JP7057586B2 - 滅菌かつ核酸分解用組成物 - Google Patents

滅菌かつ核酸分解用組成物 Download PDF

Info

Publication number
JP7057586B2
JP7057586B2 JP2020173677A JP2020173677A JP7057586B2 JP 7057586 B2 JP7057586 B2 JP 7057586B2 JP 2020173677 A JP2020173677 A JP 2020173677A JP 2020173677 A JP2020173677 A JP 2020173677A JP 7057586 B2 JP7057586 B2 JP 7057586B2
Authority
JP
Japan
Prior art keywords
formaldehyde
concentration
nucleic acid
decomposition
formic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020173677A
Other languages
English (en)
Other versions
JP2021010378A (ja
Inventor
利彦 岡崎
康士 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEALIVE Inc
Original Assignee
SEALIVE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEALIVE Inc filed Critical SEALIVE Inc
Publication of JP2021010378A publication Critical patent/JP2021010378A/ja
Application granted granted Critical
Publication of JP7057586B2 publication Critical patent/JP7057586B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • A01N35/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical containing aliphatically bound aldehyde or keto groups, or thio analogues thereof; Derivatives thereof, e.g. acetals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/02Saturated carboxylic acids or thio analogues thereof; Derivatives thereof

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

本発明は、細菌やウイルス等の滅菌と、核酸やLipopolysaccharide(以下、LPS)を分解することが可能な滅菌・核酸分解用組成物に関する発明である。本出願は、日本国において2018年7月30日に出願された日本特許出願番号特願2018-142530を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
分子生物学や生化学等に係る試験や研究実験等を行うに当り、水に難溶性の高分子である核酸が、使用する反応容器等の固体の表面や反応液等の液体中に不必要に混入していたり、雑菌や細胞が、反応容器等の固体の表面や反応液等の液体中に不必要に混入していたりすれば、それが試験や研究実験等の結果に重大な悪影響を及ぼすおそれがある。また、滅菌はしたものの残存する雑菌や細胞に存在するLPSが試験や研究実験等の結果に重大な悪影響を及ぼすおそれがある。
例えば、特許文献1に記載されている吸水樹脂、及び吸水樹脂に保持されたホルムアルデヒド水溶液を含有する殺菌材が、優れた殺菌作用を持ち、且つ安価で簡便に廃棄することができる優れた殺菌材として使用できることが記載されている。
しかしながら、特許文献1に記載の殺菌材では、十分な殺菌効果を得るためには10~50%のホルムアルデヒド濃度の水溶液が必要とされている。高濃度のホルムアルデヒドは、人体に対して粘膜への刺激性を中心とした急性毒性があり、蒸気は呼吸器系、目、のどなどの炎症を引き起こすといった毒性を有するものである。一方で、ホルムアルデヒドが5%以下といった低濃度では十分な殺菌効果を得ることができなかった。
ところで、メタノールから触媒反応により発生する複合ガスを利用した滅菌システムは、これまで医療器具等の滅菌に用いるガスとして多用されていたエチレンオキサイドガス(EOG)やオゾン等以上の殺菌力を持ち、残留性、腐食性が極めて少ないことが確認されており、浸透性や拡散性も優れていることから現在多くの分野において注目されている。
複合ガスとは、メタノールから触媒により生じた強力な殺菌効果及び滅菌効果をもつガスのことである。複合ガスは、浸透性が高く、大気圧のままでも被滅菌物の内部まで浸透して滅菌ができる。接触性殺菌のミストでないことから、金属の腐食やプラスチック等の劣化(腐食性)が少なく、被滅菌物の素材を選ばず、さらに、被滅菌物に残留しにくい(残留性)などの優れた特質があり、拡散性も広く隅々まで満遍なく暴露が可能であり、細かな隙間まで浸透し、精密機器や電子機器等の通電稼動状態においても暴露が可能であり、高い有用性がある。
この技術分野に関し、本件の発明者等は、自己反応のための触媒反応温度を一定に保ち、安定した濃度の滅菌ガスを発生させる滅菌・核酸分解処理装置を先に提案している(例えば、特許文献2参照)。この滅菌・核酸分解処理装置によれば、核酸分解の効果効能を発揮する環境温度を37℃の体温域とし、15分以内の短時間で、且つ、低いホルムアルデヒド成分濃度において、二重螺旋のDNA核酸を有効に分解(10 base pair(bp)以下の塩基鎖へのバラバラ状態)する能力を有し、気相の核酸分解法として核酸分解能99.99%~100%を達成することができる。一方で、これらの効能を引き起こす成分の特定や詳しいメカニズムは未だ十分には解明されていなかった。
LPSは、グラム陰性菌細胞壁外膜の構成成分であり、脂質及び多糖から構成される物質(糖脂質)である。LPSは内毒素(エンドトキシン)であり、ヒトや動物など他の生物の細胞に作用すると、多彩な生物活性を発現する。LPSの生理作用発現は、宿主細胞の細胞膜表面に存在するToll様受容体 (Toll-like Receptor、TLR) 4 (TLR4) を介して行われる。更に本件の発明者等は、グラム陰性菌細胞壁外膜の構成成分であるLPSをも分解する能力があることを見出した。LPSは細胞壁から容易には遊離せず、細菌が死滅したときなどに細胞が融解・破壊されることで遊離し、それが動物細胞などに作用することで毒性を発揮する。このような性質から、細菌が外に分泌する毒素(=外毒素)ではなく、分泌されない「菌体内に存在する毒素」、すなわち内毒素とも呼ばれる。
LPSの分解に関しては、特許文献3に記載のようにオゾン分解を用いて多糖部分を脱重合する方法が示されてはいるが、これらは多糖類からの糖の切り出し方法で有り、LPSの分解不活化を狙ったものではない。
また、特許文献4記載の免疫調節活性物質の濃度を増加及び/または減少させる方法については、LPSを分解するのではなく、受容体を介する吸着機構により量の増減を図るものである。
LPSは熱的・化学的にも安定で、通常の滅菌に用いられるオートクレーブでは不活化することができない。不活化には250℃で30分間の加熱や、γ線等の放射線を照射することを要することが知られているのみである。しかしながら、これらの条件では耐熱性のない材料からなる器材には適用できないし、運搬できない環境浄化の用途にも適用できるものは今まで存在しなかった。
特開2013-166729号公報 特許第5463378号公報 特表2001-519817号公報 特表2003-519503号公報
本発明は、このような状況を鑑みてなされたものであり、ホルムアルデヒドの低濃度域での滅菌と核酸分解を可能とし、かつ且つ短時間で優れた効能を発揮することのできる滅菌・核酸分解用組成物を提供することを一つ目の目的とし、さらにLPSを分解することを二つ目の目的とする。
本発明者らは、複合ガス中の成分分析により滅菌及び核酸分解に寄与する特定の物質を見出し、そのメカニズムを明らかにすることで本発明を完成させた。
また、本出願の発明者らは、ほぼ同じ滅菌、核酸分解組成物を用いることで、液体状態での反応についても、気体状態での反応についても、滅菌、核酸分解に要する時間よりも長時間の曝露が必要である点が異なるものの、LPSを不活化、少なくともリムルス活性を不活化させうることを見出した。
すなわち、本発明の一態様は、核酸の分解と、滅菌することが可能な液体状態の滅菌・核酸分解用組成物であって、少なくともホルムアルデヒドとギ酸を含有し、ホルムアルデヒドの濃度が10重量%以下であり、かつ、ギ酸の濃度が1重量%以下である。
本発明の一態様によれば、ホルムアルデヒドとギ酸を上記割合で混合することにより、それぞれ単独では効能を発揮しないような低濃度であっても高効率な核酸分解を可能とする。
このとき、本発明の一態様では、更に、メタノールを含み、メタノール、ホルムアルデヒド、ギ酸の誘導体を任意に含むとしても良い。
滅菌対象物や使用条件に合わせて、メタノールや、メタノール誘導体、ホルムアルデヒド誘導体、ギ酸誘導体を適宜含めることによって、より効能を発揮させることができる。
また、本発明の一態様では、さらにLPSを分解できることを特徴とする。
本発明の他の態様は、核酸の分解と、滅菌することが可能な気体状態の滅菌・核酸分解用組成物であって、少なくともホルムアルデヒドとギ酸を含有する。
本発明の他の態様によれば、気相中にホルムアルデヒドとギ酸を含む複合ガスは、低濃度であっても短時間で優れた核酸分解能を発揮することができる。
このとき、本発明の他の態様では、メタノール、ホルムアルデヒド、ギ酸、一酸化炭素、二酸化炭素、水素、酸素及び/又はこれらのラジカルを含むとしても良い。
これらの組成物及び/又はそのラジカル種を含有するかは任意である。
また、本発明の他の態様では、ホルムアルデヒドの濃度が500ppm以下であり、かつ、ギ酸の濃度が400ppm以下としてもよい。
また、本発明の他の態様では、さらにLPSを分解できる。
本発明によれば、低濃度域での滅菌と核酸分解を可能とし、かつ短時間で優れた効能を発揮することができる。
(A)~(E)は、比較例1として、ホルムアルデヒドのみを使用した場合のDNA分解能の結果を示す図である。 (A)~(D)は、比較例2として、ギ酸のみを使用した場合のDNA分解能の結果を示す図である。 (A)、(E)は、ギ酸のみ、(B)、(D)は、ホルムアルデヒドのみ、(C)、(F)は、実施例としてホルムアルデヒドとギ酸を併用した場合のDNA分解能の結果を示す図である。 (A)、(E)は、ギ酸のみ、(B)、(D)は、ホルムアルデヒドのみ、(C)、(F)は、実施例としてホルムアルデヒドとギ酸を併用した場合のDNA分解能の結果を示す図である。
以下、本発明に係る滅菌・核酸分解用組成物について図面を参照しながら説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能である。
上述した通り、ホルムアルデヒドは、細菌及び真菌などの微生物に対する滅菌効果を有しており、様々な分野で実用化されている。一方で、ホルムアルデヒドは病理学においてホルムアルデヒドの水溶液であるホルマリン浸漬による生体組織の長期固定などに古くから用いられて来たが、最近ではホルマリン固定組織からDNAやRNAなどの核酸物を抽出する技術が開発されたことで、その遺伝学的解析に応用され医学の進歩に大きく寄与している。
そこで議論されているのは、いかに上手くNickなどの核酸の損傷のない、遺伝情報が保たれた長鎖の核酸物を抽出することができるかということで、その保存方法や抽出方法に様々な工夫がなされてきた。これらから、ホルムアルデヒドには核酸分解能というよりも保存性能の面から利用されて来たことがわかる。
科学文献的な観点では、ホルムアルデヒドはアミノ酸や生体異物を代謝する際、内因的にも生成し、ホルムアルデヒドに暴露されていない人でも、血液中ホルムアルデヒド濃度が2.61 ± 0.14 μg/g(ほぼ2.6 ppm)との報告がある(化学物質の初期リスク評価書_独立行政法人 製品評価技術基盤機構 化学物質管理センター)。しかし、ホルムアルデヒドの作用として蛋白質分子の架橋反応が知られており、ホルムアルデヒド分子中のアルデヒド基が組織中の蛋白質のアミノ基に結合し、さらに架橋することで蛋白質の立体構造を損なわせる。特に高濃度ではホルマリンは核酸と蛋白質の架橋を引き起こすため、DNAは物理的ストレスを受けやすくなり断片化が生じるとされている。
一方で、ギ酸に関しては核酸分解能に関しての知見は乏しく、一部でDNAを脱プリン化によるDNA鎖切断の要因のことが触れられているに過ぎない。その具体的な濃度による効果効能についての文献は皆無である。すなわち、ホルムルデヒド及びギ酸共に滅菌の効能についての報告は見られるが、それらによる核酸分解能については未だ詳細な報告はない。特に、ホルムアルデヒド及びギ酸による低濃度域での核酸分解の効果効能については明らかにされていない。
上述したような滅菌システムはその発生複合ガスにより、滅菌と核酸分解を同時に可能とする効能効果を有することを既に報告してきたが、本件では滅菌システムが生み出すこれらの効能に関して、発生複合ガス中に含まれる組成成分分子毎に各々単独に、濃度、反応時間と効能との相関関係の評価を行い、さらにそれらの様々な混合比別に効能効果への影響を検討しデータベース化することで、低濃度域でかつ極めて短時間で効能を発揮するメカニズム(Mode of Action)及び最適化条件を初めて明らかにし本発明に至ったものである。
すなわち、本発明の一実施形態に係る滅菌・核酸分解用組成物は、核酸の分解と、滅菌することが可能な液体状態の滅菌・核酸分解用組成物であって、少なくともホルムアルデヒドとギ酸を含有し、ホルムアルデヒドの濃度が10重量%以下であり、かつ、ギ酸の濃度が1重量%以下である。
本発明によれば、ホルムアルデヒドとギ酸を上記割合で混合することにより、それぞれ単独では効能を発揮しないような低濃度であっても高効率な滅菌と核酸分解を可能とする。ギ酸を共存させることにより、ホルムアルデヒドは濃度が10重量%以下でも滅菌と核酸分解効果を発揮するようになる。ホルムアルデヒドの濃度は、より好ましくは(ギ酸の共存下で滅菌と核酸分解効果を得るための最低濃度という観点からは)5重量%以下でも良い。ホルムアルデヒド濃度の下限値はおおよそ0.1重量%である。また、ホルムアルデヒドと混合させるギ酸の濃度は1重量%以下で十分である。ギ酸の濃度の下限値もおおよそ0.1重量%である。
本発明の一実施形態に係る滅菌・核酸分解用組成物は、細菌、真菌類及びウイルス等の滅菌と核酸分解に有効である。本発明の一実施形態に係る滅菌・核酸分解用組成物によれば、5分以内の短時間で、条件によっては1分間で、細菌、真菌類及びウイルス等のDNA及びRNAを有効に分解(10bp以下の塩基鎖へのバラバラ状態)し、極めて高い核酸分解効果を奏することができる。
本発明の一実施形態に係る滅菌・核酸分解用組成物は、純水等の水や、メタノール、エタノール等のアルコール類、その他の有機溶媒、或いはこれらの混合液等を溶媒として用いても良い。溶媒中には、pHを調整するための緩衝液や、保存料等が適宜含まれていても良い。
また、本発明の一実施形態に係る滅菌・核酸分解用組成物は、使用時にホルムアルデヒド及びギ酸が上記濃度となっていればよいため、例えば、使用前の保管時には、高濃度に濃縮された状態とし、使用時に適宜希釈して用いても良い。或いは、それぞれの成分を分割して保管し、使用時に混合して用いるような態様でも良い。
本発明の一実施形態に係る滅菌・核酸分解用組成物は、更に、メタノールを含み、メタノールの誘導体、ホルムアルデヒドの誘導体、ギ酸の誘導体を任意に含むことができる。なお、ここで、誘導体とは、任意の官能基の導入、酸化、還元、原子の置き換えなど、メタノール、ホルムアルデヒド、又はギ酸の構造や性質を大幅に変えない程度の改変がなされた化合物を言う。
一方、本発明の一実施形態に係るLPS分解用組成物は、LPSを分解することが可能な液体状態の組成物であって、滅菌・核酸分解用と同じく、少なくともホルムアルデヒドとギ酸を含有し、ホルムアルデヒドの濃度が10重量%以下であり、かつ、ギ酸の濃度が1重量%以下である。本発明によれば、ホルムアルデヒドとギ酸を上記割合で混合することにより、それぞれ単独では効能を発揮しないような低濃度であってもLPS分解を可能とする。ギ酸を共存させることにより、ホルムアルデヒドは濃度が10重量%以下でもLPS分解効果を発揮するようになる。ホルムアルデヒドの濃度は、より好ましくは(ギ酸の共存下で滅菌と核酸分解効果を得るための最低濃度という観点からは)5重量%以下でも良い。ホルムアルデヒド濃度の下限値はおおよそ0.03重量%である。また、ホルムアルデヒドと混合させるギ酸の濃度は1重量%以下で十分である。ギ酸の濃度の下限値もおおよそ0.01重量%である。LPS分解用組成物によれば、好ましくは10分~2時間、より好ましくは15分から2時間程度接触反応させることで、1mLあたり、100から1000EU(エンドトキシンユニット)の量のLPSを約半減程度以下にさせることが出来る。
本発明の一実施形態に係る滅菌・核酸分解用組成物の液相での使用態様は特に限定されないが、例えば、滅菌・核酸分解、LPS分解対象物を滅菌・核酸分解もしくはLPS分解用組成物溶液に浸漬することにより滅菌・核酸分解およびLPS分解しても良いし、滅菌・核酸分解、LPS分解対象物に滅菌・核酸分解、LPS分解用組成物を吹きかけるようにして滅菌・核酸分解、LPS分解しても良い。特に滅菌・核酸分解用組成物、LPS分解用組成物をミスト状にして対象物に対して噴霧すると効果的である。滅菌・核酸分解用組成物との接触時間は、5分以内で十分な効果を得ることができる。但し、LPS分解用組成物によるLPS分解については、30分以上の反応を待った方が良い。また、接触温度も特には限定されず、室温でも良いし、適宜37~50℃程度に、さらに60℃程度に加熱しても良い。これ以上の高温になると、被処理物の耐熱性を考慮する必要が出てくるため、好ましくはない。
また、本発明の一実施形態に係る滅菌・核酸分解用組成物は、気体状態で使用することも可能である。すなわち、本発明の一実施形態に係る滅菌・核酸分解用組成物は、核酸の分解と滅菌することが可能な気体状態の滅菌・核酸分解用組成物であって、少なくともホルムアルデヒドとギ酸を含有する。ホルムアルデヒドとギ酸の好ましい濃度範囲の一例として、ホルムアルデヒドの濃度が500ppm以下であり、かつ、ギ酸の濃度が400ppm以下である。また、ホルムアルデヒドの濃度が200ppm以下であり、かつ、ギ酸の濃度が100ppm以下の時、微生物(BI指標菌)に対して5分以内で効果的に作用することを発明者らは確認している。
このように、気体状態においても、気相中にホルムアルデヒドとギ酸を所定の濃度範囲で含む複合ガスは、低濃度であっても短時間で優れた滅菌と核酸分解能を発揮することができる。
一方、本発明の一実施形態に係るLPS分解用組成物は、気体状態でLPSを分解することが可能な組成物であって、滅菌・核酸分解用と同じく、少なくともホルムアルデヒドとギ酸を含有する。ホルムアルデヒドとギ酸の好ましい濃度範囲の一例として、ホルムアルデヒドの濃度が500ppm以下であり、かつ、ギ酸の濃度が400ppm以下である。また、ホルムアルデヒドの濃度が200ppm以下であり、かつ、ギ酸の濃度が100ppm以下の時、LPS分解用組成物によれば、好ましくは10分~2時間、より好ましくは15分から2時間程度接触反応させることで、1mLあたり、100から1000EU(エンドトキシンユニット)の量のLPSを半減程度以下にさせることが出来る。
本発明の一実施形態に係る滅菌・核酸分解用組成物を気体状態で使用する方法は、ホルムアルデヒドとギ酸を含む複合ガスとなるのであれば特に限定されない。例えば、液体状態の本発明の一実施形態に係る滅菌・核酸分解用組成物を加熱により気化させても良いし、メタノール等を銅などの触媒と反応させて発生する複合ガス中のホルムアルデヒドとギ酸が所定の濃度範囲となるように反応条件を設定しても良い。ホルムアルデヒドとギ酸の濃度の下限値は特に限定されるわけではないが、おおむね1ppmである。
また、本発明の一実施形態に係る滅菌・核酸分解用組成物は、気体状態にする過程で、メタノール、ホルムアルデヒド、ギ酸、一酸化炭素、二酸化炭素、水素、酸素及び/又はこれらのラジカルが含まれていても良い。
本発明の一実施形態に係る滅菌・核酸分解用組成物の気相での使用態様は特に限定されないが、例えば、チャンバー等の閉じた空間内に滅菌・核酸分解対象物を載置し、本発明の一実施形態に係る滅菌・核酸分解用組成物を気化したものを充満させることにより滅菌・核酸分解することができる。この時、適度な湿度(50~90相対湿度%)を加えても良いし、滅菌・核酸分解対象物が水分に弱いときは、低湿度(50相対湿度%未満)で滅菌・核酸分解しても良い。また、接触温度も特には限定されず、室温でも良いし、適宜37~50℃程度、さらには60℃程度までに加熱しても良い。これ以上の高温になると、被処理物の耐熱性を考慮する必要が出てくるため、好ましくはない。
以上、説明してきたように、本発明の一実施形態に係る滅菌・核酸分解用組成物は、液相状態、気相状態のいずれにおいても、ホルムアルデヒドとギ酸を組み合わせることによって、それぞれ単独では効果を発揮しないような低濃度域においても、優れた滅菌効果と核酸(DNA、RNA等)の分解能を有し、短時間で効能を発揮することができる。
以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
[1.DNAの調整]
核酸分解の試験に用いるDNAは継代培養したHeLa cells (ヒト子宮頸がん由来の細胞株:human cervical adenocarcinoma)(American Type Culture Collection: ATCC)から、DNeasy Blood & Tissue (Qiagen)のメーカープロトコールに従いgenomic DNAとして抽出精製したものを用いて実施した。
精製したgenomic DNAの濃度は, Nano-drop (NanoDrop One, Thermo Fisher Scientific)を用いて測定し、UltraPureTM DNase/RNase-Free Distilled Water (DW ; Thermo Fisher Scientific)にて希釈濃度調整した。希釈濃度調整したgenomic DNAを超音波破砕機 (UR-21P, TOMY) を用いて超音波破砕を行ったものを破砕DNAサンプルとして用いた。
得られた破砕DNAの500ngをそれぞれ用いて以下の実験を行なった。
[2.比較例1:ホルムアルデヒド単独でのDNA分解能]
比較例1として、ホルムアルデヒドを単独で使用した場合のDNA分解能につき、ホルムアルデヒド濃度及び反応時間によるDNA分解能の検討を行なった。ホルムアルデヒド(37.0%、WAKO特級試薬)を蒸留水で希釈して、0.1%、0.5%、1.0%、2.0%、3.0%、4.0%、5.0%、10%、20%、30%のホルムアルデヒド溶液を調製した。0.5 ml PCRチューブにそれぞれのホルムアルデヒド希釈濃度になるよう分取調整を行い、最後に破砕DNAサンプルを添加し、ストップウオッチにて反応時間を計測した。反応終了後、速やかにQIAquick PCR purification kitによりサンプルの洗浄・回収を行い、得られたサンプルをBioanalyzerにより解析を行った。
なお、以降の比較例及び実施例において、Bioanalyzerに付与されているマーカーのうち、Upper Marker(分子量17000)のピーク値に対してのサンプルの測定ピーク値の割合からDNA分解効果を以下のように分類する。
Upper Markerピーク値の75%以上100%以下:レベル1
Upper Markerピーク値の50%以上75%未満 :レベル2
Upper Markerピーク値の25%以上50%未満 :レベル3
Upper Markerピーク値の25%未満:レベル4
(結果)
ホルムアルデヒド単独でのDNA分解能の結果を図1に示す。ホルムアルデヒド希釈液単独でのDNA分解能の評価結果は、1分の反応時間で0.1%~5.0%の低濃度域では明らかなDNA分解効果を認めなかった。10%以上の高濃度域においても、ホルムアルデヒド希釈溶液10%[FA10%](以下、「GA」はギ酸を、「FA」はホルムアルデヒドを表す。), 1min.でレベル3(0.385)(図1(A))、3min.でもレベル4 (0.138)(図1(B))で、DNAの完全分解効果は得られなかった。[FA30%]の高濃度になると、5min.(図1(C))でDNAの完全分解効果を示した。
低濃度域として0.1%~5.0%におけるDNA分解能を詳細に調べた結果、3分間の反応時間では0.1~3.0%では明らかなDNA分解効果を認めなかったが、4.0%濃度になると若干のDNA分解効果が認められるようになり、5.0%濃度でようやくレベル3 (0.491)(図1(D))のDNA分解能を認めた。5分間の反応時間においても、0.1~2.0%では明らかなDNA分解効果を認めなかったが、3.0~4.0%濃度で若干のDNA分解能が見られるようになり、5.0%濃度でレベル3 (0.422)(図1(E))のDNA分解能を認めた。
[3.比較例2:ギ酸単独でのDNA分解能]
比較例2として、ギ酸単独での濃度、反応時間によるDNA分解能につき検討を行なった。ギ酸(98.0%、WAKO特級試薬)を蒸留水で希釈して、0.1%、0.2%、0.3%、0.4%、0.5%、1.0%、1.5%、2.0%、3.0%、5.0%のギ酸溶液を調製した。以降は、比較例1と同様にしてDNA分解能を評価した。
(結果)
ギ酸単独でのDNA分解能の結果を図2に示す。ギ酸希釈液単独でのDNA分解能の評価結果は、1分間の反応時間で0.1%濃度で若干のDNA分解効果がみられ、1.0%でもレベル3(0.296)(図2(A))とDNAの完全分解効果は得られず中程度のDNA分解能を示した。2.0%以上の高濃度域になると1分間の反応時間でDNAの完全分解効果を認めた。3分の反応時間では、0.1%濃度では若干(レベル1程度)(図2(B))のDNA分解効果がみられ、0.2%濃度でレベル2、0.3~0.5%でレベル3と濃度依存的に中程度のDNA分解効果を示し、1.0%以上になるとDNA完全分解効果を示した(図2(C))。5分の反応時間では、0.1%濃度では若干(図2(D))のDNA分解効果がみられ、0.2~0.5%の濃度域ではレベル1~3と濃度依存的に中程度のDNA分解効果を示し、1.0%以上になるとDNA完全分解効果を示した。
[4.実施例1:ホルムアルデヒド及びギ酸の混合液におけるDNA分解能]
実施例では、本発明の一実施形態に係る滅菌・核酸分解用組成物を用いてDNA分解能を評価した。ホルムアルデヒド及びギ酸の単独ではDNA完全分解効果が得られない濃度範囲において、両者を様々な濃度で混合することによりDNA分解効果の相乗効果が得られるかどうかを検討した。その結果、それぞれ単独希釈液では実現できない低濃度、短時間反応であっても、最小濃度混合比でDNA完全分解効果が得られる最適化条件を特定できた。
ホルムアルデヒド単独での評価結果(比較例1)で明らかになったように、最終濃度が0.1~4.0%の範囲ではほとんどDNA分解効果を認めなかった。同様に、ギ酸単独(比較例2)でも0.1~0.5%の低濃度域では5分間の反応時間によってもレベル4以上のDNA分解効果は得られなかった。そこで、DNA分解効果を示さないホルムアルデヒド濃度の場合に、低濃度のギ酸を添加することによりDNA分解能に対して相乗効果が得られるか否かの評価を行い、相乗効果を認める場合にはDNA完全分解効果を得るためのホルムアルデヒド及びギ酸の最小濃度混合比を明らかにすることを目的に以下の検討を行った。
ホルムアルデヒド及びギ酸原液をそれぞれ蒸留水で希釈し、それらを様々な希釈濃度に調整した混合液を用いてDNA分解能の評価を行なった。すなわち、比較例1、2の場合と同様に、あらかじめ3倍~200倍に希釈した調整試薬を用意し、0.5mlPCRチューブに表1に示すようにそれぞれの希釈試薬を用いて該当する最終濃度に分取調整を行ない、最後に破砕DNAサンプルを添加し、ストップウオッチにて反応時間を計測した。表1に調整したサンプルの一覧を示す。なお、表1中で、「GA」はギ酸を、「FA」はホルムアルデヒドを表す。反応終了後、メーカーのマニュアルに従い速やかにQIAquick PCR purification kitによりサンプルの洗浄・回収を行い、得られたサンプルをBioanalyzerにより解析を行った。
Figure 0007057586000001
(結果)
本発明に係るホルムアルデヒドとギ酸を併用した場合のDNA分解能の結果を表2に示す。表2中で、「n.s.」はほとんど(レベル1未満)DNAの分解効果が得られなかったことを表し、「1」~「4」は上記レベル1~レベル4のDNAの分解効果を表し、「CD」はほぼ完全にDNAの分解効果が得られたことを表す。ホルムアルデヒド単独での評価結果で明らかになったように、最終濃度が0.1~4.0%の範囲ではほとんどDNA分解効果を認めなかったのに対し、低濃度のギ酸を添加することで、相乗効果によりDNAの完全分解効果を得ることが分かった。実用化においては、短時間で、残留性の少ない条件下での効能評価による運用基準が優先されることから、以下では、作用時間、濃度の面からDNA完全分解効果の得られる最適化条件の具体例を示す。
Figure 0007057586000002
まず検討した混合希釈液の範囲で、1分間という短時間でDNA完全分解効果を得るための条件は、[GA 0.4% + FA 4.0%], 1minの反応条件が必要であることが分かった。(図3(A)~(C)参照、図3(A)がギ酸のみ、(B)がホルムアルデヒドのみであり、(C)で両者を併用することにより、DNA完全分解効果が得られていることが分かる。)
ギ酸の最小濃度[GA 0.1%]希釈液の添加によりDNAの完全分解効果の得られるホルムアルデヒド最小濃度は、FA濃度が3%以下では5min.の反応時間によっても得られず、[FA 4.0%]濃度で5min.の反応時間が必要であることが明らかになった。(図3(D)~(F)参照、図3(D)がホルムアルデヒドのみ、(E)がギ酸のみであり、(F)が両者を併用した場合である。)
ホルムアルデヒドの最小濃度[FA 0.1%]希釈液の添加によりDNAの完全分解効果の得られるギ酸最小濃度は0.4%で、[GA 0.4%]で5min.の反応時間によりDNAの完全分解効果を示すことが明らかになった。さらに濃度を上げ[GA 0.5%]では、さらに短時間 (3min.)でDNAの完全分解効果を示した。(図4(A)~(F)参照、図4(A)、(E)がギ酸のみ、(B)、(D)がホルムアルデヒドのみであり、(C)、(F)が両者を併用した場合である。)
このように、単剤ではDNA分解能が得られない低濃度域であっても、それらを混合することで相乗効果によって極めて高いDNA分解能を獲得することが可能となることが明らかになった。滅菌・核酸分解処理装置を用いてこの混合液に相当するホルムアルデヒドとギ酸を同時に発生させることが可能であり、これにより優れたDNA分解能を示すシステムであると言える。すなわち、この最適化濃度の複合ガスを同時に生成させることのできるシステムである。
[5.実施例2:ホルムアルデヒド及びギ酸の混合ガスにおけるDNA分解能]
実施例1と同様にして、ホルムアルデヒド及びギ酸の混合ガスを用いて、核酸分解を検討した。DNA分解能の結果を表3に示す。
Figure 0007057586000003
[6.実施例3~19:ホルムアルデヒド及びギ酸の混合液及びガスにおけるLPS分解能]
LPSの標準試料としては、ENDOSAFE(ENDOTOXIN INDICATOR; Catalog #EVV2K, コード番号513-87082)を用い、注射用水(大塚)を用いて規定の濃度に希釈したものを使用して測定した。容器や分注チップはすべてLPSフリーのものを用いた。
測定は、endosafe-PTSを使い、PTSカートリッジJP(5-0.05EU/mL)を用いて測定した。ホルムアルデヒド、ギ酸は、測定上干渉作用があり、予めリムルスES-IIシングルテストを用い検討し、endosafe-PTS測定時のホルムアルデヒド濃度は0.03%以下、ギ酸の濃度は0.003%以下になるよう濃度設定をおこない実施した。
結果を表4に示す。表中の左から4列目のLPS量とは、分解前のLPS量のことであり、右から2列目の曝露後LPS量との比較によって、LPS分解の程度が分かる。実施例3~9が液体を用いた際の結果である。それぞれ、分解前のLPS量に対して、約半減したことが分かる。
また、実施例10~19は、表4のとおりホルムアルデヒドとギ酸の混合気体で暴露させたときのLPS分解結果である。実施例10,11は、LPS水溶液を1.5mLエッペンドルフチューブに取り、58℃乾燥機中で蒸発乾固させてLPSをペレット状に底に堆積させた状態で実施した。
実施例12~15では、LPS水溶液をPVDFフィルター(0.4μm径)に付着させ、風乾したものをサンプルとして用いた。LPSが、膜全体に広がり、ペレット状のものに比べて薄く広がった状態のモデルとした。明らかにペレット状のものに比べ分解効率が上がっていることが示された。おなじ状態でPVDFフィルターに付着させ、乾燥後、混合ガスでの暴露だけを行わず、実施例12~15と同様に注射用水を用いて回収した際は、LPS量の設定に対し、65%程度の回収が出来ていることを確認した。
また、実施例16~18は、LPS標準バイアル(ENDOSAFE(ENDOTOXIN INDICATOR; Catalog #EVV2K, コード番号513-87082))を開封しキャップを外した状態でそのまま用いて混合ガスに暴露させ、その後注射用水を用いて所定の濃度に希釈し測定した。実施例19は、実施例10,11と同様でペレット状のLPS付着をさせたものであり、実施例19と同時に同じ手法で作成したサンプルをγ線25kGy照射したときのLPS残存量の値が0.66EUであるのに対し、0.33EUとなり更に低下していることが示された。本方法を用いれば、γ線照射に匹敵するLPS分解能を身近に得られるため、産業利用価値が大きいことが分かった。
Figure 0007057586000004
[7.比較例3~4:容器付着混合ガス、ホルムアルデヒドのみによるLPS分解](表5に記載、表中の左から4列目のLPS量とは、分解前のLPS量のことであり、右から2列目の曝露後LPS量との比較によって、LPS分解の程度が分かる。)
混合ガスに暴露した際、容器に付着した微量の成分がLPS分解を起こしている可能性があるため、容器のみに気体での暴露をおこなった後、LPSを添加して60分間反応させた後、残存LPSを測定したところ、分解に対して影響はないことがわかった。また、ギ酸を加えない状況での曝露をおこなったところ、表5に示されているとおり、これもほとんどLPS分解は起こっていないことが分かった。
Figure 0007057586000005
なお、上記のように本発明の一実施形態および各実施例について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。したがって、このような変形例は、全て本発明の範囲に含まれるものとする。
例えば、明細書または図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書または図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、滅菌・核酸分解用組成物の構成も本発明の一実施形態および各実施例で説明したものに限定されず、種々の変形実施が可能である。
本発明の一実施形態に係る滅菌・核酸分解用組成物は、高度先端的医療(細胞治療、遺伝子治療、再生医療)分野や海洋研究分野、航空宇宙分野の他、危機管理分野(防衛、消防、警察等)、医療、介護等におけるDNA・RNAフリー(バイオ系核酸レベルのコンタミネーションの除去・除染)、LPSフリーを必要とする分野や効果効能レベルのコントロールによって滅菌、殺菌、除菌の分野への適用が可能である。

Claims (1)

  1. 核酸の分解と、滅菌することが可能な液体状態の滅菌かつ核酸分解用組成物であって、
    少なくともホルムアルデヒドとギ酸を含有し、
    前記ホルムアルデヒドの濃度が1.0重量%以上10重量%以下かつ前記ギ酸の濃度が0.1重量%以上1重量%以下であるか、又は、前記ホルムアルデヒドの濃度が0.5重量%以上10重量%以下かつ前記ギ酸の濃度が0.2重量%以上1重量%以下である滅菌かつ核酸分解用組成物。
JP2020173677A 2018-07-30 2020-10-15 滅菌かつ核酸分解用組成物 Active JP7057586B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018142530 2018-07-30
JP2018142530 2018-07-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020531679A Division JPWO2020027133A1 (ja) 2018-07-30 2019-07-30 滅菌・核酸分解用組成物

Publications (2)

Publication Number Publication Date
JP2021010378A JP2021010378A (ja) 2021-02-04
JP7057586B2 true JP7057586B2 (ja) 2022-04-20

Family

ID=69231858

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020531679A Withdrawn JPWO2020027133A1 (ja) 2018-07-30 2019-07-30 滅菌・核酸分解用組成物
JP2020173677A Active JP7057586B2 (ja) 2018-07-30 2020-10-15 滅菌かつ核酸分解用組成物
JP2020173678A Active JP7057587B2 (ja) 2018-07-30 2020-10-15 滅菌かつ核酸分解用組成物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020531679A Withdrawn JPWO2020027133A1 (ja) 2018-07-30 2019-07-30 滅菌・核酸分解用組成物

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020173678A Active JP7057587B2 (ja) 2018-07-30 2020-10-15 滅菌かつ核酸分解用組成物

Country Status (2)

Country Link
JP (3) JPWO2020027133A1 (ja)
WO (1) WO2020027133A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512199A (ja) 2008-12-18 2012-05-31 ボーデ ヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング 高められた効力を有する、組み合わされた消毒−及び汚染除去剤
JP2017206557A (ja) 2017-08-18 2017-11-24 国立大学法人九州工業大学 食中毒原因菌選択性抗菌剤および食中毒原因菌選択性抗菌剤含有成形体
JP2017222670A (ja) 2012-02-20 2017-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリマーを用いた殺生物剤の抗微生物活性の増強

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965194A (en) * 1973-10-19 1976-06-22 The Lummus Company Production of formaldehyde in carbon steel reactors
DE3143704A1 (de) * 1981-11-04 1983-05-11 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von formaldehyd
JPH0662478B2 (ja) * 1984-04-12 1994-08-17 三菱瓦斯化学株式会社 ホルムアルデヒド水溶液の製造法
US5708145A (en) * 1993-07-20 1998-01-13 University Of California Immunglobulins reactive with protegrins
JPH11504842A (ja) * 1995-12-01 1999-05-11 ミンテック・コーポレーション 医療装置のための室温滅菌剤
JP2002012505A (ja) * 2000-04-28 2002-01-15 Daicel Chem Ind Ltd 固形化ギ酸、黴・細菌汚染防止飼料及びその製造方法
JP4113556B2 (ja) * 2006-12-04 2008-07-09 国立大学法人九州大学 核酸分解剤および核酸の分解方法
JP2011041483A (ja) * 2009-08-19 2011-03-03 Wingturf Co Ltd 核酸分解剤および核酸分解法
JP5463378B2 (ja) * 2012-03-19 2014-04-09 株式会社シーライブ 核酸分解処理装置
JP6234289B2 (ja) * 2014-03-04 2017-11-22 株式会社ルナエル 対象物の処理方法及び処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512199A (ja) 2008-12-18 2012-05-31 ボーデ ヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング 高められた効力を有する、組み合わされた消毒−及び汚染除去剤
JP2017222670A (ja) 2012-02-20 2017-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリマーを用いた殺生物剤の抗微生物活性の増強
JP2017206557A (ja) 2017-08-18 2017-11-24 国立大学法人九州工業大学 食中毒原因菌選択性抗菌剤および食中毒原因菌選択性抗菌剤含有成形体

Also Published As

Publication number Publication date
JP2021010378A (ja) 2021-02-04
JPWO2020027133A1 (ja) 2020-09-17
JP7057587B2 (ja) 2022-04-20
JP2021010379A (ja) 2021-02-04
WO2020027133A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
Rathore et al. Investigation of physicochemical properties of plasma activated water and its bactericidal efficacy
Lackmann et al. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically
JPS63502244A (ja) 生物流体の殺菌方法および装置およびその容器
Wales et al. Disinfectant testing for veterinary and agricultural applications: A review
Lee et al. Susceptibility of Escherichia coli O157: H7 grown at low temperatures to the krypton-chlorine excilamp
Patange et al. Inactivation efficacy of atmospheric air plasma and airborne acoustic ultrasound against bacterial biofilms
Kwon et al. Potential applications of non-thermal plasma in animal husbandry to improve infrastructure
JP7057586B2 (ja) 滅菌かつ核酸分解用組成物
Loizou et al. Effect of cold atmospheric plasma on SARS-CoV-2 inactivation: a pilot study in the hospital environment
Baik et al. Synergistic effect of hydrogen peroxide and cold atmospheric pressure plasma-jet for microbial disinfection
Lemnaru et al. Antimicrobial Wound Dressings based on Bacterial Cellulose and Independently Loaded with Nutmeg and Fir Needle Essential Oils
Marchetti et al. Evaluation of fungicidal efficacy of benzalkonium chloride (Steramina G uv) and Virkon-S against Microsporum canis for environmental disinfection
US6331514B1 (en) Sterilizing and disinfecting compound
Gierke et al. Investigation on Potential ESKAPE Surrogates for 222 and 254 nm Irradiation Experiments
Kolaparthy et al. Neutrophil extracellular traps: Their role in periodontal disease
Nomura et al. Performance evaluation of bactericidal effect and endotoxin inactivation by low‐temperature ozone/hydrogen peroxide mixed gas exposure
Edirisinghe et al. Efficacy of calcium hypochlorite and ultraviolet irradiation against Mycobacterium fortuitum and Mycobacterium marinum
Rosenkranz et al. Degradation of DNA by cysteine
Butzloff Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies
Kumar et al. Basic concepts of sterilization techniques
EP4149650A1 (en) Lysing of organic matter with augmented oxidizing agents creating a solution with reduced microbial concentration
Hut et al. The effect of sterilization methods of endoscopic instruments on the body: a study on rat model
Lubitz et al. In vitro inactivation of SARS-CoV-2 by ozonated water via novel hand hygiene device
Nadruz et al. Efficacy of high‐level disinfection of endoscopes contaminated with Streptococcus equi subspecies equi with 2 different disinfectants
Romila et al. APPLICATIONS OF PLASMA IN MEDICINE.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7057586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220714