JP7060793B2 - 波形整形回路、半導体装置及びスイッチング電源装置 - Google Patents

波形整形回路、半導体装置及びスイッチング電源装置 Download PDF

Info

Publication number
JP7060793B2
JP7060793B2 JP2018053400A JP2018053400A JP7060793B2 JP 7060793 B2 JP7060793 B2 JP 7060793B2 JP 2018053400 A JP2018053400 A JP 2018053400A JP 2018053400 A JP2018053400 A JP 2018053400A JP 7060793 B2 JP7060793 B2 JP 7060793B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
current
terminal
gate voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018053400A
Other languages
English (en)
Other versions
JP2019165596A (ja
Inventor
達哉 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2018053400A priority Critical patent/JP7060793B2/ja
Priority to US16/248,876 priority patent/US10763737B2/en
Publication of JP2019165596A publication Critical patent/JP2019165596A/ja
Application granted granted Critical
Publication of JP7060793B2 publication Critical patent/JP7060793B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Description

本発明は、波形整形回路、半導体装置及びスイッチング電源装置に関する。
AC(Alternating Current)/DC(Direct Current)コンバータまたは、DC/DCコンバータとして用いられるスイッチング電源装置や、増幅器などの半導体装置には、FET(Field effect transistor)が用いられる。
FETには、たとえば、Si(シリコン)-MOS(metal-oxide-semiconductor)FETが広く使用されている。また、近年では、HEMT(High Electron Mobility Transistor)と呼ばれる高電子移動度トランジスタが開発されている。HEMTの代表的なものに、オン抵抗の小さい窒化ガリウム(GaN)の化合物半導体を用いたGaN-HEMTがある。
一方、FETの電流は環境温度によって変動する。FETの電流が変動すると、その電流を用いる回路の誤作動を招く恐れがある。なお、環境温度によってFETの閾値電圧も変動する。FETの温度上昇を抑制するための方法として、FETの温度を熱電対などにより検出し、FETの温度が上昇したら、FETを含む装置に設けられた放熱フィンへ当てる風量を大きくする方法がある。
なお、スイッチング電源装置では、出力電圧及びFETの電流に応じて、制御IC(Integrated Circuit)でFETのゲート電圧(パルス電圧)のデューティ比を変更して、出力電圧やFETの電流の変動が最小になるように制御している。
特開2006-87215号公報 特開平05-19879号公報
上記のような、ゲート電圧のデューティ比の変更は、スイッチング電源装置の出力電圧の変動を抑制する場合には有効である。しかし、FETの電流の変動に対しては、制御ICから出力されるゲート電圧は最大電圧と最小電圧が一定であるため、デューティ比の変更を行っても電流の変動を抑制する効果は低かった。
1つの側面では、本発明は、環境温度によるFETの電流の変動を抑制する波形整形回路、半導体装置及びスイッチング電源装置を提供することを目的とする。
1つの実施態様では、電界効果トランジスタのドレイン電流またはソース電流のバレイホールドおよびピークホールドを行って、バレイホールドにより得られたドレイン電流またはソース電流の最小値である第1の電流検出信号を出力し、ピークホールドにより得られたドレイン電流またはソース電流の最大値である第2の電流検出信号を出力する電流監視回路と、第1の電流検出信号に基づいて、電界効果トランジスタのゲートに印加する正または負の値をもつパルス電圧の最小電圧を制御する第1の可変ゲート電圧回路と、第2の電流検出信号に基づいて、パルス電圧の最大電圧を制御する第2の可変ゲート電圧回路と、を備え、第1の可変ゲート電圧回路は、第1の電流検出信号からドレイン電流またはソース電流の増加を認識した場合に最小電圧を下降させ、第2の可変ゲート電圧回路は、第2の電流検出信号からドレイン電流またはソース電流の低下を認識した場合に最大電圧を上昇させる波形整形回路が提供される。
また、1つの実施態様では、半導体装置が提供される。
さらに、1つの実施態様では、スイッチング電源装置が提供される。
1つの側面では、環境温度によるFETの電流の変動を抑制できる。
第1の実施の形態の波形整形回路の一例を示す図である。 FETの電流電圧特性の一例を示す図である。 第2の実施の形態の波形整形回路の一例を示す図である。 可変ゲート電圧回路の一例を示す図である。 可変ゲート電圧回路が決定する出力電圧の電圧範囲の一例を示す図である。 ドレイン電流監視回路の一例を示す図である。 シミュレーション結果の一例を示す図である(対策前)。 シミュレーション結果の一例を示す図である(対策後)。 スイッチング電源装置の一例を示す図である。 PFC装置の一例を示す図である。 サーバ用電源装置の一例を示す図である。 直流昇圧装置の一例を示す図である。
以下、発明を実施するための形態を、図面を参照しつつ説明する。
(第1の実施の形態)
図1は、第1の実施の形態の波形整形回路の一例を示す図である。波形整形回路1-1は、FET1aのドレイン電流またはソース電流の変化に応じて、FET1aのゲート端子に印加するゲート電圧(パルス電圧)の波形整形を行いつつ、ゲート電圧の最大電圧または最小電圧のレベル可変制御を行う回路である。
波形整形回路1-1は、ゲート電圧制御回路10-1を有し、ゲート電圧制御回路10-1には、可変ゲート電圧回路11-1、12-1が含まれる。また、図1の例では、波形整形回路1-1は、ドレイン電流監視回路2とソース電流監視回路3を有するように図示されているが、ドレイン電流監視回路2とソース電流監視回路3の、いずれか一方が備えられていればよい。
なお、図1に示す例では、ドレイン電流監視回路2やソース電流監視回路3が、波形整形回路1-1に含まれるように図示されているが、波形整形回路1-1に含まれていなくてもよい。
ドレイン電流監視回路2は、FET1aのドレイン電流を監視して監視結果を出力する。たとえば、ドレイン電流監視回路2は、監視したドレイン電流を電圧に変換し、電流検出信号d10を出力する。
ソース電流監視回路3は、FET1aのソース電流を監視して監視結果を出力する。たとえば、ソース電流監視回路3は、監視したソース電流を電圧に変換し、電流検出信号d20を出力する。
なお、FET1aは、図1の例ではnチャネル型のFETであり、たとえば、GaN-HEMTである。FET1aは、Si-MOSFET、GaAs(ガリウム砒素)-MOSFETなどの化合物FETであってもよい。
ゲート電圧制御回路10-1は、最大電圧と最小電圧が一定レベルの入力電圧Vinを受信する。入力電圧Vinは、たとえば、スイッチング電源装置の制御IC1bから出力される。可変ゲート電圧回路11-1は、FET1aのドレイン電流またはソース電流に基づいて、入力電圧Vinから生成され、FET1aのゲート端子に印加する正または負の値をもつゲート電圧Vgsの最小電圧を制御する。
また、可変ゲート電圧回路12-1は、FET1aのドレイン電流またはソース電流に基づいて、ゲート電圧Vgsの最大電圧を制御する。
たとえば、ゲート電圧制御回路10-1は、ドレイン電流またはソース電流が低下する場合、可変ゲート電圧回路11-1はゲート電圧Vgsの最小電圧を下降させ、可変ゲート電圧回路12-1はゲート電圧Vgsの最大電圧を上昇させる。
なお、波形整形回路1-1は、FET1aの電流変化を検出する場合、ドレイン電流またはソース電流のいずれか一方の変化を検出すればよい。
図2は、FETの電流電圧特性の一例を示す図である。波形グラフg1、g2は、低温及び高温時におけるFET1aのドレイン電流Idのドレイン電圧依存性及びゲート電圧依存性を示す波形である。
波形グラフg1の縦軸はドレイン電流Id、横軸はドレイン電圧Vdsである。波形グラフg2の縦軸はドレイン電流Id、横軸はゲート電圧Vgsである。
波形グラフg1において、ドレイン電圧VdsがVds0のとき、低温時のドレイン電流IdはIdLであり、高温時のドレイン電流IdはIdHである。同様に、波形グラフg2(ドレイン電圧Vds=Vds0)において、ゲート電圧VgsがVgsLのとき、低温時のドレイン電流IdはIdLであり、高温時のドレイン電流IdはIdHである。
このように、FET1aのドレイン電流Idは、環境温度によって変動する。この例では、低温から高温へ温度が変化するとFET1aのドレイン電流Idが減少することが分かる(図2では、ドレイン電流Idの変化について示しているが、ソース電流も環境温度によって同様に変化する)。
なお、一般的に、ゲート電圧Vgsが閾値電圧付近のドレイン電流Idは、環境温度が高くなるほど増大し、閾値電圧より十分高いゲート電圧Vdsにおけるドレイン電流Idは、環境温度が高くなるほど減少する。また、閾値電圧自体も、波形グラフg2に示すように、環境温度が高くなるほど小さくなっている(図2の例では負の値となっている)。
波形整形回路1-1は、FET1aのドレイン電流Idの減少を検出すると、たとえば、ゲート電圧Vgsの最大電圧を上昇させ、FET1aのドレイン電流Idの増加を検出すると、最小電圧を下降させる
たとえば、ゲート電圧Vgsの最大電圧がVgsLで、ドレイン電流IdがIdLのとき、環境温度が上昇し、ドレイン電流IdがIdHに減少する場合、可変ゲート電圧回路12-1は、ゲート電圧Vgsの最大値をVgsHに上昇させる。これにより、図2に示すようにドレイン電流Idの電流減少分を回復させることができ、ドレイン電流Idの変動を抑制することができる。
一方、ゲート電圧Vgsの最小電圧がVminLで、ドレイン電流Idが0のとき、環境温度が上昇しFET1aの閾値電圧が下がった場合、ドレイン電流Idが上昇する。そのため、可変ゲート電圧回路11-1は、ゲート電圧Vgsの最小電圧をVminHに下降させる。これにより、図2に示すようにドレイン電流Idの電流増加分を減らすことができ、ドレイン電流Idの変動を抑制することができる。
このような制御が行われることで、低温から高温へ温度が変化してFET1aのドレイン電流Idが減少する場合であっても、波形整形回路1-1は、ドレイン電流Idの変動を抑制することができる。なお、上記では低温から高温へ温度が変化した場合の制御について示したが、高温から低温へ温度が変化した場合も同様なレベル可変制御が行われて、ドレイン電流Idの変動が抑制される。
このように、波形整形回路1-1は、FET1aのドレイン電流Idに基づいてゲート電圧Vgsの最小電圧と最大電圧を制御する。これにより、環境温度によるFET1aのドレイン電流Idの変動を抑制することが可能になる。なお、波形整形回路1-1は、FET1aのソースに基づいてゲート電圧Vgsの最小電圧または最大電圧を制御しても同様の効果が得られる。
また、環境温度の上昇によりFET1aの閾値電圧が小さくなっても、波形整形回路1-1は、ドレイン電流またはソース電流の減少を検出することで、パルス電圧Vinの最小電圧を下降し、ゲート電圧Vgsの最小電圧を閾値電圧以下にすることができる。波形整形回路1-1は、たとえば、ゲート電圧Vgsの最小電圧を、図1に示すような負の電圧にすることができる。これにより、FET1aを確実にオフすることができる。
なお、上記では、FET1aがnチャネル型のFETであるものとして説明したが、FET1aがpチャネル型のFETであってもよい。その場合、上記ゲート電圧Vgsの最小電圧と最大電圧の制御は、逆にすればよい。
(第2の実施の形態)
図3は、第2の実施の形態の波形整形回路の一例を示す図である。図1に示した第1の実施の形態の波形整形回路1-1と同じ要素については同一符号が付されている。また、第2の実施の形態では、ドレイン電流の監視を行ってゲート電圧のレベル制御を行うものとし、ドレイン電流監視回路2を有するものとする。
波形整形回路1-2は、ゲート電圧制御回路10-2及びドレイン電流監視回路2を有する。ゲート電圧制御回路10-2には、可変ゲート電圧回路11-2、12-2が含まれる。
可変ゲート電圧回路11-2には、波形整形部11、スイッチSWN及びADC(AC/DCコンバータ)11dが含まれる。可変ゲート電圧回路12-2には、波形整形部12、スイッチSWP及びADC12dが含まれる。なお、ADC11d、12dは、ドレイン電流監視回路2側に設けられてもよい。
ADC11dは、スイッチSWNのオンオフを制御するスイッチ制御回路の一例であり、ドレイン電流監視回路2から出力された電流検出信号d11に基づいて、スイッチSWNのオンオフ制御を行うためのデジタル信号を生成して出力する。
ADC12dは、スイッチSWPのオンオフを制御するスイッチ制御回路の一例であり、ドレイン電流監視回路2から出力された電流検出信号d12に基づいて、スイッチSWPのオンオフ制御を行うためのデジタル信号を生成して出力する。
スイッチSWN、SWPは、ADC11d、12dが出力するデジタル信号に基づいてスイッチングを行う。波形整形部11、12は、スイッチSWN、SWPのスイッチングに基づいて、出力電圧Vout(FET1aのゲート電圧Vgs)の所定電圧範囲を決定する。
図4は、可変ゲート電圧回路の一例を示す図である。可変ゲート電圧回路11-2において、波形整形部11は、キャパシタ11a、抵抗素子11b、ツェナーダイオード11c0及びツェナーダイオード群11cを含む。ツェナーダイオード群11cは、ツェナーダイオード11c1、・・・、11ciを含む。スイッチSWNは、スイッチswn1、swn2、・・・、swniを含む。なお、ツェナーダイオード群11cは1つのツェナーダイオードであってもよい。
可変ゲート電圧回路12-2において、波形整形部12は、キャパシタ12a、抵抗素子12b、ツェナーダイオード12c0及びツェナーダイオード群12cを含む。ツェナーダイオード群12cは、ツェナーダイオード12c1、・・・、12ciを含む。スイッチSWPは、スイッチswp1、swp2、・・・、swpiを含む。ツェナーダイオード群12cは1つのツェナーダイオードであってもよい。
各回路素子の接続関係は以下の通りである。
キャパシタ11aの一端は、可変ゲート電圧回路11-2の入力端子と抵抗素子11bの一端に接続される。キャパシタ11aの他端は、抵抗素子11bの他端、スイッチswn1、・・・、swniの端子a、ツェナーダイオード11c1のアノード及び可変ゲート電圧回路11-2の出力端子に接続される。
ツェナーダイオード11c1、・・・、11ciはシリアルに接続され、ツェナーダイオード11c1、・・・、11ciのカソードは、スイッチswn1、・・・、swniの端子bに接続される。
たとえば、ツェナーダイオード11c1のカソードは、スイッチswn1の端子bと、ツェナーダイオード11c2のアノードに接続される。ツェナーダイオード11c2のカソードは、スイッチswn2の端子bと、ツェナーダイオード11c3(図示せず)のアノードに接続される。また、ツェナーダイオード11ciのカソードは、スイッチswniの端子bと、ツェナーダイオード11c0のアノードに接続される。
ADC11dの入力端子には、電流検出信号d11が入力される。ADC11dの出力端子は、スイッチswn1、・・・、swniの端子c(スイッチ開閉制御用のコモン端子)に接続される。
ツェナーダイオード11c0のカソードは、キャパシタ12aの一端、抵抗素子12bの一端及びツェナーダイオード12c1のカソードに接続される。キャパシタ12aの他端と抵抗素子12bの他端は、基準電位である要素(以下GNDという)に接続される。
ツェナーダイオード12c1、・・・、12ciは、シリアルに接続され、ツェナーダイオード12c1、・・・、12ciのアノードは、スイッチswp1、・・・、swpiの端子aに接続される。
たとえば、ツェナーダイオード12c1のアノードは、スイッチswp1の端子aと、ツェナーダイオード12c2のカソードに接続される。ツェナーダイオード12c2のアノードは、スイッチswp2の端子aと、ツェナーダイオード12c3(図示せず)のカソードに接続される。また、ツェナーダイオード12ciのアノードは、スイッチswpiの端子aと、ツェナーダイオード12c0のカソードに接続される。ツェナーダイオード12c0のアノードは、GNDに接続される。
ADC12dの入力端子には、電流検出信号d12が入力される。ADC12dの出力端子は、スイッチswp1、・・・、swpiの端子c(スイッチ開閉制御用のコモン端子)に接続される。また、スイッチswp1、・・・、swpiの端子bは、GNDに接続される。
なお、可変ゲート電圧回路11-2の出力端子が波形整形回路1-2の出力端子となり、FET1aのゲート端子に電気的に接続される。
図4に示すような可変ゲート電圧回路11-2において、ツェナーダイオード群11cは、入力に対して順方向バイアスに接続され、出力電圧Vout(FET1aのゲート電圧Vgs)の最小電圧を決定する。
このような波形整形回路1-2では、ここで、正のパルス電圧である入力電圧Vinが入力端子に入力される場合、Vin>0のとき、キャパシタ11aと抵抗素子11bによる並列回路に電流が流れる。また、ツェナーダイオード11c0と、ツェナーダイオード群11cにおいて後述のスイッチ制御によって有効になるツェナーダイオードとにおける寄生容量によって、キャパシタ12aと抵抗素子12bによる並列回路に電荷が誘起される。また、ツェナーダイオード11c0と、ツェナーダイオード群11cにおいて有効になるツェナーダイオードからなる直列回路の両端の電圧がフォワード電圧を越えたとき、キャパシタ12aと抵抗素子12bによる並列回路に電流が流れる。入力電圧Vinが0Vに下がると、キャパシタ12aと抵抗素子12bによる並列回路から入力端子側または出力端子側へ放出される電流はツェナーダイオード11c0などによって遮断される。
このときキャパシタ11a側に蓄積されていた電荷を補償するため、出力端子側から入力端子側へ電流が流れ、出力端子側の電圧が負に傾く。出力端子が負側の所定電圧より下がろうとすると、ツェナーダイオード11c0と有効となるツェナーダイオードのツェナー電圧(降伏電圧ともいう)の和によって下限値が制限され、出力端子の負側の電圧が確定する。
たとえば、ツェナーダイオード群11cに接続されるスイッチSWNにおけるスイッチswn1、・・・、swniを、この順番でオンしていくと、有効になるツェナーダイオードが減り、ツェナーダイオード群11c全体でみたときのツェナー電圧が正方向に変化する。スイッチswn1、・・・、swniが全てオンの状態から、スイッチswniから順にオフしていくと、逆に有効になるツェナーダイオードが増え、ツェナーダイオード群11c全体でみたときのツェナー電圧が負方向に大きくなる。
したがって、ドレイン電流が低下した場合、ADC11dは、スイッチswn1、・・・、swniを制御して、有効になるツェナーダイオードを増やすことで、ツェナー電圧が負方向に大きくなり、出力電圧Voutの最小電圧を下降させることができる。
なお、ツェナーダイオードの閾値電圧は小さいので、ツェナーダイオード群11cが出力電圧Voutの最大電圧の制御に大きく寄与することはない。
一方、ツェナーダイオード群12cは、入力に対して逆方向バイアスに接続され、入力される出力電圧Voutの最大電圧を決定する。
たとえば、ツェナーダイオード群12cに接続されるスイッチSWPにおけるスイッチswp1、・・・、swpiを、この逆の順番でオンしていくと、有効になるツェナーダイオードが減り、ツェナーダイオード群12c全体でみたときのツェナー電圧が正方向に小さくなる。スイッチswp1、・・・、swpiが全てオンの状態から、この順番で順にオフしていくと、逆に有効になるツェナーダイオードが増え、ツェナーダイオード群12c全体でみたときのツェナー電圧が負方向に大きくなる。
したがって、ドレイン電流が低下した場合、ADC12dは、スイッチswp1、・・・、swpiを制御して、有効になるツェナーダイオードを増やすことで、ツェナー電圧が負方向に大きくなる。ツェナーダイオード群12cは、ツェナーダイオード群11cとは接続が逆であるため、この場合、出力電圧Voutの最大電圧を上昇させることができる。
図5は、可変ゲート電圧回路が決定する出力電圧の電圧範囲の一例を示す図である。縦軸は出力電圧Vout、横軸は時間である。可変ゲート電圧回路11-2は、FET1aのドレイン電流の変化に基づいて出力電圧Voutの最小電圧を制御する。
図5の例では、可変ゲート電圧回路11-2は、FET1aのドレイン電流が低下するにつれて、電圧Vvalley1から電圧Vvalley2、電圧Vvalley2から電圧Vvalley3へと出力電圧Voutの最小電圧を下降制御している。
また、可変ゲート電圧回路12-2は、FET1aのドレイン電流の変化に基づいて出力電圧Voutの最大電圧を制御する。図5の例では、可変ゲート電圧回路12-2は、FET1aのドレイン電流が低下するにつれて、電圧Vpeak1から電圧Vpeak2、電圧Vpeak2から電圧Vpeak3へと出力電圧Voutの最大電圧を上昇制御している。
図6は、ドレイン電流監視回路の一例を示す図である。ドレイン電流監視回路2は、クランプ回路21a、21b、増幅回路22a、22b、ピークホールド回路23a、バレイホールド回路23b、保護回路24a、24b及び抵抗素子25を有する。
クランプ回路21a、21bは、FET1aがオフ時には高い電圧が印加されるため、後段に接続される回路に過電圧が印加されないように入力電位をクランプし、FET1aがオン状態のときにドレイン端子に印加される電圧を検出して出力する。
増幅回路22a、22bは、入力信号を増幅する。ピークホールド回路23aは、ドレイン電流の最大値を保持する。バレイホールド回路23bは、ドレイン電流の最小値を保持する。保護回路24a、24bは、後段に接続される回路に規定以上の電圧が印加されないように過電圧保護を行う。
クランプ回路21aは、ダイオード21a1、21a2及びFET21a3、21a4を含む。増幅回路22aは、オペアンプ22a1を含む。ピークホールド回路23aは、ダイオード23a1、23a2、23a3、23a4、抵抗素子23a5、23a6、23a7、23a8及びキャパシタ23a9、23a10、23a11を含む。保護回路24aは、ツェナーダイオード24a1を含む。
また、クランプ回路21bは、ダイオード21b1、21b2及びFET21b3、21b4を含む。増幅回路22bは、オペアンプ22b1を含む。バレイホールド回路23bは、ダイオード23b1、23b2、23b3、23b4、抵抗素子23b5、23b6、23b7、23b8及びキャパシタ23b9、23b10、23b11を含む。保護回路24bは、ツェナーダイオード24b1を含む。
各回路素子の接続関係は以下の通りである。
抵抗素子25の一端は、FET21a3のドレイン端子及びFET21b3のドレイン端子に接続される。抵抗素子25の他端は、FET1aのドレイン端子、FET21a4のドレイン端子及びFET21b4のドレイン端子に接続される。
FET21a3のゲート端子は、ダイオード21a1のカソードに接続され、ダイオード21a1のアノードはGNDに接続される。FET21a4のゲート端子は、ダイオード21a2のカソードに接続され、ダイオード21a2のアノードはGNDに接続される。
FET21a3のソース端子は、オペアンプ22a1の正側入力端子(+)に接続され、FET21a4のソース端子は、オペアンプ22a1の負側入力端子(-)に接続される。また、オペアンプ22a1には、正側電源電圧V1及び負側電源電圧V2が印加される。
オペアンプ22a1の出力端子は、ダイオード23a1のアノードと、ダイオード23a2のアノードに接続される。ダイオード23a2のカソードは、キャパシタ23a9の一端と、抵抗素子23a5の一端に接続され、キャパシタ23a9の他端と、抵抗素子23a5の他端はGNDに接続される。
ダイオード23a1のカソードは、抵抗素子23a6の一端に接続され、抵抗素子23a6の他端は、ダイオード23a3のアノードと、ダイオード23a4のアノードに接続される。ダイオード23a4のカソードは、キャパシタ23a10の一端と、抵抗素子23a7の一端に接続され、キャパシタ23a10の他端と、抵抗素子23a7の他端はGNDに接続される。
ダイオード23a3のカソードは、抵抗素子23a8の一端、キャパシタ23a11の一端及びツェナーダイオード24a1のカソードに接続され、電流検出信号d12が出力される。抵抗素子23a8の他端、キャパシタ23a11の他端及びツェナーダイオード24a1のアノードは、GNDに接続される。
FET21b3のゲート端子は、ダイオード21b1のカソードに接続され、ダイオード21b1のアノードはGNDに接続される。FET21b4のゲート端子は、ダイオード21b2のカソードに接続され、ダイオード21b2のアノードはGNDに接続される。
FET21b3のソース端子は、オペアンプ22b1の正側入力端子(+)に接続され、FET21b4のソース端子は、オペアンプ22b1の負側入力端子(-)に接続される。また、オペアンプ22b1には、正側電源電圧V1及び負側電源電圧V2が印加される。
オペアンプ22b1の出力端子は、ダイオード23b1のカソードと、ダイオード23b2のアノードに接続される。ダイオード23b2のカソードは、キャパシタ23b9の一端と、抵抗素子23b5の一端に接続され、キャパシタ23b9の他端と、抵抗素子23b5の他端はGNDに接続される。
ダイオード23b1のアノードは、抵抗素子23b6の一端に接続され、抵抗素子23b6の他端は、ダイオード23b3のアノードと、ダイオード23b4のアノードに接続される。ダイオード23b4のカソードは、キャパシタ23b10の一端と、抵抗素子23b7の一端に接続され、キャパシタ23b10の他端と、抵抗素子23b7の他端はGNDに接続される。
ダイオード23b3のカソードは、抵抗素子23b8の一端、キャパシタ23b11の一端及びツェナーダイオード24b1のカソードに接続され、電流検出信号d11が出力される。抵抗素子23b8の他端、キャパシタ23b11の他端及びツェナーダイオード24b1のアノードはGNDに接続される。
図7は、シミュレーション結果の一例を示す図である。図7では、波形整形回路1-2による制御を実施する前のシミュレーション結果が示されている。
波形グラフg11はドレイン電流の波形であり、縦軸はドレイン電流〔A〕、横軸は時間〔μs〕である。波形グラフg12はゲート電圧の波形であり、縦軸はゲート電圧〔V〕、横軸は時間〔μs〕である。また、点線波形は環境温度が27℃のときの状態を示し、実線波形は環境温度が150℃のときの状態を示している。
温度が27℃から150℃に上昇した場合、波形整形回路1-2による制御を実施する前では、ゲート電圧の上下限の電圧に変化はなく固定である。このため、温度が27℃のときに、パルス状のドレイン電流のピーク値は18A近傍にあるが、温度が150℃まで上昇すると、パルス状のドレイン電流のピーク値は16A近傍にまで低下していることが分かる。
このように、対策前ではゲート電圧の上下限の電圧は固定のため、温度が上昇するとドレイン電流が変化してしまう。
図8は、シミュレーション結果の一例を示す図である。図8では、波形整形回路1-2による制御を実施した後のシミュレーション結果が示されている。
波形グラフg21はドレイン電流の波形であり、縦軸はドレイン電流〔A〕、横軸は時間〔ms〕である。波形グラフg22はゲート電圧の波形であり、縦軸はゲート電圧〔V〕、横軸は時間〔ms〕である。また、点線波形は環境温度が27℃のときの状態を示し、実線波形は環境温度が150℃のときの状態を示している。
温度が27℃から150℃に上昇した場合、波形整形回路1-2による制御を実施した場合では、ゲート電圧の上下限の電圧は変化している。このため、温度が27℃のときに、パルス状のドレイン電流のピーク値は16A近傍にあるが、温度が150℃まで上昇した場合でも、パルス状のドレイン電流のピーク値は16A近傍に位置している。すなわち、温度上昇前と比べてドレイン電流は一致していることが分かる。
このように、波形整形回路1-2では、温度の上昇に伴い、ゲート電圧の上下限の電圧を適応的に変化させるため、温度が上昇した場合でもドレイン電流を温度上昇前と一致させることができ、FETを流れる電流変動を抑制することができる。
(波形整形回路の半導体装置への適用例)
以下、上記のような波形整形回路の半導体装置への適用例を示す。半導体装置の例として、以下では、スイッチング電源装置、PFC(Power Factor Correction:力率改善)装置、サーバ用電源装置及び直流昇圧装置を挙げる。
図9は、スイッチング電源装置の一例を示す図である。上述の波形整形回路が適用された半導体装置の一例としてスイッチング電源装置30が示されている。スイッチング電源装置30は、ACアダプタとして利用可能である。
スイッチング電源装置30の1次側回路部には、コモンモードフィルタ31b、ダイオードブリッジ31c、キャパシタ32、1次側制御IC33、ゲート電圧制御回路34a、ドレイン電流監視回路34b、ソース電流監視回路34c及びトランジスタ35が含まれる。
なお、ゲート電圧制御回路34a、ドレイン電流監視回路34b及びソース電流監視回路34cは、波形整形回路に含まれる回路要素である。また、図9では、ドレイン電流監視回路34b及びソース電流監視回路34cの両方を示しているが、いずれか一方の回路が設けられればよい。
スイッチング電源装置30は、1次側回路部と2次側回路部とを電気的に絶縁するとともに磁気的に結合するトランス37を有する。
2次側回路部には、キャパシタ41、42c、抵抗素子42b、42d、ダイオード42a、42e、トランジスタ43、ゲート電圧制御回路44a、ドレイン電流監視回路44b、ソース電流監視回路44c及び2次側制御IC45が含まれる。
なお、ゲート電圧制御回路44a、ドレイン電流監視回路44b及びソース電流監視回路44cは、波形整形回路に含まれる回路要素である。また、図9では、ドレイン電流監視回路44b及びソース電流監視回路44cの両方を示しているが、いずれか一方の回路が設けられればよい。
スイッチング電源装置30は、さらにバイアス安定化回路46及びフォトカプラ47を有する。なお、トランジスタ35、43は、nチャネル型のMOSFETであり、たとえば、GaN-HEMTである。
コモンモードフィルタ31bは、交流電源31aに接続して交流電圧から高調波ノイズのフィルタリングを行う。ダイオードブリッジ31cは、ノイズ除去後の交流電圧を整流して整流信号を出力する。キャパシタ32は、ダイオードブリッジ31cが出力する整流信号を平滑化する。
1次側制御IC33は、電源電圧が動作可能な電圧に達すると、トランジスタ35のスイッチング動作を制御するための制御電圧(制御信号)を出力する。また、1次側制御IC33は、VCC端子、GATE端子、IFB端子、FB端子及びGND端子を有する。
VCC端子は、1次側制御IC33の電源電圧が印加される端子である。VCC端子には、キャパシタ32の一端、ダイオードブリッジ31cの出力端子及びトランス37の1次巻き線37aの一端が接続される。キャパシタ32の他端はGNDに接続される。
GATE端子は、トランジスタ35をスイッチングするための制御電圧を出力する端子である。GATE端子は、ゲート電圧制御回路34aの入力端子に接続される。
IFB端子は、トランジスタ35のドレイン端子からソース端子へ流れる電流をフィードバック検出するための端子である。IFB端子は、トランジスタ35のソース端子及びソース電流監視回路34cの入力端子に接続される。ソース電流監視回路34cは、トランジスタ35のソース端子とGNDとの間に配置され、トランジスタ35のソース電流の監視結果をゲート電圧制御回路34aへ出力する。
なお、1次側制御IC33は、IFB端子に入力される電流が異常値であるときには、たとえば、GATE端子から出力される制御電圧を所定レベルにして、ゲート電圧制御回路34aを介して、トランジスタ35のスイッチング動作を停止させる。
FB端子は、フォトカプラ47から出力されるフィードバック電圧を受信する端子である。1次側制御IC33は、フィードバック電圧に基づいて、出力電圧が一定に保たれるように、デューティ比を適切な値に調整する。GND端子は、GNDに接続される。
ドレイン電流監視回路34bは、トランス37の1次巻き線37aとトランジスタ35のドレイン端子との間に配置され、トランジスタ35のドレイン電流の監視結果をゲート電圧制御回路34aに出力する。
トランジスタ35は、ドレイン電流監視回路34bを介してトランス37の1次巻き線37aに接続されたドレイン端子と、ソース電流監視回路34cを介してGNDに接続されたソース端子と、ゲート電圧制御回路34aから出力されるゲート電圧が印加されるゲート端子を有する。トランジスタ35は、ゲート電圧制御回路34aから供給されるゲート電圧に応じてオンまたはオフする。
ゲート電圧制御回路34aは、1次側制御IC33から出力された制御電圧を受信する。また、ゲート電圧制御回路34aは、ドレイン電流監視回路34bからの電流検出信号またはソース電流監視回路34cからの電流検出信号に基づいて、制御電圧の上下限を適応的に制御して、制御後の電圧信号をゲート電圧として出力する。
トランス37は、1次巻き線37a、2次巻き線37b、コア37cを有する。図9では模式的に図示されているが、1次巻き線37a、2次巻き線37bは、コア37cに巻き付けられている。なお、各巻き線の一端の近傍に示されている黒丸は各巻き線の巻き始めの位置を示している。
1次巻き線37aの一端は、ダイオードブリッジ31cの出力端子、キャパシタ32の一端及び1次側制御IC33のVCC端子に接続され、他端はドレイン電流監視回路34bを介してトランジスタ35のドレイン端子に接続される。
2次巻き線37bの一端は、キャパシタ41の一端と、スイッチング電源装置30の出力端子に接続される。キャパシタ41の他端はGNDに接続される。キャパシタ41は、出力電圧に生じるリップル電圧を低減するために設けられている。
2次巻き線37bの他端は、ダイオード42aのアノード、抵抗素子42dの一端及びダイオード42eのカソードに接続され、さらにドレイン電流監視回路44bを介してトランジスタ43のドレイン端子に接続される。
ドレイン電流監視回路44bは、トランス37の1次巻き線37bとトランジスタ43のドレイン端子との間に配置され、トランジスタ43のドレイン電流の監視結果をゲート電圧制御回路44aに出力する。
トランジスタ43は、ドレイン電流監視回路44bを介して2次巻き線37bの一端に接続されたドレイン端子と、ソース電流監視回路44cを介してGNDに接続されたソース端子と、ゲート電圧制御回路44aから供給されるゲート電圧が印加されるゲート端子を有する。トランジスタ43は、ゲート電圧に基づいて、スイッチング動作を行う。
ソース電流監視回路44cは、トランジスタ43のソース端子とGNDとの間に配置され、トランジスタ43のソース電流の監視結果をゲート電圧制御回路44aへ出力する。2次側制御IC45は、トランジスタ43のドレイン電圧に基づいて、トランジスタ43のスイッチング動作を制御するための制御電圧を出力する。2次側制御IC45は、VCC端子、Drain端子、GATE端子及びGND端子を有する。
VCC端子は、キャパシタ42cの一端と、抵抗素子42bの一端に接続される。キャパシタ42cの他端はGNDに接続され、抵抗素子42bの他端はダイオード42aのカソードに接続される。VCC端子には、ダイオード42a、抵抗素子42b、キャパシタ42cによって生成される電源電圧が印加され、2次側制御IC45は、その電源電圧によって動作する。
Drain端子は、トランジスタ43のドレイン電圧を検出するために設けられた抵抗素子42dを介して2次巻き線37bの一端と、ドレイン電流監視回路44bを介してトランジスタ43のドレイン端子に接続される。
GATE端子には、ゲート電圧制御回路44aの入力端子が接続され、GATE端子から制御電圧が出力される。GND端子には、GNDが接続される。
ゲート電圧制御回路44aは、2次側制御IC45から出力された制御電圧を受信する。また、ゲート電圧制御回路44aは、ドレイン電流監視回路44bからの電流検出信号またはソース電流監視回路44cからの電流検出信号に基づいて、制御電圧の上下限を適応的に制御して、制御後の電圧信号をゲート電圧として出力する。
ダイオード42eは、トランジスタ43のスイッチング動作による同期整流が開始するまでの期間、整流を行う機能を有する。ダイオード42eのアノードは、GNDに接続され、またソース電流監視回路44cを介してトランジスタ43のソース端子に接続される。ダイオード42eのカソードは、ドレイン電流監視回路44bを介してトランジスタ43のドレイン端子に接続される。
ダイオード42a、抵抗素子42b及びキャパシタ42cは、2次側制御IC45を動作させるための直流電圧である電源電圧を生成する。
ダイオード42aのアノードは、2次巻き線37bの一端に接続され、カソードは、抵抗素子42bの一端に接続される。抵抗素子42bの他端は、キャパシタ42cの一端及び2次側制御IC45のVCC端子に接続される。
バイアス安定化回路46は、出力電圧のバイアスの安定化を行ってフォトカプラ47の入力レベルに基づく信号を生成する。フォトカプラ47は、バイアス安定化回路46からの出力信号をスイッチング電源装置30の出力電圧(直流電圧)とその期待値との誤差を示す誤差信号として出力する。1次側制御IC33は、その誤差信号を出力電圧のフィードバック電圧として受けて、デューティ比を適切な値へ調整する。
図10は、PFC装置の一例を示す図である。PFC装置50は、交流電源51aからの高調波の抑制を図って力率を改善する。PFC装置50は、コモンモードフィルタ51b、ダイオードブリッジ51c、制御IC52、ゲート電圧制御回路53a、ドレイン電流監視回路53b、ソース電流監視回路53c、トランジスタ54、キャパシタ55、インダクタ56、ダイオード57、抵抗素子58a、58b及び負荷59を有する。トランジスタ54は、nチャネル型MOSトランジスタであり、たとえば、GaN-HEMTである。
なお、ゲート電圧制御回路53a、ドレイン電流監視回路53b及びソース電流監視回路53cは、波形整形回路に含まれる回路要素である。また、図10では、ドレイン電流監視回路53b及びソース電流監視回路53cの両方を示しているが、いずれか一方の回路が設けられればよい。
各回路素子の接続関係において、コモンモードフィルタ51bの入力側には交流電源51aが接続され、出力側にはダイオードブリッジ51cの入力端子が接続される。ダイオードブリッジ51cの出力端子には、キャパシタ55の一端及びインダクタ56の一端が接続される。キャパシタ55の他端は、GNDに接続される。
インダクタ56の他端は、ドレイン電流監視回路53bを介してトランジスタ54のドレイン端子と、ダイオード57のアノードに接続される。ダイオード57のカソードは、負荷59の一端及び抵抗素子58aの一端に接続される。負荷59の他端はGNDに接続される。
制御IC52のGATE端子は、ゲート電圧制御回路53aの入力端子に接続される。ゲート電圧制御回路53aの出力端子は、トランジスタ54のゲート端子に接続される。制御IC52のFB端子は、抵抗素子58aの他端及び抵抗素子58bの一端に接続され、抵抗素子58bの他端はGNDに接続される。トランジスタ54のソース端子は、ソース電流監視回路53cを介してGNDに接続される。
ドレイン電流監視回路53bは、インダクタ56の一端とダイオード57のアノードの接続点と、トランジスタ54のドレイン端子との間に配置され、トランジスタ54のドレイン電流の監視結果をゲート電圧制御回路53aへ出力する。
ソース電流監視回路53cは、トランジスタ54のソース端子とGNDとの間に配置され、トランジスタ54のソース電流の監視結果をゲート電圧制御回路53aへ出力する。
ゲート電圧制御回路53aは、制御IC52から出力された制御電圧を受信する。また、ゲート電圧制御回路53aは、ドレイン電流監視回路53bからの電流検出信号またはソース電流監視回路53cからの電流検出信号に基づいて、制御電圧の上下限を適応的に制御して、制御後の電圧信号をゲート電圧として出力する。
ここで、コモンモードフィルタ51bは、交流電源51aからの交流電圧から高調波ノイズのフィルタリングを行う。ダイオードブリッジ51cは、ノイズ除去後の交流電圧を整流する。キャパシタ55は、整流された入力電圧を平滑化する。インダクタ56は、昇圧インダクタであって、平滑化された電圧を所定値まで昇圧する。また、インダクタ56を通じて流れる信号は、ダイオード57へ流れ、ダイオード57は、インダクタ56から出力された信号を整流する。
制御IC52は、GATE端子及びFB端子を有する。GATE端子は、トランジスタ54をスイッチングするための制御電圧を出力する端子である。FB端子は、抵抗素子58a、58bによって出力電圧が分圧されたフィードバック電圧を受信する端子である。制御IC52は、フィードバック電圧に基づいて、出力電圧が一定に保たれるように、デューティ比を適切な値に調整する。
トランジスタ54は、ゲート電圧制御回路53aから出力されたゲート電圧に基づきスイッチング動作を行う。トランジスタ54がオフのときには、インダクタ56から出力された信号は、ダイオード57を通じて負荷59へ流れる。トランジスタ54がオンのときには、インダクタ56から出力された信号は、ソース電流監視回路53cを介してGNDに流れる。
図11は、サーバ用電源装置の一例を示す図である。サーバ用電源装置6は、PFC回路60及び絶縁型DC/DCコンバータ70、80を備える。絶縁型DC/DCコンバータ70と、絶縁型DC/DCコンバータ80は、バス(たとえば、12Vバス)6a、6bを介して接続される。
PFC回路60は、ダイオード61a、61b、61c、61d、インダクタ62、トランジスタ63、ダイオード64、キャパシタ65、ドレイン電流監視回路66b及びソース電流監視回路66cを含む。ダイオード61a、61b、61c、61dでダイオードブリッジが形成されている。また、トランジスタ63の駆動制御を行う回路として、ゲート電圧制御回路66a及びPFC制御IC67が配置される。
なお、ゲート電圧制御回路66a、ドレイン電流監視回路66b及びソース電流監視回路66cは、波形整形回路に含まれる回路要素である。また、図11では、ドレイン電流監視回路66b及びソース電流監視回路66cの両方を示しているが、いずれか一方の回路が設けられればよい。
絶縁型DC/DCコンバータ70は、トランス71、トランジスタ72a、72b、キャパシタ75及びソース電流監視回路73a1、73b1を含む。トランス71は、1次巻き線71aと2次巻き線71bを含む(コアの図示は省略)。また、トランジスタ72aの駆動制御を行う回路として、ゲート電圧制御回路73a及び1次側制御IC74aが配置され、トランジスタ72bの駆動制御を行う回路として、ゲート電圧制御回路73b及び2次側制御IC74bが配置される。
なお、ゲート電圧制御回路73a及びソース電流監視回路73a1は、波形整形回路に含まれる回路要素である。また、図11では、ソース電流監視回路73a1を設けているが、ドレイン電流監視回路をトランジスタ72aのドレイン端子に設けてもよい。
ゲート電圧制御回路73b及びソース電流監視回路73b1は、波形整形回路に含まれる回路要素である。また、図11では、ソース電流監視回路73b1を設けているが、ドレイン電流監視回路をトランジスタ72bのドレイン端子に設けてもよい。
絶縁型DC/DCコンバータ80は、トランス81、トランジスタ82a、82b、キャパシタ85及びソース電流監視回路83a1、83b1を含む。トランス81は、1次巻き線81aと2次巻き線81bを含む(コアの図示は省略)。また、トランジスタ82aの駆動制御を行う回路として、ゲート電圧制御回路83a及び1次側制御IC84aが配置され、トランジスタ82bの駆動制御を行う回路として、ゲート電圧制御回路83b及び2次側制御IC84bが配置される。
なお、ゲート電圧制御回路83a及びソース電流監視回路83a1は、波形整形回路に含まれる回路要素である。また、図11では、ソース電流監視回路83a1を設けているが、ドレイン電流監視回路をトランジスタ82aのドレイン端子に設けてもよい。
ゲート電圧制御回路83b及びソース電流監視回路83b1は、波形整形回路に含まれる回路要素である。また、図11では、ソース電流監視回路83b1を設けているが、ドレイン電流監視回路をトランジスタ82bのドレイン端子に設けてもよい。
トランジスタ63、72a、72b、82a、82bは、NMOSトランジスタであり、たとえば、GaN-HEMTである。
各回路素子の接続関係において、交流電源61の一端は、ダイオード61aのアノードと、ダイオード61cのカソードに接続される。交流電源61の他端は、ダイオード61bのアノードと、ダイオード61dのカソードに接続される。
ダイオード61aのカソードは、ダイオード61bのカソードと、インダクタ62の一端に接続される。インダクタ62の他端は、ドレイン電流監視回路66bを介してトランジスタ63のドレイン端子と、ダイオード64のアノードに接続される。ダイオード64のカソードは、キャパシタ65の一端と、トランス71の1次巻き線71aの一端に接続される。1次巻き線71aの他端は、トランジスタ72aのドレイン端子に接続される。
ダイオード61cのアノードは、ダイオード61dのアノード、ソース電流監視回路66cを介してトランジスタ63のソース端子、キャパシタ65の他端及びソース電流監視回路73a1を介してトランジスタ72aのソース端子に接続される。
トランジスタ63のゲート端子は、ゲート電圧制御回路66aの出力端子に接続され、ゲート電圧制御回路66aの入力端子は、PFC制御IC67の出力端子に接続される。
トランス71の2次巻き線71bの一端は、キャパシタ75の一端と、バス6bに接続される。2次巻き線71bの他端は、トランジスタ72bのドレイン端子に接続される。トランジスタ72bのソース端子は、ソース電流監視回路73b1を介してキャパシタ75の他端と、バス6aに接続される。
トランジスタ72aのゲート端子は、ゲート電圧制御回路73aの出力端子に接続され、ゲート電圧制御回路73aの入力端子は、1次側制御IC74aの出力端子に接続される。トランジスタ72bのゲート端子は、ゲート電圧制御回路73bの出力端子に接続され、ゲート電圧制御回路73bの入力端子は、2次側制御IC74bの出力端子に接続される。
トランス81の1次巻き線81aの一端は、バス6bに接続され、1次巻き線81aの他端は、トランジスタ82aのドレイン端子に接続される。トランジスタ82aのソース端子は、ソース電流監視回路83a1を介してバス6aに接続される。
トランス81の2次巻き線81bの一端は、キャパシタ85の一端と、出力端子の一端に接続され、2次巻き線81bの他端は、トランジスタ82bのドレイン端子に接続される。トランジスタ82bのソース端子は、ソース電流監視回路83b1を介してキャパシタ85の他端と、出力端子の他端に接続される。
トランジスタ82aのゲート端子は、ゲート電圧制御回路83aの出力端子に接続され、ゲート電圧制御回路83aの入力端子は、1次側制御IC84aの出力端子に接続される。トランジスタ82bのゲート端子は、ゲート電圧制御回路83bの出力端子に接続され、ゲート電圧制御回路83bの入力端子は、2次側制御IC84bの出力端子に接続される。
PFC回路60は、交流電源61からの高調波の抑制を図って力率を改善する。PFC制御IC67は、トランジスタ63をスイッチングするための制御電圧を出力する。
ドレイン電流監視回路66bは、インダクタ62の一端とダイオード64のアノードの接続点と、トランジスタ63のドレイン端子との間に配置され、トランジスタ63のドレイン電流の監視結果をゲート電圧制御回路66aへ出力する。
ソース電流監視回路66cは、トランジスタ63のソース端子と、ラインL1との間に配置され、トランジスタ63のソース電流の監視結果をゲート電圧制御回路66aへ出力する。なお、ラインL1は、ダイオード61c、61dのアノード及びキャパシタ65の一端に接続される配線である。
ゲート電圧制御回路66aは、PFC制御IC67から出力された制御電圧を受信する。また、ゲート電圧制御回路66aは、ドレイン電流監視回路66bからの電流検出信号またはソース電流監視回路66cからの電流検出信号に基づいて、制御電圧の上下限を適応的に制御して、制御後の電圧信号をゲート電圧として出力する。
絶縁型DC/DCコンバータ70は、トランス71を用いて入力側と出力側との電気的絶縁を図って、PFC回路60から出力されるDC電圧を所定のDC電圧に変換する。1次側制御IC74aは、トランジスタ72aをスイッチングするための制御電圧を出力し、2次側制御IC74bは、トランジスタ72bをスイッチングするための制御電圧を出力する。
ソース電流監視回路73a1は、トランジスタ72aのソース端子と、ラインL1との間に配置され、トランジスタ72aのソース電流の監視結果をゲート電圧制御回路73aへ出力する。
ゲート電圧制御回路73aは、1次側制御IC74aから出力された制御電圧を受信する。また、ゲート電圧制御回路73aは、ソース電流監視回路73a1からの電流検出信号に基づいて、制御電圧の上下限を適応的に制御して、制御後の電圧信号をゲート電圧として出力する。
ソース電流監視回路73b1は、トランジスタ72bのソース端子と、ラインL2との間に配置され、トランジスタ72bのソース電流の監視結果をゲート電圧制御回路73bへ出力する。なお、ラインL2は、キャパシタ75の一端及びバス6aに接続されている配線である。
ゲート電圧制御回路73bは、2次側制御IC74bから出力された制御電圧を受信する。また、ゲート電圧制御回路73bは、ソース電流監視回路73b1からの電流検出信号に基づいて、制御電圧の上下限を適応的に制御して、制御後の電圧信号をゲート電圧として出力する。
絶縁型DC/DCコンバータ80は、トランス81を用いて入力側と出力側との電気的絶縁を図って、絶縁型DC/DCコンバータ70から出力されるDC電圧を、CPU(Central Processing Unit)等のプロセッサの所定の動作電圧に変換する。1次側制御IC84aは、トランジスタ82aをスイッチングするための制御電圧を出力し、2次側制御IC84bは、トランジスタ82bをスイッチングするための制御電圧を出力する。
ソース電流監視回路83a1は、トランジスタ82aのソース端子と、ラインL3との間に配置され、トランジスタ82aのソース電流の監視結果をゲート電圧制御回路83aへ出力する。なお、ラインL3は、バス6aに接続されている配線である。
ゲート電圧制御回路83aは、1次側制御IC84aから出力された制御電圧を受信する。また、ゲート電圧制御回路83aは、ソース電流監視回路83a1からの電流検出信号に基づいて、制御電圧の上下限を適応的に制御して、制御後の電圧信号をゲート電圧として出力する。
ソース電流監視回路83b1は、トランジスタ82bのソース端子と、ラインL4との間に配置され、トランジスタ82bのソース電流の監視結果をゲート電圧制御回路83bへ出力する。なお、ラインL4は、キャパシタ85の一端及び出力端子の一端が接続されている負極性側の配線である。
ゲート電圧制御回路83bは、2次側制御IC84bから出力された制御電圧を受信する。また、ゲート電圧制御回路83bは、ソース電流監視回路83b1からの電流検出信号に基づいて、制御電圧の上下限を適応的に制御して、制御後の電圧信号をゲート電圧として出力する。
図12は、直流昇圧装置の一例を示す図である。直流昇圧装置90は、直流電源91から出力される直流電圧の昇圧を行う。直流昇圧装置90は、直流電源91、制御IC92、ゲート電圧制御回路93a、ドレイン電流監視回路93b、ソース電流監視回路93c、トランジスタ94、インダクタ95、ダイオード96、抵抗素子97a、97b及び負荷98を有する。トランジスタ94は、NMOSトランジスタであり、たとえば、GaN-HEMTである。
なお、ゲート電圧制御回路93a、ドレイン電流監視回路93b及びソース電流監視回路93cは、波形整形回路に含まれる回路要素である。また、図12では、ドレイン電流監視回路93b及びソース電流監視回路93cの両方を示しているが、いずれか一方の回路が設けられればよい。
各回路素子の接続関係において、直流電源91の正極性端子は、インダクタ95の一端に接続され、直流電源91の負極性端子はGNDに接続される。インダクタ95の他端は、ドレイン電流監視回路93bを介してトランジスタ94のドレイン端子と、ダイオード96のアノードに接続される。ダイオード96のカソードは、負荷98の一端及び抵抗素子97aの一端に接続される。負荷98の他端はGNDに接続される。
制御IC92のGATE端子は、ゲート電圧制御回路93aの入力端子に接続される。ゲート電圧制御回路93aの出力端子は、トランジスタ94のゲート端子に接続される。制御IC92のFB端子は、抵抗素子97aの他端及び抵抗素子97bの一端に接続され、抵抗素子97bの他端はGNDに接続される。トランジスタ94のソース端子は、ソース電流監視回路93cを介してGNDに接続される。
ドレイン電流監視回路93bは、インダクタ95の一端とダイオード96のアノードの接続点と、トランジスタ94のドレイン端子との間に配置され、トランジスタ94のドレイン電流の監視結果をゲート電圧制御回路93aへ出力する。
ソース電流監視回路93cは、トランジスタ94のソース端子とGNDとの間に配置され、トランジスタ94のソース電流の監視結果をゲート電圧制御回路93aへ出力する。
ゲート電圧制御回路93aは、制御IC92から出力された制御電圧を受信する。また、ゲート電圧制御回路93aは、ドレイン電流監視回路93bからの電流検出信号またはソース電流監視回路93cからの電流検出信号に基づいて、制御電圧の上下限を適応的に制御して、制御後の電圧信号をゲート電圧として出力する。
ここで、インダクタ95は、昇圧インダクタであって、直流電圧を所定値まで昇圧する。また、インダクタ95を通じて流れる信号は、ダイオード96へ流れ、ダイオード96は、インダクタ95から出力された信号を整流する。
制御IC92は、GATE端子及びFB端子を有する。GATE端子は、トランジスタ94をスイッチングするための制御電圧を出力する端子である。FB端子は、抵抗素子97a、97bによって出力電圧が分圧されたフィードバック電圧を受信する端子である。制御IC92は、フィードバック電圧に基づいて、出力電圧が一定に保たれるように、デューティ比を適切な値に調整する。
トランジスタ94は、ゲート電圧制御回路93aから出力されたゲート電圧に基づきスイッチング動作を行う。トランジスタ94がオフのときには、インダクタ95から出力された信号は、ダイオード96を通じて負荷98へ流れる。トランジスタ94がオンのときには、インダクタ95から出力された信号は、ソース電流監視回路93cを介してGNDに流れる。
以上説明したように、波形整形回路1-1、1-2は、FETのゲート駆動制御において、FETのドレイン電流またはソース電流に基づいて、ゲートに印加する正または負の値をもつパルス電圧の最小電圧及び最大電圧の制御を行う。これにより、FETの環境温度に依存する電流変動を抑制することができる。
なお、上記では、FETに流れる電流監視として、主にドレイン電流を監視する場合について説明したが、ソース電流の監視によって検出したソース電流に基づいてゲート電圧の制御を行ってもよい。
ソース電流の監視を行う場合、FETのゲート構造がMOSやMIS(Metal Insulator Semiconductor)構造、あるいはダイオード構造であっても、ゲート端子に印加される電圧が順方向電圧以下であれば基本的にはゲート電流成分を無視することができるため、ドレイン電流監視と同じ動作となる。また、ソース電流監視では、クランプ回路は不要となる。
一方、FETのゲート構造がPNダイオード構造やショットキィダイオード構造になっている場合、これらダイオードの順方向電圧以上の電圧が印加されると、ソース端子側にはドレイン電流とゲート電流の両方が流れるため、制御量に誤差が生じる可能性がある。このため、FETのゲート構造がPNダイオード構造やショットキィダイオード構造の場合には、ドレイン電流監視が適している。したがって、基本的には、FETのゲート構造によって制御量に誤差が生じることのないドレイン電流監視が好ましい。
以上、実施の形態に基づき、本発明の波形整形回路、半導体装置及びスイッチング電源装置の一観点について説明してきたが、これらは一例にすぎず、上記の記載に限定されるものではない。
1-1 波形整形回路
1a FET
1b 制御IC
10-1 ゲート電圧制御回路
11-1、12-1 可変ゲート電圧回路
2 ドレイン電流監視回路
3 ソース電流監視回路
d10、d20 電流検出信号
Vin パルス電圧
Vgs ゲート電圧

Claims (5)

  1. 電界効果トランジスタのドレイン電流またはソース電流のバレイホールドおよびピークホールドを行って、前記バレイホールドにより得られた前記ドレイン電流または前記ソース電流の最小値である第1の電流検出信号を出力し、前記ピークホールドにより得られた前記ドレイン電流または前記ソース電流の最大値である第2の電流検出信号を出力する電流監視回路と、
    前記第1の電流検出信号に基づいて、前記電界効果トランジスタのゲートに印加する正または負の値をもつパルス電圧の最小電圧を制御する第1の可変ゲート電圧回路と、
    前記第2の電流検出信号に基づいて、前記パルス電圧の最大電圧を制御する第2の可変ゲート電圧回路と、
    を備え、
    前記第1の可変ゲート電圧回路は、前記第1の電流検出信号から前記ドレイン電流または前記ソース電流の増加を認識した場合に前記最小電圧を下降させ、前記第2の可変ゲート電圧回路は、前記第2の電流検出信号から前記ドレイン電流または前記ソース電流の低下を認識した場合に前記最大電圧を上昇させる、
    形整形回路。
  2. 前記第1の可変ゲート電圧回路は、
    並列に接続された第1の容量素子と第1の抵抗素子を有し、第1の端子に入力電圧が印加され、第2の端子に前記電界効果トランジスタのゲート端子が電気的に接続された第1の並列回路と、
    第1のツェナーダイオードと、
    前記第1の並列回路の前記第2の端子と、前記第1のツェナーダイオードのアノードとの間に直列に接続された1または複数の第2のツェナーダイオードと、
    それぞれが、前記第2のツェナーダイオードの何れかのカソードに一端が接続され他端が前記第2の端子に接続された複数の第1のスイッチと、
    前記第1の電流検出信号に基づいて、前記第1のスイッチのオンオフを制御する第1のスイッチ制御回路と、を有し、
    前記第2の可変ゲート電圧回路は、
    並列に接続された第2の容量素子と第2の抵抗素子を有し、第3の端子が基準電位となり、第4の端子に前記第1のツェナーダイオードのカソードが接続された第2の並列回路と、
    アノードが前記基準電位となる第3のツェナーダイオードと、
    前記第2の並列回路の前記第4の端子と、前記第3のツェナーダイオードのカソードとの間に直列に接続された1または複数の第4のツェナーダイオードと、
    それぞれが、前記第4のツェナーダイオードの何れかのカソードに一端が接続され他端が前記基準電位となる複数の第2のスイッチと、
    前記第2の電流検出信号に基づいて、前記第2のスイッチのオンオフを制御する第2のスイッチ制御回路と、
    を有する請求項1に記載の波形整形回路。
  3. 電界効果トランジスタと、
    前記電界効果トランジスタのドレイン電流またはソース電流のバレイホールドおよびピークホールドを行って、前記バレイホールドにより得られた前記ドレイン電流または前記ソース電流の最小値である第1の電流検出信号を出力し、前記ピークホールドにより得られた前記ドレイン電流または前記ソース電流の最大値である第2の電流検出信号を出力する電流監視回路と、前記第1の電流検出信号に基づいて、前記電界効果トランジスタのゲートに印加する正または負の値をもつパルス電圧の最小電圧を制御する第1の可変ゲート電圧回路と、前記第2の電流検出信号に基づいて、前記パルス電圧の最大電圧を制御する第2の可変ゲート電圧回路と、を備える波形整形回路と、
    を有し、
    前記第1の可変ゲート電圧回路は、前記第1の電流検出信号から前記ドレイン電流または前記ソース電流の増加を認識した場合に前記最小電圧を下降させ、前記第2の可変ゲート電圧回路は、前記第2の電流検出信号から前記ドレイン電流または前記ソース電流の低下を認識した場合に前記最大電圧を上昇させる、
    導体装置。
  4. スイッチング動作によりパルス状の交流信号を出力する電界効果トランジスタと、
    前記電界効果トランジスタの前記スイッチング動作を制御するパルス電圧である制御信号を出力する制御回路と、
    前記電界効果トランジスタのドレイン電流またはソース電流のバレイホールドおよびピークホールドを行って、前記バレイホールドにより得られた前記ドレイン電流または前記ソース電流の最小値である第1の電流検出信号を出力し、前記ピークホールドにより得られた前記ドレイン電流または前記ソース電流の最大値である第2の電流検出信号を出力する電流監視回路と、前記第1の電流検出信号に基づいて、前記電界効果トランジスタのゲートに印加する正または負の値をもつ前記制御信号の最小電圧を制御する第1の可変ゲート電圧回路と、前記第2の電流検出信号に基づいて、前記制御信号の最大電圧を制御する第2の可変ゲート電圧回路と、を備える波形整形回路と、
    を有し、
    前記第1の可変ゲート電圧回路は、前記第1の電流検出信号から前記ドレイン電流または前記ソース電流の増加を認識した場合に前記最小電圧を下降させ、前記第2の可変ゲート電圧回路は、前記第2の電流検出信号から前記ドレイン電流または前記ソース電流の低下を認識した場合に前記最大電圧を上昇させる、
    イッチング電源装置。
  5. 電界効果トランジスタのドレイン電流またはソース電流に基づいて、前記電界効果トランジスタのゲートに印加する正または負の値をもつパルス電圧の最小電圧を制御する第1の可変ゲート電圧回路と、
    前記ドレイン電流または前記ソース電流に基づいて、前記パルス電圧の最大電圧を制御する第2の可変ゲート電圧回路と、
    を備え、
    前記第1の可変ゲート電圧回路は、
    並列に接続された第1の容量素子と第1の抵抗素子を有し、第1の端子に入力電圧が印加され、第2の端子に前記電界効果トランジスタのゲート端子が電気的に接続された第1の並列回路と、
    第1のツェナーダイオードと、
    前記第1の並列回路の前記第2の端子と、前記第1のツェナーダイオードのアノードとの間に直列に接続された1または複数の第2のツェナーダイオードと、
    それぞれが、前記第2のツェナーダイオードの何れかのカソードに一端が接続され他端が前記第2の端子に接続された複数の第1のスイッチと、
    前記ドレイン電流または前記ソース電流に基づいて、前記第1のスイッチのオンオフを制御する第1のスイッチ制御回路と、を有し、
    前記第2の可変ゲート電圧回路は、
    並列に接続された第2の容量素子と第2の抵抗素子を有し、第3の端子が基準電位となり、第4の端子に前記第1のツェナーダイオードのカソードが接続された第2の並列回路と、
    アノードが前記基準電位となる第3のツェナーダイオードと、
    前記第2の並列回路の前記第4の端子と、前記第3のツェナーダイオードのカソードとの間に直列に接続された1または複数の第4のツェナーダイオードと、
    それぞれが、前記第4のツェナーダイオードの何れかのカソードに一端が接続され他端が前記基準電位となる複数の第2のスイッチと、
    前記ドレイン電流または前記ソース電流に基づいて、前記第2のスイッチのオンオフを制御する第2のスイッチ制御回路と、を有する、
    波形整形回路。
JP2018053400A 2018-03-20 2018-03-20 波形整形回路、半導体装置及びスイッチング電源装置 Active JP7060793B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018053400A JP7060793B2 (ja) 2018-03-20 2018-03-20 波形整形回路、半導体装置及びスイッチング電源装置
US16/248,876 US10763737B2 (en) 2018-03-20 2019-01-16 Waveform shaping circuit, semiconductor device, and switching power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018053400A JP7060793B2 (ja) 2018-03-20 2018-03-20 波形整形回路、半導体装置及びスイッチング電源装置

Publications (2)

Publication Number Publication Date
JP2019165596A JP2019165596A (ja) 2019-09-26
JP7060793B2 true JP7060793B2 (ja) 2022-04-27

Family

ID=67983806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018053400A Active JP7060793B2 (ja) 2018-03-20 2018-03-20 波形整形回路、半導体装置及びスイッチング電源装置

Country Status (2)

Country Link
US (1) US10763737B2 (ja)
JP (1) JP7060793B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713880A (zh) * 2020-12-21 2021-04-27 上海联影医疗科技股份有限公司 脉冲电路和电子枪
CN115632539A (zh) * 2021-07-01 2023-01-20 纳维达斯半导体有限公司 具有能量收集栅极驱动器的集成功率器件
US11955961B2 (en) * 2021-10-12 2024-04-09 Electronics And Telecommunications Research Institute Switch circuit for ultra-high frequency band

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050300A (ja) 2010-08-30 2012-03-08 Fujitsu Ltd スイッチング素子補償回路
JP2017092890A (ja) 2015-11-17 2017-05-25 株式会社デンソー 通電素子駆動装置
US20180013413A1 (en) 2016-07-06 2018-01-11 Delta Electronics, Inc. Waveform conversion circuit for gate driver
US20180062510A1 (en) 2016-08-24 2018-03-01 Texas Instruments Incorporated Methods and circuitry for sampling a signal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519879A (ja) 1991-07-09 1993-01-29 Mitsubishi Electric Corp 電流制限回路
JP4599954B2 (ja) 2004-09-16 2010-12-15 富士電機システムズ株式会社 スイッチングレギュレータおよびその駆動制御方法
US7982446B2 (en) * 2008-02-01 2011-07-19 International Rectifier Corporation Power supply circuit with dynamic control of a driver circuit voltage rail
KR101529974B1 (ko) * 2008-07-29 2015-06-18 삼성전자주식회사 스위칭 가변 저항부를 구비한 반도체 집적회로
US9397568B2 (en) * 2014-01-31 2016-07-19 Renesas Electronics Corporation Semiconductor integrated circuit device and power supply system
US10084448B2 (en) * 2016-06-08 2018-09-25 Eridan Communications, Inc. Driver interface methods and apparatus for switch-mode power converters, switch-mode power amplifiers, and other switch-based circuits
US10659036B2 (en) * 2018-02-27 2020-05-19 The Florida State University Research Foundation, Inc. Radio-frequency isolated gate driver for power semiconductors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050300A (ja) 2010-08-30 2012-03-08 Fujitsu Ltd スイッチング素子補償回路
JP2017092890A (ja) 2015-11-17 2017-05-25 株式会社デンソー 通電素子駆動装置
US20180013413A1 (en) 2016-07-06 2018-01-11 Delta Electronics, Inc. Waveform conversion circuit for gate driver
US20180062510A1 (en) 2016-08-24 2018-03-01 Texas Instruments Incorporated Methods and circuitry for sampling a signal

Also Published As

Publication number Publication date
US10763737B2 (en) 2020-09-01
US20190296632A1 (en) 2019-09-26
JP2019165596A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
US20160380541A1 (en) Soft-start circuit and buck converter comprising the same
JP7060793B2 (ja) 波形整形回路、半導体装置及びスイッチング電源装置
CN110431429B (zh) 功率半导体开关元件的损伤预测装置和损伤预测方法、ac-dc转换器、dc-dc转换器
US20160065204A1 (en) System and Method for Generating an Auxiliary Voltage
JP6982236B2 (ja) 同期整流回路及びスイッチング電源装置
US20180159424A1 (en) Multi-Cell Power Converter with Improved Start-Up Routine
US10432081B2 (en) Waveform shaping circuit, semiconductor device, and switching power supply device
JP2018042188A (ja) スイッチングユニットおよび電源回路
JP6951631B2 (ja) 同期整流回路及びスイッチング電源装置
US10447141B2 (en) Waveform shaping circuit, semiconductor device, and switching power supply device
US9601996B2 (en) Switching power supply apparatus
US9722599B1 (en) Driver for the high side switch of the cascode switch
US11190107B2 (en) Auxiliary power supply circuit, power supply apparatus, and power supply circuit
US11509237B2 (en) Power conversion device
US20060187692A1 (en) Output voltage control of a synchronous rectifier
CN113809910A (zh) 开关控制电路及电源电路
JP5884040B2 (ja) 負荷制御装置
JP7344183B2 (ja) 電源装置
JP5034389B2 (ja) Dc−dcコンバータ
US11342857B2 (en) Synchronous rectification controller and isolated synchronous rectification type dc/dc converter
WO2023042393A1 (ja) スイッチング制御装置、スイッチング電源装置および電力供給システム
WO2023042392A1 (ja) スイッチング制御装置、スイッチング電源装置および電力供給システム
US20220216795A1 (en) Power conversion circuit, power module, converter, and inverter
JP5106132B2 (ja) スイッチング電源装置
JP2024003305A (ja) スイッチ駆動回路、電源制御装置、スイッチング電源

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7060793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150