する。図1は、本発明の実施形態のショベルの側面図である。
ショベルPSの下部走行体1には、旋回機構2を介して旋回可能に上部旋回体3が搭載されている。上部旋回体3には、ブーム4が取り付けられている。ブーム4の先端には、アーム5が取り付けられている。アーム5の先端には、エンドアタッチメント(作業部位)としてバケット6が取り付けられている。エンドアタッチメントとしては、法面用バケット、浚渫用バケット、ブレーカ等が取り付けられてもよい。
ブーム4、アーム5、及びバケット6は、アタッチメントの一例として掘削アタッチメントを構成し、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。
ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケット6にはバケット角度センサS3が取り付けられている。ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3を集合的に「姿勢センサ」と称する。また、ブーム4には歪みセンサS4が取り付けられている。
ブーム角度センサS1は、ブーム4の回動角度を検出する。ブーム角度センサS1は、例えば、水平面に対するブーム4の傾斜を検出することで上部旋回体3に対するブーム4の回動角度を検出する加速度センサである。
アーム角度センサS2は、アーム5の回動角度を検出する。アーム角度センサS2は、例えば、水平面に対するアーム5の傾斜を検出することでブーム4に対するアーム5の回動角度を検出する加速度センサである。
バケット角度センサS3は、バケット6の回動角度を検出する。バケット角度センサS3は、例えば、水平面に対するバケット6の傾斜を検出することでアーム5に対するバケット6の回動角度を検出する加速度センサである。ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3は、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ等であってもよく、加速度センサとジャイロセンサの組み合わせで構成されていてもよい。
歪みセンサS4は、アタッチメントの歪みを検出する。本実施形態では、歪みセンサS4は、ブーム4の内部に取り付けられてブーム4の伸張又は圧縮による歪みを検出する1軸歪みゲージである。但し、歪みセンサS4は、3軸歪みゲージであってもよく、アタッチメントの内部の複数箇所に取り付けられる複数の1軸歪みゲージであってもよい。また、歪みセンサS4は、複数の3軸歪みゲージであってもよく、1又は複数の1軸歪みゲージと1又は複数の3軸歪みゲージの組み合わせであってもよい。また、歪みセンサS4は、アタッチメントの歪みを検出できる位置に取り付けられていればよく、例えば、ブーム4の外面に取り付けられていてもよく、アーム5やバケット6に取り付けられていてもよい。
上部旋回体3には、運転室としてのキャビン10が設けられ、エンジン11等の動力源及び車体傾斜センサS5が搭載されている。エンジン11等の動力源は、カバー3aにより覆われている。キャビン10内には、コントローラ30、表示装置40、音声出力装置43、入力装置45、記憶装置47、及びゲートロックレバー49が設けられている。キャビン10の頂部には、GPS装置(GNSS受信機)P1、及び送信装置T1が設けられている。
車体傾斜センサS5は、ショベルPSの車体の傾斜角度を検出する。本実施形態では、車体傾斜センサS5は、水平面に対する車体の傾斜角度を検出する加速度センサである。
コントローラ30は、ショベルPSの駆動制御を行う主制御部として機能する制御装置である。コントローラ30は、CPU及び内部メモリを含む演算処理装置で構成されている。コントローラ30の各種機能は、CPUが内部メモリに格納されているプログラムを実行することで実現される。
表示装置40は、コントローラ30からの指令に応じて各種の作業情報を含む画像を表示する。表示装置40は、例えば、コントローラ30に接続される車載液晶ディスプレイである。
音声出力装置43は、コントローラ30からの音声出力指令に応じて各種音声情報を出力する。音声出力装置43は、例えば、コントローラ30に接続される車載スピーカである。音声出力装置43は、ブザー等の警報器であってもよい。
入力装置45は、ショベルPSの操作者がコントローラ30に各種情報を入力するための装置である。入力装置45は、例えば、表示装置40の表面に設けられるメンブレンスイッチを含む。入力装置45は、タッチパネル等であってもよい。
記憶装置47は、各種情報を記憶する。記憶装置47は、例えば、半導体メモリ等の不揮発性記憶媒体である。本実施形態では、記憶装置47は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、歪みセンサS4、車体傾斜センサS5等の検出値、コントローラ30の出力値等を記憶する。
ゲートロックレバー49は、キャビン10のドアと運転席との間に設けられ、ショベルPSが誤って操作されるのを防止する機構である。操作者が運転席に乗り込んでゲートロックレバー49を引き上げると、コントローラ30によりゲートロック弁49aが開状態に制御され、操作者はキャビン10から退出できなくなると共に各種操作装置が操作可能になる。操作者がゲートロックレバー49を押し下げると、コントローラ30によりゲートロック弁49aが閉状態に制御され、操作者はキャビン10から退出可能になると共に、各種操作装置は操作不能になる。
GPS装置P1は、ショベルPSの位置をGPS機能により検出し、位置データをコントローラ30に供給する。
送信装置T1は、ショベルPSの外部に向けて情報を発信する。
撮像装置80は、上部旋回体3のカバー3a上部に設けられている。撮像装置80は、上部旋回体3からキャビン10に向かって、左側を撮像する左側カメラ80L、右側を撮像する右側カメラ80R、後方を撮像する後方カメラ80Bを有する。左側カメラ80L、右側カメラ80R、及び後方カメラ80Bは、例えば、CCDやCMOS等の撮像素子を有するデジタルカメラであり、それぞれ撮影した画像をキャビン10内に設けられている表示装置40に送る。
次に、図2を参照して、ショベルPSの駆動制御系の構成例について説明する。図2は、ショベルPSの駆動制御系の構成例を示す図である。図2中、機械的動力系、高圧油圧ライン、パイロットライン、及び電気駆動・制御系をそれぞれ二重線、太実線、破線、及び細実線で示す。
エンジン11は、メインポンプ14及びパイロットポンプ15に接続され、エンジン制御装置(ECU)74により制御される。ECU74からは、エンジン11の状態を示す各種のデータ(例えば、水温センサ11cで検出される冷却水温(物理量)を示すデータ等)がコントローラ30に常時送信される。コントローラ30は内部の記憶部30aにこのデータを蓄積し、適宜、表示装置40に送信できる。
メインポンプ14は、高圧油圧ラインを介して作動油をコントロールバルブ17に供給するための油圧ポンプである。メインポンプ14は、例えば、斜板式可変容量型油圧ポンプである。
可変容量式油圧ポンプであるメインポンプ14のレギュレータ14aは、斜板角度を示すデータをコントローラ30に送る。また、吐出圧力センサ14bは、メインポンプ14の吐出圧力を示すデータをコントローラ30に送る。これらのデータ(物理量を表すデータ)は記憶部30aに格納される。また、メインポンプ14が吸入する作動油が貯蔵されたタンクとメインポンプ14との間の管路に設けられている油温センサ14cは、管路を流れる作動油の温度を表すデータをコントローラ30に送る。
パイロットポンプ15は、パイロットラインを介して各種油圧制御機器に作動油を供給するための油圧ポンプである。パイロットポンプ15は、例えば、固定容量型油圧ポンプである。
コントロールバルブ17は、ショベルPSにおける油圧システムを制御する油圧制御装置である。コントロールバルブ17は、例えば、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、走行用油圧モータ、及び旋回用油圧モータ等に、メインポンプ14が吐出する作動油を選択的に供給する。なお、以下では、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、走行用油圧モータ、及び旋回用油圧モータを、「油圧アクチュエータ」という場合がある。
操作レバー26A~26Cは、キャビン10内に設けられ、操作者によって油圧アクチュエータの操作に用いられる。操作レバー26A~26Cが操作されると、パイロットポンプ15から油圧アクチュエータのそれぞれに対応する流量制御弁のパイロットポートに作動油が供給される。各パイロットポートには、対応する操作レバー26A~26Cの操作方向及び操作量に応じた圧力の作動油が供給される。
本実施形態では、操作レバー26Aは、ブーム操作レバーである。操作者が操作レバー26Aを操作すると、ブームシリンダ7を油圧駆動させて、ブーム4を操作できる。操作レバー26Bは、アーム操作レバーである。操作者が操作レバー26Bを操作すると、アームシリンダ8を油圧駆動させて、アーム5を操作できる。操作レバー26Cは、バケット操作レバーである。操作者が操作レバー26Cを操作すると、バケットシリンダ9を油圧駆動させて、バケット6を操作できる。なお、ショベルPSには、操作レバー26A~26Cの他に、走行用油圧モータや旋回用油圧モータ等を駆動させる操作レバー、操作ペダル等が設けられてもよい。
圧力センサ15a,15bは、操作レバー26A~26Cが操作された際にコントロールバルブ17に送られるパイロット圧を検出し、検出したパイロット圧を示すデータをコントローラ30に送る。操作レバー26A~26Cには、スイッチボタン27が設けられている。操作者は、操作レバー26A~26Cを操作しながらスイッチボタン27を操作することで、コントローラ30に指令信号を送ることができる。
コントローラ30は、各種のデータを取得する。コントローラ30が取得したデータは、記憶部30aに格納される。
表示装置40は、コントローラ30から供給される作業情報等を含む画像を表示する。表示装置40は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)等の通信ネットワーク、専用線等を介してコントローラ30に接続されている。また、表示装置40は、画像表示部41に表示する画像を生成する変換処理部40aと、入力部としてのスイッチパネル42とを有する。
変換処理部40aは、撮像装置80から得られる画像データに基づいて画像表示部41上に表示する撮影画像を含む画像を生成する。表示装置40には、左側カメラ80L、右側カメラ80R、及び後方カメラ80Bのそれぞれから画像データが入力される。また、変換処理部40aは、コントローラ30から表示装置40に入力される各種のデータのうち画像表示部41に表示させるデータを画像信号に変換する。コントローラ30から表示装置40に入力されるデータは、例えば、エンジン冷却水の温度を示すデータ、作動油の温度を示すデータ、尿素水の残量を示すデータ、燃料の残量を示すデータ等を含む。変換処理部40aは、変換した画像信号を画像表示部41に出力し、撮影画像や各種のデータに基づいて生成した画像を画像表示部41に表示させる。なお、変換処理部40aは、表示装置40ではなく、例えば、コントローラ30に設けられてもよい。
スイッチパネル42は、各種ハードウェアスイッチを含むパネルである。スイッチパネル42は、ライトスイッチ42a、ワイパースイッチ42b、及びウィンドウォッシャスイッチ42cを有する。
ライトスイッチ42aは、キャビン10の外部に取り付けられるライトの点灯・消灯を切り替えるためのスイッチである。ワイパースイッチ42bは、ワイパーの作動・停止を切り替えるためのスイッチである。ウィンドウォッシャスイッチ42cは、ウィンドウォッシャ液を噴射するためのスイッチである。
表示装置40は、蓄電池70から電力の供給を受けて動作する。蓄電池70は、エンジン11のオルタネータ11a(発電機)で発電した電力で充電される。蓄電池70の電力は、コントローラ30及び表示装置40以外のショベルPSの電装品72等にも供給される。また、エンジン11のスタータ11bは、蓄電池70からの電力で駆動されてエンジン11を始動させる。
ショベルPSのキャビン10内には、エンジン回転数調整ダイヤル75が設けられている。エンジン回転数調整ダイヤル75は、エンジン回転数を調整するためのダイヤルであり、例えば、エンジン回転数を段階的に切り替えることができる。本実施形態では、エンジン回転数調整ダイヤル75は、SPモード、Hモード、Aモード、及びアイドリング(IDLE)モードの4段階にエンジン回転数を切り替えることができるように設けられている。エンジン回転数調整ダイヤル75は、エンジン回転数の設定状態を示すデータをコントローラ30に送る。なお、図2には、エンジン回転数調整ダイヤル75によりHモードが選択された状態が示されている。
SPモードは、作業量を優先したい場合に選択される回転数モードであり、最も高いエンジン回転数を利用する。Hモードは、作業量と燃費を両立させたい場合に選択される回転数モードであり、2番目に高いエンジン回転数を利用する。Aモードは、燃費を優先させながら低騒音でショベルPSを稼働させたい場合に選択される回転数モードであり、3番目に高いエンジン回転数を利用する。アイドリングモードは、エンジンをアイドリング状態にしたい場合に選択される回転数モードであり、最も低いエンジン回転数を利用する。エンジン11は、エンジン回転数調整ダイヤル75で設定された回転数モードのエンジン回転数で一定回転数に制御される。
次に、コントローラ30の機能構成について説明する。図2に示されるように、コントローラ30は、硬さ推定部31と、推奨姿勢推定部32と、動作制御部33とを有する。
硬さ推定部31は、アタッチメントを所定速度及び所定角度で地面に接触させる所定動作を行ったときのセンサの検出値と、所定動作を行ったときのセンサの検出値と地盤の硬さとが対応付けされたデータとに基づいて、地盤の硬さを推定する。センサは、アタッチメントに取り付けられる歪みセンサS4又は加速度センサ(ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3)を含む。センサの検出値と地盤の硬さとが対応付けされたデータは、所定動作ごとに記憶部30aに格納されている。本実施形態では、所定動作として、バケット6の爪先を垂直に立てた状態で地面に接触させた位置からアーム閉じ動作を行う。そして、硬さ推定部31は、アーム閉じ動作を行ったときのセンサの検出値と、アーム閉じ動作を行ったときのセンサの検出値と地盤の硬さとが対応付けされたデータとに基づいて、地盤の硬さを推定する。例えば、硬さ推定部31は、アーム閉じ動作を行ったときの歪みセンサS4により検出される歪み量が大きいほど、地盤が硬いと推定する。また例えば、硬さ推定部31は、アーム閉じ動作を行ったときの歪みセンサS4により検出される歪み量の最大値近傍の歪み量の微小変動の頻度が多いほど、地盤が硬いと推定する。また例えば、硬さ推定部は、アーム閉じ動作を行ったときの歪みセンサS4により検出される歪み量の最大値近傍の歪み量が継続する時間が長いほど、地盤が硬いと推定する。また、例えば硬さ推定部31は、アーム閉じ動作を行ったときの加速度センサにより検出される加速度が収束する時間が長いほど、地盤が硬いと推定する。
また、硬さ推定部31は、推定した地盤の硬さを地図情報に対応付けて記憶部30aに格納する。本実施形態では、硬さ推定部31は、推定した地盤の硬さと、GPS装置P1が検出したショベルPSの位置とに基づいて、推定した地盤の硬さを記憶部30aに記憶された地図情報である施工図に対応付けて格納する。
また、硬さ推定部31は、推定した地盤の硬さが所定の硬さよりも硬い場合、採石仕様の爪先への交換を促す警告等を表示装置40の画像表示部41に表示するようにしてもよい。
推奨姿勢推定部32は、硬さ推定部31が推定した地盤の硬さと、地盤の硬さと対応付けされたアタッチメントの推奨姿勢とに基づいて、推定された地盤の硬さに応じたアタッチメントの推奨姿勢を推定する。本実施形態では、推奨姿勢推定部32は、硬さ推定部31が推定した地盤の硬さと、地盤の硬さと対応付けされたバケット6の推奨角度とに基づいて、推定された地盤の硬さに応じたバケット6の推奨角度を推定する。また、推奨姿勢推定部32が推定した推奨姿勢は、表示装置40の画像表示部41に表示される。これにより、ショベルPSの操作者は、表示装置40に表示される推奨姿勢を確認することで、地盤の硬さに推奨される推奨姿勢で地盤の掘削を行うことができる。そのため、作業効率やアタッチメントの使用寿命を向上させることができる。
動作制御部33は、推奨姿勢推定部32が推定したアタッチメントの推奨姿勢となるようにアタッチメントの姿勢を制御する。本実施形態では、動作制御部33は、推奨姿勢推定部32が推定したバケット6の推奨角度となるようにバケット6の角度を制御する。
次に、図3を参照して、コントローラ30が、地盤の硬さを推定し、アタッチメントの姿勢を、推定した地盤の硬さに応じた推奨姿勢に制御する処理(以下「姿勢制御処理」という。)の一例について説明する。図3は、姿勢制御処理の一例のフローチャートである。
ステップST1では、硬さ推定部31は、アタッチメントを所定速度及び所定角度で地面に接触させる所定動作を行ったときのセンサの検出値と、所定動作を行ったときのセンサの検出値と地盤の硬さとが対応付けされたデータとに基づいて、地盤の硬さを推定する。
本実施形態では、硬さ推定部31は、バケット6の爪先を垂直に立てた状態で地面に接した位置からアーム閉じ動作を行ったときの歪みセンサS4が検出した歪み量と、アーム閉じ動作を行ったときの歪み量と地盤の硬さとが対応付けされたデータとに基づいて、地盤の硬さを推定する。図4は、アーム閉じ動作を行ったときの歪み量の時間変化を示す図である。図4中、時間を横軸で示し、歪み量を縦軸で示す。図4(a)から図4(d)に示されるように、アーム閉じ動作を行った場合、地盤の硬さの違いによって歪み量の時間変化の波形が異なる形状を示す。例えば図4(a)に示されるように、大きい歪み量を示した後に徐々に歪み量が減少する波形の場合、硬さ推定部31は、表面は硬いが地中へ入り込める地盤(例えば、かれき、砂利)であると推定する。また、例えば図4(b)に示されるように、大きい歪み量を維持する波形の場合、硬さ推定部31は、表面が硬くてはがれやすい地盤(例えば、アスファルト)であると推定する。また、例えば図4(c)に示されるように、歪み量が凸型であり最大歪み量が大きい波形の場合、硬さ推定部31は、表面が柔らかく高密度の地盤(例えば、粘土層)であると推定する。また、例えば図4(d)に示されるように、歪み量が凸型であり最大歪み量が小さい波形の場合、硬さ推定部31は、表面が柔らかく低密度の地盤(例えば、土砂)であると推定する。
また、本実施形態では、硬さ推定部31は、バケット6の爪先を垂直に立てた状態で地面に接した位置からアーム閉じ動作を行ったときの加速度センサが検出した加速度と、アーム閉じ動作を行ったときの加速度と地盤の硬さとが対応付けされたデータとに基づいて、地盤の硬さを推定する。図5は、所定動作であるアーム閉じ動作を行ったときの加速度の時間変化を示す図である。図5中、時間を横軸で示し、加速度を縦軸で示す。また、図5中、所定動作であるアーム閉じ動作により地面に接触した時点を時刻t1で示す。図5(a)から図5(c)に示されるように、アーム閉じ動作を行った場合、地盤の硬さの違いによって加速度の時間変化の波形が異なる形状を示す。例えば図5(a)に示されるように、大きい加速度を示した後に短時間で加速度が減少する波形の場合、硬さ推定部31は、表面は硬いが地中へ入り込める地盤(例えば、かれき、砂利)であると推定する。また、例えば図5(b)に示されるように、大きい加速度を示した後に徐々に加速度が減少する波形の場合、硬さ推定部31は、表面が硬くてはがれやすい地盤(例えば、アスファルト)であると推定する。また、例えば図5(c)に示されるように、衝撃的な急激な立ち上がりはなく、上記図5(a)よりは小さいが比較的大きい加速度を示した後に短時間で加速度が減少する波形の場合、硬さ推定部31は、表面が柔らかく高密度の地盤(例えば、粘土層)又は表面が柔らかく低密度の地盤(例えば、土砂)であると推定する。
ステップST2では、硬さ推定部31は、推定した地盤の硬さを地図情報に対応付けて記憶部30aに格納する。本実施形態では、硬さ推定部31は、推定した地盤の硬さと、GPS装置P1が検出したショベルPSの位置とに基づいて、推定した地盤の硬さを記憶部30aに記憶された施工図に対応付けて格納する。また、硬さ推定部31は、地盤の硬さが対応付けされた施工図を表示装置40に表示してもよい。
図6は、表示装置40の画像表示部41に表示される施工図の一例を示す図である。図6に示されるように、表示装置40の画像表示部41には施工図41aが表示されている。施工図41aには、等高線41b、道路41c、切土法面41d、法肩41e、法尻41f等が示されている。道路41c及び切土法面41dは、等高線41bで示される斜面の一部を切り取ることによって形成されている。また、道路41cの一部及び切土法面41dの一部には、推定した地盤の硬さ(例えば、比較的硬い地盤であること)を示すハッチング41gが付されている。操作者は、画像表示部41に表示される施工図41aを見ることで、道路41cの一部及び切土法面41dの一部が比較的硬い地盤であることを容易に確認できる。
ステップST3では、推奨姿勢推定部32は、硬さ推定部31が推定した地盤の硬さと、地盤の硬さと対応付けされて記憶されたアタッチメントの推奨姿勢とに基づいて、推定された地盤の硬さに推奨されるアタッチメントの推奨姿勢を推定する。本実施形態では、推奨姿勢推定部32は、硬さ推定部31が推定した地盤の硬さと、地盤の硬さと対応付けされて記憶されたバケット6の推奨角度とに基づいて、推定された地盤の硬さに推奨されるバケット6の推奨角度を推定する。例えば、硬さ推定部31が、表面は硬いが地中へ入り込める地盤(例えば、かれき、砂利)であると推定した場合、推奨姿勢推定部32は、バケット6の爪先を垂直に立てた状態の角度をバケット6の推奨角度と推定する。また、例えば硬さ推定部31が、表面が硬くてはがれやすい地盤(例えば、アスファルト)であると推定した場合、推奨姿勢推定部32は、バケット6の爪先を寝かせた角度をバケット6の推奨角度と推定する。また、例えば硬さ推定部31は、表面が柔らかく高密度の地盤(例えば、粘土層)である、又は表面が柔らかく低密度の地盤(例えば、土砂)であると推定した場合、バケット6の爪先を垂直に立てた状態の角度をバケット6の推奨角度と推定する。また、推奨姿勢推定部32は、推定した推奨姿勢を表示装置40に表示させてもよい。これにより、ショベルPSの操作者は、表示装置40に表示される推奨姿勢を確認することで、地盤の硬さに推奨される推奨姿勢で地盤の掘削を行うことができる。そのため、作業効率やアタッチメントの使用寿命を向上させることができる。
ステップST4では、動作制御部33は、推奨姿勢推定部32が推定したアタッチメントの推奨姿勢となるようにアタッチメントの姿勢を制御し、処理を終了させる。本実施形態では、動作制御部33は、推奨姿勢推定部32が推定した推奨角度となるように、バケット6の角度を制御し、処理を終了させる。
以上のように構成されるショベルPSでは、アタッチメントを所定速度及び所定角度で地面に接触させる所定動作を行ったときのセンサの検出値と、所定動作を行ったときのセンサの検出値と地盤の硬さとが対応付けされたデータとに基づいて、地盤の硬さが推定される。そのため、アタッチメントが駆動する際の作動油がシリンダ内に流入する圧力を検出してしまうことがないため、地盤の硬さを精度よく推定できる。
また、地盤の硬さを精度よく推定できるので、地盤の硬さによって摩耗状況が異なるバケット6の爪先の交換時期を予測することが容易になる。そのため、交換用の爪先を適切な交換時期に用意することができるので、交換用の爪先が用意できていないことを理由とするショベルPSのダウンタイムを抑制できる。
また、硬さ推定部31が推定した地盤の硬さと、地盤の硬さに対応付けされたアタッチメントの推奨姿勢とに基づいて、地盤の硬さに応じたアタッチメントの推奨姿勢が推定され、表示装置40の画像表示部41に表示される。そのため、ショベルPSの操作者は、画像表示部41に表示されるアタッチメントの推奨姿勢を確認することで、地盤の硬さに適したアタッチメントの姿勢で地盤を掘削できるので、作業効率が向上する。また、地盤の硬さに適していないアタッチメントの姿勢で地盤を掘削することによるアタッチメントの使用寿命の低下を抑制できる。
また、硬さ推定部31が推定した地盤の硬さが地図情報に対応付けて記憶部30aに格納される。そのため、操作者は記憶部30aに格納された地図情報を確認することで、硬い地盤の位置や柔らかい地盤の位置を容易に把握できるので、例えば柔らかい地盤の上で作業する際、通常の硬さの地盤の上で作業する場合よりも注意力を高めて作業できる。また、施工計画(例えば、工数、必要機種、機械台数)を速く精度よく予測できる。
以上、本発明を実施するための形態について説明したが、上記内容は、発明の内容を限定するものではなく、本発明の範囲内で種々の変形及び改良が可能である。
1 下部走行体
3 上部旋回体
4 ブーム
5 アーム
6 バケット
30 コントローラ
30a 記憶部
31 硬さ推定部
32 推奨姿勢推定部
33 動作制御部
40 表示装置
41 画像表示部
PS ショベル
S1 ブーム角度センサ
S2 アーム角度センサ
S3 バケット角度センサ
S4 歪みセンサ

Claims (10)

  1. 下部走行体と、
    前記下部走行体に旋回可能に搭載される上部旋回体と、
    前記上部旋回体に取り付けられるアタッチメントと、
    前記アタッチメントに取り付けられる歪みセンサ又は加速度センサを含むセンサと、
    前記センサの検出値により地盤の硬さを推定する硬さ推定部と、
    を有し、
    前記硬さ推定部は、前記アタッチメントを所定速度及び所定角度で地面に接触させる所定動作を行ったときの前記センサの検出値と、前記所定動作を行ったときの前記センサの検出値と前記地盤の硬さとが対応付けされたデータとに基づいて、前記地盤の硬さを推定する硬さ推定部と、
    を有する、
    ショベル。
  2. 前記硬さ推定部が推定した前記地盤の硬さと、前記地盤の硬さごとに対応付けされた前記アタッチメントの推奨姿勢とに基づいて、前記地盤の硬さに応じた前記アタッチメントの推奨姿勢を推定する推奨姿勢推定部と、
    前記推奨姿勢推定部が推定した前記アタッチメントの推奨姿勢を表示する表示部と、
    を有する、
    請求項1に記載のショベル。
  3. 前記硬さ推定部が推定した前記地盤の硬さと、前記地盤の硬さごとに対応付けされた前記アタッチメントの推奨姿勢とに基づいて、前記地盤の硬さに推奨される前記アタッチメントの推奨姿勢を推定する推奨姿勢推定部と、
    前記推奨姿勢推定部が推定した前記アタッチメントの推奨姿勢となるように前記アタッチメントの姿勢を制御する動作制御部と、
    を有する、
    請求項1に記載のショベル。
  4. 前記硬さ推定部が推定した前記地盤の硬さを地図情報に対応付けて格納する記憶部を有する、
    請求項1乃至3のいずれか一項に記載のショベル。
  5. 前記センサは、歪みセンサを含み、
    前記硬さ推定部は、前記アタッチメントを所定速度及び所定角度で地面に接触させたときの前記歪みセンサにより検出される歪み量が大きいほど、前記地盤が硬いと推定する、
    請求項1乃至4のいずれか一項に記載のショベル。
  6. 前記センサは、歪みセンサを含み、
    前記硬さ推定部は、前記アタッチメントを所定速度及び所定角度で地面に接触させたときの前記歪みセンサにより検出される歪み量の最大値近傍の歪み量の微小変動の頻度が多いほど、前記地盤が硬いと推定する、
    請求項1乃至5のいずれか一項に記載のショベル。
  7. 前記センサは、歪みセンサを含み、
    前記硬さ推定部は、前記アタッチメントを所定速度及び所定角度で地面に接触させたときの前記歪みセンサにより検出される歪み量の最大値近傍の歪み量が継続する時間が長いほど、前記地盤が硬いと推定する、
    請求項1乃至6のいずれか一項に記載のショベル。
  8. 前記センサは、加速度センサを含み、
    前記硬さ推定部は、前記アタッチメントを所定速度及び所定角度で地面に接触させたときの前記加速度センサにより検出される加速度が収束する時間が長いほど、前記地盤が硬いと推定する、
    請求項1乃至7のいずれか一項に記載のショベル。
  9. 歪みセンサ又は加速度センサを含むセンサが取り付けられたアタッチメントを有するショベルの前記アタッチメントを所定速度及び所定角度で地面に接触させる所定動作を行ったときに、前記センサの検出値を取得するステップと、
    前記取得するステップで取得された前記検出値と、前記所定動作を行ったときの前記センサの検出値と地盤の硬さとが対応付けされたデータとに基づいて、前記地盤の硬さを推定するステップと、
    を含む、ショベルの制御方法。
  10. 制御装置に、
    歪みセンサ又は加速度センサを含むセンサが取り付けられたアタッチメントを有するショベルの前記アタッチメントを所定速度及び所定角度で地面に接触させる所定動作を行ったときに、前記センサの検出値を取得するステップと、
    前記取得するステップで取得された前記検出値と、前記所定動作を行ったときの前記センサの検出値と地盤の硬さとが対応付けされたデータとに基づいて、前記地盤の硬さを推定するステップと、
    を実行させる、プログラム。
JP2018051696A 2018-03-19 2018-03-19 ショベル、ショベルの制御方法及びプログラム Active JP7073151B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018051696A JP7073151B2 (ja) 2018-03-19 2018-03-19 ショベル、ショベルの制御方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018051696A JP7073151B2 (ja) 2018-03-19 2018-03-19 ショベル、ショベルの制御方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2019163621A JP2019163621A (ja) 2019-09-26
JP7073151B2 true JP7073151B2 (ja) 2022-05-23

Family

ID=68065883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018051696A Active JP7073151B2 (ja) 2018-03-19 2018-03-19 ショベル、ショベルの制御方法及びプログラム

Country Status (1)

Country Link
JP (1) JP7073151B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198957B2 (ja) * 2018-06-25 2023-01-04 東亜建設工業株式会社 地盤強度の推定方法およびシステム
JP7120825B2 (ja) * 2018-06-25 2022-08-17 東亜建設工業株式会社 地盤強度の推定方法およびシステム
JP7236826B2 (ja) 2018-07-31 2023-03-10 株式会社小松製作所 作業機械
JP7371338B2 (ja) * 2019-03-19 2023-10-31 コベルコ建機株式会社 地盤強度計測システム
JP7305596B2 (ja) * 2020-06-04 2023-07-10 株式会社クボタ 作業機及び地質調査の支援システム
DE112022001727T5 (de) * 2021-03-25 2024-02-22 Sumitomo Heavy Industries, Ltd. Bagger- und bauverwaltungssystem
JP2022185846A (ja) 2021-06-03 2022-12-15 コベルコ建機株式会社 土質情報取得システムおよびこれを備える作業機械
EP4332309A1 (en) 2021-06-25 2024-03-06 Hiroshima University Construction machine and construction machine management system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163470A (ja) 2003-12-05 2005-06-23 Komatsu Ltd 作業機械の表示装置
JP2011252338A (ja) 2010-06-03 2011-12-15 Sumitomo Heavy Ind Ltd 建設機械
WO2015030266A1 (ja) 2014-09-09 2015-03-05 株式会社小松製作所 掘削機械の表示システム、掘削機械及び画像表示方法
JP2015190114A (ja) 2014-03-27 2015-11-02 住友重機械工業株式会社 ショベル支援装置及びショベル
US20170089044A1 (en) 2011-09-20 2017-03-30 Tech Mining Pty Ltd Stress or accumulated damage monitoring system
JP2017172115A (ja) 2016-03-18 2017-09-28 前田建設工業株式会社 地盤評価システム、加速度センサ付き既製杭
JP2017223096A (ja) 2016-06-17 2017-12-21 住友重機械工業株式会社 ショベル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279141A (ja) * 1987-05-11 1988-11-16 Hitachi Constr Mach Co Ltd 土質判別装置
JP3144454B2 (ja) * 1994-11-29 2001-03-12 株式会社大林組 コンクリート硬化度判定装置および方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163470A (ja) 2003-12-05 2005-06-23 Komatsu Ltd 作業機械の表示装置
JP2011252338A (ja) 2010-06-03 2011-12-15 Sumitomo Heavy Ind Ltd 建設機械
US20170089044A1 (en) 2011-09-20 2017-03-30 Tech Mining Pty Ltd Stress or accumulated damage monitoring system
JP2015190114A (ja) 2014-03-27 2015-11-02 住友重機械工業株式会社 ショベル支援装置及びショベル
WO2015030266A1 (ja) 2014-09-09 2015-03-05 株式会社小松製作所 掘削機械の表示システム、掘削機械及び画像表示方法
JP2017172115A (ja) 2016-03-18 2017-09-28 前田建設工業株式会社 地盤評価システム、加速度センサ付き既製杭
JP2017223096A (ja) 2016-06-17 2017-12-21 住友重機械工業株式会社 ショベル

Also Published As

Publication number Publication date
JP2019163621A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP7073151B2 (ja) ショベル、ショベルの制御方法及びプログラム
JP7216549B2 (ja) ショベル
JP6965160B2 (ja) ショベル
JP6615473B2 (ja) ショベル
JP6812339B2 (ja) ショベル
CN109804121B (zh) 挖土机
US11421396B2 (en) Shovel
JPWO2018174154A1 (ja) ショベル並びにショベルの管理装置及び支援装置
JP7059281B2 (ja) ショベル、ショベルの表示装置及びショベルの表示方法
JP6862421B2 (ja) ショベル及びショベルの表示装置
JP7003107B2 (ja) ショベル
JP7387583B2 (ja) 建設機械の支援装置及び支援システム
JP7073232B2 (ja) ショベル及びショベルの情報更新方法
JP6781749B2 (ja) ショベル及びショベル用のシステム
JP6542550B2 (ja) ショベル
JPWO2018155629A1 (ja) ショベル、ショベルの制御方法及び携帯情報端末
JP7183106B2 (ja) ショベルの制御方法
JP7044787B2 (ja) ショベル、ショベルの表示装置及びショベルの表示方法
JP6874058B2 (ja) ショベル及びショベル用のシステム
JP7257430B2 (ja) ショベル及びショベル用システム
JP2021152290A (ja) ショベル及びショベルの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7073151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150