JP7057403B2 - Composition - Google Patents

Composition Download PDF

Info

Publication number
JP7057403B2
JP7057403B2 JP2020154986A JP2020154986A JP7057403B2 JP 7057403 B2 JP7057403 B2 JP 7057403B2 JP 2020154986 A JP2020154986 A JP 2020154986A JP 2020154986 A JP2020154986 A JP 2020154986A JP 7057403 B2 JP7057403 B2 JP 7057403B2
Authority
JP
Japan
Prior art keywords
acrylate
meth
mass
adhesive composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020154986A
Other languages
Japanese (ja)
Other versions
JP2021008621A (en
Inventor
啓之 栗村
剛介 中島
琢也 徳田
泰則 石田
佑磨 林
麻希子 佐々木
慶次 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JP2021008621A publication Critical patent/JP2021008621A/en
Application granted granted Critical
Publication of JP7057403B2 publication Critical patent/JP7057403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/20Esters of polyhydric alcohols or polyhydric phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations

Description

本発明は、組成物に関する。本発明は、例えば、有機エレクトロルミネッセンス(EL)表示素子用封止剤に使用できる、組成物に関する。 The present invention relates to a composition. The present invention relates to a composition that can be used, for example, as a sealant for an organic electroluminescence (EL) display device.

有機エレクトロルミネッセンス(EL)素子は高い輝度発光が可能な素子体として注目を集めている。しかしながら、水分により劣化し、発光特性が低下してしまう課題があった。 Organic electroluminescence (EL) devices are attracting attention as device bodies capable of high-luminance emission. However, there is a problem that the light emission characteristics are deteriorated due to deterioration due to moisture.

このような課題を解決するために、有機EL素子を封止し、水分による劣化を防止する技術が検討されている。例えば、フリットガラスからなるシール材で封止する方法が挙げられる(特許文献1参照)。 In order to solve such a problem, a technique for sealing an organic EL element and preventing deterioration due to moisture is being studied. For example, a method of sealing with a sealing material made of frit glass can be mentioned (see Patent Document 1).

封止層が少なくともバリア層、樹脂層、バリア層を順次形成した積層体であることを特徴とする有機エレクトロルミネッセンス表示素子(特許文献2参照)、有機EL素子を封止する無機物膜と有機物膜とを交互に積層した封止層と、前記封止層の最上位有機物膜上に密着して、前記最上位有機物膜の上面の全てを覆うように配置される封止ガラス基板と、を備えることを特徴とする有機EL装置(特許文献3参照)が提案されている。 An organic electroluminescence display element (see Patent Document 2) characterized in that the sealing layer is a laminate in which at least a barrier layer, a resin layer, and a barrier layer are sequentially formed, and an inorganic film and an organic film for sealing an organic EL element. It is provided with a sealing layer in which An organic EL device (see Patent Document 3) characterized by the above has been proposed.

有機EL素子封止用の樹脂組成物として、環状エーテル化合物と、カチオン重合開始剤と、多官能ビニルエーテル化合物とを含有する有機エレクトロルミネッセンス表示素子用封止剤(特許文献4参照)、カチオン重合性化合物と光カチオン重合開始剤又は熱カチオン重合開始剤とを含有するカチオン重合性樹脂組成物が提案されている(特許文献5参照)。有機EL素子封止用の樹脂組成物として、(メタ)アクリル系樹脂組成物が提案されている(特許文献6~9)。 As a resin composition for encapsulating an organic EL element, a encapsulant for an organic electroluminescence display element containing a cyclic ether compound, a cationic polymerization initiator, and a polyfunctional vinyl ether compound (see Patent Document 4), cationically polymerizable. A cationically polymerizable resin composition containing a compound and a photocationic polymerization initiator or a thermal cationic polymerization initiator has been proposed (see Patent Document 5). As a resin composition for encapsulating an organic EL element, a (meth) acrylic resin composition has been proposed (Patent Documents 6 to 9).

特開平10-74583号公報Japanese Unexamined Patent Publication No. 10-74583 特開2001-307873号公報Japanese Unexamined Patent Publication No. 2001-307873 特開2009-37812号公報Japanese Unexamined Patent Publication No. 2009-37812 特開2014-225380号公報Japanese Unexamined Patent Publication No. 2014-225380 特開2012-190612号公報Japanese Unexamined Patent Publication No. 2012-190612 特開2014-229496号公報Japanese Unexamined Patent Publication No. 2014-229496 特開2014-196387号公報Japanese Unexamined Patent Publication No. 2014-196387 特開2014-193970号公報Japanese Unexamined Patent Publication No. 2014-193970 特開2014-193971号公報Japanese Unexamined Patent Publication No. 2014-193971

しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。 However, the prior art described in the above document has room for improvement in the following points.

特許文献1では、量産化を行う際には、有機EL素子を、水分の透過性が低い基材、例えば、ガラス等で挟み込み、外周部を封止する方法を採用する。この場合、この構造は中空封止構造となっているため、中空封止構造内部へ水分が浸入することを防げず、有機EL素子の劣化につながる課題があった。 In Patent Document 1, when mass-producing, a method is adopted in which an organic EL element is sandwiched between a base material having low moisture permeability, for example, glass or the like, and the outer peripheral portion is sealed. In this case, since this structure has a hollow sealing structure, it is not possible to prevent moisture from infiltrating into the hollow sealing structure, and there is a problem that the organic EL element is deteriorated.

特許文献2~3では、有機物膜を蒸着によって成膜するため有機物膜の厚さが3μm以下となってしまうという課題があった。有機物膜の厚みが3μm以下であると素子形成時に発生するパーティクルを完全に被覆できないだけでなく、無機物膜上に平坦性を保ちながら塗布することも難しい課題があった。 In Patent Documents 2 and 3, there is a problem that the thickness of the organic film is 3 μm or less because the organic film is formed by thin film deposition. If the thickness of the organic film is 3 μm or less, not only the particles generated during device formation cannot be completely covered, but also it is difficult to apply the particles on the inorganic film while maintaining flatness.

特許文献4では、エポキシ系材料を用いた封止剤が提案されているが、このような材料は硬化するのに加熱を要するため、有機EL素子にダメージを与え、歩留まりの点で課題があった。特許文献5では、エポキシ系材料を用いた光硬化型の封止剤が提案されているが、このような材料は、UV光により硬化するため、UV光により有機EL素子にダメージを与え、歩留まりの点で課題があった。特許文献6~9は、(A)3官能以上の非環式多官能(メタ)アクリレートと(B)非環式2官能(メタ)アクリレートを特定量併用することについて、記載がない。特許文献6~9は、塗布性について記載がない。 Patent Document 4 proposes a sealing agent using an epoxy-based material, but since such a material requires heating to cure, it damages the organic EL element and has a problem in terms of yield. rice field. Patent Document 5 proposes a photo-curing type encapsulant using an epoxy-based material. However, since such a material is cured by UV light, the organic EL element is damaged by UV light and the yield is increased. There was a problem in that. Patent Documents 6 to 9 do not describe the combined use of (A) trifunctional or higher acyclic polyfunctional (meth) acrylate and (B) acyclic bifunctional (meth) acrylate in a specific amount. Patent Documents 6 to 9 do not describe the coatability.

本発明は上記事情に鑑みてなされたものであり、例えば、有機EL素子封止用に用いた場合に塗布性や低透湿性に優れる組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a composition having excellent coatability and low moisture permeability when used for encapsulating an organic EL device, for example.

本発明の実施形態は以下を提供できる。 Embodiments of the present invention can provide:

<1>(A)3官能以上の非環式多官能(メタ)アクリレート、(B)非環式2官能(メタ)アクリレート、(C)単官能(メタ)アクリレート、(D)光重合開始剤を含有する組成物であり、(A)、(B)、(C)の合計100質量部中、(A)3~70質量部、(B)15~95質量部、(C)2~40質量部を含有する組成物。 <1> (A) trifunctional or higher acyclic polyfunctional (meth) acrylate, (B) acyclic bifunctional (meth) acrylate, (C) monofunctional (meth) acrylate, (D) photopolymerization initiator (A), (B), (C) in a total of 100 parts by mass, (A) 3 to 70 parts by mass, (B) 15 to 95 parts by mass, (C) 2 to 40. A composition containing parts by mass.

<2>(A)3官能以上の非環式多官能(メタ)アクリレート、(B)非環式2官能(メタ)アクリレート、(C)単官能(メタ)アクリレート、(D)光重合開始剤を含有する組成物であり、(A)、(B)、(C)の合計100質量部中、(A)3~10質量部、(B)85~95質量部、(C)2~10質量部を含有する組成物。 <2> (A) trifunctional or higher acyclic polyfunctional (meth) acrylate, (B) acyclic bifunctional (meth) acrylate, (C) monofunctional (meth) acrylate, (D) photopolymerization initiator (A), (B), (C) in a total of 100 parts by mass, (A) 3 to 10 parts by mass, (B) 85 to 95 parts by mass, (C) 2 to 10 parts. A composition containing parts by mass.

<3>(A)、(B)、(C)の合計100質量部に対して、(D)0.05~6質量部を含有する<1>又は<2>に記載の組成物。 <3> The composition according to <1> or <2>, which contains 0.05 to 6 parts by mass of (D) with respect to a total of 100 parts by mass of (A), (B) and (C).

<4>25℃においてE型粘度計により測定される粘度が2mPa・s以上50mPa・s以下である<1>~<3>のいずれか一項に記載の組成物。 <4> The composition according to any one of <1> to <3>, wherein the viscosity measured by an E-type viscometer at 25 ° C. is 2 mPa · s or more and 50 mPa · s or less.

<5>多官能(メタ)アクリレートオリゴマー/ポリマーを含有しない<1>~<4>のいずれか一項に記載の組成物。 <5> The composition according to any one of <1> to <4>, which does not contain a polyfunctional (meth) acrylate oligomer / polymer.

<6><1>~<5>のいずれか一項に記載の組成物から得られる硬化体のガラス転移温度が200℃以上である組成物。 <6> A composition having a glass transition temperature of a cured product obtained from the composition according to any one of <1> to <5> of 200 ° C. or higher.

<7>(A)がトリメチロールプロパントリ(メタ)アクリレートである<1>~<6>のいずれか一項に記載の組成物。 <7> The composition according to any one of <1> to <6>, wherein (A) is trimethylolpropane tri (meth) acrylate.

<8>(B)が、炭素数6以上のアルカンジオールジ(メタ)アクリレートである<1>~<7>のいずれか一項に記載の組成物。 <8> The composition according to any one of <1> to <7>, wherein (B) is an alkanediol di (meth) acrylate having 6 or more carbon atoms.

<9>(B)が、炭素数12以下のアルカンジオールジ(メタ)アクリレートである<1>~<8>のいずれか一項に記載の組成物。 <9> The composition according to any one of <1> to <8>, wherein (B) is an alkanediol di (meth) acrylate having 12 or less carbon atoms.

<10>(B)が、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレートからなる群のうちの1種以上である<1>~<9>のいずれか一項に記載の組成物。 <10> (B) is one of the group consisting of 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, and 1,12-dodecanediol di (meth) acrylate. The composition according to any one of <1> to <9>, which is more than a species.

<11>(B)が、非環式2官能メタクリレートと非環式2官能アクリレートを含有する<1>~<10>のいずれか一項に記載の組成物。 <11> The composition according to any one of <1> to <10>, wherein (B) contains an acyclic bifunctional methacrylate and an acyclic bifunctional acrylate.

<12>(C)が、炭素数8以上のアルキル(メタ)アクリレートである<1>~<11>のいずれか一項に記載の組成物。 <12> The composition according to any one of <1> to <11>, wherein (C) is an alkyl (meth) acrylate having 8 or more carbon atoms.

<13>(C)が、ラウリル(メタ)アクリレートである<1>~<11>のいずれか一項に記載の組成物。 The composition according to any one of <1> to <11>, wherein <13> (C) is a lauryl (meth) acrylate.

<14>(C)が、脂環式炭化水素基を有する(メタ)アクリレートである<1>~<11>のいずれか一項に記載の組成物。 The composition according to any one of <1> to <11>, wherein <14> (C) is a (meth) acrylate having an alicyclic hydrocarbon group.

<15>(C)が、単官能メタクリレートと単官能アクリレートを含有する<1>~<11>のいずれか一項に記載の組成物。 <15> The composition according to any one of <1> to <11>, wherein (C) contains a monofunctional methacrylate and a monofunctional acrylate.

<16>(D)が、アシルホスフィンオキサイド誘導体である<1>~<15>のいずれか一項に記載の組成物。 The composition according to any one of <1> to <15>, wherein <16> (D) is an acylphosphine oxide derivative.

<17>有機エレクトロルミネッセンス表示素子用封止剤である<1>~<16>のいずれか一項に記載の組成物。 <17> The composition according to any one of <1> to <16>, which is a sealant for an organic electroluminescence display element.

<18><1>~<17>のいずれか1項に記載の組成物からなる被覆剤。 <18> A coating agent comprising the composition according to any one of <1> to <17>.

<19><1>~<17>のいずれか1項に記載の組成物からなる接着剤。 <19> An adhesive comprising the composition according to any one of <1> to <17>.

<20><1>~<17>のいずれか1項に記載の組成物を硬化した硬化体。 <20> A cured product obtained by curing the composition according to any one of <1> to <17>.

<21><1>~<17>のいずれか1項に記載の組成物で被覆した被覆体。 <21> A covering body coated with the composition according to any one of <1> to <17>.

<22><1>~<17>のいずれか1項に記載の組成物で接合した接合体。 <22> A bonded body bonded with the composition according to any one of <1> to <17>.

<23>380nm以上500nm以下の波長で硬化する<1>~<17>のいずれか一項に記載の組成物の硬化方法。 <23> The method for curing a composition according to any one of <1> to <17>, which cures at a wavelength of 380 nm or more and 500 nm or less.

<24>発光ピーク波長395nmのLEDランプで硬化する<1>~<17>のいずれか一項に記載の組成物の硬化方法。 <24> The method for curing a composition according to any one of <1> to <17>, which is cured by an LED lamp having an emission peak wavelength of 395 nm.

<25>インクジェット法を用いて塗布する<1>~<17>のいずれか一項に記載の組成物の塗布方法。 <25> The method for applying a composition according to any one of <1> to <17>, which is applied by using an inkjet method.

<26><20>に記載の硬化物を含む有機EL装置。 <26> An organic EL device containing the cured product according to <20>.

<27><20>に記載の硬化物を含むディスプレイ。 <27> A display containing the cured product according to <20>.

<28>(A)3官能以上の非環式多官能(メタ)アクリレート、(B)非環式2官能(メタ)アクリレート、(C)単官能(メタ)アクリレート、(D)光重合開始剤を含有する組成物であり、(A)、(B)、(C)の合計100質量部中、(A)1~70質量部、(B)15~98質量部、(C)1~40質量部を含有する組成物。 <28> (A) trifunctional or higher acyclic polyfunctional (meth) acrylate, (B) acyclic bifunctional (meth) acrylate, (C) monofunctional (meth) acrylate, (D) photopolymerization initiator (A), (B), (C) in a total of 100 parts by mass, (A) 1 to 70 parts by mass, (B) 15 to 98 parts by mass, (C) 1 to 40. A composition containing parts by mass.

<29>(A)3官能以上の非環式多官能(メタ)アクリレート、(B)非環式2官能(メタ)アクリレート、(C)単官能(メタ)アクリレート、(D)光重合開始剤を含有する組成物であり、(A)、(B)、(C)の合計100質量部中、(A)1~10質量部、(B)85~98質量部、(C)1~10質量部を含有する組成物。 <29> (A) trifunctional or higher acyclic polyfunctional (meth) acrylate, (B) acyclic bifunctional (meth) acrylate, (C) monofunctional (meth) acrylate, (D) photopolymerization initiator. (A), (B), (C) in a total of 100 parts by mass, (A) 1 to 10 parts by mass, (B) 85 to 98 parts by mass, (C) 1 to 10 by mass. A composition containing parts by mass.

本発明の実施形態に係る組成物は、塗布性や低透湿性に優れる効果を奏することができる。 The composition according to the embodiment of the present invention can exhibit excellent effects of coatability and low moisture permeability.

以下、本実施形態を説明する。本明細書においては、別段の断わりがない限りは、数値範囲はその上限値と下限値を含むものとする。 Hereinafter, this embodiment will be described. In the present specification, unless otherwise specified, the numerical range shall include the upper limit value and the lower limit value.

以下、基板上に形成された有機EL素子の基板と反対側から光を照射するトップエミッション型の有機EL装置を例に説明する。トップエミッション型の有機EL装置は、基板上に、陽極と、発光層を含む有機EL層と、陰極と、が順に積層された有機EL素子と、この有機EL素子全体を覆う無機物膜と有機物膜の積層体からなる封止層と、封止層上に設けられる封止基板と、が順に形成された構造を有する。 Hereinafter, a top-emission type organic EL device that irradiates light from the side opposite to the substrate of the organic EL element formed on the substrate will be described as an example. The top-emission type organic EL device is an organic EL element in which an anode, an organic EL layer including a light emitting layer, and a cathode are laminated in this order on a substrate, and an inorganic film and an organic film covering the entire organic EL element. It has a structure in which a sealing layer made of the laminated body of the above and a sealing substrate provided on the sealing layer are formed in order.

基板としては、ガラス基板、シリコン基板、プラスチック基板等種々のものを用いることができる。これらの中では、ガラス基板、プラスチック基板からなる群のうちの1種以上が好ましく、ガラス基板がより好ましい。 As the substrate, various materials such as a glass substrate, a silicon substrate, and a plastic substrate can be used. Among these, one or more of the group consisting of a glass substrate and a plastic substrate is preferable, and a glass substrate is more preferable.

プラスチック基板に用いられるプラスチックとしては、ポリイミド、ポリエーテルイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオキサジアゾール、芳香族ポリアミド、ポリベンゾイミダゾール、ポリベンゾビスチアゾール、ポリベンゾオキサゾール、ポリチアゾール、ポリパラフェニレンビニレン、ポリメチルメタクリレート、ポリスチレン、ポリカーボネート、ポリシクロオレフィン、ポリアクリル等が挙げられる。これらの中では、低水分透過性、低酸素透過性、耐熱性に優れる点で、ポリイミド、ポリエーテルイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオキサジアゾール、芳香族ポリアミド、ポリベンゾイミダゾール、ポリベンゾビスチアゾール、ポリベンゾオキサゾール、ポリチアゾール、ポリパラフェニレンビニレンからなる群のうちの1種以上が好ましく、紫外線又は可視光線等のエネルギー線の透過性が高い点で、ポリイミド、ポリエーテルイミド、ポリエチレンテレフタレート、ポリエチレンナフタレートからなる群のうちの1種以上がより好ましい。 Plastics used for plastic substrates include polyimide, polyetherimide, polyethylene terephthalate, polyethylene naphthalate, polyoxadiazole, aromatic polyamide, polybenzoimidazole, polybenzobisthiazole, polybenzoxazole, polythiazole, and polyparaphenylene. Examples thereof include vinylene, polymethylmethacrylate, polystyrene, polycarbonate, polycycloolefin, polyacrylic acid and the like. Among these, polyimide, polyetherimide, polyethylene terephthalate, polyethylene naphthalate, polyoxadiazole, aromatic polyamide, polybenzoimidazole, and polybenzo are excellent in low water permeability, low oxygen permeability, and heat resistance. Polyimide, polyetherimide, polyethylene terephthalate in that one or more of the group consisting of bistiazole, polybenzoxazole, polythiazole, and polyparaphenylene vinylene are preferable, and energy rays such as ultraviolet rays or visible light are highly transparent. , One or more of the group consisting of polyethylene naphthalate is more preferable.

陽極としては、比較的仕事関数の大きな(4.0eVより大きな仕事関数を持つものが好適である)、導電性の金属酸化物膜や半透明の金属薄膜等が一般的に用いられる。陽極の材料に含められるものとしては例えば、インジウムスズ酸化物(Indium Tin Oxide、以下、ITOという)、酸化スズ等の金属酸化物、金(Au)、白金(Pt)、銀(Ag)、銅(Cu)等の金属又はこれらのうちの少なくとも1つを含む合金、ポリアニリン又はその誘導体、ポリチオフェン又はその誘導体等の有機の透明導電膜等が挙げられる。これらの中では、ITOが好ましい。陽極は、必要があれば2層以上の層構成により形成することができる。陽極の膜厚は、電気伝導度を(ボトムエミッション型の場合には、光の透過性も)考慮して、適宜選択することができる。陽極の膜厚は、10nm~10μmが好ましく、20nm~1μmがより好ましく、50nm~500nmが最も好ましい。陽極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。トップエミッション型の場合には、基板側に照射される光を反射させるための反射膜を陽極の下に設けてもよい。 As the anode, a conductive metal oxide film, a translucent metal thin film, or the like having a relatively large work function (preferably one having a work function larger than 4.0 eV) is generally used. Examples of the material of the anode include indium tin oxide (Indium Tin Oxide, hereinafter referred to as ITO), metal oxides such as tin oxide, gold (Au), platinum (Pt), silver (Ag), and copper. Examples thereof include a metal such as (Cu) or an alloy containing at least one of them, polyaniline or a derivative thereof, and an organic transparent conductive film such as polythiophene or a derivative thereof. Of these, ITO is preferred. The anode can be formed by a layer structure of two or more layers, if necessary. The film thickness of the anode can be appropriately selected in consideration of the electric conductivity (in the case of the bottom emission type, also the light transmission). The film thickness of the anode is preferably 10 nm to 10 μm, more preferably 20 nm to 1 μm, and most preferably 50 nm to 500 nm. Examples of the method for producing the anode include a vacuum vapor deposition method, a sputtering method, an ion plating method, a plating method and the like. In the case of the top emission type, a reflective film for reflecting the light emitted to the substrate side may be provided under the anode.

有機EL層は、少なくとも有機物からなる発光層を含んでいる。この発光層は、発光性材料を含有する。発光性材料としては、蛍光又は燐光を発光する有機物(低分子化合物又は高分子化合物)等が挙げられる。発光層は、更に、ドーパント材料を含んでいてもよい。有機物としては、色素系材料、金属錯体系材料、高分子材料等が挙げられる。ドーパント材料は、有機物の発光効率の向上や発光波長を変化させる等の目的で、有機物中にドープされるものである。これらの有機物と必要に応じてドープされるドーパントからなる発光層の厚さは通常20~2,000Åである。 The organic EL layer contains at least a light emitting layer made of an organic substance. This light emitting layer contains a light emitting material. Examples of the luminescent material include organic substances (low molecular weight compounds or high molecular weight compounds) that emit fluorescence or phosphorescence. The light emitting layer may further contain a dopant material. Examples of the organic substance include a dye-based material, a metal complex-based material, and a polymer material. The dopant material is doped in the organic substance for the purpose of improving the luminous efficiency of the organic substance, changing the emission wavelength, and the like. The thickness of the light emitting layer consisting of these organics and optionally doped dopants is typically 20-2,000 Å.

(色素系材料)
色素系材料としては、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、トリフマニルアミン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー等が挙げられる。
(Dye material)
Dye materials include cyclopendamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds, and pyridines. Examples thereof include ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, trifmanylamine derivatives, oxadiazole dimers, pyrazoline dimers and the like.

(金属錯体系材料)
金属錯体系材料としては、イリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体等といった、金属錯体等が挙げられる。金属錯体としては、中心金属に、テルビウム(Tb)、ユウロピウム(Eu)、ジスプロシウム(Dy)等の希土類金属、アルミニウム(Al)、亜鉛(Zn)、ベリリウム(Be)等を有し、配位子に、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を有する金属錯体等が挙げられる。これらの中では、中心金属にアルミニウム(Al)を有し、配位子にキノリン構造等を有する金属錯体が好ましい。中心金属にアルミニウム(Al)を有し、配位子にキノリン構造等を有する金属錯体の中では、トリス(8-ヒドロキシキノリナト)アルミニウムが好ましい。
(Metal complex material)
Examples of the metal complex-based material include metal complexes that emit light from triple-term excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol berylium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, and azomethyl zinc complexes. , Metal complexes such as porphyrin zinc complex, europium complex and the like. The metal complex has a rare earth metal such as terbium (Tb), europium (Eu), and dysprosium (Dy), aluminum (Al), zinc (Zn), berylium (Be), and the like in the central metal, and is a ligand. Examples thereof include oxadiazole, thiadiazol, phenylpyridine, phenylbenzimidazole, metal complexes having a quinoline structure and the like. Among these, a metal complex having aluminum (Al) as the central metal and a quinoline structure or the like as the ligand is preferable. Among the metal complexes having aluminum (Al) as the central metal and a quinoline structure as the ligand, tris (8-hydroxyquinolinato) aluminum is preferable.

(高分子材料)
高分子材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素体や金属錯体系発光材料を高分子化した物等が挙げられる。
(Polymer material)
Examples of the polymer material include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, polymerized dyes and metal complex-based luminescent materials, and the like. Can be mentioned.

上記発光性材料のうち、青色に発光する材料としては、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、これらの重合体等が挙げられる。これらの中では、高分子材料が好ましい。高分子材料の中では、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体からなる群のうちの1種以上が好ましい。 Among the luminescent materials, examples of the material that emits blue light include distyrylarylene derivatives, oxadiazole derivatives, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and polymers thereof. Of these, polymer materials are preferred. Among the polymer materials, one or more of the group consisting of a polyvinylcarbazole derivative, a polyparaphenylene derivative, and a polyfluorene derivative is preferable.

緑色に発光する材料としては、キナクリドン誘導体、クマリン誘導体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体、これらの重合体等が挙げられる。これらの中では、高分子材料が好ましい。高分子材料の中では、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体からなる群のうちの1種以上が好ましい。 Examples of the material that emits green light include a quinacridone derivative, a coumarin derivative, a polyparaphenylene vinylene derivative, a polyfluorene derivative, and a polymer thereof. Of these, polymer materials are preferred. Among the polymer materials, one or more of the group consisting of polyparaphenylene vinylene derivatives and polyfluorene derivatives is preferable.

赤色に発光する材料としては、クマリン誘導体、チオフェン環化合物、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体、これらの重合体等が挙げられる。これらの中では、高分子材料が好ましい。高分子材料の中では、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体からなる群のうちの1種以上が好ましい。 Examples of the material that emits red light include a coumarin derivative, a thiophene ring compound, a polyparaphenylene vinylene derivative, a polythiophene derivative, a polyfluorene derivative, and a polymer thereof. Of these, polymer materials are preferred. Among the polymer materials, one or more of the group consisting of polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives is preferable.

(ドーパント材料)
ドーパント材料としては、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾン等が挙げられる。有機EL層は、発光層以外に、発光層と陽極との間に設けられる層と、発光層と陰極との間に設けられる層と、を適宜設けることができる。まず、発光層と陽極との間に設けられる層としては、陽極からの正孔注入効率を改善する正孔注入層や、陽極、正孔注入層又は陽極により近い正孔輸送層から発光層への正孔注入を改善する正孔輸送層等が挙げられる。発光層と陰極との間に設けられる層としては、陰極からの電子注入効率を改善する電子注入層や、陰極、電子注入層又は陰極により近い電子輸送層からの電子注入を改善する機能を有する電子輸送層等が挙げられる。
(Dopant material)
Examples of the dopant material include a perylene derivative, a coumarin derivative, a rubrene derivative, a quinacridone derivative, a squalium derivative, a porphyrin derivative, a styryl-based dye, a tetracene derivative, a pyrazolone derivative, decacyclene, and phenoxazone. In addition to the light emitting layer, the organic EL layer may be appropriately provided with a layer provided between the light emitting layer and the anode and a layer provided between the light emitting layer and the cathode. First, as the layer provided between the light emitting layer and the anode, the hole injection layer for improving the hole injection efficiency from the anode, the hole injection layer, or the hole transport layer closer to the anode to the light emitting layer. Examples include a hole transport layer that improves hole injection. The layer provided between the light emitting layer and the cathode has a function of improving electron injection from an electron injection layer for improving electron injection efficiency from the cathode, an electron injection layer, or an electron transport layer closer to the cathode. An electron transport layer and the like can be mentioned.

(正孔注入層)
正孔注入層を形成する材料としては、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、酸化バナジウム、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の酸化物、アモルファスカーボン、ポリアニリン、ポリチオフェン誘導体等が挙げられる。これらの中では、フタロシアニン系が好ましい。
(Hole injection layer)
Examples of the material forming the hole injection layer include phenylamine-based, starburst-type amine-based, phthalocyanine-based, vanadium oxide, molybdenum oxide, ruthenium oxide, oxides such as aluminum oxide, amorphous carbon, polyaniline, and polythiophene derivatives. Be done. Of these, the phthalocyanine type is preferable.

(正孔輸送層)
正孔輸送層を構成する材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ベンジジン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、ポリ(2,5-チエニレンビニレン)若しくはその誘導体等が挙げられる。これらの中では、ベンジジン誘導体が好ましい。
(Hole transport layer)
Materials constituting the hole transport layer include polyvinylcarbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in the side chain or the main chain, a pyrazoline derivative, an arylamine derivative, a stilben derivative, and triphenyldiamine. Derivatives, benzidine derivatives, polyaniline or its derivatives, polythiophene or its derivatives, polyarylamines or their derivatives, polypyrrole or its derivatives, poly (p-phenylene vinylene) or its derivatives, poly (2,5-thienylene vinylene) or its derivatives. Derivatives and the like can be mentioned. Of these, benzidine derivatives are preferred.

これらの正孔注入層又は正孔輸送層が、電子の輸送を堰き止める機能を有する場合には、これらの正孔輸送層や正孔注入層を電子ブロック層ということもある。 When these hole injecting layers or hole transporting layers have a function of blocking the transport of electrons, these hole transporting layers or hole injecting layers may be referred to as electron block layers.

(電子輸送層)
電子輸送層を構成する材料としては、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアントラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン若しくはその誘導体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体等が挙げられる。誘導体としては、金属錯体等が挙げられる。これらの中では、8-ヒドロキシキノリン若しくはその誘導体が好ましい。8-ヒドロキシキノリン若しくはその誘導体の中では、発光層中に含有する、蛍光又は燐光を発光する有機物としても使用できる点で、トリス(8-ヒドロキシキノリナト)アルミニウムが好ましい。
(Electron transport layer)
Materials constituting the electron transport layer include oxadiazole derivative, anthraquinodimethane or its derivative, benzoquinone or its derivative, naphthoquinone or its derivative, anthraquinone or its derivative, tetracyanoanthraquinodimethane or its derivative, and fluorenone derivative. , Diphenyldicyanoethylene or its derivative, diphenoquinone derivative, 8-hydroxyquinoline or its derivative, polyquinolin or its derivative, polyquinoxaline or its derivative, polyfluorene or its derivative and the like. Examples of the derivative include a metal complex and the like. Among these, 8-hydroxyquinoline or a derivative thereof is preferable. Among 8-hydroxyquinoline or its derivatives, tris (8-hydroxyquinolinato) aluminum is preferable because it can be used as an organic substance that emits fluorescence or phosphorescence contained in the light emitting layer.

(電子注入層)
電子注入層としては、発光層の種類に応じて、カルシウム(Ca)層の単層構造からなる電子注入層、又は、周期律表IA族とIIA族の金属であり、且つ、仕事関数が1.5~3.0eVの金属及びその金属の酸化物、ハロゲン化物及び炭酸化物からなる群のうちの1種以上で形成された層の単層構造、又は、周期律表IA族とIIA族の金属であり、且つ、仕事関数が1.5~3.0eVの金属及びその金属の酸化物、ハロゲン化物及び炭酸化物からなる群のうちの1種以上で形成された層とCa層との積層構造からなる電子注入層等が挙げられる。仕事関数が1.5~3.0eVの、周期律表IA族の金属又はその酸化物、ハロゲン化物、炭酸化物としては、リチウム(Li)、フッ化リチウム、酸化ナトリウム、酸化リチウム、炭酸リチウム等が挙げられる。仕事関数が1.5~3.0eVの、周期律表IIA族の金属又はその酸化物、ハロゲン化物、炭酸化物としては、ストロンチウム(Sr)、酸化マグネシウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化バリウム、酸化ストロンチウム、炭酸マグネシウム等が挙げられる。これらの中では、フッ化リチウムが好ましい。
(Electron injection layer)
The electron injection layer is an electron injection layer having a single-layer structure of a calcium (Ca) layer, or a metal of the Group IA and Group IIA of the Periodic Table, depending on the type of the light emitting layer, and has a work function of 1. .Single-layer structure of a layer formed of one or more of the group consisting of a metal of 5 to 3.0 eV and an oxide of the metal, a halide and a carbon oxide, or a group of IA and IIA of the periodic table. Lamination of a Ca layer and a layer formed of one or more of a metal and a metal having a work function of 1.5 to 3.0 eV and an oxide, a halide and a carbon oxide of the metal. Examples thereof include an electron injection layer having a structure. Metals of Group IA of the Periodic Table or oxides thereof, halides and carbon oxides having a work function of 1.5 to 3.0 eV include lithium (Li), lithium fluoride, sodium oxide, lithium oxide, lithium carbonate and the like. Can be mentioned. Strontium (Sr), magnesium oxide, magnesium fluoride, strontium fluoride, fluoride as the metal of the periodic table IIA or its oxide, halide, and carbon oxide having a work function of 1.5 to 3.0 eV. Examples include barium, strontium oxide, magnesium carbonate and the like. Of these, lithium fluoride is preferred.

これらの電子輸送層又は電子注入層が、正孔の輸送を堰き止める機能を有する場合には、これらの電子輸送層や電子注入層を正孔ブロック層ということもある。 When these electron transport layers or electron injection layers have a function of blocking the transport of holes, these electron transport layers and electron injection layers may be referred to as hole block layers.

陰極としては、仕事関数が比較的小さく(4.0eVより小さな仕事関数を持つものが好適である)、発光層への電子注入が容易な透明又は半透明の材料が好ましい。陰極の材料に含められるものとしては例えば、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、アルミニウム(Al)、スカンジウム(Sc)、バナジウム(V)、亜鉛(Zn)、イットリウム(Y)、インジウム(In)、セリウム(Ce)、サマリウム(Sm)、ユウロピウム(Eu)、テルビウム(Tb)、イッテルビウム(Yb)等の金属、又は上記金属のうち2種以上からなる合金、若しくはそれらのうち1種以上と、金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、クロム(Cr)、マンガン(Mn)、チタン(Ti)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、スズ(Sn)のうち1種以上とからなる合金、又は、グラファイト若しくはグラファイト層間化合物、又は、ITO、酸化スズ等の金属酸化物等が挙げられる。 As the cathode, a transparent or translucent material having a relatively small work function (preferably having a work function smaller than 4.0 eV) and easily injecting electrons into the light emitting layer is preferable. Examples of the material contained in the cathode include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), beryllium (Be), magnesium (Mg), and calcium (Ca). , Strontium (Sr), barium (Ba), aluminum (Al), scandium (Sc), vanadium (V), zinc (Zn), ittrium (Y), indium (In), cerium (Ce), sumarium (Sm) , Europium (Eu), Rubidium (Tb), Itterbium (Yb) and other metals, or alloys consisting of two or more of the above metals, or one or more of them, and gold (Au), silver (Ag), One or more of platinum (Pt), copper (Cu), chromium (Cr), manganese (Mn), titanium (Ti), cobalt (Co), nickel (Ni), tungsten (W), tin (Sn) Examples thereof include alloys made of, graphite or graphite interlayer compounds, and metal oxides such as ITO and tin oxide.

陰極を2層以上の積層構造としてもよい。2層以上の積層構造としては、上記の金属、金属酸化物、フッ化物、これらの合金と、Al、Ag、Cr等の金属との積層構造等が挙げられる。これらの中では、Alが好ましい。陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができる。陰極の膜厚は、10nm~10μmが好ましく、15nm~1μmがより好ましく、20nm~500nmが最も好ましい。陰極の作製方法としては、真空蒸着法、スパッタリング法、金属薄膜を熱圧着するラミネート法等が挙げられる。 The cathode may have a laminated structure of two or more layers. Examples of the laminated structure of two or more layers include the above-mentioned metals, metal oxides, fluorides, and laminated structures of these alloys with metals such as Al, Ag, and Cr. Of these, Al is preferred. The film thickness of the cathode can be appropriately selected in consideration of electrical conductivity and durability. The film thickness of the cathode is preferably 10 nm to 10 μm, more preferably 15 nm to 1 μm, and most preferably 20 nm to 500 nm. Examples of the method for producing the cathode include a vacuum vapor deposition method, a sputtering method, and a laminating method in which a metal thin film is thermocompression bonded.

これらの発光層と陽極との間と、発光層と陰極との間に設けられる層は、製造する有機EL装置に求められる性能に応じて、適宜選択可能である。例えば、本実施形態で使用される有機EL素子の構造としては、下記の(i)~(xv)の層構成のいずれかを有することができる。
(i)陽極/正孔輸送層/発光層/陰極
(ii)陽極/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iv)陽極/正孔注入層/発光層/陰極
(v)陽極/発光層/電子注入層/陰極
(vi)陽極/正孔注入層/発光層/電子注入層/陰極
(vii)陽極/正孔注入層/正孔輸送層/発光層/陰極
(viii)陽極/正孔輸送層/発光層/電子注入層/陰極
(ix)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(x)陽極/正孔注入層/発光層/電子輸送層/陰極
(xi)陽極/発光層/電子輸送層/電子注入層/陰極
(xii)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
(xiii)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(xiv)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(xv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(ここで、「/」は各層が隣接して積層されていることを示す。以下同じ。)
The layer provided between the light emitting layer and the anode and between the light emitting layer and the cathode can be appropriately selected according to the performance required for the organic EL device to be manufactured. For example, the structure of the organic EL element used in the present embodiment may have any of the following layer configurations (i) to (xv).
(I) Anodic / hole transport layer / light emitting layer / cathode (ii) anode / light emitting layer / electron transport layer / cathode (iii) anode / hole transport layer / light emitting layer / electron transport layer / cathode (iv) anode / Hole injection layer / light emitting layer / cathode (v) anode / light emitting layer / electron injection layer / cathode (vi) anode / hole injection layer / light emitting layer / electron injection layer / cathode (vii) anode / hole injection layer / Hole transport layer / light emitting layer / cathode (viii) anode / hole transport layer / light emitting layer / electron injection layer / cathode (ix) anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode (X) Electron / hole injection layer / light emitting layer / electron transport layer / cathode (xi) anode / light emitting layer / electron transport layer / electron injection layer / cathode (xii) anode / hole injection layer / light emitting layer / electron transport Layer / electron injection layer / cathode (xiii) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode (xiv) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / Cathode (xv) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (where, "/" indicates that each layer is laminated adjacent to each other. same as below.)

封止層は、水蒸気や酸素等の気体が有機EL素子に接触することを防ぐために、上記気体に対して高いバリア性を有する層で有機EL素子を封止するために、設けられる。この封止層は、無機物膜と有機物膜とが下から交互に形成される。無機/有機積層体は2回以上繰り返して形成されてもよい。 The sealing layer is provided to seal the organic EL element with a layer having a high barrier property to the gas in order to prevent a gas such as water vapor or oxygen from coming into contact with the organic EL element. Inorganic film and organic film are alternately formed from the bottom of this sealing layer. The inorganic / organic laminate may be formed repeatedly two or more times.

無機/有機積層体の無機物膜は、有機EL装置が置かれる環境に存在する水蒸気や酸素等の気体に有機EL素子が曝されることを防止するために設けられる膜である。無機/有機積層体の無機物膜は、ピンホール等の欠陥が少ない連続的な緻密な膜であることが好ましい。無機物膜としては、SiN膜、SiO膜、SiON膜、Al23膜、AlN膜等の単体膜やこれらの積層膜等が挙げられる。 The inorganic film of the inorganic / organic laminate is a film provided to prevent the organic EL element from being exposed to a gas such as water vapor or oxygen existing in the environment in which the organic EL device is placed. The inorganic film of the inorganic / organic laminate is preferably a continuous and dense film with few defects such as pinholes. Examples of the inorganic film include a single film such as a SiN film, a SiO film, a SiON film, an Al 2 O 3 film, and an AlN film, and a laminated film thereof.

無機/有機積層体の有機物膜は、無機物膜上に形成されたピンホール等の欠陥を被覆するために、表面に平坦性を付与するために、設けられる。有機物膜は、無機物膜が形成される領域よりも狭い領域に形成される。これは、有機物膜を無機物膜の形成領域と同じか又はそれよりも広く形成すると、有機物膜が露出する領域で劣化してしまうからである。但し、封止層全体の最上層に形成される最上位有機物膜は、無機物膜の形成領域とほぼ同じ領域に形成される。そして、封止層の上面が平坦化されるように形成される。有機物膜としては、上記した無機物膜との密着性能が良好な接着機能を有する組成物が用いられる。 The organic film of the inorganic / organic laminate is provided to provide flatness to the surface in order to cover defects such as pinholes formed on the inorganic film. The organic film is formed in a narrower region than the region where the inorganic film is formed. This is because if the organic film is formed to be the same as or wider than the formation region of the inorganic film, it deteriorates in the region where the organic film is exposed. However, the uppermost organic film formed on the uppermost layer of the entire sealing layer is formed in substantially the same region as the formation region of the inorganic film. Then, the upper surface of the sealing layer is formed so as to be flattened. As the organic film, a composition having an adhesive function having good adhesion performance with the above-mentioned inorganic film is used.

本実施形態は、例えば、短時間で膜厚3μm以上の平坦性に優れる塗布が可能なインクジェット塗布に好適であり、インクジェットによる吐出性とインクジェット塗布後の平坦性に優れ、水蒸気等に対するバリア性(以下、低透湿性とも言う)に優れる上記有機物膜を形成する有機エレクトロルミネッセンス表示素子用封止剤を提供することを目的とする。インクジェット法による塗布方法を用いれば、高速かつ均一に有機物膜を形成することができる。 This embodiment is suitable for inkjet coating capable of coating with excellent flatness of a film thickness of 3 μm or more in a short time, has excellent ejection properties by inkjet and flatness after inkjet coating, and has a barrier property against water vapor and the like ( It is an object of the present invention to provide a sealant for an organic electroluminescence display element that forms the organic film having excellent low moisture permeability (hereinafter, also referred to as low moisture permeability). If the coating method by the inkjet method is used, the organic film can be formed at high speed and uniformly.

本実施形態の組成物は、(A)3官能以上の非環式多官能(メタ)アクリレート、(B)非環式2官能(メタ)アクリレート、(C)単官能(メタ)アクリレート、(D)光重合開始剤を含有する組成物である。(メタ)アクリレートとは、(メタ)アクリロイル基を有する化合物をいう。(メタ)アクリロイル基を有する化合物の中では、(メタ)アクリロイロキシ基を有する化合物が好ましい。多官能(メタ)アクリレートとは、(メタ)アクリロイル基を2個以上有する化合物をいう。3官能(メタ)アクリレートとは、(メタ)アクリロイル基を3個有する化合物をいう。2官能(メタ)アクリレートとは、(メタ)アクリロイル基を2個有する化合物をいう。単官能(メタ)アクリレートとは、(メタ)アクリロイル基を1個有する化合物をいう。本実施形態の組成物において、(メタ)アクリレートの含有量は、組成物100質量部中、70質量部以上が好ましく、80質量部以上がより好ましく、90質量部以上が最も好ましく、95質量部以上が尚更好ましい。本実施形態の(メタ)アクリレートにおいて、(A)、(B)、(C)の合計の含有量は、(メタ)アクリレート100質量部中、80質量部以上が好ましく、90質量部以上がより好ましく、95質量部以上が最も好ましく、100質量部が尚更好ましい。 The compositions of the present embodiment are (A) trifunctional or higher acyclic polyfunctional (meth) acrylate, (B) acyclic bifunctional (meth) acrylate, (C) monofunctional (meth) acrylate, (D). ) A composition containing a photopolymerization initiator. The (meth) acrylate refers to a compound having a (meth) acryloyl group. Among the compounds having a (meth) acryloyl group, a compound having a (meth) acryloyloxy group is preferable. The polyfunctional (meth) acrylate refers to a compound having two or more (meth) acryloyl groups. The trifunctional (meth) acrylate refers to a compound having three (meth) acryloyl groups. The bifunctional (meth) acrylate refers to a compound having two (meth) acryloyl groups. The monofunctional (meth) acrylate refers to a compound having one (meth) acryloyl group. In the composition of the present embodiment, the content of the (meth) acrylate is preferably 70 parts by mass or more, more preferably 80 parts by mass or more, most preferably 90 parts by mass or more, and 95 parts by mass in 100 parts by mass of the composition. The above is even more preferable. In the (meth) acrylate of the present embodiment, the total content of (A), (B), and (C) is preferably 80 parts by mass or more, more preferably 90 parts by mass or more, based on 100 parts by mass of the (meth) acrylate. Preferably, 95 parts by mass or more is most preferable, and 100 parts by mass is even more preferable.

(A)3官能以上の非環式多官能(メタ)アクリレートとしては、非環式であり、かつ、3官能以上の多官能(メタ)アクリレートモノマーが好ましい(以下、(メタ)アクリレートモノマーを(メタ)アクリレートということもある。)。(A)3官能以上の非環式多官能(メタ)アクリレートモノマーとしては、式(1)、(2)又は(3)で表される非環式多官能(メタ)アクリレートが好ましい。 (A) As the trifunctional or higher functional non-cyclic polyfunctional (meth) acrylate, a non-cyclic and trifunctional or higher functional (meth) acrylate monomer is preferable (hereinafter, (meth) acrylate monomer (hereinafter, (meth) acrylate monomer). Meta) Sometimes called acrylate.). As the (A) trifunctional or higher acyclic polyfunctional (meth) acrylate monomer, an acyclic polyfunctional (meth) acrylate represented by the formulas (1), (2) or (3) is preferable.

Figure 0007057403000001
Figure 0007057403000001

Figure 0007057403000002
Figure 0007057403000002

Figure 0007057403000003
Figure 0007057403000003

Figure 0007057403000004
Figure 0007057403000004

(式中、R1は独立に水素原子、炭素数1~10のアルキル基、又は式(4)で表される基を示し、式(1)~(3)においてR1の少なくとも3つは式(4)で表される基であり、R2は水素原子又は炭素数1以上のアルキル基を示し、R3は独立に水素原子又はメチル基を示し、mは0~10の整数である。)。 (In the formula, R 1 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a group represented by the formula (4), and in the formulas (1) to (3), at least three of R 1 are. It is a group represented by the formula (4), R 2 represents a hydrogen atom or an alkyl group having 1 or more carbon atoms, R 3 independently represents a hydrogen atom or a methyl group, and m is an integer of 0 to 10. .).

式(1)、(2)又は(3)で表される非環式多官能(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等が挙げられ、4官能以上の(メタ)アクリレートモノマーとしては、ジメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジペンタエリストールヘキサ(メタ)アクリレート等が挙げられる。これらの中では、低透湿性とインクジェットによる吐出性とインクジェット塗布後の平坦性への効果が大きい点で、トリメチロールプロパントリ(メタ)アクリレートが好ましい。 Examples of the acyclic polyfunctional (meth) acrylate represented by the formula (1), (2) or (3) include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, and propoxylation. Examples thereof include trimethylolpropane tri (meth) acrylate and pentaerythritol tri (meth) acrylate, and examples of the tetrafunctional or higher functional (meth) acrylate monomer include dimethylolpropanetetra (meth) acrylate and pentaerythritol tetra (meth) acrylate. Examples thereof include pentaerythritol ethoxytetra (meth) acrylate, dipentaeristolpenta (meth) acrylate, and dipentaeristolhexa (meth) acrylate. Among these, trimethylolpropane tri (meth) acrylate is preferable because it has a large effect on low moisture permeability, ejection property by inkjet, and flatness after inkjet application.

(A)3官能以上の非環式多官能(メタ)アクリレートの含有量は、(A)、(B)、(C)の合計100質量部に対して、1~70質量部であることが好ましく、3~70質量部であることがより好ましい。(A)の含有量が1質量部未満であると低透湿性の点で劣り、70質量部を超えると組成物の粘度と表面張力が高くなりすぎるため、インクジェット塗布後の平坦性が低下する。低透湿性とインクジェット塗布後の平坦性との両立の点で、7~60質量部が好ましく、9~55質量部がより好ましい。また、インクジェット塗布後の平坦性と硬化率の低さに特化した場合、1~10質量部の範囲にあることが好ましく、3~10質量部の範囲にあることがより好ましい。 (A) The content of the trifunctional or higher acyclic polyfunctional (meth) acrylate may be 1 to 70 parts by mass with respect to 100 parts by mass in total of (A), (B) and (C). It is preferably 3 to 70 parts by mass, and more preferably 3 to 70 parts by mass. If the content of (A) is less than 1 part by mass, it is inferior in terms of low moisture permeability, and if it exceeds 70 parts by mass, the viscosity and surface tension of the composition become too high, so that the flatness after inkjet coating deteriorates. .. From the viewpoint of achieving both low moisture permeability and flatness after inkjet coating, 7 to 60 parts by mass is preferable, and 9 to 55 parts by mass is more preferable. Further, when specializing in flatness after inkjet coating and low curing rate, it is preferably in the range of 1 to 10 parts by mass, and more preferably in the range of 3 to 10 parts by mass.

(B)非環式2官能(メタ)アクリレートとしては、非環式であり、かつ、2官能の多官能(メタ)アクリレートモノマーが好ましい。(B)非環式2官能(メタ)アクリレートモノマーとしては、低透湿性とインクジェットによる吐出性とインクジェット塗布後の平坦性への効果が大きい点で、アルカンジオールジ(メタ)アクリレートが好ましい。アルカンジオールジ(メタ)アクリレートの中では、α,ω-直鎖アルカンジオールジ(メタ)アクリレートが好ましい。アルカンの炭素数は6以上が好ましい。アルカンの炭素数は12以下が好ましい。α,ω-直鎖アルカンジオールジ(メタ)アクリレートの中では、1,6-ヘキサジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレートからなる群のうちの1種以上が好ましく、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレートからなる群のうちの1種以上がより好ましい。 (B) The acyclic bifunctional (meth) acrylate is preferably an acyclic and bifunctional polyfunctional (meth) acrylate monomer. As the (B) acyclic bifunctional (meth) acrylate monomer, an alkanediol di (meth) acrylate is preferable because it has a large effect on low moisture permeability, ejection property by inkjet, and flatness after inkjet application. Among the alkanediol di (meth) acrylates, α, ω-linear alkanediol di (meth) acrylates are preferable. The number of carbon atoms in the alkane is preferably 6 or more. The number of carbon atoms in the alkane is preferably 12 or less. Among the α, ω-linear alkanediol di (meth) acrylates, 1,6-hexadioldi (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and 1,10-decanediol di (meth) acrylate. ) Acrylate, preferably one or more of the group consisting of 1,12-dodecanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, One or more of the group consisting of 1,12-dodecanediol di (meth) acrylate is more preferable.

(B)非環式2官能(メタ)アクリレートの含有量は、(A)、(B)、(C)の合計100質量部に対して、15~98質量部含有することが好ましく、15~95質量部含有することがより好ましく、20~95質量部含有することが最も好ましい。(B)の含有量が15質量部未満であると低透湿性の点で劣り、98質量部を超えると表面張力が高くなりすぎインクジェット塗布後の平坦性が低下する。低透湿性とインクジェット塗布後の平坦性との両立の点で、25~75質量部が好ましく、40~72質量部がより好ましい。一方、インクジェット塗布後の平坦性と硬化率の低さに特化した場合、85~98質量部の範囲にあることが好ましく、85~95質量部の範囲にあることがより好ましい。 The content of (B) acyclic bifunctional (meth) acrylate is preferably 15 to 98 parts by mass, more preferably 15 to 98 parts by mass, based on 100 parts by mass of the total of (A), (B) and (C). It is more preferably contained in an amount of 95 parts by mass, and most preferably it is contained in an amount of 20 to 95 parts by mass. If the content of (B) is less than 15 parts by mass, it is inferior in terms of low moisture permeability, and if it exceeds 98 parts by mass, the surface tension becomes too high and the flatness after inkjet coating deteriorates. From the viewpoint of achieving both low moisture permeability and flatness after inkjet coating, 25 to 75 parts by mass is preferable, and 40 to 72 parts by mass is more preferable. On the other hand, when specializing in flatness after inkjet coating and low curing rate, it is preferably in the range of 85 to 98 parts by mass, and more preferably in the range of 85 to 95 parts by mass.

(B)非環式2官能(メタ)アクリレートは、非環式2官能メタクリレートと非環式2官能アクリレートを含有することが好ましい。非環式2官能メタクリレートは低透湿性の点で効果が大きい。非環式2官能アクリレートはインクジェット塗布後の平坦性への効果が大きい。低透湿性とインクジェット塗布後の平坦性を両立させる点で、非環式2官能メタクリレートと非環式2官能アクリレートの含有比率は、非環式2官能メタクリレートと非環式2官能アクリレートの合計100質量部中、質量比で、非環式2官能メタクリレート:非環式2官能アクリレート=10~90:90~10が好ましく、25~75:75~25が好ましく、40~60:60~40が最も好ましい。 (B) The acyclic bifunctional (meth) acrylate preferably contains an acyclic bifunctional methacrylate and an acyclic bifunctional acrylate. Acyclic bifunctional methacrylate is highly effective in terms of low moisture permeability. The acyclic bifunctional acrylate has a great effect on the flatness after inkjet coating. In terms of achieving both low moisture permeability and flatness after inkjet application, the content ratio of acyclic bifunctional methacrylate and acyclic bifunctional acrylate is 100 in total of acyclic bifunctional methacrylate and acyclic bifunctional acrylate. In terms of mass ratio in parts by mass, acyclic bifunctional methacrylate: acyclic bifunctional acrylate = 10 to 90:90 to 10, preferably 25 to 75:75 to 25, and 40 to 60:60 to 40. Most preferred.

(C)単官能(メタ)アクリレートとしては、単官能(メタ)アクリレートモノマーが好ましい。(C)単官能(メタ)アクリレートモノマーとしては、アルキル(メタ)アクリレート、脂環式炭化水素基を有する(メタ)アクリレートからなる群のうちの1種以上が好ましい。 As the (C) monofunctional (meth) acrylate, a monofunctional (meth) acrylate monomer is preferable. As the (C) monofunctional (meth) acrylate monomer, one or more of the group consisting of an alkyl (meth) acrylate and a (meth) acrylate having an alicyclic hydrocarbon group is preferable.

(C)単官能(メタ)アクリレートモノマーの中では、インクジェットによる吐出性とインクジェット塗布後の平坦性への効果が大きい点で、アルキル(メタ)アクリレートが好ましい。アルキル(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。アルキル(メタ)アクリレートの中では、アルキル基の炭素数が8以上であるアルキル(メタ)アクリレートが好ましい。アルキル(メタ)アクリレートの中では、アルキル基の炭素数が16以下であるアルキル(メタ)アクリレートが好ましい。アルキル基の炭素数が8以上16以下であるアルキル(メタ)アクリレートの中では、ラウリル(メタ)アクリレートが好ましい。アルキル(メタ)アクリレートのアルキル基の中では、非置換の飽和炭化水素基が好ましい。飽和炭化水素基の中では、鎖式化合物が好ましい。 (C) Among the monofunctional (meth) acrylate monomers, the alkyl (meth) acrylate is preferable because it has a large effect on the ejection property by inkjet and the flatness after application to inkjet. Examples of the alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, and isodecyl (meth). Examples thereof include acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate. Among the alkyl (meth) acrylates, the alkyl (meth) acrylate having an alkyl group having 8 or more carbon atoms is preferable. Among the alkyl (meth) acrylates, the alkyl (meth) acrylate having an alkyl group having 16 or less carbon atoms is preferable. Among the alkyl (meth) acrylates having an alkyl group having 8 or more and 16 or less carbon atoms, lauryl (meth) acrylate is preferable. Among the alkyl groups of the alkyl (meth) acrylate, an unsubstituted saturated hydrocarbon group is preferable. Among the saturated hydrocarbon groups, a chain compound is preferable.

(C)単官能(メタ)アクリレートモノマーの中では、低透湿性の点で、脂環式炭化水素基を有する(メタ)アクリレートが好ましい。脂環式炭化水素基としては、ジシクロペンタニル基やジシクロペンテニル基等のジシクロペンタジエン骨格を有する基、シクロヘキシル基、イソボルニル基、シクロデカトリエン基、ノルボルニル基、アダマンチル基等が挙げられる。これらの中では、ジシクロペンタジエン骨格を有する基が好ましい。脂環式炭化水素基を有する(メタ)アクリレートとしては、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシ化シクロデカトリエン(メタ)アクリレート等が挙げられる。ジシクロペンタジエン骨格を有する(メタ)アクリレートの中では、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレートからなる群のうちの1種以上が好ましく、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレートからなる群のうちの1種以上がより好ましく、ジシクロペンテニルオキシエチル(メタ)アクリレートが最も好ましい。脂環式炭化水素基の中では、非置換が好ましい。 (C) Among the monofunctional (meth) acrylate monomers, (meth) acrylate having an alicyclic hydrocarbon group is preferable in terms of low moisture permeability. Examples of the alicyclic hydrocarbon group include a group having a dicyclopentadiene skeleton such as a dicyclopentanyl group and a dicyclopentenyl group, a cyclohexyl group, an isobornyl group, a cyclodecatorien group, a norbornyl group, an adamantyl group and the like. Among these, a group having a dicyclopentadiene skeleton is preferable. Examples of the (meth) acrylate having an alicyclic hydrocarbon group include cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopentenyl (meth) acrylate. Examples thereof include cyclopentenyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, and methoxylated cyclodecatorien (meth) acrylate. Among the (meth) acrylates having a dicyclopentadiene skeleton, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) One or more of the group consisting of acrylate is preferable, and one or more of the group consisting of dicyclopentenyloxyethyl (meth) acrylate and dicyclopentanyloxyethyl (meth) acrylate is more preferable, and dicyclopentenyloxy Ethyl (meth) acrylate is most preferred. Among the alicyclic hydrocarbon groups, unsubstituted is preferable.

(C)単官能(メタ)アクリレートの含有量は、(A)、(B)、(C)の合計100質量部に対して、1~40質量部含有することが好ましく、2~40質量部含有することがより好ましい。(C)の含有量が1質量部未満であると表面張力が高くなりすぎインクジェット塗布後の平坦性が低下し、40質量部を超えると低透湿性の点で劣る。インクジェット塗布後の平坦性と低透湿性との両立の点で、1~30質量部が好ましく、5~30質量部がより好ましく、7~20質量部が最も好ましく、7~10質量部の範囲にある方が尚更一層好ましい。 The content of the monofunctional (meth) acrylate (C) is preferably 1 to 40 parts by mass with respect to 100 parts by mass in total of (A), (B) and (C), and is 2 to 40 parts by mass. It is more preferable to contain it. If the content of (C) is less than 1 part by mass, the surface tension becomes too high and the flatness after inkjet coating is lowered, and if it exceeds 40 parts by mass, the surface tension is inferior in terms of low moisture permeability. From the viewpoint of achieving both flatness and low moisture permeability after inkjet coating, 1 to 30 parts by mass is preferable, 5 to 30 parts by mass is more preferable, 7 to 20 parts by mass is most preferable, and a range of 7 to 10 parts by mass is used. It is even more preferable to be in.

(C)単官能(メタ)アクリレートは、単官能メタクリレートと単官能アクリレートを含有することが好ましい。単官能メタクリレートは低透湿性の点で効果が大きい。単官能アクリレートはインクジェット塗布後の平坦性への効果が大きい。低透湿性とインクジェット塗布後の平坦性を両立させる点で、単官能メタクリレートと単官能アクリレートの含有比率は、単官能メタクリレートと単官能アクリレートの合計100質量部中、質量比で、単官能メタクリレート:単官能アクリレート=5~95:95~5が好ましく、25~75:75~25が好ましく、40~60:60~40が最も好ましい。 (C) The monofunctional (meth) acrylate preferably contains a monofunctional methacrylate and a monofunctional acrylate. Monofunctional methacrylate is highly effective in terms of low moisture permeability. The monofunctional acrylate has a great effect on the flatness after inkjet coating. In terms of achieving both low moisture permeability and flatness after inkjet application, the content ratio of monofunctional methacrylate and monofunctional acrylate is the mass ratio of monofunctional methacrylate and monofunctional acrylate in a total of 100 parts by mass. Monofunctional acrylate = 5 to 95:95 to 5, preferably 25 to 75:75 to 25, most preferably 40 to 60:60 to 40.

本実施形態の組成物においては、インクジェット吐出性の点で、(メタ)アクリレートはモノマーが好ましい。(A)、(B)、(C)は、特にモノマーが好ましい。モノマーの分子量は、1000以下が好ましい。インクジェット吐出性の点で、多官能(メタ)アクリレートオリゴマー/ポリマーは、組成物100質量部中、3質量部以下含有することが好ましく、1質量部以下含有することが好ましく、含有しないことが最も好ましい。多官能(メタ)アクリレートオリゴマー/ポリマーとは、多官能(メタ)アクリレートオリゴマー、多官能(メタ)アクリレートポリマー、多官能(メタ)アクリレートオリゴマーと多官能(メタ)アクリレートポリマーの混合物からなる群の1種以上が好ましい。 In the composition of the present embodiment, the (meth) acrylate is preferably a monomer from the viewpoint of inkjet ejection property. As for (A), (B) and (C), monomers are particularly preferable. The molecular weight of the monomer is preferably 1000 or less. In terms of inkjet ejection property, the polyfunctional (meth) acrylate oligomer / polymer is preferably contained in an amount of 3 parts by mass or less, preferably 1 part by mass or less, and most preferably not contained in 100 parts by mass of the composition. preferable. The polyfunctional (meth) acrylate oligomer / polymer is one of a group consisting of a polyfunctional (meth) acrylate oligomer, a polyfunctional (meth) acrylate polymer, and a mixture of a polyfunctional (meth) acrylate oligomer and a polyfunctional (meth) acrylate polymer. More than seeds are preferred.

(D)光重合開始剤は、可視光線や紫外線の活性光線により増感させて樹脂組成物の光硬化を促進するために使用するものである。光重合開始剤としては、ベンゾフェノン及びその誘導体、ベンジル及びその誘導体、エントラキノン及びその誘導体、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール等のベンゾイン誘導体、ジエトキシアセトフェノン、4-t-ブチルトリクロロアセトフェノン等のアセトフェノン誘導体、2-ジメチルアミノエチルベンゾエート、p-ジメチルアミノエチルベンゾエート、ジフェニルジスルフィド、チオキサントン及びその誘導体、カンファーキノン、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-ブロモエチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-メチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸クロライド等のカンファーキノン誘導体、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のα-アミノアルキルフェノン誘導体、ベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ベンゾイルジエトキシホスフィンオキサイド、2,4,6-トリメチルベンゾイルジメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジエトキシフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィンオキサイド誘導体、フェニル-グリオキシリックアシッド-メチルエステル、オキシ-フェニル-アセチックアシッド2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステル及びオキシ-フェニル-アセチックアシッド2-[2-ヒドロキシ-エトキシ]-エチルエステル等が挙げられる。光重合開始剤は1種以上を組み合わせて用いることができる。これらの中では、硬化させる時に390nm以上の可視光線のみを用いて硬化させることができ、有機エレクトロルミネッセンス表示素子にダメージを与えないで硬化させることができる点で、アシルホスフィンオキサイド誘導体が好ましい。アシルホスフィンオキサイド誘導体の中では、ディスプレイとした時に可視光線での透過性が低下せずに、395nm以上の光のみを用いて硬化させることができる点で、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドが最も好ましい。 (D) The photopolymerization initiator is used to accelerate the photocuring of the resin composition by sensitizing it with active light of visible light or ultraviolet light. Examples of the photopolymerization initiator include benzoyl derivatives such as benzophenone and its derivatives, benzyl and its derivatives, entraquinone and its derivatives, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, and benzyl dimethyl ketal. Acetphenone derivatives such as ethoxyacetophenone and 4-t-butyltrichloroacetophenone, 2-dimethylaminoethylbenzoate, p-dimethylaminoethylbenzoate, diphenyldisulfide, thioxanthone and its derivatives, camphorquinone, 7,7-dimethyl-2,3- Dioxobicyclo [2.2.1] heptane-1-carboxylic acid, 7,7-dimethyl-2,3-dioxobicyclo [2.2.1] heptane-1-carboxy-2-bromoethyl ester, 7 , 7-dimethyl-2,3-dioxobicyclo [2.2.1] heptane-1-carboxy-2-methyl ester, 7,7-dimethyl-2,3-dioxobicyclo [2.2.1] Benzoyl quinone derivatives such as heptane-1-carboxylic acid chloride, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-( 4-Morphorinophenyl) -α-aminoalkylphenone derivative such as butanone-1, benzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, benzoyldiethoxyphosphine oxide, 2,4,6-trimethyl Acylphosphine oxide derivatives such as benzoyldimethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoyldiethoxyphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, phenyl-glycylic acid-methyl Examples include esters, oxy-phenyl-acetylic acid 2- [2-oxo-2-phenyl-acetoxy-ethoxy] -ethyl esters and oxy-phenyl-acetylic acid 2- [2-hydroxy-ethoxy] -ethyl esters. Be done. One or more photopolymerization initiators can be used in combination. Among these, the acylphosphine oxide derivative is preferable in that it can be cured using only visible light having a diameter of 390 nm or more and can be cured without damaging the organic electroluminescence display element. Among the acylphosphine oxide derivatives, 2,4,6-trimethylbenzoyl-diphenyl can be cured by using only light of 395 nm or more without deteriorating the transparency in visible light when used as a display. -Phosphine oxide is most preferred.

(D)光重合開始剤の含有量は、(A)、(B)、(C)の合計100質量部に対して、0.05~6質量部が好ましく、0.5~5質量部がより好ましく、1~4質量部が最も好ましい。0.05質量部以上であれば、硬化促進の効果が確実に得られるし、6質量部以下であれば、ディスプレイとした時に可視光線での透過性が低下することも無い。 The content of the photopolymerization initiator (D) is preferably 0.05 to 6 parts by mass, preferably 0.5 to 5 parts by mass, based on 100 parts by mass of the total of (A), (B) and (C). More preferably, 1 to 4 parts by mass is most preferable. If it is 0.05 part by mass or more, the effect of promoting curing can be surely obtained, and if it is 6 parts by mass or less, the transparency in visible light does not decrease when the display is used.

本実施形態の組成物から得られる硬化体のガラス転移温度は、200℃以上が好ましい。硬化体のガラス転移温度が200℃以上だと、本実施形態の組成物の硬化体上に無機パッシベーション膜を、CVD等の手法によって成膜する際に、熱膨張により無機パッシベーション膜の成膜ムラによるピンホールの発生が起こらなくなり、有機EL素子の信頼性が向上する。 The glass transition temperature of the cured product obtained from the composition of the present embodiment is preferably 200 ° C. or higher. When the glass transition temperature of the cured product is 200 ° C. or higher, uneven film formation of the inorganic passion film is caused by thermal expansion when the inorganic passion film is formed on the cured product of the composition of the present embodiment by a method such as CVD. The occurrence of pinholes due to the above is eliminated, and the reliability of the organic EL element is improved.

本実施形態の組成物から得られる硬化体のガラス転移温度の測定方法は特に制限はないが、DSCや動的粘弾性スペクトル等の公知の方法で測定され、好ましくは動的粘弾性スペクトルが用いられる。動的粘弾性スペクトルでは、該硬化体に昇温速度一定で応力及び歪みを加え、損失正接(以下、tanδと略す)のピークトップを示す温度をガラス転移温度とすることができる。-150℃程度の十分に低い温度からある温度(Ta℃)まで昇温してもtanδのピークが現れない場合、ガラス転移温度としては、-150℃以下若しくはある温度(Ta℃)以上と考えられるが、ガラス転移温度が-150℃以下である組成物はその構造故に考えられないため、ある温度(Ta℃)以上とすることができる。 The method for measuring the glass transition temperature of the cured product obtained from the composition of the present embodiment is not particularly limited, but it is measured by a known method such as DSC or dynamic viscoelastic spectrum, and a dynamic viscoelastic spectrum is preferably used. Be done. In the dynamic viscoelastic spectrum, stress and strain are applied to the cured product at a constant temperature rise rate, and the temperature showing the peak top of the loss tangent (hereinafter abbreviated as tan δ) can be set as the glass transition temperature. If the peak of tan δ does not appear even if the temperature is raised from a sufficiently low temperature of about -150 ° C to a certain temperature (Ta ° C), the glass transition temperature is considered to be -150 ° C or lower or a certain temperature (Ta ° C) or higher. However, since a composition having a glass transition temperature of −150 ° C. or lower is unthinkable due to its structure, it can be set to a certain temperature (Ta ° C.) or higher.

本実施形態の組成物は、貯蔵安定性向上のために、重合禁止剤を使用できる。 In the composition of the present embodiment, a polymerization inhibitor can be used to improve the storage stability.

本実施形態の組成物は、樹脂組成物として使用できる。本実施形態の組成物は、(メタ)アクリル系樹脂組成物として使用できる。本実施形態の組成物は、光硬化性樹脂組成物として使用できる。本実施形態の組成物は、被覆剤や接着剤として使用できる。本実施形態の組成物は、有機EL表示素子用封止剤として使用できる。 The composition of this embodiment can be used as a resin composition. The composition of this embodiment can be used as a (meth) acrylic resin composition. The composition of this embodiment can be used as a photocurable resin composition. The composition of this embodiment can be used as a coating agent or an adhesive. The composition of this embodiment can be used as a sealing agent for an organic EL display element.

可視光線又は紫外線を照射して、組成物を硬化させる方法としては、組成物に可視光線又は紫外線の少なくとも一方を照射して硬化する方法等が挙げられる。このような可視光線又は紫外線を照射するためのエネルギー照射源としては、重水素ランプ、高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、キセノンランプ、キセノン-水銀混成ランプ、ハロゲンランプ、エキシマランプ、インジュームランプ、タリウムランプ、LEDランプ、無電極放電ランプ等のエネルギー照射源が挙げられる。本実施形態の組成物は、有機EL素子にダメージを与えづらい点で、380nm以上の波長で硬化させることが好ましく、395nm以上の波長で硬化させることがより好ましく、395nmの波長で硬化させることが最も好ましい。エネルギー照射源の波長としては、赤外光を発光することにより照射部の温度が上がり、有機EL素子にダメージを与える可能性が生じるため、500nm以下であることが好ましい。エネルギー照射源としては、発光波長が短波長であるLEDランプが好ましく、例えば発光ピーク波長が395nmであるLEDランプがより好ましく使用できる。 Examples of the method of irradiating the composition with visible light or ultraviolet rays to cure the composition include a method of irradiating the composition with at least one of visible light or ultraviolet rays to cure the composition. As energy irradiation sources for irradiating such visible light or ultraviolet rays, deuterium lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, low-pressure mercury lamps, xenon lamps, xenon-mercury mixed lamps, halogen lamps, excimer lamps, etc. Examples thereof include energy irradiation sources such as injume lamps, tallium lamps, LED lamps, and electrodeless discharge lamps. The composition of the present embodiment is preferably cured at a wavelength of 380 nm or more, more preferably at a wavelength of 395 nm or more, and more preferably cured at a wavelength of 395 nm, because it is difficult to damage the organic EL device. Most preferred. The wavelength of the energy irradiation source is preferably 500 nm or less because the temperature of the irradiated portion rises due to the emission of infrared light, which may damage the organic EL element. As the energy irradiation source, an LED lamp having a short emission wavelength is preferable, and for example, an LED lamp having an emission peak wavelength of 395 nm can be more preferably used.

可視光線又は紫外線を照射して、組成物を硬化させる際は、波長395nmにおいて100~8000mJ/cm2のエネルギーを組成物に照射し硬化させる。100~8000mJ/cm2であれば組成物が硬化し、十分な接着強度が得られる。100mJ/cm2以上であれば組成物が十分に硬化し、8000mJ/cm2以下であれば有機EL素子にダメージを与えない。組成物を硬化させる際のエネルギー量は、300~2000mJ/cm2がより好ましい。 When the composition is cured by irradiating it with visible light or ultraviolet rays, the composition is cured by irradiating the composition with energy of 100 to 8000 mJ / cm 2 at a wavelength of 395 nm. If it is 100 to 8000 mJ / cm 2 , the composition is cured and sufficient adhesive strength can be obtained. If it is 100 mJ / cm 2 or more, the composition is sufficiently cured, and if it is 8000 mJ / cm 2 or less, the organic EL element is not damaged. The amount of energy for curing the composition is more preferably 300 to 2000 mJ / cm 2 .

本実施形態の組成物の粘度は、E型粘度計を用いて、25℃、100rpmの条件で測定した粘度が2mPa・s以上50mPa・s以下であることが好ましい。粘度が2mPa・s未満であると、塗工した有機EL表示素子用封止剤が、硬化前に有機EL表示素子から流出する場合がある。粘度が50mPa・sを超えると、インクジェットによる塗布が困難となる場合がある。組成物の粘度は5mPa・s以上が好ましい。組成物の粘度は20mPa・s以下が好ましい。 The viscosity of the composition of the present embodiment is preferably 2 mPa · s or more and 50 mPa · s or less as measured by using an E-type viscometer under the conditions of 25 ° C. and 100 rpm. If the viscosity is less than 2 mPa · s, the coated sealant for the organic EL display element may flow out from the organic EL display element before curing. If the viscosity exceeds 50 mPa · s, it may be difficult to apply by inkjet. The viscosity of the composition is preferably 5 mPa · s or more. The viscosity of the composition is preferably 20 mPa · s or less.

本実施形態の組成物の透明性は、有機物膜の厚さが1μm以上10μm以下のとき、360nm以上800nm以下の紫外-可視光線領域の分光透過率が97%以上であることが好ましく、99%以上であることがより好ましい。97%以上であれば、輝度、コントラストに優れた有機EL装置を提供することができる。 The transparency of the composition of the present embodiment is preferably 99% when the thickness of the organic film is 1 μm or more and 10 μm or less and the spectral transmittance in the ultraviolet-visible light region of 360 nm or more and 800 nm or less is 97% or more. The above is more preferable. If it is 97% or more, it is possible to provide an organic EL device having excellent brightness and contrast.

本実施形態の組成物からなる封止層は、無機/有機積層体を1セットとして数えると、1~5セットであることが好ましい。無機/有機積層体が6セット以上の場合には、有機EL素子に対する封止効果が5セットの場合とほぼ同じとなるからである。無機/有機積層体の無機物膜の厚さは、50nm~1μmが好ましい。無機/有機積層体の有機物膜の厚さは1~15μmが好ましく、3~10μmがより好ましい。有機物膜の厚みが1μm未満であると、素子形成時に発生するパーティクルを完全に被覆できず、無機物膜上に平坦性良く塗布することが難しい場合がある。有機物膜の厚みが15μmを超えると、有機物膜の側面より水分が侵入し、有機EL素子の信頼性が低下する場合がある。 The sealing layer made of the composition of the present embodiment is preferably 1 to 5 sets when the inorganic / organic laminate is counted as one set. This is because when the number of inorganic / organic laminates is 6 or more, the sealing effect on the organic EL element is almost the same as that of 5 sets. The thickness of the inorganic film of the inorganic / organic laminate is preferably 50 nm to 1 μm. The thickness of the organic film of the inorganic / organic laminate is preferably 1 to 15 μm, more preferably 3 to 10 μm. If the thickness of the organic film is less than 1 μm, the particles generated during device formation cannot be completely covered, and it may be difficult to apply the organic film on the inorganic film with good flatness. If the thickness of the organic film exceeds 15 μm, moisture may penetrate from the side surface of the organic film, and the reliability of the organic EL element may decrease.

封止基板は、封止層の最上位有機物膜の上面全体を覆うように密着して形成される。この封止基板としては、前述の基板が挙げられる。これらの中では、可視光線に対して透明な基板が好ましい。可視光線に対して透明な基板(透明封止基板)の中では、ガラス基板、プラスチック基板からなる群のうちの1種以上が好ましく、ガラス基板がより好ましい。 The encapsulating substrate is formed in close contact so as to cover the entire upper surface of the uppermost organic film of the encapsulating layer. Examples of this sealing substrate include the above-mentioned substrates. Among these, a substrate that is transparent to visible light is preferable. Among the substrates transparent to visible light (transparent sealed substrate), one or more of the group consisting of a glass substrate and a plastic substrate is preferable, and a glass substrate is more preferable.

透明封止基板の厚さは、1μm以上1mm以下が好ましく、50μm以上300μm以下がより好ましい。透明封止基板を封止層の更に上層に設けることによって、最上位有機物膜の表面が気体に触れると進行する劣化を抑えることができ、有機EL装置のバリア性を高めることができる。 The thickness of the transparent sealed substrate is preferably 1 μm or more and 1 mm or less, and more preferably 50 μm or more and 300 μm or less. By providing the transparent sealing substrate on the upper layer of the sealing layer, it is possible to suppress the deterioration that progresses when the surface of the uppermost organic film comes into contact with the gas, and it is possible to enhance the barrier property of the organic EL device.

次に、このような構成を有する有機EL装置の製造方法について説明する。まず、第1の基板上に、従来公知の方法によって、所定の形状にパターニングした陽極、発光層を含む有機EL層、及び陰極を順に形成して、有機EL素子を形成する。例えば、有機EL装置をドットマトリックス表示装置として使用する場合、発光領域をマトリックス状に区切るためにバンクが形成され、このバンクで囲まれる領域に発光層を含む有機EL層が形成される。 Next, a method of manufacturing an organic EL device having such a configuration will be described. First, an anode, an organic EL layer including a light emitting layer, and a cathode patterned in a predetermined shape are sequentially formed on the first substrate by a conventionally known method to form an organic EL element. For example, when an organic EL device is used as a dot matrix display device, a bank is formed to divide a light emitting region into a matrix, and an organic EL layer including a light emitting layer is formed in a region surrounded by the banks.

次いで、有機EL素子が形成された基板上に、スパッタ法等のPVD(Physical Vapor Deposition)法やプラズマCVD(Chemical Vapor Deposition)法等のCVD法等の成膜方法によって、所定の厚さを有する第1の無機物膜を形成する。その後、溶液塗布法やスプレー塗布法等の塗膜形成方法やフラッシュ蒸着法、インクジェット法等を用いて、第1の無機物膜上に本実施形態の組成物を付着させる。これらの中では、インクジェット法が好ましい。その後、紫外線や電子線、プラズマ等のエネルギー線の照射によって、組成物が硬化し、第1の有機物膜が形成される。以上の工程によって、1セットの無機/有機積層体が形成される。 Next, the substrate on which the organic EL element is formed has a predetermined thickness by a film forming method such as a PVD (Physical Vapor Deposition) method such as a sputtering method or a CVD method such as a plasma CVD (Chemical Vapor Deposition) method. It forms a first inorganic film. Then, the composition of the present embodiment is adhered onto the first inorganic film by using a coating film forming method such as a solution coating method or a spray coating method, a flash vapor deposition method, an inkjet method, or the like. Of these, the inkjet method is preferable. After that, the composition is cured by irradiation with energy rays such as ultraviolet rays, electron beams, and plasma, and a first organic film is formed. By the above steps, one set of inorganic / organic laminates is formed.

以上に示される無機/有機積層体の形成工程が、所定の回数だけ繰り返される。但し、最後のセット、即ち最上層の無機/有機積層体に関しては、上面が平坦化するように組成物を、塗布法やフラッシュ蒸着法、インクジェット法等によって、無機物膜の上面に付着させても良い。 The step of forming the inorganic / organic laminate shown above is repeated a predetermined number of times. However, for the final set, that is, the uppermost inorganic / organic laminate, even if the composition is adhered to the upper surface of the inorganic film by a coating method, a flash vapor deposition method, an inkjet method, etc. so that the upper surface is flattened. good.

次いで、基板上の組成物を付着させた面に、透明封止基板を貼り合わせる。貼り合わせの際、位置合わせを行う。その後、透明封止基板側から、エネルギー線を照射することによって、最上層の無機物膜と透明封止基板との間に存在する、本実施形態の組成物を硬化させる。これによって、組成物が硬化し、最上位有機物膜を形成すると共に、最上位有機物膜と透明封止基板とが接着される。以上によって、有機EL装置の製造方法が終了する。 Next, the transparent sealing substrate is attached to the surface of the substrate to which the composition is attached. At the time of bonding, alignment is performed. Then, by irradiating energy rays from the transparent sealing substrate side, the composition of the present embodiment existing between the uppermost inorganic film and the transparent sealing substrate is cured. As a result, the composition is cured to form the uppermost organic film, and the uppermost organic film and the transparent sealing substrate are adhered to each other. This completes the method for manufacturing the organic EL device.

無機物膜上に組成物を付着させた後、部分的にエネルギー線を照射して重合させてもよい。このようにすることで、透明封止基板を載置したときに、最上位有機物膜となる組成物の形状の崩れを防止することができる。無機物膜と有機物膜の厚さは、各無機/有機積層体で同じにしてもよいし、各無機/有機積層体で異なっていてもよい。 After adhering the composition on the inorganic film, the composition may be partially irradiated with energy rays to polymerize. By doing so, it is possible to prevent the shape of the composition, which is the uppermost organic film, from being deformed when the transparent sealing substrate is placed. The thickness of the inorganic film and the organic film may be the same for each inorganic / organic laminate, or may be different for each inorganic / organic laminate.

上述した説明では、トップエミッション型の有機EL装置を例に挙げて説明した。有機EL層で生じる光を基板側から出射するボトムエミッション型の有機EL装置にも、本実施形態を適用することができる。 In the above description, a top-emission type organic EL device has been described as an example. The present embodiment can also be applied to a bottom emission type organic EL device that emits light generated in the organic EL layer from the substrate side.

本実施形態の有機EL素子は、面状光源、セグメント表示装置、ドットマトリックス表示装置として用いることができる。 The organic EL element of this embodiment can be used as a planar light source, a segment display device, and a dot matrix display device.

本実施形態の実施の形態によれば、第1のプラスチック基板上に形成された有機EL素子を外気と遮断するための封止層を形成し、更にその封止層上に透明封止基板を配置したので、有機EL素子に対する十分な水蒸気と酸素に対するバリア性を有する封止構造を得ることができる。本実施形態の実施の形態によれば、透明封止基板と封止層との間で十分な接着強度を有する封止構造を得ることができる。 According to the embodiment of the present embodiment, a sealing layer for blocking the organic EL element formed on the first plastic substrate from the outside air is formed, and a transparent sealing substrate is further formed on the sealing layer. Since the arrangement is made, it is possible to obtain a sealing structure having sufficient barrier properties against water vapor and oxygen for the organic EL element. According to the embodiment of the present embodiment, it is possible to obtain a sealing structure having sufficient adhesive strength between the transparent sealing substrate and the sealing layer.

本実施の形態によれば、封止層の最上位有機物膜を構成する本実施形態の組成物を付着させた後に、組成物を硬化させることなく透明封止基板を載置して、その後に組成物を硬化させるようにしたので、封止層を構成する最上位有機物膜の形成と同時に、封止層と透明封止基板との間の接着を行うことができる。その結果、本実施形態は、封止層と透明封止基板とを接着剤で接着する場合に比して、工程を簡略化できるという効果を有する。 According to the present embodiment, after the composition of the present embodiment constituting the uppermost organic film of the sealing layer is adhered, the transparent sealing substrate is placed without curing the composition, and then the transparent sealing substrate is placed. Since the composition is cured, it is possible to bond the sealing layer and the transparent sealing substrate at the same time as forming the uppermost organic film constituting the sealing layer. As a result, the present embodiment has an effect that the process can be simplified as compared with the case where the sealing layer and the transparent sealing substrate are bonded with an adhesive.

本実施形態の組成物は、JIS Z 0208:1976に準拠して、硬化物を85℃、85%RHの環境下に24時間暴露して測定した100μm厚での透湿度の値が、250g/m2以下であることが好ましい。上記透湿度が250g/m2を超えると、有機発光材料層に水分が到達し、ダークスポットが発生することがある。 The composition of the present embodiment has a moisture permeability value of 250 g / m at a thickness of 100 μm measured by exposing the cured product to an environment of 85 ° C. and 85% RH for 24 hours in accordance with JIS Z 0208: 1976. It is preferably m 2 or less. If the moisture permeability exceeds 250 g / m 2 , moisture may reach the organic light emitting material layer and dark spots may be generated.

本実施形態によれば、インクジェット法により容易に塗布することができ、硬化性、硬化物の透明性及びバリア性に優れる有機EL表示素子用封止剤を提供することができる。本実施形態によれば、有機EL表示素子用封止剤を用いた有機EL表示素子の製造方法を提供することができる。 According to this embodiment, it is possible to provide a sealing agent for an organic EL display element which can be easily applied by an inkjet method and has excellent curability, transparency of a cured product and barrier property. According to the present embodiment, it is possible to provide a method for manufacturing an organic EL display element using a sealing agent for an organic EL display element.

(実験例1~15)
以下の方法により組成物を作製し、評価した。
(Experimental Examples 1 to 15)
Compositions were prepared and evaluated by the following methods.

(組成物の作製)
表1の使用材料を用いた。表2の組成で各使用材料を混合して、組成物を調製した。得られた組成物を使用して、以下に示す評価方法にてE型粘度、透湿度、塗布面積の拡大率、硬化率、透明性、ガラス転移温度、有機EL評価の測定を行った。結果を表2に示す。表2の組成物名には、表1に示す略号を用いた。
(Preparation of composition)
The materials used in Table 1 were used. Each used material was mixed according to the composition shown in Table 2 to prepare a composition. Using the obtained composition, E-type viscosity, moisture permeability, expansion rate of coating area, curing rate, transparency, glass transition temperature, and organic EL evaluation were measured by the evaluation methods shown below. The results are shown in Table 2. The abbreviations shown in Table 1 were used for the composition names in Table 2.

〔E型粘度〕
組成物の粘度はE型粘度計を用い、1°34’×R24のコーンローター、温度25℃、回転数100rpmの条件下で測定した。
[E-type viscosity]
The viscosity of the composition was measured using an E-type viscometer under the conditions of a cone rotor of 1 ° 34'× R24, a temperature of 25 ° C., and a rotation speed of 100 rpm.

〔光硬化条件〕
組成物の硬化物性の評価に際し、下記光照射条件により、組成物を硬化させた。395nmの波長を発光するLEDランプ(HOYA社製UV-LED LIGHT SOURCE H-4MLH200-V1)により、395nmの波長の積算光量1,500mJ/cm2の条件にて、組成物を光硬化させ、硬化体を得た。
[Photo-curing conditions]
In the evaluation of the cured physical properties of the composition, the composition was cured under the following light irradiation conditions. The composition is photocured and cured under the condition of an integrated light amount of 1,500 mJ / cm 2 with a wavelength of 395 nm by an LED lamp (UV-LED LIGHT SOURCE H-4MLH200-V1 manufactured by HOYA Corporation) that emits a wavelength of 395 nm. I got a body.

〔透湿度〕
厚さ0.1mmのシート状の硬化体を前記光硬化条件にて作製し、JIS Z0208:1976「防湿包装材料の透湿度試験方法(カップ法)」に準じ、吸湿剤として塩化カルシウム(無水)を用い、雰囲気温度60℃、相対湿度90%の条件で測定した。
[Humidity permeability]
A sheet-shaped cured product having a thickness of 0.1 mm was prepared under the above-mentioned photocuring conditions, and calcium chloride (anhydrous) was used as a hygroscopic agent in accordance with JIS Z0208: 1976 "Humidity Permeability Test Method for Moisture-Proof Packaging Material (Cup Method)". Was measured under the conditions of an atmospheric temperature of 60 ° C. and a relative humidity of 90%.

〔硬化率〕
各実験例で得られた組成物に対して、上記インクジェット装置を使用して10μmの厚みとなるように上述の方法で洗浄した無アルカリガラス上に、組成物を10mm×10mmの大きさに塗布し、酸素濃度0.1%未満の窒素雰囲気中にて前記光硬化条件で硬化させ、硬化率を以下の手順で測定した。
硬化後の上記組成物及び硬化前の上記組成物に、赤外分光装置(サーモサイエンティフィック社製、Nicolet is5、DTGS検出器、分解能4cm-1)を用い、該測定試料に赤外光を入射して赤外分光スペクトルを測定した。得られた赤外分光スペクトルにて、硬化前後でピーク変化を生じない、2950cm-1付近に観測されるメチレン基の炭素-水素結合の伸縮振動ピークを内部標準とし、この内部標準の硬化前後のピーク面積と、(メタ)アクリレートの炭素-炭素二重結合に結合する炭素-水素結合の面外変角振動のピークに帰属される、810cm-1付近のピークの硬化前後の面積から、次式を用い硬化率を算出した。
硬化率(%)=[1-(Ax/Bx)/(Ao/Bo)]×100
ここで、
Ao:810cm-1付近の硬化前のピーク面積を表す。
Ax:810cm-1付近の硬化後のピーク面積を表す。
Bo:2950cm-1付近の硬化前のピーク面積を表す。
Bx:2950cm-1付近の硬化後のピーク面積を表す。
[Curing rate]
For the composition obtained in each experimental example, the composition was applied to a size of 10 mm × 10 mm on a non-alkali glass washed by the above method so as to have a thickness of 10 μm using the above inkjet device. Then, it was cured under the above photocuring conditions in a nitrogen atmosphere having an oxygen concentration of less than 0.1%, and the curing rate was measured by the following procedure.
An infrared spectroscope (Nicolette is5, DTGS detector, resolution 4 cm -1 ) manufactured by Thermo Scientific Co., Ltd. was used for the composition after curing and the composition before curing, and infrared light was applied to the measurement sample. The infrared spectroscopic spectrum was measured after incident. In the obtained infrared spectroscopic spectrum, the expansion and contraction vibration peak of the carbon-hydrogen bond of the methylene group observed near 2950 cm -1 , which does not cause a peak change before and after curing, is used as the internal standard, and before and after curing of this internal standard. From the peak area and the area before and after curing of the peak near 810 cm -1 , which is attributed to the peak of the out-of-plane polarization vibration of the carbon-hydrogen bond bonded to the carbon-carbon double bond of (meth) acrylate, the following equation is obtained. The curing rate was calculated using.
Curing rate (%) = [1- (Ax / Bx) / (Ao / Bo)] x 100
here,
Ao: Represents the peak area before curing near 810 cm -1 .
Ax: Represents the peak area after curing near 810 cm -1 .
Bo: Represents the peak area before curing near 2950 cm -1 .
Bx: Represents the peak area after curing near 2950 cm -1 .

〔透明性〕
各実験例で得られた組成物をそれぞれ25mm×25mm×1mmtのガラス板(無アルカリガラス、Corning社製 Eagle XG)2枚の間に10μmの厚みに形成し、LEDランプを用いて波長395nmの紫外線を照射量が1500mJ/cm2となるように照射することにより硬化させて硬化体を得た。得られた硬化体について、紫外-可視分光光度計(島津製作所社製「UV-2550」)にて380nm、412nm、800nmの分光透過率を測定し、透明性とした。
〔transparency〕
The compositions obtained in each experimental example were formed between two 25 mm × 25 mm × 1 mmt glass plates (non-alkali glass, Corning's Eagle XG) to a thickness of 10 μm, and a wavelength of 395 nm was formed using an LED lamp. A cured product was obtained by irradiating with ultraviolet rays so that the irradiation amount was 1500 mJ / cm 2 . The obtained cured product was measured for spectral transmittance at 380 nm, 412 nm, and 800 nm with an ultraviolet-visible spectrophotometer (“UV-2550” manufactured by Shimadzu Corporation) to obtain transparency.

〔ガラス転移温度〕
各実験例で得られた組成物を、1mm厚のシリコンシートを型枠とし、PETフィルムに挟み込んだ。該組成物を、前記光硬化条件にて、上面から硬化させた後、更に下から前記光硬化条件にて、硬化させ、厚さ1mmの該組成物の硬化体を作製した。作製した硬化体をカッターにて長さ50mm幅5mmに切断し、ガラス転移温度測定用硬化体とした。得られた硬化体をセイコー電子産業社製、動的粘弾性測定装置「DMS210」により、窒素雰囲気中にて前記硬化体に1Hzの引張方向の応力及び歪みを加え、昇温速度毎分2℃の割合で-150℃から200℃まで昇温しながらtanδを測定し、該tanδのピークトップの温度をガラス転移温度とした。tanδのピークトップはtanδが0.3以上の領域における最大値とした。tanδが-150℃から200℃の領域で0.3以下であった場合、tanδのピークトップは200℃を超えるとし、ガラス転移温度は200℃を超える(200<)とした。
〔Glass-transition temperature〕
The composition obtained in each experimental example was sandwiched between PET films using a 1 mm thick silicon sheet as a mold. The composition was cured from above under the photocuring conditions and then further cured from below under the photocuring conditions to prepare a cured product having a thickness of 1 mm. The prepared cured product was cut into a length of 50 mm and a width of 5 mm with a cutter to obtain a cured product for measuring the glass transition temperature. The obtained cured product is subjected to stress and strain in the tensile direction of 1 Hz in a nitrogen atmosphere by a dynamic viscoelasticity measuring device "DMS210" manufactured by Seiko Denshi Sangyo Co., Ltd., and the temperature rise rate is 2 ° C. per minute. The tan δ was measured while raising the temperature from −150 ° C. to 200 ° C., and the temperature at the peak top of the tan δ was defined as the glass transition temperature. The peak top of tan δ was set to the maximum value in the region where tan δ was 0.3 or more. When tan δ was 0.3 or less in the region of −150 ° C. to 200 ° C., the peak top of tan δ was set to exceed 200 ° C., and the glass transition temperature was set to exceed 200 ° C. (200 <).

〔塗布面積の拡大率〕
各実験例で得られた組成物を70mm×70mm×0.7mmtの基材(無アルカリガラス(Corning社製 Eagle XG))上にインクジェット吐出装置(武蔵エンジニアリング社製MID500B、溶剤系ヘッド「MIDヘッド」)を用いて4mm×4mm×10μmtとなるようにパターン塗布した。無アルカリガラスは使用前に、アセトン、イソプロパノールそれぞれを用いて洗浄し、その後にテクノビジョン社製UVオゾン洗浄装置UV-208を用いて5分間洗浄した。パターン塗布後に雰囲気温度23℃、相対湿度50%の条件で5分間放置し、塗布面積の拡大率(下記式参照)によりインクジェット塗布後の平坦性を評価した。塗布面積の拡大率が大きい程、インクジェット塗布後の平坦性に優れ、塗布性が大きい。
(塗布面積の拡大率)=((パターン塗布してから5分後に、基材表面に接触した組成物の接触面積)/(パターン塗布直後の、基材表面に接触した組成物の接触面積))×100(%)
[Expansion rate of coating area]
The composition obtained in each experimental example is placed on a 70 mm × 70 mm × 0.7 mmt substrate (non-alkali glass (Eagle XG manufactured by Corning)) with an inkjet ejection device (MID500B manufactured by Musashi Engineering Co., Ltd., solvent-based head “MID head”). ]) Was used to apply a pattern so as to have a size of 4 mm × 4 mm × 10 μmt. The non-alkali glass was washed with acetone and isopropanol before use, and then washed with a UV ozone cleaning device UV-208 manufactured by Technovision Co., Ltd. for 5 minutes. After the pattern was applied, it was left for 5 minutes under the conditions of an atmospheric temperature of 23 ° C. and a relative humidity of 50%, and the flatness after inkjet application was evaluated by the expansion rate of the applied area (see the following formula). The larger the expansion rate of the coating area, the better the flatness after inkjet coating and the greater the coating property.
(Expansion rate of coating area) = ((contact area of the composition in contact with the surface of the substrate 5 minutes after the pattern is applied) / (contact area of the composition in contact with the surface of the substrate immediately after the pattern is applied)) ) X 100 (%)

〔有機EL評価〕 [Organic EL evaluation]

〔有機EL素子基板の作製〕
ITO電極付きガラス基板を、アセトン、イソプロパノールそれぞれを用いて洗浄した。その後、真空蒸着法にて以下の化合物を薄膜となるように順次蒸着し、陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極からなる有機EL素子基板を得た。各層の構成は以下の通りである。
・陽極 ITO、陽極の膜厚250nm
・正孔注入層 銅フタロシアニン
・正孔輸送層 N,N’-ジフェニル-N,N’-ジナフチルベンジジン(α-NPD)
・発光層 トリス(8-ヒドロキシキノリナト)アルミニウム(金属錯体系材料)、発光層の膜厚1000Å、発光層は電子輸送層としても機能する。
・電子注入層 フッ化リチウム
・陰極 アルミニウム、陽極の膜厚250nm
[Manufacturing of organic EL element substrate]
The glass substrate with ITO electrode was washed with acetone and isopropanol, respectively. Then, the following compounds were sequentially vapor-deposited into a thin film by a vacuum vapor deposition method to obtain an organic EL element substrate composed of an anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode. The structure of each layer is as follows.
・ Anode ITO, anode film thickness 250 nm
・ Hole injection layer Copper phthalocyanine ・ Hole transport layer N, N'-diphenyl-N, N'-dinaphthylbenzidine (α-NPD)
-Light emitting layer Tris (8-hydroxyquinolinato) aluminum (metal complex material), the film thickness of the light emitting layer is 1000 Å, and the light emitting layer also functions as an electron transport layer.
・ Electron injection layer Lithium fluoride ・ Cathode Aluminum, anode film thickness 250nm

〔有機EL素子の作製〕
各実験例で得られた組成物を、窒素雰囲気下にて上記インクジェット装置を用いて2mm×2mmの有機EL素子基板上に厚み10μmで塗布し、前記光硬化条件にて、この組成物を硬化させた後、該硬化体の全体を覆うように、4mm×4mmの開口部を有するマスク(覆い)を設置し、プラズマCVD法にてSiN膜を形成して有機EL表示素子を得た。形成されたSiNの厚さは、約1μmであった。その後、4mm×4mm×25μmtの透明な基材レス両面テープを用いて4mm×4mm×0.7mmtの無アルカリガラス(Corning社製 Eagle XG)と貼り合わせ、有機EL素子を作製した(有機EL評価)。
[Manufacturing of organic EL element]
The composition obtained in each experimental example was applied to an organic EL element substrate having a thickness of 10 μm under the above-mentioned inkjet device under a nitrogen atmosphere, and the composition was cured under the above-mentioned photocuring conditions. After that, a mask (cover) having an opening of 4 mm × 4 mm was placed so as to cover the entire cured product, and a SiN film was formed by a plasma CVD method to obtain an organic EL display element. The thickness of the formed SiN was about 1 μm. Then, using a transparent base material-less double-sided tape of 4 mm × 4 mm × 25 μmt, it was bonded to 4 mm × 4 mm × 0.7 mmt of non-alkali glass (Eagle XG manufactured by Corning Inc.) to prepare an organic EL element (organic EL evaluation). ).

〔初期〕
作製した直後の有機EL素子を、85℃、相対湿度85質量%の条件下にて1000時間暴露した後、6Vの電圧を印加し、有機EL素子の発光状態を目視と顕微鏡で観察し、ダークスポットの直径を測定した。
〔initial〕
The organic EL element immediately after being manufactured is exposed to the conditions of 85 ° C. and a relative humidity of 85% by mass for 1000 hours, then a voltage of 6 V is applied, and the light emitting state of the organic EL element is visually observed and observed with a microscope. The diameter of the spot was measured.

〔耐久性〕
作製した直後の有機EL素子を、85℃、相対湿度85質量%の条件下にて1000時間暴露した後、6Vの電圧を印加し、有機EL素子の発光状態を目視と顕微鏡で観察し、ダークスポットの直径を測定した。ダークスポットの直径は、300μm以下が好ましく、50μm以下がより好ましく、ダークスポットはないことが最も好ましい。
〔durability〕
The organic EL element immediately after being manufactured is exposed to the conditions of 85 ° C. and a relative humidity of 85% by mass for 1000 hours, then a voltage of 6 V is applied, and the light emitting state of the organic EL element is visually observed and observed with a microscope. The diameter of the spot was measured. The diameter of the dark spot is preferably 300 μm or less, more preferably 50 μm or less, and most preferably no dark spot.

上記実験例から以下のことが判った。
本実施形態は、高精度なインクジェットによる吐出性とインクジェット塗布後の平坦性に優れ、低透湿性、透明性、耐久性(長期耐久性を含む)に優れた組成物を提供できる。(B)として、非環式2官能メタクリレートと非環式2官能アクリレートを併用し、(C)として、ラウリル(メタ)アクリレートもしくはn-オクチルアクリレートを使用した場合、低透湿性、耐久性(長期耐久性を含む)が優れる(実験例1~4)。(B)として、非環式2官能メタクリレートと非環式2官能アクリレートを併用しない場合、塗布面積の拡大率が大きく、塗布性が優れる(実験例5~11)。(C)として、ジシクロペンテニルオキシエチル(メタ)アクリレートを使用した場合、低透湿性が優れる(実験例6)。(A)3~10質量部、(B)85~95質量部、および(C)2~10質量部という条件を満たした場合には、硬化率の低さと塗付後の平坦性に優れた(実験例12)。(C)を使用しない場合、インクジェットによる塗布ができなかった(実験例13)。(B)を使用しない場合、インクジェットによる塗布ができなかった(実験例14)。(A)を使用しない場合、低透湿性、長期耐久性が得られなかった(実験例15)。
The following was found from the above experimental example.
The present embodiment can provide a composition excellent in ejection property by high-precision inkjet and flatness after inkjet application, and excellent in low moisture permeability, transparency, and durability (including long-term durability). When acyclic bifunctional methacrylate and acyclic bifunctional acrylate are used in combination as (B) and lauryl (meth) acrylate or n-octyl acrylate is used as (C), low moisture permeability and durability (long-term). Excellent (including durability) (Experimental Examples 1 to 4). As (B), when the acyclic bifunctional methacrylate and the acyclic bifunctional acrylate are not used in combination, the expansion rate of the coating area is large and the coating property is excellent (Experimental Examples 5 to 11). When dicyclopentenyloxyethyl (meth) acrylate is used as (C), low moisture permeability is excellent (Experimental Example 6). When the conditions of (A) 3 to 10 parts by mass, (B) 85 to 95 parts by mass, and (C) 2 to 10 parts by mass are satisfied, the curing rate is low and the flatness after application is excellent. (Experimental Example 12). When (C) was not used, application by inkjet could not be performed (Experimental Example 13). When (B) was not used, application by inkjet could not be performed (Experimental Example 14). When (A) was not used, low moisture permeability and long-term durability could not be obtained (Experimental Example 15).

Figure 0007057403000005
Figure 0007057403000005

Figure 0007057403000006
Figure 0007057403000006

本実施形態の組成物は、高精度なインクジェットによる吐出性とインクジェット塗布後の平坦性に優れ、低透湿性、透明性を有し、有機EL素子を劣化させない。本実施形態は、短時間でインクジェット塗布ができる。本実施形態の組成物は、エレクトロニクス製品、特に、有機EL等のディスプレイ部品や、CCD、CMOSといったイメージセンサー等の電子部品、更には半導体部品等で用いられる素子パッケージ等の接着において、好適に適用できる。特に、有機EL封止用の接着において最適であり、有機EL素子等の素子パッケージ用接着剤に要求される特性を満足する。 The composition of the present embodiment is excellent in ejection property by high-precision inkjet and flatness after inkjet application, has low moisture permeability and transparency, and does not deteriorate the organic EL element. In this embodiment, inkjet coating can be performed in a short time. The composition of the present embodiment is suitably applied to adhesion of electronic products, particularly display parts such as organic EL, electronic parts such as image sensors such as CCD and CMOS, and element packages used in semiconductor parts and the like. can. In particular, it is most suitable for bonding for organic EL encapsulation, and satisfies the characteristics required for an adhesive for an element package such as an organic EL element.

上記組成物は本実施形態の一態様であり、本実施形態の接着剤、有機EL素子用封止剤、硬化体、被覆体、接合体、有機EL装置、ディスプレイ、それらの製造方法等も、同様の構成および効果を有する。 The above composition is one aspect of the present embodiment, and the adhesive of the present embodiment, the sealant for an organic EL element, a cured product, a covering body, a bonded body, an organic EL device, a display, a method for producing them, and the like are also included. It has a similar configuration and effect.

Claims (21)

(A)3官能以上の非環式多官能(メタ)アクリレート、(B)非環式の炭素数6以上12以下のアルカンジオールジ(メタ)アクリレート、(C)炭素数8以上のアルキル(メタ)アクリレート、及び脂環式炭化水素基を有する(メタ)アクリレートからなる群から選択される一種以上、(D)光重合開始剤を含有する接着剤組成物であり、(A)、(B)、(C)の合計100質量部中、(A)3~70質量部、(B)15~95質量部、(C)2~40質量部を含有し、
(B)成分が、非環式アルカンジオールジメタクリレートと非環式アルカンジオールジアクリレートとを質量比10~90:90~10で含有する接着剤組成物。
(A) trifunctional or higher functional acyclic polyfunctional (meth) acrylate, (B) acyclic acyclic diol di (meth) acrylate having 6 or more and 12 or less carbon atoms, (C) alkyl (meth) having 8 or more carbon atoms . ) An adhesive composition containing (D) a photopolymerization initiator, which is one or more selected from the group consisting of an acrylate and a (meth) acrylate having an alicyclic hydrocarbon group , (A) and (B). , (C) contains 3 to 70 parts by mass, (B) 15 to 95 parts by mass, and (C) 2 to 40 parts by mass in a total of 100 parts by mass.
(B) An adhesive composition containing acyclic alkanediol dimethacrylate and acyclic alkanediol diacrylate in a mass ratio of 10 to 90: 90 to 10.
(A)3官能以上の非環式多官能(メタ)アクリレート、(B)非環式の炭素数6以上12以下のアルカンジオールジ(メタ)アクリレート、(C)炭素数8以上のアルキル(メタ)アクリレート、及び脂環式炭化水素基を有する(メタ)アクリレートからなる群から選択される一種以上、(D)光重合開始剤を含有する接着剤組成物であり、(A)、(B)、(C)の合計100質量部中、(A)3~10質量部、(B)85~95質量部、(C)2~10質量部を含有し、
(B)成分が、非環式アルカンジオールジメタクリレートと非環式アルカンジオールジアクリレートとを質量比10~90:90~10で含有する接着剤組成物。
(A) trifunctional or higher functional acyclic polyfunctional (meth) acrylate, (B) acyclic acyclic diol di (meth) acrylate having 6 or more and 12 or less carbon atoms, (C) alkyl (meth) having 8 or more carbon atoms . ) An adhesive composition containing (D) a photopolymerization initiator, which is one or more selected from the group consisting of an acrylate and a (meth) acrylate having an alicyclic hydrocarbon group , (A) and (B). , (C) contains 3 to 10 parts by mass, (B) 85 to 95 parts by mass, and (C) 2 to 10 parts by mass in a total of 100 parts by mass.
(B) An adhesive composition containing acyclic alkanediol dimethacrylate and acyclic alkanediol diacrylate in a mass ratio of 10 to 90: 90 to 10.
(A)、(B)、(C)の合計100質量部に対して、(D)0.05~6質量部を含有する請求項1又は2に記載の接着剤組成物。 The adhesive composition according to claim 1 or 2, which contains 0.05 to 6 parts by mass of (D) with respect to a total of 100 parts by mass of (A), (B) and (C). 25℃においてE型粘度計により測定される粘度が2mPa・s以上50mPa・s以下である請求項1~3のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 3, wherein the viscosity measured by an E-type viscometer at 25 ° C. is 2 mPa · s or more and 50 mPa · s or less. 多官能(メタ)アクリレートオリゴマー/ポリマーを含有しない請求項1~4のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 4, which does not contain a polyfunctional (meth) acrylate oligomer / polymer. 請求項1~5のいずれか一項に記載の接着剤組成物から得られる硬化体のガラス転移温度が200℃以上である接着剤組成物。 An adhesive composition having a glass transition temperature of a cured product obtained from the adhesive composition according to any one of claims 1 to 5 of 200 ° C. or higher. (A)がトリメチロールプロパントリ(メタ)アクリレートである請求項1~6のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 6, wherein (A) is trimethylolpropane tri (meth) acrylate. (B)が、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレートからなる群のうちの1種以上である請求項1~7のいずれか一項に記載の接着剤組成物。 (B) is one or more of the group consisting of 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, and 1,12-dodecanediol di (meth) acrylate. The adhesive composition according to any one of claims 1 to 7 . (C)が、ラウリル(メタ)アクリレートである請求項1~8のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 8 , wherein (C) is lauryl (meth) acrylate. (C)が、単官能メタクリレートと単官能アクリレートを含有する請求項1~9のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 9 , wherein (C) contains a monofunctional methacrylate and a monofunctional acrylate. (D)が、アシルホスフィンオキサイド誘導体である請求項1~10のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 10 , wherein (D) is an acylphosphine oxide derivative. 請求項1~11のいずれか1項に記載の接着剤組成物を硬化した硬化体。 A cured product obtained by curing the adhesive composition according to any one of claims 1 to 11 . 請求項1~11のいずれか1項に記載の接着剤組成物で被覆した被覆体。 A covering body coated with the adhesive composition according to any one of claims 1 to 11 . 請求項1~11のいずれか1項に記載の接着剤組成物で接合した接合体。 A bonded body bonded with the adhesive composition according to any one of claims 1 to 11 . 380nm以上500nm以下の波長で硬化する請求項1~11のいずれか一項に記載の接着剤組成物の硬化方法。 The method for curing an adhesive composition according to any one of claims 1 to 11 , wherein the adhesive composition is cured at a wavelength of 380 nm or more and 500 nm or less. 発光ピーク波長395nmのLEDランプで硬化する請求項1~11のいずれか一項に記載の接着剤組成物の硬化方法。 The method for curing an adhesive composition according to any one of claims 1 to 11 , which is cured by an LED lamp having an emission peak wavelength of 395 nm. インクジェット法を用いて塗布する請求項1~11のいずれか一項に記載の接着剤組成物の塗布方法。 The method for applying an adhesive composition according to any one of claims 1 to 11 , wherein the adhesive composition is applied by using an inkjet method. 請求項12に記載の硬化体を含む有機EL装置。 An organic EL device including the cured product according to claim 12 . 請求項12に記載の硬化体を含むディスプレイ。 A display comprising the cured product according to claim 12 . (A)3官能以上の非環式多官能(メタ)アクリレート、(B)非環式の炭素数6以上12以下のアルカンジオールジ(メタ)アクリレート、(C)炭素数8以上のアルキル(メタ)アクリレート、及び脂環式炭化水素基を有する(メタ)アクリレートからなる群から選択される一種以上、(D)光重合開始剤を含有する接着剤組成物であり、(A)、(B)、(C)の合計100質量部中、(A)1~70質量部、(B)15~98質量部、(C)1~40質量部を含有し、
(B)成分が、非環式アルカンジオールジメタクリレートと非環式アルカンジオールジアクリレートとを質量比10~90:90~10で含有する接着剤組成物。
(A) trifunctional or higher acyclic polyfunctional (meth) acrylate, (B) acyclic acyclic diol di (meth) acrylate having 6 or more and 12 or less carbon atoms, (C) alkyl (meth) having 8 or more carbon atoms . ) An adhesive composition containing (D) a photopolymerization initiator, which is one or more selected from the group consisting of an acrylate and a (meth) acrylate having an alicyclic hydrocarbon group , (A) and (B). , (C) contains 1 to 70 parts by mass, (B) 15 to 98 parts by mass, and (C) 1 to 40 parts by mass in a total of 100 parts by mass.
(B) An adhesive composition containing acyclic alkanediol dimethacrylate and acyclic alkanediol diacrylate in a mass ratio of 10 to 90: 90 to 10.
(A)3官能以上の非環式多官能(メタ)アクリレート、(B)非環式の炭素数6以上12以下のアルカンジオールジ(メタ)アクリレート、(C)炭素数8以上のアルキル(メタ)アクリレート、及び脂環式炭化水素基を有する(メタ)アクリレートからなる群から選択される一種以上、(D)光重合開始剤を含有する接着剤組成物であり、(A)、(B)、(C)の合計100質量部中、(A)1~10質量部、(B)85~98質量部、(C)1~10質量部を含有し、
(B)成分が、非環式アルカンジオールジメタクリレートと非環式アルカンジオールジアクリレートとを質量比10~90:90~10で含有する接着剤組成物。
(A) trifunctional or higher functional acyclic polyfunctional (meth) acrylate, (B) acyclic acyclic diol di (meth) acrylate having 6 or more and 12 or less carbon atoms, (C) alkyl (meth) having 8 or more carbon atoms . ) An adhesive composition containing (D) a photopolymerization initiator, which is one or more selected from the group consisting of an acrylate and a (meth) acrylate having an alicyclic hydrocarbon group , (A) and (B). , (C) contains 1 to 10 parts by mass, (B) 85 to 98 parts by mass, and (C) 1 to 10 parts by mass in a total of 100 parts by mass.
(B) An adhesive composition containing acyclic alkanediol dimethacrylate and acyclic alkanediol diacrylate in a mass ratio of 10 to 90: 90 to 10.
JP2020154986A 2016-10-14 2020-09-15 Composition Active JP7057403B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016202585 2016-10-14
JP2016202585 2016-10-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018545056A Division JP6818761B2 (en) 2016-10-14 2017-10-12 Composition

Publications (2)

Publication Number Publication Date
JP2021008621A JP2021008621A (en) 2021-01-28
JP7057403B2 true JP7057403B2 (en) 2022-04-19

Family

ID=61906418

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018545056A Active JP6818761B2 (en) 2016-10-14 2017-10-12 Composition
JP2020154986A Active JP7057403B2 (en) 2016-10-14 2020-09-15 Composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018545056A Active JP6818761B2 (en) 2016-10-14 2017-10-12 Composition

Country Status (5)

Country Link
JP (2) JP6818761B2 (en)
KR (1) KR102475431B1 (en)
CN (1) CN109689700B (en)
TW (1) TWI751205B (en)
WO (1) WO2018070488A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360131B2 (en) * 2018-04-16 2023-10-12 デンカ株式会社 Encapsulant for organic electroluminescent display elements
JP2020056024A (en) * 2018-09-27 2020-04-09 パナソニックIpマネジメント株式会社 Ultraviolet-curable resin composition, method of manufacturing light-emitting device, and light-emitting device
JP7281663B2 (en) * 2018-09-27 2023-05-26 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, method for manufacturing organic EL light emitting device, and organic EL light emitting device
KR20230022966A (en) 2020-09-18 2023-02-16 미쓰이 가가쿠 가부시키가이샤 Encapsulant for display element, cured product thereof and display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170981A (en) 2003-12-08 2005-06-30 Fujikura Kasei Co Ltd Topcoating material composition for plastic molded article and method for forming topcoat
JP2009019174A (en) 2007-07-13 2009-01-29 Asahi Kasei Corp Photocurable resin composition and molded article and method of manufacturing molded article
JP2010077282A (en) 2008-09-26 2010-04-08 Mitsubishi Rayon Co Ltd Curable composition, laminated resin plate and its preparation method, and display front plate
JP2012041521A (en) 2010-05-12 2012-03-01 Fujifilm Corp Photocurable composition and method for manufacturing photocured product using thereof
JP2014520170A (en) 2011-05-13 2014-08-21 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング UV inkjet printing ink composition
WO2015080155A1 (en) 2013-11-27 2015-06-04 Jnc株式会社 Photocurable inkjet ink
JP5985100B1 (en) 2015-05-21 2016-09-06 デクセリアルズ株式会社 Transparent laminate
JP2016183252A (en) 2015-03-26 2016-10-20 三菱レイヨン株式会社 Active energy ray curable resin composition and article

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2775905B2 (en) * 1989-10-17 1998-07-16 大日本インキ化学工業株式会社 UV curable resin composition for protecting metal film of compact disc and compact disc
JPH0762267A (en) * 1993-08-31 1995-03-07 Sony Chem Corp Ultraviolet-curing paint composition
JPH1074583A (en) 1996-08-30 1998-03-17 Sanyo Electric Co Ltd Organic el display and manufacture of organic el display
JP2001307873A (en) 2000-04-21 2001-11-02 Toppan Printing Co Ltd Organic electroluminescence display element and its manufacturing method
US6550905B1 (en) * 2001-11-19 2003-04-22 Dotrix N.V. Radiation curable inkjet ink relatively free of photoinitiator and method and apparatus of curing the ink
CN1290953C (en) * 2003-07-01 2006-12-20 中国乐凯胶片集团公司 UV photo-curing adhesive for lamination of polarizer sheet protective membrane
WO2008018315A1 (en) * 2006-08-11 2008-02-14 Dic Corporation Ultraviolet hardening composition for optical disk interlayer, optical disk and process for producing optical disk
GB0622034D0 (en) * 2006-11-04 2006-12-13 Xennia Technology Ltd Inkjet printing
JP2009037812A (en) 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd Organic el device and its manufacturing method
JP5336098B2 (en) * 2008-03-17 2013-11-06 信越化学工業株式会社 Acrylic resin composition and molded article using the same
JP5812863B2 (en) * 2009-10-22 2015-11-17 電気化学工業株式会社 How to use the adhesive
CN102597137A (en) * 2009-11-18 2012-07-18 奥西-技术有限公司 Radiation curable ink composition
JP5556488B2 (en) * 2010-08-06 2014-07-23 デクセリアルズ株式会社 Adhesive for connecting counter electrode
JP2012190612A (en) 2011-03-09 2012-10-04 Sekisui Chem Co Ltd Manufacturing method of organic optical device
JP5994357B2 (en) * 2011-05-18 2016-09-21 株式会社リコー Photopolymerizable inkjet ink, ink cartridge, inkjet recording apparatus
JP5959243B2 (en) * 2012-03-14 2016-08-02 アイカ工業株式会社 Solvent-free UV curable resin composition
JP5942592B2 (en) * 2012-05-23 2016-06-29 東洋インキScホールディングス株式会社 Active energy ray-curable inkjet ink composition
EP2933677B1 (en) * 2012-12-14 2019-02-13 LG Chem, Ltd. Liquid crystal element
JP6112603B2 (en) 2013-03-29 2017-04-12 日本化薬株式会社 Energy ray curable resin composition and cured product thereof
JP6099198B2 (en) 2013-03-29 2017-03-22 日本化薬株式会社 Energy ray curable resin composition and cured product thereof
JP6284217B2 (en) 2013-03-29 2018-02-28 日本化薬株式会社 Energy ray curable resin composition and cured product thereof
JP6200203B2 (en) 2013-05-16 2017-09-20 積水化学工業株式会社 Sealant for organic electroluminescence display element and method for producing organic electroluminescence display element
JP6274639B2 (en) 2013-05-23 2018-02-07 日本化薬株式会社 Energy ray curable resin composition and cured product thereof
JP2014240464A (en) * 2013-06-12 2014-12-25 富士フイルム株式会社 Inkjet ink composition and inkjet recording method
JP2015183149A (en) * 2014-03-26 2015-10-22 東洋インキScホールディングス株式会社 Active energy ray-curable inkjet ink composition
JP6124353B2 (en) * 2014-03-31 2017-05-10 大日本塗料株式会社 Printing method and printed matter
TWI595890B (en) * 2016-05-09 2017-08-21 穗曄實業股份有限公司 Photo-curing nailgel composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170981A (en) 2003-12-08 2005-06-30 Fujikura Kasei Co Ltd Topcoating material composition for plastic molded article and method for forming topcoat
JP2009019174A (en) 2007-07-13 2009-01-29 Asahi Kasei Corp Photocurable resin composition and molded article and method of manufacturing molded article
JP2010077282A (en) 2008-09-26 2010-04-08 Mitsubishi Rayon Co Ltd Curable composition, laminated resin plate and its preparation method, and display front plate
JP2012041521A (en) 2010-05-12 2012-03-01 Fujifilm Corp Photocurable composition and method for manufacturing photocured product using thereof
JP2014520170A (en) 2011-05-13 2014-08-21 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング UV inkjet printing ink composition
WO2015080155A1 (en) 2013-11-27 2015-06-04 Jnc株式会社 Photocurable inkjet ink
JP2016183252A (en) 2015-03-26 2016-10-20 三菱レイヨン株式会社 Active energy ray curable resin composition and article
JP5985100B1 (en) 2015-05-21 2016-09-06 デクセリアルズ株式会社 Transparent laminate

Also Published As

Publication number Publication date
JP6818761B2 (en) 2021-01-20
JP2021008621A (en) 2021-01-28
WO2018070488A1 (en) 2018-04-19
TW201819513A (en) 2018-06-01
KR102475431B1 (en) 2022-12-08
CN109689700B (en) 2022-04-05
KR20190069389A (en) 2019-06-19
TWI751205B (en) 2022-01-01
JPWO2018070488A1 (en) 2019-07-25
CN109689700A (en) 2019-04-26

Similar Documents

Publication Publication Date Title
JP7203903B2 (en) Sealant for organic electroluminescence display elements
JP7057403B2 (en) Composition
JP7360131B2 (en) Encapsulant for organic electroluminescent display elements
JP6095978B2 (en) Resin composition for organic EL device and organic EL device
JP7253542B2 (en) Sealant for organic electroluminescence display elements
CN114555661B (en) Composition, cured product, sealing material for organic electroluminescent display element, and organic electroluminescent display device
WO2021100710A1 (en) Composition, cured body, sealing material for organic electroluminescent display element, and organic electroluminescent display device
JP2023067519A (en) Encapsulant for organic electroluminescent display element and cured product thereof and organic electroluminescent display device including the same
JP2009037799A (en) Light-emitting element and its manufacturing method
WO2021241437A1 (en) Photosensitive composition, cured product thereof, organic electroluminescent display device, and method for producing photosensitive composition
JP2023067517A (en) Encapsulant for organic electroluminescent display element and cured product thereof and organic electroluminescent display device including the same
JP2020138477A (en) Laminate, method for producing laminate, and organic electroluminescence display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211227

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220407

R150 Certificate of patent or registration of utility model

Ref document number: 7057403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150