JP7057501B2 - 光伝送制御方法及び光伝送システム - Google Patents

光伝送制御方法及び光伝送システム Download PDF

Info

Publication number
JP7057501B2
JP7057501B2 JP2018105097A JP2018105097A JP7057501B2 JP 7057501 B2 JP7057501 B2 JP 7057501B2 JP 2018105097 A JP2018105097 A JP 2018105097A JP 2018105097 A JP2018105097 A JP 2018105097A JP 7057501 B2 JP7057501 B2 JP 7057501B2
Authority
JP
Japan
Prior art keywords
optical
band
signal
frequency band
input power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018105097A
Other languages
English (en)
Other versions
JP2019212978A (ja
Inventor
福太郎 濱岡
恭 蓑口
聖司 岡本
由明 木坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2018105097A priority Critical patent/JP7057501B2/ja
Priority to US17/059,238 priority patent/US11245487B2/en
Priority to PCT/JP2019/019926 priority patent/WO2019230480A1/ja
Publication of JP2019212978A publication Critical patent/JP2019212978A/ja
Application granted granted Critical
Publication of JP7057501B2 publication Critical patent/JP7057501B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2537Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to scattering processes, e.g. Raman or Brillouin scattering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation

Description

本発明は、光伝送制御方法及び光伝送システムに関する。
光伝送システムの大容量化のため、波長多重(WDM:Wavelength Division Multiplexing)の帯域拡張が検討されている(例えば、非特許文献1参照)。従来の光伝送システムでは、C帯(1530~1565nm)又はL帯(1565~1625nm)の単一帯域伝送、もしくは、C帯及びL帯を用いた2帯域伝送が用いられる。近年、上記に加えてS帯(1460~1530nm)を用いた、3帯域伝送が研究されている(例えば、非特許文献2、3参照)。
Seiji Okamoto et al.,"5-band (O, E, S, C, and L) WDM Transmission with Wavelength Adaptive Modulation Format Allocation",ECOC 2016 - 42nd European Conference and Exhibition on Optical Communications,2016年9月,p.1172-1174 J. Renaudier et al.,"First 100-nm Continuous-Band WDM Transmission System with 115Tb/s Transport over 100km Using Novel Ultra-Wideband Semiconductor Optical Amplifiers",2017 European Conference on Optical Communication (ECOC),2017年9月 K. Minoguchi et al.,"Experiments on Stimulated Raman Scattering in S- and L-bands 16-QAM Signals for Ultra-Wideband Coherent WDM Systems",Optical Fiber Communication Conference (OFC) 2018,2018年3月,Th1C.4
超広帯域WDM伝送では、光ファイバ伝送時に誘導ラマン散乱が生じることにより、WDM信号帯域間で信号パワーの遷移が生じる(例えば、非特許文献3参照)。例えば、光通信に用いる一般的なシングルモードファイバでは、上記のS帯、C帯及びL帯の信号帯域を用いた場合、およそ100nmの波長差(13.2THzの周波数差)の信号間において短波側から長波側へ信号パワーが遷移する。すなわち、3帯域伝送の場合、S帯のWDM信号パワーがL帯へ遷移する。
上記事情に鑑み、本発明は、波長多重信号に重畳される各周波数帯の光信号のパワーを適切に調整することができる光伝送制御方法及び伝送システムを提供することを目的としている。
本発明の一態様は、光伝送システムが伝送する光多重信号に多重されている周波数帯のうち誘導ラマン散乱が生じる周波数帯を少なくとも含む2以上の前記周波数帯において調整対象の一つの周波数帯を切り替えながら、調整対象の前記周波数帯の光信号のパワーを調整する調整処理を繰り返し行う調整ステップ、を有する光伝送制御方法である。
本発明の一態様は、上述の光伝送制御方法であって、前記光伝送システムは、前記光多重信号に多重される光信号を送信する光送信機と、前記光多重信号から分波された光信号を受信する光受信機とを有し、前記調整処理においては、前記光送信機から送信される調整対象の前記周波数帯の光信号のパワーを変動させたときに、当該光信号を受信した前記光受信機において測定された信号品質に基づいて、当該周波数帯の光信号のパワーを決定する。
本発明の一態様は、上述の光伝送制御方法であって、前記調整ステップにおいては、誘導ラマン散乱が生じない前記周波数帯を除いた複数の前記周波数帯を調整対象として前記調整処理を行う。
本発明の一態様は、上述の光伝送制御方法であって、前記調整ステップにおいては、前記光伝送システムに一つの前記周波数帯のみの光信号を伝送させて前記調整処理を行い、当該周波数帯の光信号のパワーの初期値を決定する。
本発明の一態様は、光多重信号を伝送する光伝送システムであって、前記光多重信号に多重されている周波数帯のうち誘導ラマン散乱が生じる周波数帯を少なくとも含む2以上の前記周波数帯において調整対象の一つの周波数帯を切り替えながら、調整対象の前記周波数帯の光信号のパワーを調整する調整処理を繰り返し行う制御部、を備える。
本発明により、波長多重信号に重畳される各周波数帯の光信号のパワーを適切に調整することが可能となる。
本発明の一実施形態による光伝送システムの構成例を示す図である。 同実施形態による光伝送システムにおける光ファイバ伝送路への入力パワー最適化処理を示すフロー図である。 同実施形態による光伝送システムにおける光ファイバ伝送路への他の入力パワー最適化処理を示すフロー図である。 同実施形態による光伝送システムの他の構成例を示す図である。
以下、図面を参照しながら本発明の実施形態を詳細に説明する。本実施形態では、誘導ラマン散乱が生じるようなWDM光ファイバ伝送条件下において、光ファイバ伝送路への各周波数帯の光信号の入力パワーを最適化する。
通信の大容量化のため、C帯、L帯などの複数の周波数帯を一つの光伝送システム内で使用するなど、多重される周波数帯域が広くなると、短波側から長波側に光パワーが遷移する誘導ラマン散乱が発生する。誘導ラマン散乱は長波側にパワーが遷移する現象であるため、単純には短波側のパワーを上げればよい。しかし、短波側のパワーを上げると今度は、他の非線形光学効果(自己位相変調や相互位相変調)により短波側の信号特性が劣化する。このため、各周波数帯のパワーが伝送中に変動し、意図したパワーにならない。そこで、本実施形態の光伝送システムでは、信号品質が収束するまで、周波数帯毎の最適化処理を繰り返し行う。
最適化処理では、光送信機と光受信機を連携制御する制御装置が、光送信機から送信される周波数帯の光信号のパワーを変動させ、光受信機でBER、Q値等の信号品質を同期して検出し、最良となるパワーを決定する。例えば、実施形態の光伝送システムは、第1の周波数帯について最適化処理を行った後、第1の周波数帯に対して誘導ラマン散乱が発生する第2の周波数帯について最適化処理を行う手順を、第1及び第2の周波数帯の信号品質が収束するまで繰り返す。この方法により、誘導ラマン散乱が発生する広帯域の波長を一つの光伝送システムで用いる場合でも、非線形光学効果を含めた最適値を簡単に見つけ、光ファイバ伝送路への入力パワーを最適化できる。
図1は、本発明の一実施形態による光伝送システム1の構成例を示す図である。光伝送システム1は、誘導ラマン散乱が生じる2以上の周波数帯を使用する。以下では、周波数帯を帯域とも記載する。誘導ラマン散乱は、一般的なシリカファイバでは、100nm程度の波長差がある時に発生する。ここでは、光伝送システム1は、S帯のJ波(Jは1以上の整数)の光信号と、C帯のK波(Kは1以上の整数)の光信号と、L帯のM波(Mは1以上の整数)の光信号とを波長多重伝送する。光伝送システム1は、光送信機2と、波長合波部3と、光増幅器4と、波長分波部6と、光受信機7と、制御装置8とを備える。
光伝送システム1が備える複数台の光送信機2には、S帯の光信号を送信する光送信機2と、C帯の光信号を送信する光送信機2と、L帯の光信号を送信する光送信機2とがある。同図では、S帯の光信号を送信するJ台の光送信機2をそれぞれ、光送信機2-1-1~2-1-Jと記載し、C帯の光信号を送信するK台の光送信機2をそれぞれ、光送信機2-2-1~2-2-Kと記載し、L帯の光信号を送信するM台の光送信機2をそれぞれ、光送信機2-3-1~2-3-Mと記載している。光送信機2-1-1~2-1-Jはそれぞれ、S帯の異なる波長の光信号を送信し、光送信機2-2-1~2-2-Kはそれぞれ、C帯の異なる波長の光信号を送信し、光送信機2-3-1~2-3-Mはそれぞれ、L帯の異なる波長の光信号を送信する。
波長合波部3は、光送信機2-1-1~2-3-Mそれぞれが送信した異なる波長の光信号を合波し、合波された光波長多重信号を出力する。波長合波部3と波長分波部6との間には、(1+N)台(Nは0以上の整数)の光増幅器4が挿入される。隣接する光増幅器4の間は、光ファイバ伝送路5により接続される。
光増幅器4は、一つ前段の波長合波部3又は一つ前段の他の光増幅器4が出力した光波長多重信号を入力し、入力した光多重信号を増幅して一つ後段の他の光増幅器4又は一つ後段の波長分波部6に出力する。波長分波部6は、一つ前段の光増幅器4が出力した光波長多重信号を入力して波長により分離し、分離された各波長の光信号を、その波長の光信号を受信する光受信機7に出力する。
光伝送システム1が備える複数の光受信機7には、S帯の光信号を受信する光受信機7と、C帯の光信号を受信する光受信機7と、L帯の光信号を受信する光受信機7とがある。同図では、S帯の光信号を受信するJ台の光受信機7をそれぞれ、光受信機7-1-1~7-1-Jと記載し、C帯の光信号を受信するK台の光受信機7をそれぞれ、光受信機7-2-1~7-2-Kと記載し、L帯の光信号を受信するM台の光受信機7をそれぞれ、光受信機7-3-1~7-3-Mと記載している。光受信機7-1-1~7-1-Jはそれぞれ、S帯の異なる波長の光信号を受信し、光受信機7-2-1~7-2-Kはそれぞれ、C帯の異なる波長の光信号を受信し、光受信機7-3-1~7-3-Mはそれぞれ、L帯の異なる波長の光信号を受信する。
光伝送システム1は、入力パワー調整部を有することにより、S帯、C帯及びL帯の帯域毎に異なる平均入力パワーにより光ファイバ伝送路5に光信号を入力することができる。入力パワー調整部は、光送信機2が備える光パワー調整機能部21と、波長合波部3が備える利得調整部31と、光増幅器4が備える利得調整部41とのうち一以上である。光パワー調整機能部21は、自機が送信する光信号のパワーを調整する機能を有する。利得調整部31及び利得調整部41は、帯域毎に可変の利得調整を行う機能を有する。光送信機2が光信号のパワーの調整を行わない場合は光パワー調整機能部21を備えなくてもよく、波長合波部3が帯域毎の利得調整を行わない場合は利得調整部31を備えなくてもよく、光増幅器4が帯域毎の利得調整を行わない場合は利得調整部41を備えなくてもよい。
また、S帯、C帯及びL帯の帯域毎に、少なくとも1台の光受信機7が品質測定部71を備える。品質測定部71は、波長分波部と光受信機7の間など、光受信機7の外部に備えられてもよい。品質測定部71は、自機が受信した光信号の信号品質を測定する。品質測定部71は、信号品質として、例えば、BER(Bit Error Rate:ビット誤り率)、又は、BERから計算可能なQ値を測定する。同図では、全ての光受信機7それぞれが品質測定部71を備える構成を示しているが、各帯域の中心波長の光など、帯域の代表となる波長の光信号を受信する光受信機7が品質測定部71を備え、他の光受信機7は品質測定部71を備えない構成としてもよい。一つの帯域で複数台の光受信機7が信号品質を測定する場合、例えば、それら光受信機7の品質測定部71が測定した信号品質の平均を、その帯域の信号品質とする。一つの帯域で1台の品質測定部71が信号品質を測定する場合、帯域の代表となる波長の光信号を受信する光受信機7の品質測定部71が測定した信号品質を、その帯域の信号品質とする。
制御装置8は、光ファイバ伝送路5への各帯域の入力パワーの最適化処理を行う。光ファイバ伝送路5への各帯域の入力パワーとは、S帯(J波)、C帯(K波)及びL帯(M波)それぞれの光ファイバ伝送路5への平均入力パワーを示す。入力パワーの最適化処理には一般的な手法が用いられる。例えば、制御装置8は、入力パワー調整部を制御することによって、光送信機2から送信された光信号の光ファイバ伝送路5への入力パワーを上下させる。さらに、制御装置8は、光受信機7の品質測定部71と連携しながら光信号の信号品質の測定結果をモニタし、信号品質が最も良くなる入力パワーを選択する。
従来、遠距離にある光送信機2と光受信機7とは、それらの間でコミュニケーションを取る機能が一般的に備えられている。その機能を利用して、制御装置8を実現してもよい。また、従来の光伝送システムは、例えば、NE-OpS(Network Element Operations System)のような監視制御システムを備える。そこで、その監視制御システムにより制御装置8を実現してもよい。あるいは、制御装置8が監視制御システムと連携し、監視制御システムを介して入力パワー調整部及び品質測定部71を制御してもよい。
図2は、光伝送システム1における光ファイバ伝送路への入力パワー最適化処理を示すフロー図である。
まず、光伝送システム1は、C帯の単一帯域伝送を行い、C帯の入力パワーを最適化する(ステップS11)。例えば、制御装置8又は監視制御システムは、C帯の光送信機2-2-1~2-2-Kに光信号の送信を指示し、S帯の光送信機2-1-1~2-1-J及びL帯の光送信機2-3-1~2-3-Mに対して光信号の送信停止を指示する。さらに、制御装置8は、C帯の入力パワー調整部に対してC帯の光信号の入力パワーを変更するよう指示する。C帯の入力パワー調整部は、C帯の光送信機2-2-1~2-2-Kの光パワー調整機能部21と、波長合波部3の利得調整部31と、光増幅器4の利得調整部41とのうち1以上である。制御装置8は、C帯の入力パワーの変更を指示しながら、C帯の光受信機7の品質測定部71から信号品質の測定結果を受信する。制御装置8は、信号品質が最もよいC帯の入力パワーを選択する。
次に、光伝送システム1は、C帯とS帯の2帯域伝送を行い、S帯の入力パワーを最適化する(ステップS12)。制御装置8又は監視制御システムは、C帯の光送信機2-2-1~2-2-K及びS帯の光送信機2-1-1~2-1-Jに光信号の送信を指示し、L帯の光送信機2-3-1~2-3-Mに対して光信号の送信停止を指示する。また、制御装置8は、C帯についてはステップS11において選択した入力パワーとするようC帯の入力パワー調整部に指示する。さらに、制御装置8は、S帯の入力パワー調整部に対してS帯の光信号の入力パワーを変更するよう指示する。S帯の入力パワー調整部は、S帯の光送信機2-1-1~2-1-Jの光パワー調整機能部21と、波長合波部3の利得調整部31と、光増幅器4の利得調整部41とのうち1以上である。制御装置8は、S帯の光受信機7の品質測定部71から信号品質の測定結果を受信し、信号品質が最もよいS帯の入力パワーを選択する。
続いて、光伝送システム1は、ステップS13~ステップS16のループ処理を行う。まず、光伝送システム1は、C帯、S帯及びL帯の3帯域伝送を行い、L帯の入力パワーを最適化する(ステップS13)。3帯域伝送を行う場合、制御装置8又は監視制御システムは、光信号の送信を停止している光送信機2があれば、送信を指示する。制御装置8は、C帯についてはステップS11において選択した入力パワーとするようC帯の入力パワー調整部に指示し、S帯についてはステップS12において選択した入力パワーとするようS帯の入力パワー調整部に指示する。さらに、制御装置8は、L帯の入力パワー調整部にL帯の光信号の入力パワーを変更するよう指示する。L帯の入力パワー調整部は、L帯の光送信機2-3-1~2-3-Mの光パワー調整機能部21と、波長合波部3の利得調整部31と、光増幅器4の利得調整部41とのうち1以上である。制御装置8は、L帯の光受信機7の品質測定部71から信号品質の測定結果を受信し、信号品質が最もよいL帯の入力パワーを選択する。
次に、光伝送システム1は、C帯、S帯及びL帯の3帯域伝送を行い、C帯の入力パワーを最適化する(ステップS14)。制御装置8は、S帯についてはステップS11において選択した入力パワーとするようS帯の入力パワー調整部に指示し、L帯については今回のループ処理のステップS13において選択した入力パワーとするようL帯の入力パワー調整部に指示する。さらに、制御装置8は、C帯の入力パワー調整部にC帯の光信号の入力パワーを変更するよう指示し、C帯の光受信機7の品質測定部71から信号品質の測定結果を受信する。制御装置8は、信号品質が最もよいC帯の入力パワーを選択する。
次に、光伝送システム1は、C帯、S帯及びL帯の3帯域伝送を行い、S帯の入力パワーを最適化する(ステップS15)。制御装置8は、C帯については今回のループ処理のステップS14において選択した入力パワーとするようC帯の入力パワー調整部に指示し、L帯については今回のループ処理のステップS13において選択した入力パワーとするようL帯の入力パワー調整部に指示する。さらに、制御装置8は、S帯の入力パワー調整部にS帯の光信号の入力パワーを変更するよう指示し、S帯の光受信機7の品質測定部71から信号品質の測定結果を受信する。制御装置8は、信号品質が最もよいS帯の入力パワーを選択する。
制御装置8は、S帯、C帯及びL帯の入力パワーが収束したか否かを判断する(ステップS16)。例えば、制御装置8は、S帯、C帯及びL帯とも、今回のループ処理において選択した入力パワーと、前回のループ処理において選択した入力パワーとの差が閾値以下である場合に入力パワーが収束したと判断する。閾値は、帯域毎に異なってもよい。制御装置8が、S帯、C帯及びL帯のうち1以上の入力パワーは収束していないと判断した場合(ステップS16:NO)、光伝送システム1はステップS13からの処理を繰り返す。最初のループ処理の場合、前回選択したL帯の入力パワーがないため、制御装置8は入力パワーが収束していないと判断する。
2回目以降のステップS13~ステップS16のループ処理では、ステップS13において、制御装置8は、C帯については前回のループ処理のステップS14において選択した入力パワーとするようC帯の入力パワー調整部に指示し、S帯については前回のループ処理のステップS15において選択した入力パワーとするようS帯の入力パワー調整部に指示する。また、ステップS14において、制御装置8は、S帯については前回のループ処理のステップS15において選択した入力パワーとするようS帯の入力パワー調整部に指示する。
そして、制御装置8が、S帯、C帯及びL帯の全ての入力パワーの収束を判断した場合(ステップS16:YES)、処理を終了する。制御装置8は、最後のループ処理において選択したS帯、C帯及びL帯の入力パワーとするよう入力パワー調整部に指示する。
なお、上述した処理フローでは、光伝送システム1は、ステップS11において最初にC帯の入力パワーを最適化したが、S帯、C帯、L帯のいずれから入力パワーの最適化を行ってもよい。この場合、ステップS12において、光伝送システム1は、ステップS11において最適化した帯域以外のいずれの帯域を最適化してもよい。
また、光伝送システム1は、ステップS11~ステップS12を実行せず、S帯及びC帯を任意の入力パワーとしてステップS13から処理を行ってもよい。
S帯、C帯及びL帯の3帯伝送において、C帯は誘導ラマン散乱の影響が小さい。そこで、図3に示すように、図2の処理を簡略化できる。
図3は、光伝送システム1における光ファイバ伝送路への他の入力パワー最適化処理を示すフロー図である。最初に、光伝送システム1は、図2のステップS11と同様に、C帯の単一帯域伝送を行い、C帯の入力パワーを最適化する(ステップS21)。
次に、光伝送システム1は、S帯の単一帯域伝送、又は、C帯とS帯の2帯域伝送を行い、S帯の入力パワーを最適化する(ステップS22)。S帯の単一帯域伝送を行う場合、制御装置8又は監視制御システムは、S帯の光送信機2-1-1~2-1-Jに光信号の送信を指示し、C帯の光送信機2-2-1~2-2-K及びL帯の光送信機2-3-1~2-3-Mに光信号の送信停止を指示する。C帯とS帯の2帯域伝送を行う場合、制御装置8又は監視制御システムは、S帯の光送信機2-1-1~2-1-J及びC帯の光送信機2-2-1~2-2-Kに光信号の送信を指示し、L帯の光送信機2-3-1~2-3-Mに光信号の送信停止を指示する。2帯域伝送を行う場合、さらに、制御装置8は、C帯の入力パワー調整部にステップS21において選択したC帯の入力パワーとするよう指示する。制御装置8は、S帯の入力パワー調整部にS帯の光信号の入力パワーを変更するよう指示し、S帯の光受信機7の品質測定部71から信号品質の測定結果を受信する。制御装置8は、信号品質が最もよいS帯の入力パワーを選択する。
続いて、光伝送システム1は、ステップS23~ステップS25のループ処理を行う。まず、光伝送システム1は、C帯、S帯及びL帯の3帯域伝送を行い、L帯の入力パワーを最適化する(ステップS23)。制御装置8は、ステップS21において選択したC帯の入力パワーとするようC帯の入力パワー調整部に指示し、ステップS22において選択したS帯の入力パワーとするようS帯の入力パワー調整部に指示する。さらに、制御装置8は、L帯の入力パワー調整部にL帯の光信号の入力パワーを変更するよう指示し、L帯の光受信機7の品質測定部71から信号品質の測定結果を受信する。制御装置8は、信号品質が最もよいL帯の入力パワーを選択する。
次に、光伝送システム1は、C帯、S帯及びL帯の3帯域伝送を行い、S帯の入力パワーを最適化する(ステップS24)。制御装置8は、ステップS21において選択したC帯の入力パワーとするようC帯の入力パワー調整部に指示し、今回のループ処理のステップS23において選択したL帯の入力パワーとするようL帯の入力パワー調整部に指示する。さらに、制御装置8は、S帯の入力パワー調整部にS帯の光信号の入力パワーを変更するよう指示し、S帯の光受信機7の品質測定部71から信号品質の測定結果を受信する。制御装置8は、信号品質が最もよいS帯の入力パワーを選択する。
制御装置8は、S帯及びL帯の入力パワーが収束したか否かを判断する(ステップS25)。例えば、制御装置8は、S帯及びL帯とも、今回のループ処理において選択した入力パワーと、前回のループ処理において選択した入力パワーとの差が閾値以下である場合に入力パワーが収束したと判断する。閾値は、帯域毎に異なってもよい。制御装置8が、S帯及びL帯のうち1以上の入力パワーは収束していないと判断した場合(ステップS25:NO)、光伝送システム1はステップS23からの処理を繰り返す。最初のループ処理の場合、前回選択したL帯の入力パワーがないため、制御装置8は入力パワーが収束していないと判断する。2回目以降のループ処理では、ステップS23において、制御装置8は、S帯については前回のループ処理のステップS24において選択した入力パワーとするようS帯の入力パワー調整部に指示する。
そして、制御装置8が、S帯及びL帯の両方の入力パワーの収束を判断した場合(ステップS25:YES)、処理を終了する。制御装置8は、ステップS21において選択したC帯の入力パワーと、最後のループ処理において選択したS帯及びL帯の入力パワーとするよう入力パワー調整部に指示する。
なお、上述した図3の処理フローでは、光伝送システム1は、ステップS22においてS帯の入力パワーを最適化したが、L帯の入力パワーの最適化を行ってもよい。この場合、ステップS23において、光伝送システム1は、S帯の入力パワーの最適化を行い、ステップS24においてL帯の入力パワーの最適化を行う。
上述した図2及び図3の処理フローが示す最適化処理は、数値シミュレーションと、実験との一方、又は、両方で実施可能である。例えば、図2又は図3に示す処理を実行するタイミングは、新たな伝送路を使って広帯域の伝送を行う際の初期セットアップ時である。制御装置が最適化処理を実施してもよく、伝送路設計用のシミュレーターが最適化処理を実施してもよい。
図4は、光伝送システム1aの構成例を示す図である。同図において、図1に示す光伝送システム1と同一の部分には同一の符号を付し、その説明を省略する。同図に示す光伝送システム1aは、帯域毎に光増幅する構成である。光増幅器を帯域個別に持つことで、帯域毎の細かな調整が可能になる。
同図に示す光伝送システム1aは、光送信機2-1-1~2-3-Mと、波長合波部310-1~310-3と、光増幅器410-1~410-3と、波長合波部320と、波長分波部610と、光増幅器420-1~420-3と、波長分波部620と、光受信機7-1-1~7-3-Mと、制御装置800とを備える。光伝送システム1aは、波長合波部320と、波長分波部610と、光増幅器420-1~420-3との組をN(Nは1以上の整数)個備える。
波長合波部310-1は、S帯の光送信機2-1-1~2-1-Jそれぞれが送信した異なる波長のJ波の光信号を合波し、合波された光波長多重信号を出力する。波長合波部310-2は、C帯の光送信機2-2-1~2-2-Kそれぞれが送信した異なる波長のK波の光信号を合波し、合波された光波長多重信号を出力する。波長合波部310-3は、L帯の光送信機2-3-1~2-3-Mそれぞれが送信した異なる波長のM波の光信号を合波し、合波された光波長多重信号を出力する。
光増幅器410-1は、波長合波部310-1が出力したS帯の光波長多重信号を増幅し、出力する。光増幅器410-2は、波長合波部310-2が出力したC帯の光波長多重信号を増幅し、出力する。光増幅器410-3は、波長合波部310-3が出力したL帯の光波長多重信号を増幅し、出力する。
波長合波部320は、一つ前段の光増幅器410-1~410-3それぞれが出力した光波長多重信号又は一つ前段の光増幅器420-1~420-3それぞれが出力した光波長多重信号を合波する。波長合波部320は、合波された光波長多重信号を、光ファイバ伝送路5を介して一つ後段の波長分波部610に出力する。
波長分波部610は、光ファイバ伝送路5から一つ前段の波長合波部320が出力した光波長多重信号を受信し、S帯、M帯及びL帯に分波する。波長分波部610は、S帯の光波長多重信号を一つ後段の光増幅器420-1に出力し、C帯の光波長多重信号を一つ後段の光増幅器420-2に出力し、L帯の光波長多重信号を一つ後段の光増幅器420-3に出力する。
光増幅器420-1は、波長分波部610が出力したS帯の光波長多重信号を増幅し、一つ後段の波長合波部320又は波長分波部620に出力する。光増幅器420-2は、波長分波部610が出力したC帯の光波長多重信号を増幅し、一つ後段の波長合波部320又は波長分波部620に出力する。光増幅器420-3は、波長分波部610が出力したS帯の光波長多重信号を増幅し、一つ後段の波長合波部320又は波長分波部620に出力する。
波長分波部620は、一つ前段の光増幅器420-1~420-3それぞれが出力した光波長多重信号を入力する。波長分波部620は、光増幅器420-1が出力したS帯の光波長多重信号をJ波に分離し、分離された各波長の光信号をそれぞれ、その波長の光信号を受信する光受信機7-1-1~7-1-Jに出力する。また、波長分波部620は、光増幅器420-2が出力したC帯の光波長多重信号をK波に分離し、分離された各波長の光信号をそれぞれ、その波長の光信号を受信する光受信機7-2-1~7-2-Kに出力する。また、波長分波部620は、光増幅器420-3が出力したL帯の光波長多重信号をM波に分離し、分離された各波長の光信号をそれぞれ、その波長の光信号を受信する光受信機7-3-1~7-3-Mに出力する。
制御装置800は、図2又は図3の処理を行い、光ファイバ伝送路5への各帯域の入力パワーの最適化処理を行う。ただし、制御装置800が制御する入力パワー調整部は、光送信機2が備える光パワー調整機能部21と、波長合波部310-iが備える利得調整部311-iと、光増幅器410-iが備える利得調整部411-iと、波長合波部320が備える利得調整部321と、光増幅器420-iそれぞれが備える利得調整部421-iとのうち一以上である(i=1,2,3)。利得調整部311-iは、波長合波部310-iに入力された波長多重信号の利得調整を行う機能を有する。利得調整部411-iは、光増幅器410-iに入力された波長多重信号の利得調整を行う機能を有する。利得調整部321は、帯域毎に可変の利得調整を行う機能を有する。利得調整部421-iは、光増幅器420-iに入力された波長多重信号の利得調整を行う機能を有する。
図4の光伝送システム1の場合、帯域毎の入力パワー調整部は、以下となる。すなわち、S帯の入力パワー調整部は、光送信機2-1-1~2-1-Jが備える光パワー調整機能部21と、波長合波部310-1が備える利得調整部311-1と、光増幅器410-1が備える利得調整部411-1と、波長合波部320が備える利得調整部321と、光増幅器420-1が備える利得調整部421-1とのうち一以上である。C帯の入力パワー調整部は、光送信機2-2-1~2-2-Kが備える光パワー調整機能部21と、波長合波部310-2が備える利得調整部311-2と、光増幅器410-2が備える利得調整部411-2と、波長合波部320が備える利得調整部321と、光増幅器420-2が備える利得調整部421-2とのうち一以上である。L帯の入力パワー調整部は、光送信機2-3-1~2-3-Mが備える光パワー調整機能部21と、波長合波部310-3が備える利得調整部311-3と、光増幅器410-3が備える利得調整部411-3と、波長合波部320が備える利得調整部321と、光増幅器420-3が備える利得調整部421-3とのうち一以上である。
なお、光送信機2が出力信号のパワーの調整を行わない場合は光パワー調整機能部21を備えなくてもよく、波長合波部310-iが利得調整を行わない場合は利得調整部311-iを備えなくてもよく、光増幅器410-iが利得調整を行わない場合は利得調整部411-iを備えなくてもよく、波長合波部320が利得調整を行わない場合は利得調整部321を備えなくてもよく、光増幅器420-iが利得調整を行わない場合は利得調整部421-iを備えなくてもよい。
以上説明した実施形態によれば、異なる波長帯の光が多重された光多重信号を伝送する光伝送システムは、光送信機と、光受信機と、制御部とを備える。光送信機は、光多重信号に多重される光信号を送信する。光受信機は、光多重信号から分波された光信号を受信する。制御部は、例えば、制御装置8、800である。制御部は、光伝送システムが伝送する光多重信号に多重されている周波数帯のうち誘導ラマン散乱が生じる周波数帯を少なくとも含む全て又は一部の複数の周波数帯において調整対象の一つの周波数帯を切り替えながら、調整対象の周波数帯の光信号のパワーを調整する調整処理を繰り返し行う。調整処理は、例えば、図2又は図3に示す最適化処理である。これにより、広帯域の光波長多重信号を伝送する光ファイバ伝送路への各波長の入力パワーを最適化することができる。
調整処理においては、光送信機から送信される調整対象の周波数帯の光信号のパワーを変動させたときに、当該光信号を受信した光受信機において測定された信号品質に基づいて、当該周波数帯の光信号のパワーを決定する。これにより、光多重信号に多重される周波数帯の最適な光パワーを見つけることができる。
制御部は、誘導ラマン散乱が生じない周波数帯を除いた複数の周波数帯を調整対象として調整処理を行ってもよい。これにより、誘導ラマン散乱が生じる周波数帯の光信号のパワーを早く調整することができる。
また、制御部は、光伝送システムに一つの周波数帯のみの光信号を伝送させて調整処理を行い、当該周波数帯の光信号のパワーの初期値を決定してもよい。これにより、各周波数帯の光信号のパワーを早く調整することができる。
なお、制御装置8、800は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、最適化処理プログラムを実行することによって上述のように機能する。なお、上述した制御装置8、800の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されても良い。プログラムは、コンピュータ読み取り可能な記録媒体に記録されても良い。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。最適化処理プログラムは、電気通信回線を介して送信されても良い。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
誘導ラマン散乱が生じる波長の光信号を多重した波長多重伝送を行う光伝送システムに適用可能である。
1…光伝送システム、 1a…光伝送システム、 2-1-1~2-1-J、2-2-1~2-2-K、2-3-1~2-3-M…光送信機、 3…波長合波部、 4…光増幅器、 5…光ファイバ伝送路、 6…波長分波部、 7-1-1~7-1-J、7-2-1~7-2-K、7-3-1~7-3-M…光受信機、 8…制御装置、 21…光パワー調整機能部、 31…利得調整部、 41…利得調整部、 71…品質測定部、 310-1~310-3…波長合波部、 311-1~311-3…利得調整部、 320…波長合波部、 321…利得調整部、 410-1~410-3…光増幅器、 411-1~411-3…利得調整部、 420-1~420-3…光増幅器、 421-1~421-3…利得調整部、 610…波長分波部、 620…波長分波部、 800…制御装置

Claims (5)

  1. 光伝送システムが伝送する光多重信号に多重されている周波数帯のうち誘導ラマン散乱が生じる周波数帯を少なくとも含む2以上の前記周波数帯において調整対象の一つの周波数帯を切り替えながら、調整対象の前記周波数帯の光信号のパワーを調整する調整処理を繰り返し行う調整ステップ、
    を有し、
    前記調整ステップにおいては、誘導ラマン散乱が生じない前記周波数帯を除いた複数の前記周波数帯を調整対象として前記調整処理を行う、
    光伝送制御方法。
  2. 光伝送システムが伝送する光多重信号に多重されている周波数帯のうち誘導ラマン散乱が生じる周波数帯を少なくとも含む2以上の前記周波数帯において調整対象の一つの周波数帯を切り替えながら、調整対象の前記周波数帯の光信号のパワーを調整する調整処理を繰り返し行う調整ステップ、
    を有し、
    前記調整ステップにおいては、前記光伝送システムに一つの前記周波数帯のみの光信号を伝送させて前記調整処理を行い、当該周波数帯の光信号のパワーの初期値を決定する、光伝送制御方法。
  3. 前記光伝送システムは、前記光多重信号に多重される光信号を送信する光送信機と、前記光多重信号から分波された光信号を受信する光受信機とを有し、
    前記調整処理においては、前記光送信機から送信される調整対象の前記周波数帯の光信号のパワーを変動させたときに、当該光信号を受信した前記光受信機において測定された信号品質に基づいて、当該周波数帯の光信号のパワーを決定する、
    請求項1又は2に記載の光伝送制御方法。
  4. 光多重信号を伝送する光伝送システムであって、
    前記光多重信号に多重されている周波数帯のうち誘導ラマン散乱が生じる周波数帯を少なくとも含む2以上の前記周波数帯において調整対象の一つの周波数帯を切り替えながら、調整対象の前記周波数帯の光信号のパワーを調整する調整処理を繰り返し行う制御部、 を備え
    前記制御部は、誘導ラマン散乱が生じない前記周波数帯を除いた複数の前記周波数帯を調整対象として前記調整処理を行う、
    光伝送システム。
  5. 光多重信号を伝送する光伝送システムであって、
    前記光多重信号に多重されている周波数帯のうち誘導ラマン散乱が生じる周波数帯を少なくとも含む2以上の前記周波数帯において調整対象の一つの周波数帯を切り替えながら、調整対象の前記周波数帯の光信号のパワーを調整する調整処理を繰り返し行う制御部、 を備え
    前記制御部は、前記光伝送システムに一つの前記周波数帯のみの光信号を伝送させて前記調整処理を行い、当該周波数帯の光信号のパワーの初期値を決定する、
    光伝送システム。
JP2018105097A 2018-05-31 2018-05-31 光伝送制御方法及び光伝送システム Active JP7057501B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018105097A JP7057501B2 (ja) 2018-05-31 2018-05-31 光伝送制御方法及び光伝送システム
US17/059,238 US11245487B2 (en) 2018-05-31 2019-05-20 Optical transmission control method and optical transmission system
PCT/JP2019/019926 WO2019230480A1 (ja) 2018-05-31 2019-05-20 光伝送制御方法及び光伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018105097A JP7057501B2 (ja) 2018-05-31 2018-05-31 光伝送制御方法及び光伝送システム

Publications (2)

Publication Number Publication Date
JP2019212978A JP2019212978A (ja) 2019-12-12
JP7057501B2 true JP7057501B2 (ja) 2022-04-20

Family

ID=68696665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018105097A Active JP7057501B2 (ja) 2018-05-31 2018-05-31 光伝送制御方法及び光伝送システム

Country Status (3)

Country Link
US (1) US11245487B2 (ja)
JP (1) JP7057501B2 (ja)
WO (1) WO2019230480A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133981A (zh) * 2021-03-26 2022-09-30 华为技术有限公司 校正系数确定方法、装置及光通信系统
WO2024013833A1 (ja) * 2022-07-11 2024-01-18 日本電信電話株式会社 計算装置、ネットワーク装置、計算方法およびプログラム
WO2024013832A1 (ja) * 2022-07-11 2024-01-18 日本電信電話株式会社 計算装置、計算方法およびプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103013A (ja) 1999-09-28 2001-04-13 Fujitsu Ltd 波長間光パワー偏差のモニタ方法、並びに、それを用いた光等化器および光増幅器
JP2002057624A (ja) 2000-08-08 2002-02-22 Fujitsu Ltd 波長多重光通信システムおよび波長多重光通信方法
JP2002368691A (ja) 2001-06-04 2002-12-20 Hitachi Ltd 波長多重用光伝送装置および波長多重信号の光増幅方法
JP2011527141A (ja) 2008-06-30 2011-10-20 アルカテル−ルーセント ユーエスエー インコーポレーテッド 誘導ラマン拡散に対するトーンベースの光チャネル監視の耐性を改善するための装置および方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103013A (ja) 1999-09-28 2001-04-13 Fujitsu Ltd 波長間光パワー偏差のモニタ方法、並びに、それを用いた光等化器および光増幅器
JP2002057624A (ja) 2000-08-08 2002-02-22 Fujitsu Ltd 波長多重光通信システムおよび波長多重光通信方法
JP2002368691A (ja) 2001-06-04 2002-12-20 Hitachi Ltd 波長多重用光伝送装置および波長多重信号の光増幅方法
JP2011527141A (ja) 2008-06-30 2011-10-20 アルカテル−ルーセント ユーエスエー インコーポレーテッド 誘導ラマン拡散に対するトーンベースの光チャネル監視の耐性を改善するための装置および方法

Also Published As

Publication number Publication date
US11245487B2 (en) 2022-02-08
JP2019212978A (ja) 2019-12-12
WO2019230480A1 (ja) 2019-12-05
US20210211218A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
JP7057501B2 (ja) 光伝送制御方法及び光伝送システム
JP4671478B2 (ja) 波長多重光通信システムおよび波長多重光通信方法
JP5181770B2 (ja) 光伝送システム
US8666252B2 (en) Optical network system
US10608775B2 (en) Optical transmission apparatus, optical transmission method, and optical transmission system
JP4981882B2 (ja) 雑音装荷光ファイバ伝送システム
JP5863172B2 (ja) 光受信装置
US6741389B2 (en) Optical transmission system and optical transmission method utilizing Raman amplification
US11323199B2 (en) Optical transmission system and optical power control method
JP4007812B2 (ja) ラマン増幅器および波長多重光通信システム、並びに、ラマン増幅の制御方法
US11368239B2 (en) Wavelength conversion device and wavelength conversion method
US7773886B2 (en) Optical regenerator in optical fiber communication system
JP6481314B2 (ja) 光伝送装置および光伝送システム
EP3767843A1 (en) Variable equalizer and method for controlling variable equalizer
US9520694B2 (en) Optical amplifier with loss adjustment unit based on gain
Carvalho et al. SDN dual-optimization application for EDFAs and WSS-based ROADMs
JP3761780B2 (ja) 光送信装置および光通信システム
JP2023180636A (ja) 光通信装置、光通信システム、及び光パワー制御方法
JP4464959B2 (ja) 分散補償方法及び分散補償装置
JP2001168799A (ja) 光通信システム及びそれに用いる光中継器
JP4741118B2 (ja) 光伝送システム、波長多重器、および、波長多重伝送システムの分散補償方法
JP6560020B2 (ja) 光送信機及び光伝送システム
JP2005051596A (ja) 光伝送方法及び光送信装置
JP2001094534A (ja) 光送信装置
WO2023166590A1 (ja) 光増幅器及び光増幅方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R150 Certificate of patent or registration of utility model

Ref document number: 7057501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150