JP7360131B2 - Encapsulant for organic electroluminescent display elements - Google Patents

Encapsulant for organic electroluminescent display elements Download PDF

Info

Publication number
JP7360131B2
JP7360131B2 JP2020514095A JP2020514095A JP7360131B2 JP 7360131 B2 JP7360131 B2 JP 7360131B2 JP 2020514095 A JP2020514095 A JP 2020514095A JP 2020514095 A JP2020514095 A JP 2020514095A JP 7360131 B2 JP7360131 B2 JP 7360131B2
Authority
JP
Japan
Prior art keywords
meth
acrylate
organic electroluminescent
electroluminescent display
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020514095A
Other languages
Japanese (ja)
Other versions
JPWO2019203071A1 (en
Inventor
剛介 中島
麻希子 佐々木
啓之 栗村
仁 仲田
敏尚 結城
憲史 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Denka Co Ltd
Original Assignee
Yamagata University NUC
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC, Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Yamagata University NUC
Publication of JPWO2019203071A1 publication Critical patent/JPWO2019203071A1/en
Application granted granted Critical
Publication of JP7360131B2 publication Critical patent/JP7360131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • C08F22/1006Esters of polyhydric alcohols or polyhydric phenols, e.g. ethylene glycol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、有機エレクトロルミネッセンス表示素子用封止剤に関する。 The present invention relates to a sealant for organic electroluminescent display elements.

有機エレクトロルミネッセンス(EL)素子(OLED素子とも言う)は高い輝度の発光が可能な素子体として注目を集めている。しかしながらOLED素子には、酸素や水分により劣化し、発光特性が低下してしまうという課題があった。 Organic electroluminescent (EL) devices (also referred to as OLED devices) are attracting attention as device bodies that can emit light with high brightness. However, OLED elements have a problem in that they are degraded by oxygen and moisture, resulting in a decrease in light-emitting characteristics.

このような課題を解決するために、有機EL素子を封止し、水分による劣化を防止する技術が検討されている。例えば、フリットガラスからなるシール材で封止する方法が挙げられる(特許文献1参照)。 In order to solve such problems, techniques for sealing organic EL elements and preventing deterioration due to moisture are being considered. For example, there is a method of sealing with a sealing material made of frit glass (see Patent Document 1).

封止層が少なくともバリア層、樹脂層、バリア層を順次形成した積層体であることを特徴とする有機エレクトロルミネッセンス表示素子(特許文献2参照)、有機EL素子を封止する無機物膜と有機物膜とを交互に積層した封止層と、前記封止層の最上位有機物膜上に密着して、前記最上位有機物膜の上面の全てを覆うように配置される封止ガラス基板と、を備えることを特徴とする有機EL装置(特許文献3参照)が提案されている。 An organic electroluminescent display element characterized in that the sealing layer is a laminate in which at least a barrier layer, a resin layer, and a barrier layer are sequentially formed (see Patent Document 2); an inorganic film and an organic film for sealing an organic EL element. and a sealing glass substrate disposed in close contact with the uppermost organic film of the sealing layer so as to cover the entire upper surface of the uppermost organic film. An organic EL device (see Patent Document 3) has been proposed.

有機EL素子封止用の樹脂組成物として、環状エーテル化合物と、カチオン重合開始剤と、多官能ビニルエーテル化合物とを含有する有機エレクトロルミネッセンス表示素子用封止剤(特許文献4参照)、カチオン重合性化合物と光カチオン重合開始剤又は熱カチオン重合開始剤とを含有するカチオン重合性樹脂組成物が提案されている(特許文献5参照)。有機EL素子封止用の樹脂組成物として、(メタ)アクリル系樹脂組成物が提案されている(特許文献6~14)。 As a resin composition for sealing an organic EL element, a sealing agent for an organic electroluminescent display element containing a cyclic ether compound, a cationic polymerization initiator, and a polyfunctional vinyl ether compound (see Patent Document 4), a cationically polymerizable resin composition A cationically polymerizable resin composition containing a compound and a photocationic polymerization initiator or a thermal cationic polymerization initiator has been proposed (see Patent Document 5). (Meth)acrylic resin compositions have been proposed as resin compositions for sealing organic EL elements (Patent Documents 6 to 14).

特開平10-74583号公報Japanese Patent Application Publication No. 10-74583 特開2001-307873号公報Japanese Patent Application Publication No. 2001-307873 特開2009-37812号公報JP2009-37812A 特開2014-225380号公報Japanese Patent Application Publication No. 2014-225380 特開2012-190612号公報Japanese Patent Application Publication No. 2012-190612 特開2014-229496号公報JP2014-229496A 特開2014-196387号公報Japanese Patent Application Publication No. 2014-196387 特開2014-193970号公報Japanese Patent Application Publication No. 2014-193970 特開2014-193971号公報Japanese Patent Application Publication No. 2014-193971 WO2014/157642号公報WO2014/157642 publication US2017/0062762号公報US2017/0062762 publication 特表2017-536429号公報Special table 2017-536429 publication 特表2018-504735号公報Special table 2018-504735 publication WO2016/068415号公報WO2016/068415 publication

しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。 However, the conventional technology described in the above-mentioned document had room for improvement in the following points.

特許文献1では、量産化を行う際には、有機EL素子を、水分の透過性が低い基材、例えば、ガラス等で挟み込み、外周部を封止する方法を採用する。この場合、この構造は中空封止構造となっているため、中空封止構造内部へ水分が浸入することを防げず、有機EL素子の劣化につながる課題があった。 In Patent Document 1, when mass-producing the organic EL element, a method is adopted in which the organic EL element is sandwiched between base materials with low moisture permeability, such as glass, and the outer periphery is sealed. In this case, since this structure is a hollow sealing structure, it is not possible to prevent moisture from entering the hollow sealing structure, which causes a problem that leads to deterioration of the organic EL element.

特許文献2~3では、有機物膜を蒸着によって成膜するため有機物膜の厚さが3μm以下となってしまうという課題があった。有機物膜の厚みが3μm以下であると素子形成時に発生するパーティクルを完全に被覆できないだけでなく、無機物膜上に平坦性を保ちながら塗布することも難しい課題があった。 In Patent Documents 2 and 3, since the organic film is formed by vapor deposition, there is a problem that the thickness of the organic film is 3 μm or less. If the thickness of the organic film is 3 μm or less, not only will particles generated during device formation not be completely covered, but it will also be difficult to coat the inorganic film while maintaining flatness.

特許文献4では、エポキシ系材料を用いた封止剤が提案されているが、このような材料は硬化するのに加熱を要するため、有機EL素子にダメージを与え、歩留まりの点で課題があった。特許文献5では、エポキシ系材料を用いた光硬化型の封止剤が提案されているが、このような材料は、UV光により硬化するため、UV光により有機EL素子にダメージを与え、歩留まりの点で課題があった。 Patent Document 4 proposes a sealant using an epoxy material, but such materials require heating to cure, which can damage organic EL elements and pose problems in terms of yield. Ta. Patent Document 5 proposes a photocurable encapsulant using an epoxy material, but since such materials are cured by UV light, UV light can damage organic EL elements and reduce yield. There were issues in this regard.

特許文献6~10、12~14では、このような封止材料に必要な特性として、水蒸気透過率を低減させることについての記載はあるが、パッシベーション膜のピンホールから封止材料そのものが浸透し、有機EL素子の信頼性を低下させる問題とその対策については記載がない。 Patent Documents 6 to 10 and 12 to 14 describe reducing water vapor permeability as a necessary property of such sealing materials, but they do not allow the sealing material itself to penetrate through pinholes in the passivation film. , there is no description of the problems that reduce the reliability of organic EL elements and their countermeasures.

特許文献11は、環状単官能(メタ)アクリレートの使用は記載しているものの、その未反応物がアウトガスとなってしまい有機EL素子の発光不良につながる問題を解決できていない。 Although Patent Document 11 describes the use of cyclic monofunctional (meth)acrylate, it does not solve the problem that unreacted substances thereof become outgas, leading to poor light emission of organic EL devices.

このように上述した従来技術では、インクジェットを用いる際の吐出性と、有機EL素子の信頼性との両立ができないことが、従前から課題となっていた。 As described above, the above-mentioned conventional technology has long had a problem in that it is not compatible with the ejection performance when using an inkjet and the reliability of the organic EL element.

本発明は上記事情に鑑みてなされたものであり、例えば、有機EL素子封止用に用いた場合に塗布性や低透湿性に優れる組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a composition that has excellent coating properties and low moisture permeability when used, for example, for sealing an organic EL element.

即ち本発明の実施形態では以下を提供可能である。 That is, the embodiment of the present invention can provide the following.

[1]
(A)炭素数4以上20以下のアルカンジオールジ(メタ)アクリレートと、(B)光重合開始剤を含有し、(メタ)アクリレートあたりの親水性官能基量が4.80~7.60mmol/gの範囲にある有機エレクトロルミネッセンス表示素子用封止剤。
[1]
Contains (A) an alkanediol di(meth)acrylate having 4 to 20 carbon atoms and (B) a photopolymerization initiator, and the amount of hydrophilic functional groups per (meth)acrylate is 4.80 to 7.60 mmol/ A sealing agent for organic electroluminescent display elements in the range of g.

[2]
(C)(A)成分以外の(メタ)アクリレートを更に含有し、(A)成分と(C)成分の合計100質量部に対して、(A)成分を30質量部以上100質量部未満、(B)成分を0.05~6質量部、(C)成分を0質量部超70質量部以下含有する[1]記載の有機エレクトロルミネッセンス表示素子用封止剤。
[2]
(C) further contains a (meth)acrylate other than the component (A), with the component (A) being 30 parts by mass or more and less than 100 parts by mass, based on a total of 100 parts by mass of the components (A) and (C); The encapsulant for organic electroluminescent display elements according to [1], containing 0.05 to 6 parts by mass of component (B) and more than 0 parts by mass and 70 parts by mass or less of component (C).

[3]
(C)成分中の(メタ)アクリレートあたりの親水性官能基量が3.00~15.00mmol/gである[2]記載の有機エレクトロルミネッセンス表示素子用封止剤。
[3]
The encapsulant for organic electroluminescent display elements according to [2], wherein the amount of hydrophilic functional groups per (meth)acrylate in component (C) is 3.00 to 15.00 mmol/g.

[4]
25℃においてE型粘度計により測定される粘度が2mPa・s以上50mPa・s以下である[1]~[3]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。
[4]
The sealant for organic electroluminescent display elements according to any one of [1] to [3], which has a viscosity of 2 mPa·s or more and 50 mPa·s or less as measured by an E-type viscometer at 25°C.

[5]
含水量が90ppm以下である[1]~[4]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。
[5]
The sealant for organic electroluminescent display elements according to any one of [1] to [4], which has a water content of 90 ppm or less.

[6]
溶存酸素量が1ppm以上20ppm以下である[1]~[5]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。
[6]
The sealant for an organic electroluminescent display element according to any one of [1] to [5], wherein the amount of dissolved oxygen is 1 ppm or more and 20 ppm or less.

[7]
2官能(メタ)アクリレートオリゴマー/ポリマー及び多官能(メタ)アクリレートオリゴマー/ポリマーを含有しない[1]~[6]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。
[7]
The encapsulant for organic electroluminescent display elements according to any one of [1] to [6], which does not contain a bifunctional (meth)acrylate oligomer/polymer and a polyfunctional (meth)acrylate oligomer/polymer.

[8]
(A)成分が、炭素数12以上16以下のアルカンジオールジ(メタ)アクリレートである[1]~[7]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。
[8]
The encapsulant for an organic electroluminescent display element according to any one of [1] to [7], wherein the component (A) is an alkanediol di(meth)acrylate having 12 to 16 carbon atoms.

[9]
(A)成分が、1,12-ドデカンジオールジ(メタ)アクリレートである[1]~[8]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。
[9]
The encapsulant for an organic electroluminescent display element according to any one of [1] to [8], wherein the component (A) is 1,12-dodecanediol di(meth)acrylate.

[10]
(C)成分が、炭素数8以上のアルキル(メタ)アクリレート、脂環式炭化水素基を有する(メタ)アクリレート、及び芳香族炭化水素基を有する(メタ)アクリレートからなる群の1種以上である[2]~[9]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。
[10]
Component (C) is one or more of the group consisting of alkyl (meth)acrylates having 8 or more carbon atoms, (meth)acrylates having an alicyclic hydrocarbon group, and (meth)acrylates having an aromatic hydrocarbon group. The sealant for an organic electroluminescent display element according to any one of [2] to [9].

[11]
(C)成分が、ラウリル(メタ)アクリレートを含有する[2]~[10]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。
[11]
The encapsulant for an organic electroluminescent display element according to any one of [2] to [10], wherein the component (C) contains lauryl (meth)acrylate.

[12]
(C)成分が、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、及びジシクロペンタニルオキシエチル(メタ)アクリレートからなる群の1種以上を含有する[2]~[11]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。
[12]
Component (C) is dicyclopentanyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, and dicyclopentanyloxy The encapsulant for organic electroluminescent display elements according to any one of [2] to [11], which contains one or more members of the group consisting of ethyl (meth)acrylate.

[13]
(C)成分が、エトキシ化-o-フェニルフェノール(メタ)アクリレートを含有する[2]~[12]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。
[13]
The encapsulant for an organic electroluminescent display element according to any one of [2] to [12], wherein the component (C) contains ethoxylated-o-phenylphenol (meth)acrylate.

[14]
(B)成分が、アシルホスフィンオキサイド誘導体である[1]~[13]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。
[14]
The encapsulant for an organic electroluminescent display element according to any one of [1] to [13], wherein the component (B) is an acylphosphine oxide derivative.

[15]
[1]~[14]のいずれか1項に記載の有機エレクトロルミネッセンス表示素子用封止剤を硬化した硬化体。
[15]
A cured product obtained by curing the sealant for organic electroluminescent display elements according to any one of [1] to [14].

[16]
[1]~[14]のいずれか1項に記載の有機エレクトロルミネッセンス表示素子用封止剤で接合した接合体。
[16]
A bonded body bonded with the sealant for organic electroluminescent display elements according to any one of [1] to [14].

[17]
380nm以上500nm以下の波長を用いて硬化することを特徴とする、[1]~[14]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤の硬化方法。
[17]
The method for curing a sealant for an organic electroluminescent display element according to any one of [1] to [14], characterized in that curing is performed using a wavelength of 380 nm or more and 500 nm or less.

[18]
発光波長395nmのLEDランプを用いて硬化することを特徴とする、[1]~[14]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤の硬化方法。
[18]
The method for curing a sealant for an organic electroluminescent display element according to any one of [1] to [14], characterized in that curing is performed using an LED lamp with an emission wavelength of 395 nm.

[19]
インクジェット法を用いて塗布する[1]~[14]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤の塗布方法。
[19]
The method for applying a sealant for an organic electroluminescent display element according to any one of [1] to [14], which is applied using an inkjet method.

[20]
[1]~[14]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤を含んだ有機EL装置。
[20]
An organic EL device comprising the sealant for organic electroluminescent display elements according to any one of [1] to [14].

[21]
[1]~[14]のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤を含んだディスプレイ。
[21]
A display comprising the sealant for organic electroluminescent display elements according to any one of [1] to [14].

本発明に係る封止剤は、インクジェットを用いる際の吐出性に優れ、かつ得られる有機EL素子の信頼性と塗布性・低透湿性にも優れるという効果を奏する。 The encapsulant according to the present invention has excellent ejection properties when using an inkjet method, and has the effect that the resulting organic EL device has excellent reliability, coating properties, and low moisture permeability.

以下、本実施形態を説明する。
本実施形態は、有機エレクトロルミネッセンス表示素子用封止剤に関する。本実施形態は、例えば、有機エレクトロルミネッセンス(EL)表示素子用封止剤に使用できる、(メタ)アクリル系樹脂組成物に関する。
This embodiment will be described below.
This embodiment relates to a sealant for organic electroluminescent display elements. This embodiment relates to a (meth)acrylic resin composition that can be used, for example, as a sealant for organic electroluminescence (EL) display elements.

本明細書に記載される数値範囲は、別段の断わりが無い限りは、上限値と下限値を含むものとする。本明細書においては、別段の断わりの無い限りは、以下定義する。(メタ)アクリレートとはアクリレート又はメタクリレートを表し、「(メタ)アクリロイルオキシ」や「(メタ)アクリルアミド」等の表記も同様の意味を有する。「単官能(メタ)アクリレート」とは(メタ)アクリル基を1個有する(メタ)アクリレートを指し、「2官能(メタ)アクリレート」とは(メタ)アクリル基を2個有する(メタ)アクリレートを指す。「多官能(メタ)アクリレート」とは(メタ)アクリル基を3個以上有する(メタ)アクリレートを指し、2官能(メタ)アクリレートを含まないものとする。 The numerical ranges described herein include upper and lower limits, unless otherwise specified. In this specification, unless otherwise specified, the following definitions are used. (Meth)acrylate represents acrylate or methacrylate, and expressions such as "(meth)acryloyloxy" and "(meth)acrylamide" have the same meaning. "Monofunctional (meth)acrylate" refers to (meth)acrylate having one (meth)acrylic group, and "bifunctional (meth)acrylate" refers to (meth)acrylate having two (meth)acrylic groups. Point. "Polyfunctional (meth)acrylate" refers to (meth)acrylate having three or more (meth)acrylic groups, and does not include bifunctional (meth)acrylate.

以下、基板上に形成された有機EL素子の基板と反対側から光を出射するトップエミッション型の有機EL装置を例に説明する。トップエミッション型の有機EL装置は、基板上に、陽極と、発光層を含む有機EL層と、陰極が順に積層された有機EL素子と、この有機EL素子全体を覆う無機物膜と有機物膜の積層膜からなる封止層と、封止層上に設けられる封止基板が順に形成された構造を有する。 Hereinafter, a top emission type organic EL device in which light is emitted from the side opposite to the substrate of an organic EL element formed on a substrate will be described as an example. A top emission type organic EL device includes an organic EL element in which an anode, an organic EL layer including a light-emitting layer, and a cathode are laminated in this order on a substrate, and an inorganic film and an organic film are laminated to cover the entire organic EL element. It has a structure in which a sealing layer made of a film and a sealing substrate provided on the sealing layer are formed in this order.

基板としては、ガラス基板、シリコン基板、プラスチック基板等種々のものを用いることができる。これらの中では、ガラス基板、プラスチック基板からなる群のうちの1種以上が好ましく、ガラス基板がより好ましい。 Various substrates can be used as the substrate, such as a glass substrate, a silicon substrate, and a plastic substrate. Among these, one or more of the group consisting of glass substrates and plastic substrates are preferred, and glass substrates are more preferred.

プラスチック基板に用いられるプラスチックとしては、ポリイミド、ポリエーテルイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオキサジアゾール、芳香族ポリアミド、ポリベンゾイミダゾール、ポリベンゾビスチアゾール、ポリベンゾオキサゾール、ポリチアゾール、ポリパラフェニレンビニレン、ポリメチルメタクリレート、ポリスチレン、ポリカーボネート、ポリシクロオレフィン、ポリアクリル等が挙げられる。これらの中では、低水分透過性、低酸素透過性、耐熱性に優れる点で、ポリイミド、ポリエーテルイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオキサジアゾール、芳香族ポリアミド、ポリベンゾイミダゾール、ポリベンゾビスチアゾール、ポリベンゾオキサゾール、ポリチアゾール、ポリパラフェニレンビニレンからなる群のうちの1種以上が好ましく、紫外線又は可視光線等のエネルギー線の透過性が高い点で、ポリイミド、ポリエーテルイミド、ポリエチレンテレフタレート、ポリエチレンナフタレートからなる群のうちの1種以上がより好ましい。 Plastics used for plastic substrates include polyimide, polyetherimide, polyethylene terephthalate, polyethylene naphthalate, polyoxadiazole, aromatic polyamide, polybenzimidazole, polybenzobisthiazole, polybenzoxazole, polythiazole, and polyparaphenylene. Examples include vinylene, polymethyl methacrylate, polystyrene, polycarbonate, polycycloolefin, polyacrylic, and the like. Among these, polyimide, polyetherimide, polyethylene terephthalate, polyethylene naphthalate, polyoxadiazole, aromatic polyamide, polybenzimidazole, polybenzo One or more selected from the group consisting of bisthiazole, polybenzoxazole, polythiazole, and polyparaphenylene vinylene are preferred, and polyimide, polyetherimide, and polyethylene terephthalate are preferable because they have high transparency to energy rays such as ultraviolet rays or visible rays. , polyethylene naphthalate is more preferred.

陽極としては、比較的仕事関数の大きな(4.0eVより大きな仕事関数を持つものが好適である)、導電性の金属酸化物膜や半透明の金属薄膜等が一般的に用いられる。陽極の材料としては例えば、インジウムスズ酸化物(Indium Tin Oxide、以下、ITOという)、酸化スズ等の金属酸化物、金(Au)、白金(Pt)、銀(Ag)、銅(Cu)等の金属又はこれらのうちの少なくとも1個を含有する合金、ポリアニリン又はその誘導体、ポリチオフェン又はその誘導体等の有機の透明導電膜等が挙げられる。陽極は、必要があれば2層以上の層構成により形成できる。陽極の膜厚は、電気伝導度を(ボトムエミッション型の場合には、光の透過性も)考慮して、適宜選択できる。陽極の膜厚は、10nm~10μmが好ましく、20nm~1μmがより好ましく、50nm~500nmが最も好ましい。陽極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。トップエミッション型の場合には、基板側に出射される光を反射させるための反射膜を陽極の下に設けてもよい。 As the anode, a conductive metal oxide film, a translucent metal thin film, or the like having a relatively large work function (preferably one having a work function larger than 4.0 eV) is used. Examples of materials for the anode include indium tin oxide (hereinafter referred to as ITO), metal oxides such as tin oxide, gold (Au), platinum (Pt), silver (Ag), copper (Cu), etc. or an alloy containing at least one of these metals, organic transparent conductive films such as polyaniline or its derivatives, polythiophene or its derivatives, and the like. The anode can be formed with a layer structure of two or more layers, if necessary. The film thickness of the anode can be selected as appropriate, taking into consideration electrical conductivity (and light transmittance in the case of a bottom emission type). The thickness of the anode is preferably 10 nm to 10 μm, more preferably 20 nm to 1 μm, and most preferably 50 nm to 500 nm. Examples of methods for producing the anode include vacuum evaporation, sputtering, ion plating, and plating. In the case of a top emission type, a reflective film may be provided under the anode to reflect light emitted to the substrate side.

有機EL層は、少なくとも有機物からなる発光層を含んでいる。この発光層は、発光性材料を含有する。発光性材料としては、蛍光又は燐光を発光する有機物(低分子化合物又は高分子化合物)等が挙げられる。発光層は、更に、ドーパント材料を含有してもよい。有機物としては、色素系材料、金属錯体系材料、高分子材料等が挙げられる。ドーパント材料は、有機物の発光効率の向上や発光波長を変化させる等の目的で、有機物中にドープされるものである。これらの有機物と必要に応じてドープされるドーパントからなる発光層の厚さは通常2~200nmである。 The organic EL layer includes at least a light emitting layer made of an organic substance. This luminescent layer contains a luminescent material. Examples of the luminescent material include organic substances (low-molecular compounds or high-molecular compounds) that emit fluorescence or phosphorescence. The light emitting layer may further contain a dopant material. Examples of the organic substance include dye-based materials, metal complex-based materials, polymeric materials, and the like. A dopant material is doped into an organic substance for the purpose of improving the luminous efficiency of the organic substance, changing the emission wavelength, or the like. The thickness of the light-emitting layer made of these organic substances and a dopant doped as necessary is usually 2 to 200 nm.

(色素系材料)
色素系材料としては、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、トリフマニルアミン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー等が挙げられる。
(dye material)
Examples of dye materials include cyclopendamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds, and pyridine. Examples include ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, trifmanylamine derivatives, oxadiazole dimers, and pyrazoline dimers.

(金属錯体系材料)
金属錯体系材料としては、イリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体等といった、金属錯体等が挙げられる。金属錯体としては、中心金属に、テルビウム(Tb)、ユーロピウム(Eu)、ジスプロシウム(Dy)等の希土類金属、アルミニウム(Al)、亜鉛(Zn)、ベリリウム(Be)等を有し、配位子に、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を有する金属錯体等が挙げられる。これらの中では、中心金属にアルミニウム(Al)を有し、配位子にキノリン構造等を有する金属錯体が好ましい。中心金属にアルミニウム(Al)を有し、配位子にキノリン構造等を有する金属錯体の中では、トリス(8-ヒドロキシキノリナト)アルミニウムが好ましい。
(Metal complex material)
Metal complex materials include metal complexes that emit light from the triplet excited state such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, and azomethyl zinc complexes. , a porphyrin zinc complex, a europium complex, and the like. The metal complex has a central metal such as a rare earth metal such as terbium (Tb), europium (Eu), or dysprosium (Dy), aluminum (Al), zinc (Zn), or beryllium (Be), and has a ligand. Examples include metal complexes having oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and quinoline structures. Among these, metal complexes having aluminum (Al) as a central metal and having a quinoline structure or the like as a ligand are preferred. Among metal complexes having aluminum (Al) as a central metal and a quinoline structure as a ligand, tris(8-hydroxyquinolinato)aluminum is preferred.

(高分子材料)
高分子材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素体や金属錯体系発光材料を高分子化した物質等が挙げられる。
(polymer material)
Examples of polymeric materials include polyparaphenylenevinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and substances obtained by polymerizing the above-mentioned color bodies and metal complex luminescent materials. can be mentioned.

上記発光性材料のうち、青色に発光する材料としては、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、これらの重合体等が挙げられる。これらの中では、高分子材料が好ましい。高分子材料の中では、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体からなる群のうちの1種以上が好ましい。 Among the above luminescent materials, examples of materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and polymers thereof. Among these, polymer materials are preferred. Among the polymeric materials, one or more selected from the group consisting of polyvinylcarbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.

緑色に発光する材料としては、キナクリドン誘導体、クマリン誘導体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体、これらの重合体等が挙げられる。これらの中では、高分子材料が好ましい。高分子材料の中では、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体からなる群のうちの1種以上が好ましい。 Examples of materials that emit green light include quinacridone derivatives, coumarin derivatives, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and polymers thereof. Among these, polymer materials are preferred. Among the polymer materials, one or more selected from the group consisting of polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.

赤色に発光する材料としては、クマリン誘導体、チオフェン環化合物、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体、これらの重合体等が挙げられる。これらの中では、高分子材料が好ましい。高分子材料の中では、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体からなる群のうちの1種以上が好ましい。 Examples of materials that emit red light include coumarin derivatives, thiophene ring compounds, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyfluorene derivatives, and polymers thereof. Among these, polymer materials are preferred. Among the polymer materials, one or more selected from the group consisting of polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferred.

(ドーパント材料)
ドーパント材料としては、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾン等が挙げられる。
(Dopant material)
Examples of the dopant material include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, and phenoxazone.

有機EL層は、発光層以外に、発光層と陽極との間に設けられる層と、発光層と陰極との間に設けられる層と、を適宜設けることができる。まず、発光層と陽極との間に設けられる層としては、陽極からの正孔注入効率を改善する正孔注入層や、陽極又は正孔注入層から注入された正孔を発光層へ輸送する正孔輸送層等が挙げられる。発光層と陰極との間に設けられる層としては、陰極からの電子注入効率を改善する電子注入層や、陰極又は電子注入層から注入された電子を発光層へ輸送する電子輸送層等が挙げられる。 In addition to the light-emitting layer, the organic EL layer can appropriately include a layer provided between the light-emitting layer and the anode, and a layer provided between the light-emitting layer and the cathode. First, the layer provided between the light emitting layer and the anode includes a hole injection layer that improves hole injection efficiency from the anode, and a hole injection layer that transports holes injected from the anode or hole injection layer to the light emitting layer. Examples include a hole transport layer. Examples of the layer provided between the light emitting layer and the cathode include an electron injection layer that improves the efficiency of electron injection from the cathode, and an electron transport layer that transports electrons injected from the cathode or the electron injection layer to the light emitting layer. It will be done.

(正孔注入層)
正孔注入層を形成する材料としては、4,4’,4”-トリス{2-ナフチル(フェニル)アミノ}トリフェニルアミン等のフェニルアミン系、スターバースト型アミン系、フタロシアニン系、酸化バナジウム、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の酸化物、アモルファスカーボン、ポリアニリン、ポリチオフェン誘導体等が挙げられる。
(hole injection layer)
Examples of materials for forming the hole injection layer include phenylamine-based materials such as 4,4',4"-tris{2-naphthyl(phenyl)amino}triphenylamine, starburst amine-based materials, phthalocyanine-based materials, vanadium oxide, Examples include oxides such as molybdenum oxide, ruthenium oxide, and aluminum oxide, amorphous carbon, polyaniline, and polythiophene derivatives.

(正孔輸送層)
正孔輸送層を構成する材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ベンジジン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、ポリ(2,5-チエニレンビニレン)若しくはその誘導体等が挙げられる。ベンジジン誘導体としては、N,N’-ジフェニル-N,N’-ジナフチルベンジジン等が挙げられる。
(hole transport layer)
Materials constituting the hole transport layer include polyvinylcarbazole or its derivatives, polysilane or its derivatives, polysiloxane derivatives having an aromatic amine in the side chain or main chain, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine. derivatives, benzidine derivatives, polyaniline or its derivatives, polythiophene or its derivatives, polyarylamines or its derivatives, polypyrrole or its derivatives, poly(p-phenylene vinylene) or its derivatives, poly(2,5-thienylene vinylene) or its derivatives Examples include derivatives. Examples of benzidine derivatives include N,N'-diphenyl-N,N'-dinaphthylbenzidine.

これらの正孔注入層又は正孔輸送層が、電子の輸送を堰き止める機能を有する場合には、これらの正孔輸送層や正孔注入層を電子ブロック層ということもある。 When these hole injection layers or hole transport layers have a function of blocking electron transport, these hole transport layers or hole injection layers are sometimes referred to as electron blocking layers.

(電子輸送層)
電子輸送層を構成する材料としては、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアントラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン若しくはその誘導体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体等が挙げられる。誘導体としては、金属錯体等が挙げられる。これらの中では、8-ヒドロキシキノリン若しくはその誘導体が好ましい。8-ヒドロキシキノリン若しくはその誘導体の中では、発光層中に含有する、蛍光又は燐光を発光する有機物としても使用できる点で、トリス(8-ヒドロキシキノリナト)アルミニウムが好ましい。
(electron transport layer)
Materials constituting the electron transport layer include oxadiazole derivatives, anthraquinodimethane or its derivatives, benzoquinone or its derivatives, naphthoquinone or its derivatives, anthraquinone or its derivatives, tetracyanoanthraquinodimethane or its derivatives, and fluorenone derivatives. , diphenyldicyanoethylene or its derivatives, diphenoquinone derivatives, 8-hydroxyquinoline or its derivatives, polyquinoline or its derivatives, polyquinoxaline or its derivatives, polyfluorene or its derivatives, and the like. Examples of derivatives include metal complexes. Among these, 8-hydroxyquinoline or its derivatives are preferred. Among 8-hydroxyquinoline and its derivatives, tris(8-hydroxyquinolinato)aluminum is preferred since it can also be used as an organic substance that emits fluorescence or phosphorescence and is contained in a light-emitting layer.

(電子注入層)
電子注入層としては、発光層の種類に応じて、カルシウム(Ca)層の単層構造からなる電子注入層、又は、周期律表IA族とIIA族の金属であり、且つ、仕事関数が1.5~3.0eVの金属及びその金属の酸化物、ハロゲン化物及び炭酸化物からなる群のうちの1種以上で形成された層とCa層との積層構造からなる電子注入層等が挙げられる。仕事関数が1.5~3.0eVの、周期律表IA族の金属又はその酸化物、ハロゲン化物、炭酸化物としては、リチウム(Li)、フッ化リチウム、酸化ナトリウム、酸化リチウム、炭酸リチウム等が挙げられる。仕事関数が1.5~3.0eVの、周期律表IIA族の金属又はその酸化物、ハロゲン化物、炭酸化物としては、ストロンチウム(Sr)、酸化マグネシウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化バリウム、酸化ストロンチウム、炭酸マグネシウム等が挙げられる。
(electron injection layer)
Depending on the type of emissive layer, the electron injection layer may be an electron injection layer consisting of a single layer structure of a calcium (Ca) layer, or an electron injection layer made of a metal from Group IA or Group IIA of the periodic table and having a work function of 1. Examples include an electron injection layer having a laminated structure of a Ca layer and a layer formed of one or more of the group consisting of a metal with a voltage of .5 to 3.0 eV and its oxide, halide, and carbonate. . Examples of metals of Group IA of the periodic table or their oxides, halides, and carbonates having a work function of 1.5 to 3.0 eV include lithium (Li), lithium fluoride, sodium oxide, lithium oxide, lithium carbonate, etc. can be mentioned. Examples of metals of Group IIA of the periodic table or their oxides, halides, and carbonates having a work function of 1.5 to 3.0 eV include strontium (Sr), magnesium oxide, magnesium fluoride, strontium fluoride, and fluoride. Examples include barium, strontium oxide, magnesium carbonate, and the like.

これらの電子輸送層又は電子注入層が、正孔の輸送を堰き止める機能を有する場合には、これらの電子輸送層や電子注入層を正孔ブロック層ということもある。 When these electron transport layers or electron injection layers have a function of blocking hole transport, these electron transport layers or electron injection layers are sometimes referred to as hole blocking layers.

陰極としては、仕事関数が比較的小さく(4.0eVより小さな仕事関数を持つものが好適である)、発光層への電子注入が容易な透明又は半透明の材料が好ましい。陰極の材料としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、アルミニウム(Al)、スカンジウム(Sc)、バナジウム(V)、亜鉛(Zn)、イットリウム(Y)、インジウム(In)、セリウム(Ce)、サマリウム(Sm)、ユーロピウム(Eu)、テルビウム(Tb)、イッテルビウム(Yb)等の金属、又は上記金属のうち2種以上からなる合金、若しくはそれらのうち1種以上と、金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、クロム(Cr)、マンガン(Mn)、チタン(Ti)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、スズ(Sn)のうち1種以上とからなる合金、又は、グラファイト若しくはグラファイト層間化合物、又は、ITO、酸化スズ等の金属酸化物等が挙げられる。 The cathode is preferably a transparent or translucent material that has a relatively small work function (preferably one with a work function smaller than 4.0 eV) and can easily inject electrons into the light emitting layer. The materials for the cathode include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), beryllium (Be), magnesium (Mg), calcium (Ca), and strontium (Sr). , barium (Ba), aluminum (Al), scandium (Sc), vanadium (V), zinc (Zn), yttrium (Y), indium (In), cerium (Ce), samarium (Sm), europium (Eu) , terbium (Tb), ytterbium (Yb), or an alloy consisting of two or more of the above metals, or one or more of them, and gold (Au), silver (Ag), platinum (Pt), An alloy consisting of one or more of copper (Cu), chromium (Cr), manganese (Mn), titanium (Ti), cobalt (Co), nickel (Ni), tungsten (W), and tin (Sn), or , graphite or graphite intercalation compounds, or metal oxides such as ITO and tin oxide.

陰極を2層以上の積層構造としてもよい。2層以上の積層構造としては、上記の金属、金属酸化物、フッ化物、これらの合金と、Al、Ag、Cr等の金属との積層構造等が挙げられる。陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができる。陰極の膜厚は、10nm~10μmが好ましく、15nm~1μmがより好ましく、20nm~500nmが最も好ましい。陰極の作製方法としては、真空蒸着法、スパッタリング法、金属薄膜を熱圧着するラミネート法等が挙げられる。 The cathode may have a laminated structure of two or more layers. Examples of the laminated structure of two or more layers include a laminated structure of the above-mentioned metals, metal oxides, fluorides, and alloys thereof and metals such as Al, Ag, and Cr. The film thickness of the cathode can be appropriately selected in consideration of electrical conductivity and durability. The thickness of the cathode is preferably 10 nm to 10 μm, more preferably 15 nm to 1 μm, and most preferably 20 nm to 500 nm. Examples of methods for producing the cathode include a vacuum evaporation method, a sputtering method, and a lamination method in which a metal thin film is bonded by thermocompression.

これらの発光層と陽極との間と、発光層と陰極との間に設けられる層は、製造する有機EL装置に求められる性能に応じて、適宜選択可能である。例えば、本実施形態で使用される有機EL素子の構造としては、下記の(i)~(xv)の層構成のいずれかを有することができる。
(i)陽極/正孔輸送層/発光層/陰極
(ii)陽極/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iv)陽極/正孔注入層/発光層/陰極
(v)陽極/発光層/電子注入層/陰極
(vi)陽極/正孔注入層/発光層/電子注入層/陰極
(vii)陽極/正孔注入層/正孔輸送層/発光層/陰極
(viii)陽極/正孔輸送層/発光層/電子注入層/陰極
(ix)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(x)陽極/正孔注入層/発光層/電子輸送層/陰極
(xi)陽極/発光層/電子輸送層/電子注入層/陰極
(xii)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
(xiii)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(xiv)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(xv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(ここで、「/」は各層が隣接して積層されていることを示す。以下同じ。)
The layers provided between the light emitting layer and the anode and between the light emitting layer and the cathode can be appropriately selected depending on the performance required of the organic EL device to be manufactured. For example, the structure of the organic EL element used in this embodiment can have any of the following layer configurations (i) to (xv).
(i) Anode/hole transport layer/emissive layer/cathode (ii) anode/emissive layer/electron transport layer/cathode (iii) anode/hole transport layer/emissive layer/electron transport layer/cathode (iv) anode/ Hole injection layer / Emissive layer / Cathode (v) Anode / Emissive layer / Electron injection layer / Cathode (vi) Anode / Hole injection layer / Emissive layer / Electron injection layer / Cathode (vii) Anode / Hole injection layer / Hole transport layer / Emissive layer / Cathode (viii) Anode / Hole transport layer / Emissive layer / Electron injection layer / Cathode (ix) Anode / Hole injection layer / Hole transport layer / Emissive layer / Electron injection layer / Cathode (x) Anode/hole injection layer/emissive layer/electron transport layer/cathode (xi) anode/emissive layer/electron transport layer/electron injection layer/cathode (xii) anode/hole injection layer/emissive layer/electron transport Layer/electron injection layer/cathode (xiii) anode/hole injection layer/hole transport layer/emissive layer/electron transport layer/cathode (xiv) anode/hole transport layer/emissive layer/electron transport layer/electron injection layer /Cathode (xv) Anode/Hole injection layer/Hole transport layer/Light emitting layer/Electron transport layer/Electron injection layer/Cathode (here, "/" indicates that each layer is stacked adjacent to each other. same as below.)

封止層は、水蒸気や酸素等の気体が有機EL素子に接触することを防ぐために、上記気体に対して高いバリア性を有する層で有機EL素子を封止するために、設けられる。この封止層は、無機物膜と有機物膜とが下から交互に形成される。無機/有機積層体は2回以上繰り返して形成されてもよい。 The sealing layer is provided to prevent gases such as water vapor and oxygen from coming into contact with the organic EL element, and to seal the organic EL element with a layer having high barrier properties against the gases. In this sealing layer, an inorganic film and an organic film are alternately formed from below. The inorganic/organic laminate may be formed two or more times.

無機/有機積層体の無機物膜は、有機EL装置が置かれる環境に存在する水蒸気や酸素等の気体に有機EL素子が曝されることを防止するために設けられる膜である。無機/有機積層体の無機物膜は、ピンホール等の欠陥が少ない連続的な緻密な膜であることが好ましい。無機物膜としては、SiN膜、SiO膜、SiON膜、Al23膜、AlN膜等の単体膜やこれらの積層膜等が挙げられる。The inorganic film of the inorganic/organic laminate is a film provided to prevent the organic EL element from being exposed to gases such as water vapor and oxygen present in the environment in which the organic EL device is placed. The inorganic film of the inorganic/organic laminate is preferably a continuous, dense film with few defects such as pinholes. Examples of the inorganic film include single films such as SiN film, SiO film, SiON film, Al 2 O 3 film, and AlN film, and laminated films of these films.

無機/有機積層体の有機物膜は、無機物膜上に形成されたピンホール等の欠陥を被覆するために、表面に平坦性を付与するために、設けられる。有機物膜は、無機物膜が形成される領域よりも狭い領域に形成される。これは、有機物膜を無機物膜の形成領域と同じか又はそれよりも広く形成すると、有機物膜が露出する領域で劣化してしまうからである。但し、封止層全体の最上層に形成される最上位有機物膜は、無機物膜の形成領域とほぼ同じ領域に形成される。そして、封止層の上面が平坦化されるように形成される。有機物膜としては、上記した無機物膜との密着性が良好な組成物が用いられる。 The organic film of the inorganic/organic laminate is provided to cover defects such as pinholes formed on the inorganic film and to impart flatness to the surface. The organic film is formed in an area narrower than the area where the inorganic film is formed. This is because if the organic film is formed to be as wide as or wider than the region where the inorganic film is formed, the organic film will deteriorate in the exposed region. However, the uppermost organic film formed on the top layer of the entire sealing layer is formed in almost the same area as the inorganic film. Then, the sealing layer is formed so that the upper surface thereof is flattened. As the organic film, a composition having good adhesion to the above-mentioned inorganic film is used.

本実施形態は、例えば、短時間で膜厚3μm以上の平坦性に優れる塗布が可能なインクジェット塗布に好適であり、インクジェットによる吐出性とインクジェット塗布後の平坦性に優れ、水蒸気等に対するバリア性(以下、低透湿性とも言う)だけでなく無機物膜上のピンホールから封止剤そのものが浸透し、有機EL素子の信頼性が低下することが無い、上記有機物膜を形成する有機エレクトロルミネッセンス表示素子用封止剤を提供することを目的とする。インクジェット法による塗布方法を用いれば、高速かつ均一に有機物膜を形成できる。 This embodiment is suitable, for example, for inkjet coating, which allows coating with excellent flatness to a film thickness of 3 μm or more in a short time, has excellent inkjet ejection properties and flatness after inkjet coating, and has excellent barrier properties against water vapor, etc. An organic electroluminescent display element that forms the above-mentioned organic film, which not only has low moisture permeability (hereinafter also referred to as low moisture permeability), but also allows the sealant itself to penetrate through pinholes on the inorganic film, so that the reliability of the organic EL element does not deteriorate. The purpose is to provide a sealant for If an inkjet coating method is used, an organic film can be formed uniformly at high speed.

本実施形態の組成物の粘度は、E型粘度計を用いて、25℃、100rpmの条件で測定した粘度が2mPa・s以上50mPa・s以下であることが好ましい。インクジェットによる吐出がしにくい場合は、適宜インクジェットヘッドを加温する。粘度が2mPa・s以上だと、塗工した有機EL表示素子用封止剤が、硬化前に有機EL表示素子から流出せず、無機物膜上のピンホールに流入せず、OLED素子の信頼性が向上する。粘度が50mPa・s以下だと、インクジェットによる塗布が容易になる。組成物の粘度は5mPa・s~30mPa・sがより好ましい。 The viscosity of the composition of the present embodiment is preferably 2 mPa·s or more and 50 mPa·s or less when measured using an E-type viscometer at 25° C. and 100 rpm. If it is difficult to eject by inkjet, warm the inkjet head as appropriate. If the viscosity is 2 mPa・s or more, the applied sealant for organic EL display elements will not flow out from the organic EL display element before curing and will not flow into the pinholes on the inorganic film, reducing the reliability of the OLED element. will improve. When the viscosity is 50 mPa·s or less, it becomes easy to apply by inkjet. The viscosity of the composition is more preferably 5 mPa·s to 30 mPa·s.

本実施形態の組成物は、(A)炭素数4以上20以下のアルカンジオールジ(メタ)アクリレートと、(B)光重合開始剤を含有する(メタ)アクリル系樹脂組成物である。尚、本明細書においては、炭素数を主鎖(アルカンジオール等)について表記するときは、(メタ)アクリレート部分の炭素数は含まないものとする。 The composition of the present embodiment is a (meth)acrylic resin composition containing (A) an alkanediol di(meth)acrylate having 4 to 20 carbon atoms and (B) a photopolymerization initiator. In this specification, when the number of carbon atoms is expressed for the main chain (alkanediol, etc.), the number of carbon atoms in the (meth)acrylate moiety is not included.

(A)炭素数4以上20以下のアルカンジオールジ(メタ)アクリレートのアルカンとしては、鎖式化合物や環式化合物が挙げられる。アルカンとしては、鎖式化合物が好ましい。鎖式化合物としては、直鎖化合物であってもよいし、分鎖化合物であってもよい。アルカンとしては、飽和炭化水素が好ましい。 (A) Alkanes in the alkanediol di(meth)acrylate having 4 to 20 carbon atoms include chain compounds and cyclic compounds. As the alkane, chain compounds are preferred. The chain compound may be a straight chain compound or a branched chain compound. As the alkane, saturated hydrocarbons are preferred.

(A)炭素数4以上20以下のアルカンジオールジ(メタ)アクリレート(アルカンが鎖式化合物かつ飽和炭化水素)としては、1,2-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,7-ヘプタンジオールジ(メタ)アクリレート、1,7-オクタンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,11-ウンデカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、1,13-トリデカンジオールジ(メタ)アクリレート、1,14-テトラデカンジオールジ(メタ)アクリレート、1,15-ペンタデカンジオールジ(メタ)アクリレート、1,16-ヘキサデカンジオールジ(メタ)アクリレート、1,17-ヘプタデカンジオールジ(メタ)アクリレート、1,18-オクタデカンジオールジ(メタ)アクリレート、1,19-ノナデカンジオールジ(メタ)アクリレート、1,20-イコサンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、2,4-ジエチル-1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。(A)炭素数4以上20以下のアルカンジオールジ(メタ)アクリレート(アルカンが環式化合物)としては、1,2-シクロヘキサンジオールジ(メタ)アクリレート、1,3-シクロヘキサンジオールジ(メタ)アクリレート、1,4-シクロヘキサンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、水素化ビスフェノールAジ(メタ)アクリレート等が挙げられる。炭素数4以上20以下のアルカンジオールジ(メタ)アクリレートの中では、OLED素子への信頼性の点から主鎖である炭素数は多い方が良いが、組成物が貯蔵中に結晶化したり、結晶化物が生成したりするという貯蔵安定性の課題が生じる。OLED素子への信頼性、透湿性、貯蔵安定性の観点から、炭素数は6以上18以下が好ましく、9以上16以下がより好ましく、12以上16以下が尚更一層好ましく、12が最も好ましい。(A)成分の中では、1,12-ドデカンジオールジ(メタ)アクリレートが好ましい。(A)成分の例としては例えば、共栄社化学社製の商品名「1.9ND-A」やサートマー社製の商品名「SR262」等が挙げられる。 (A) Alkanediol di(meth)acrylates having 4 to 20 carbon atoms (alkane is a chain compound and saturated hydrocarbon) include 1,2-butanediol di(meth)acrylate, 1,3-butanediol di(meth)acrylate, and 1,3-butanediol di(meth)acrylate. (meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,5-pentanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,7-heptanediol di(meth)acrylate ) acrylate, 1,7-octanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate , 1,11-undecanediol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, 1,13-tridecanediol di(meth)acrylate, 1,14-tetradecanediol di(meth)acrylate, 1,15-pentadecanediol di(meth)acrylate, 1,16-hexadecanediol di(meth)acrylate, 1,17-heptadecanediol di(meth)acrylate, 1,18-octadecanediol di(meth)acrylate, 1 , 19-nonadecanediol di(meth)acrylate, 1,20-icosanediol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, 2,4-diethyl-1,5 - Pentanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, etc. (A) Alkanediol di(meth)acrylates having 4 to 20 carbon atoms (alkane is a cyclic compound) include 1,2-cyclohexanediol di(meth)acrylate, 1,3-cyclohexanediol di(meth)acrylate , 1,4-cyclohexanediol di(meth)acrylate, tricyclodecanedimethanol di(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, hydrogenated bisphenol A di(meth)acrylate, and the like. Among alkanediol di(meth)acrylates having 4 or more carbon atoms and 20 or less carbon atoms, it is better to have a large number of carbon atoms in the main chain from the viewpoint of reliability for OLED devices, but the composition may crystallize during storage. Storage stability issues arise, such as the formation of crystallized products. From the viewpoint of reliability, moisture permeability, and storage stability of the OLED element, the number of carbon atoms is preferably 6 or more and 18 or less, more preferably 9 or more and 16 or less, even more preferably 12 or more and 16 or less, and most preferably 12. Among component (A), 1,12-dodecanediol di(meth)acrylate is preferred. Examples of component (A) include "1.9ND-A" (trade name) manufactured by Kyoeisha Kagaku Co., Ltd. and "SR262" (trade name) manufactured by Sartomer Corporation.

(B)光重合開始剤は、可視光線や紫外線の活性光線により増感させて樹脂組成物の光硬化を促進するために使用する。光重合開始剤としては、光ラジカル重合開始剤が好ましい。光ラジカル重合開始剤としては、ベンゾフェノン及びその誘導体、ベンジル及びその誘導体、エントラキノン及びその誘導体、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール等のベンゾイン誘導体、ジエトキシアセトフェノン、4-tert-ブチルトリクロロアセトフェノン等のアセトフェノン誘導体、2-ジメチルアミノエチルベンゾエート、p-ジメチルアミノエチルベンゾエート、ジフェニルジスルフィド、チオキサントン及びその誘導体、カンファーキノン、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-ブロモエチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-メチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸クロライド等のカンファーキノン誘導体、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のα-アミノアルキルフェノン誘導体、ベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ベンゾイルジエトキシホスフィンオキサイド、2,4,6-トリメチルベンゾイルジメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジエトキシフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィンオキサイド誘導体、フェニル-グリオキシリックアシッド-メチルエステル、オキシ-フェニル-アセチックアシッド2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステル及びオキシ-フェニル-アセチックアシッド2-[2-ヒドロキシ-エトキシ]-エチルエステル等が挙げられる。光重合開始剤は1種以上を組み合わせて用いることができる。これらの中では、硬化させる時に390nm以上の可視光線のみを用いて硬化させることができ、有機エレクトロルミネッセンス表示素子にダメージを与えないで硬化させることができる点で、アシルホスフィンオキサイド誘導体が好ましい。アシルホスフィンオキサイド誘導体の中では、ディスプレイとした時に可視光線での透過性が低下せずに、395nm以上の光のみを用いて硬化させることができる点で、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドが最も好ましい。2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドとしては、BASFジャパン社製「Irgacure TPO」等が挙げられる。 (B) The photopolymerization initiator is used to promote photocuring of the resin composition by sensitizing it with active light such as visible light or ultraviolet light. As the photopolymerization initiator, a radical photopolymerization initiator is preferable. Examples of the photoradical polymerization initiator include benzophenone and its derivatives, benzyl and its derivatives, entraquinone and its derivatives, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, benzoin derivatives such as benzyl dimethyl ketal, Acetophenone derivatives such as diethoxyacetophenone and 4-tert-butyltrichloroacetophenone, 2-dimethylaminoethylbenzoate, p-dimethylaminoethylbenzoate, diphenyl disulfide, thioxanthone and its derivatives, camphorquinone, 7,7-dimethyl-2,3 -dioxobicyclo[2.2.1]heptane-1-carboxylic acid, 7,7-dimethyl-2,3-dioxobicyclo[2.2.1]heptane-1-carboxy-2-bromoethyl ester, 7,7-dimethyl-2,3-dioxobicyclo[2.2.1]heptane-1-carboxy-2-methyl ester, 7,7-dimethyl-2,3-dioxobicyclo[2.2.1 ] Camphorquinone derivatives such as heptane-1-carboxylic acid chloride, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- α-Aminoalkylphenone derivatives such as (4-morpholinophenyl)-butanone-1, benzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, benzoyldiethoxyphosphine oxide, 2,4,6 - Acylphosphine oxide derivatives such as trimethylbenzoyldimethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoyldiethoxyphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, phenyl-glyoxylic acid -Methyl ester, oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester and oxy-phenyl-acetic acid 2-[2-hydroxy-ethoxy]-ethyl ester, etc. can be mentioned. One or more types of photopolymerization initiators can be used in combination. Among these, acylphosphine oxide derivatives are preferred because they can be cured using only visible light of 390 nm or more and can be cured without damaging the organic electroluminescent display element. Among acylphosphine oxide derivatives, 2,4,6-trimethylbenzoyl-diphenyl - Phosphine oxide is most preferred. Examples of the 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide include "Irgacure TPO" manufactured by BASF Japan.

(B)光重合開始剤の含有量は、(A)成分と必要に応じて使用する(C)成分の合計100質量部に対して、0.05~6質量部が好ましく、0.5~4質量部がより好ましく、2~3.9質量部が最も好ましく、2.2~3.5質量部が尚更好ましい。(C)成分の含有量が0.05質量部以上であれば、硬化促進の効果が確実に得られるし、6質量部以下であれば、ディスプレイに用いた時に可視光線での透過性が低下することも無い。 (B) The content of the photopolymerization initiator is preferably 0.05 to 6 parts by mass, and 0.5 to 6 parts by mass, based on the total of 100 parts by mass of component (A) and optionally used component (C). More preferably 4 parts by weight, most preferably 2 to 3.9 parts by weight, even more preferably 2.2 to 3.5 parts by weight. If the content of component (C) is 0.05 parts by mass or more, the effect of accelerating curing can be reliably obtained, and if it is 6 parts by mass or less, the transmittance of visible light will decrease when used in a display. There's nothing to do.

本実施形態の(メタ)アクリル系樹脂組成物では、含まれる(メタ)アクリレートあたりの親水性官能基量が4.80~7.60mmol/gであることが必須である。(メタ)アクリル系樹脂組成物の親水性官能基量は(A)成分及び存在する場合は(C)成分の各(メタ)アクリレートあたりの親水性官能基量を下式によりそれぞれ算出し、その後各材料の親水性官能基量を(メタ)アクリル系樹脂組成物中に配合されている下式に示すそれぞれの材料の質量分率で掛け合わせた積を算出し、その総和を(メタ)アクリル系樹脂組成物の親水性官能基量とした。材料中の質量分率の算出に当たり、(メタ)アクリレートの総和を100質量部とした。

Figure 0007360131000001

(前記式において、材料とは各(メタ)アクリレート成分のことをいう)
Figure 0007360131000002
(前記式において、材料とは各(メタ)アクリレート成分のことをいう)

上記親水性官能基量が4.80mmol/g以上だと、反応性基である(メタ)アクリロイル基が多いため、反応性が高くなり、有機EL素子の封止性能を満足に発現し、低透湿性になるため有機EL素子の信頼性が向上し、平坦性が良くなる。7.60mmol/g以下だと、信頼性試験中に有機エレクトロルミネッセンス表示素子用封止剤内部から水分が放出されにくく、有機発光材料層に水分が到達せず、ダークスポットが発生しにくい。反応性と信頼性の観点から、4.80~7.60mmol/gが好ましく、5.00~7.10mmol/gがより好ましい。In the (meth)acrylic resin composition of the present embodiment, it is essential that the amount of hydrophilic functional groups per (meth)acrylate contained is 4.80 to 7.60 mmol/g. The amount of hydrophilic functional groups in the (meth)acrylic resin composition is determined by calculating the amount of hydrophilic functional groups per each (meth)acrylate of component (A) and, if present, component (C) using the following formula. Calculate the product by multiplying the amount of hydrophilic functional groups of each material by the mass fraction of each material blended in the (meth)acrylic resin composition as shown in the formula below, and calculate the sum of the (meth)acrylic This is the amount of hydrophilic functional groups in the resin composition. In calculating the mass fraction in the material, the total amount of (meth)acrylate was set to 100 parts by mass.
Figure 0007360131000001

(In the above formula, material refers to each (meth)acrylate component)
Figure 0007360131000002
(In the above formula, material refers to each (meth)acrylate component)

When the amount of hydrophilic functional groups is 4.80 mmol/g or more, there are many (meth)acryloyl groups that are reactive groups, so the reactivity becomes high and the sealing performance of the organic EL element is satisfactorily expressed, resulting in low The moisture permeability improves the reliability of the organic EL element and improves its flatness. When it is 7.60 mmol/g or less, moisture is difficult to be released from inside the sealant for an organic electroluminescent display element during a reliability test, moisture does not reach the organic light emitting material layer, and dark spots are unlikely to occur. From the viewpoint of reactivity and reliability, 4.80 to 7.60 mmol/g is preferable, and 5.00 to 7.10 mmol/g is more preferable.

本実施形態は、(C)成分として(A)成分以外の(メタ)アクリレートを含有することが好ましい。(C)成分としては、単官能(メタ)アクリレート、2官能(メタ)アクリレート、多官能(メタ)アクリレートからなる群のうちの1種以上を使用することができる。(C)成分の使用により、組成物の親水性官能基量を調整することが可能となり、又、粘度やインクジェット塗布性、透湿性の調整も可能になる。 This embodiment preferably contains (meth)acrylate other than the component (A) as the component (C). As component (C), one or more of the group consisting of monofunctional (meth)acrylates, bifunctional (meth)acrylates, and polyfunctional (meth)acrylates can be used. By using component (C), it is possible to adjust the amount of hydrophilic functional groups in the composition, and it is also possible to adjust the viscosity, inkjet applicability, and moisture permeability.

ここで、親水性官能基とは、官能基を構成する原子の中で電気陰性度の差の最大値が、0.6以上のものをいう。そのような親水性官能基としては、(メタ)アクリロイル基、エステル基、アルデヒド基、ニトロ基、水酸基、エチレンオキシド基、プロピレンオキシド基、エーテル基、アミド基、環状アミド基、スルホキシド基、カルボニル基、カルボン酸(塩)基、スルホン酸(塩)基、スルフィン酸(塩)基、ホスホン酸(塩)基、リン酸(塩)基、スルホベタイン基、カルボベタイン基、ホスホベタイン基からなる群の1種以上が好ましい。 Here, the term "hydrophilic functional group" refers to one in which the maximum value of the difference in electronegativity among the atoms constituting the functional group is 0.6 or more. Such hydrophilic functional groups include (meth)acryloyl group, ester group, aldehyde group, nitro group, hydroxyl group, ethylene oxide group, propylene oxide group, ether group, amide group, cyclic amide group, sulfoxide group, carbonyl group, of the group consisting of carboxylic acid (salt) group, sulfonic acid (salt) group, sulfinic acid (salt) group, phosphonic acid (salt) group, phosphoric acid (salt) group, sulfobetaine group, carbobetaine group, phosphobetaine group One or more types are preferred.

(C)成分の単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等といったアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、4-ブチルフェニル(メタ)アクリレート、フェニル(メタ)アクリレート、2,4,5-テトラメチルフェニル(メタ)アクリレート、4-クロロフェニル(メタ)アクリレート、フェノキシメチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート(2-HPA)、2-(メタ)アクリロイロキシヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタル酸、EO(エチレンオキサイド)変性フェノール(メタ)アクリレート、EO変性クレゾール(メタ)アクリレート、EO変性ノニルフェノール(メタ)アクリレート、PO(プロピレンオキサイド)変性ノニルフェノール(メタ)アクリレート、エトキシ化-o-フェニルフェノール(メタ)アクリレート、m-フェノキシベンジル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノールエチレンオキサイド変性(メタ)アクリレート、フェノール(エチレンオキサイド2モル変性)(メタ)アクリレート、フェノール(エチレンオキサイド4モル変性)(メタ)アクリレート、パラクミルフェノールエチレンオキサイド変性(メタ)アクリレート、ノニルフェノールエチレンオキサイド変性(メタ)アクリレート、ノニルフェノール(エチレンオキサイド4モル変性)(メタ)アクリレート、ノニルフェノール(エチレンオキサイド8モル変性)(メタ)アクリレート、ノニルフェノール(プロピレンオキサイド2.5モル変性)(メタ)アクリレート、エチレンオキシド変性フタル酸(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート等の分子内に1個以上の芳香族炭化水素系の環状構造(以下、芳香族炭化水素基ということもある。)を有する単官能(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシ化シクロデカトリエン(メタ)アクリレート等の脂肪族炭化水素系の環状構造(以下、脂環式炭化水素基ということもある。)を有する単官能(メタ)アクリレート、メトキシ化シクロデカトリエン(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、グリシジル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、エトキシカルボニルメチル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、エチレンオキシド変性コハク酸(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、(メタ)アクリル酸、マレイン酸、フマル酸、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、(メタ)アクリル酸ダイマー、β-(メタ)アクロイルオキシエチルハイドロジェンサクシネート、n-(メタ)アクリロイルオキシアルキルヘキサヒドロフタルイミド、2-(1,2-シクロヘキサカルボキシイミド)エチル(メタ)アクリレート等が挙げられる。(C)成分の 単官能(メタ)アクリレートとしては、環状アミド基、テトラヒドロフルフリル基、ピペリジニル基等の含ヘテロ環状構造といった環状構造を有する(メタ)アクリレートを使用できる。 The monofunctional (meth)acrylate of component (C) includes methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and isooctyl (meth)acrylate. Acrylate, alkyl (meth)acrylate such as isodecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, etc., benzyl (meth)acrylate, 4-butylphenyl (meth)acrylate, phenyl (meth)acrylate, 2, 4,5-tetramethylphenyl (meth)acrylate, 4-chlorophenyl (meth)acrylate, phenoxymethyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate (2-HPA ), 2-(meth)acryloyloxyhexahydrophthalic acid, 2-(meth)acryloyloxyethyl-2-hydroxypropylphthalic acid, EO (ethylene oxide) modified phenol (meth)acrylate, EO modified cresol (meth) Acrylate, EO modified nonylphenol (meth)acrylate, PO (propylene oxide) modified nonylphenol (meth)acrylate, ethoxylated-o-phenylphenol (meth)acrylate, m-phenoxybenzyl (meth)acrylate, 2-hydroxy-3-phenoxy Propyl (meth)acrylate, phenol ethylene oxide modified (meth)acrylate, phenol (2 mol ethylene oxide modified) (meth)acrylate, phenol (4 mol ethylene oxide modified) (meth)acrylate, paracumylphenol ethylene oxide modified (meth) Acrylate, nonylphenol ethylene oxide modified (meth)acrylate, nonylphenol (modified with 4 moles of ethylene oxide) (meth)acrylate, nonylphenol (modified with 8 moles of ethylene oxide) (meth)acrylate, nonylphenol (modified with 2.5 moles of propylene oxide) (meth) Acrylate, ethylene oxide-modified phthalic acid (meth)acrylate, phthalic acid monohydroxyethyl (meth)acrylate, etc. have one or more aromatic hydrocarbon-based cyclic structures (hereinafter sometimes referred to as aromatic hydrocarbon groups) in the molecule. ) monofunctional (meth)acrylate, cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl ( Aliphatic hydrocarbon-based cyclic structures (hereinafter sometimes referred to as alicyclic hydrocarbon groups) such as meth)acrylate, isobornyl (meth)acrylate, and methoxylated cyclodecatriene (meth)acrylate. ) monofunctional (meth)acrylate, methoxylated cyclodecatriene (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxy Butyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, glycidyl (meth)acrylate, caprolactone-modified tetrahydrofurfuryl (meth)acrylate, 3-chloro-2-hydroxypropyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, t-butylaminoethyl (meth)acrylate, ethoxycarbonylmethyl (meth)acrylate, 2-ethylhexylcarbitol (meth)acrylate, ethylene oxide modified succinic acid (meth)acrylate, ) acrylate, trifluoroethyl (meth)acrylate, (meth)acrylic acid, maleic acid, fumaric acid, ω-carboxy-polycaprolactone mono(meth)acrylate, (meth)acrylic acid dimer, β-(meth)acryloyloxy Examples include ethyl hydrogen succinate, n-(meth)acryloyloxyalkylhexahydrophthalimide, and 2-(1,2-cyclohexacarboximide)ethyl (meth)acrylate. As the monofunctional (meth)acrylate of component (C), a (meth)acrylate having a cyclic structure such as a heterocyclic structure such as a cyclic amide group, a tetrahydrofurfuryl group, or a piperidinyl group can be used.

(C)成分の2官能(メタ)アクリレートとしては、ジシクロペンタニルジ(メタ)アクリレート、2-エチル-2-ブチル-プロパンジオール(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ステアリン酸変性ペンタエリストールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシプロポキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシテトラエトキシフェニル)プロパン、2-(1,2-シクロヘキサカルボキシイミド)エチル(メタ)アクリレート、ビスフェノールAエポキシジ(メタ)アクリレート等が挙げられる。(C)成分の2官能(メタ)アクリレートとしては、下記構造式で表されるエトキシ化ビスフェノールAジ(メタ)アクリレート化合物、プロポキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート等が挙げられる。
下記式中のRはそれぞれ独立に水素原子又はメチル基である。式中のm、nに関して、m+n=2~10が好ましい。

Figure 0007360131000003
As the bifunctional (meth)acrylate of component (C), dicyclopentanyl di(meth)acrylate, 2-ethyl-2-butyl-propanediol (meth)acrylate, neopentyl glycol-modified trimethylolpropanedi(meth)acrylate, Acrylate, stearic acid-modified pentaerythritol di(meth)acrylate, polypropylene glycol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, 2,2-bis(4-(meth)acryloxydiethoxyphenyl) Propane, 2,2-bis(4-(meth)acryloxypropoxyphenyl)propane, 2,2-bis(4-(meth)acryloxytetraethoxyphenyl)propane, 2-(1,2-cyclohexacarboximide) ) Ethyl (meth)acrylate, bisphenol A epoxy di(meth)acrylate, and the like. The bifunctional (meth)acrylate of component (C) is an ethoxylated bisphenol A di(meth)acrylate compound represented by the following structural formula, propoxylated bisphenol A di(meth)acrylate, propoxylated ethoxylated bisphenol A di( Examples include meth)acrylate.
In the following formula, each R is independently a hydrogen atom or a methyl group. Regarding m and n in the formula, m+n=2 to 10 is preferable.
Figure 0007360131000003

(C)成分の多官能(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、トリス[(メタ)アクリロイロキシエチル]イソシアヌレート、ジメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジペンタエリストールヘキサ(メタ)アクリレート等が挙げられる。 The polyfunctional (meth)acrylate of component (C) includes trimethylolpropane tri(meth)acrylate, tris[(meth)acryloyloxyethyl]isocyanurate, dimethylolpropane tetra(meth)acrylate, and pentaerythritol tetra(meth)acrylate. ) acrylate, pentaerythritol ethoxytetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and the like.

(C)成分の親水性官能基量は3.00~15.00mmol/gが好ましい。親水性官能基量が3.00~15.00mmol/gであれば、十分な反応性とOLED素子の信頼性を確保できる。反応性とOLED素子の信頼性の観点から(C)成分の親水性官能基量は4.00~15.00mmol/gが好ましく、4.10~8.20mmol/gが更に好ましく、4.20~7.60mmol/gが尚更一層好ましい。 The amount of hydrophilic functional groups in component (C) is preferably 3.00 to 15.00 mmol/g. If the amount of hydrophilic functional groups is 3.00 to 15.00 mmol/g, sufficient reactivity and reliability of the OLED device can be ensured. From the viewpoint of reactivity and OLED device reliability, the amount of hydrophilic functional groups in component (C) is preferably 4.00 to 15.00 mmol/g, more preferably 4.10 to 8.20 mmol/g, and 4.20 mmol/g. ˜7.60 mmol/g is even more preferred.

反応性とOLED素子の信頼性、インクジェット塗布性の点で、(C)成分は、炭素数8以上のアルキル(メタ)アクリレート、脂環式炭化水素基を有する(メタ)アクリレート、芳香族炭化水素基を有する(メタ)アクリレートからなる群の1種以上であることが好ましい。炭素数8以上のアルキル(メタ)アクリレートとしては、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートからなる群の1種以上が好ましく、ラウリル(メタ)アクリレートが最も好ましい。脂環式炭化水素基を有する(メタ)アクリレートとしては、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレートからなる群の1種以上が好ましく、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレートからなる群の1種以上がより好ましい。芳香族炭化水素基を有する(メタ)アクリレートとしては、エトキシ化-o-フェニルフェノール(メタ)アクリレートが好ましい。 In terms of reactivity, OLED element reliability, and inkjet applicability, component (C) is an alkyl (meth)acrylate having 8 or more carbon atoms, (meth)acrylate having an alicyclic hydrocarbon group, or an aromatic hydrocarbon. Preferably, it is one or more of the group consisting of (meth)acrylates having groups. The alkyl (meth)acrylate having 8 or more carbon atoms is preferably one or more of the group consisting of isooctyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, and stearyl (meth)acrylate, and lauryl (meth)acrylate is preferred. Acrylates are most preferred. Examples of (meth)acrylates having an alicyclic hydrocarbon group include cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, dicyclopentenyl (meth)acrylate, and dicyclopentanyl (meth)acrylate. One or more members of the group consisting of cyclopentenyloxyethyl (meth)acrylate, isobornyl (meth)acrylate, and tricyclodecane dimethanol di(meth)acrylate are preferred, and dicyclopentanyl (meth)acrylate and dicyclopentanyloxyethyl One or more of the group consisting of (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, and dicyclopentanyloxyethyl (meth)acrylate is more preferred. As the (meth)acrylate having an aromatic hydrocarbon group, ethoxylated-o-phenylphenol (meth)acrylate is preferred.

(A)成分の含有量は、(A)成分と(C)成分との合計100質量部に対して、30~100質量部が好ましく、30質量部以上100質量部未満がより好ましい。(A)の含有量が30質量部以上だとインクジェット塗布性や低透湿性、有機EL素子の信頼性が優れる。インクジェット塗布性や低透湿性、有機EL素子の信頼性の点で55~99質量部が好ましく、60~95質量部がより好ましく、65~95質量部が更に好ましい。 The content of component (A) is preferably 30 to 100 parts by mass, more preferably 30 parts by mass or more and less than 100 parts by mass, based on a total of 100 parts by mass of components (A) and (C). When the content of (A) is 30 parts by mass or more, inkjet coating properties, low moisture permeability, and reliability of the organic EL device are excellent. From the viewpoint of inkjet applicability, low moisture permeability, and reliability of organic EL devices, it is preferably 55 to 99 parts by weight, more preferably 60 to 95 parts by weight, and even more preferably 65 to 95 parts by weight.

存在する場合の(C)成分の含有量は、(A)成分と(C)成分との合計100質量部に対して、0質量部超70質量部以下が好ましい。(C)成分の含有量が70質量部以下だとインクジェット塗布性や低透湿性、有機EL素子の信頼性が優れる。(C)成分の含有量は、インクジェット塗布性や低透湿性、有機EL素子の信頼性の点で1~45質量部が好ましく、5~40質量部がより好ましく、5~35質量部が更に好ましい。 The content of component (C) when present is preferably more than 0 parts by mass and 70 parts by mass or less, based on a total of 100 parts by mass of components (A) and (C). When the content of component (C) is 70 parts by mass or less, inkjet coating properties, low moisture permeability, and reliability of the organic EL device are excellent. The content of component (C) is preferably 1 to 45 parts by mass, more preferably 5 to 40 parts by mass, and still more preferably 5 to 35 parts by mass in terms of inkjet applicability, low moisture permeability, and reliability of the organic EL element. preferable.

前述した通りOLED素子は水分により容易に劣化してしまうため、本実施形態の組成物においては、含水量は少ない方が好ましい。OLED素子の信頼性の点から含水量は90ppm以下が好ましく、50ppm以下がより好ましく、30ppm以下が尚更一層好ましい。 As mentioned above, since OLED elements are easily deteriorated by moisture, it is preferable for the composition of this embodiment to have a low moisture content. From the viewpoint of reliability of the OLED element, the water content is preferably 90 ppm or less, more preferably 50 ppm or less, and even more preferably 30 ppm or less.

このような含水量は市販の水分量測定計を用いて測定できるが、カールフィッシャー水分計を用いるのが一般的である。 Although such water content can be measured using a commercially available moisture meter, it is common to use a Karl Fischer moisture meter.

含水量の低減方法としては、特に限定されないが、以下の方法が挙げられる。 Methods for reducing the water content include, but are not particularly limited to, the following methods.

(1)乾燥剤により水分を除去する。水分を除去した後、乾燥剤をデカンテーション又はろ過により分離する。乾燥剤としては、樹脂組成物に影響がなければ特に限定されないが、高分子吸着剤(モレキュラーシーブ、合成ゼオライト、アルミナ、シリカゲル等)、無機塩(塩化カルシウム、無水硫酸マグネシウム、生石灰、無水硫酸ナトリウム、無水硫酸カルシウム等)、固体アルカリ類(水酸化ナトリウム、水酸化カリウム等)等が挙げられる。(2)減圧条件下で加熱し、水分を除去する。(3)減圧条件下で蒸留精製する。(4)乾燥窒素や乾燥アルゴンガス等の不活性ガスを各成分に吹き込み水分を除去する。(5)凍結乾燥により水分を除去する。 (1) Remove moisture using a desiccant. After removing the water, the desiccant is separated by decantation or filtration. Desiccants are not particularly limited as long as they do not affect the resin composition, but include polymer adsorbents (molecular sieves, synthetic zeolites, alumina, silica gel, etc.), inorganic salts (calcium chloride, anhydrous magnesium sulfate, quicklime, anhydrous sodium sulfate, etc.). , anhydrous calcium sulfate, etc.), solid alkalis (sodium hydroxide, potassium hydroxide, etc.), and the like. (2) Heat under reduced pressure to remove moisture. (3) Purification by distillation under reduced pressure conditions. (4) Inert gas such as dry nitrogen or dry argon gas is blown into each component to remove moisture. (5) Remove moisture by freeze drying.

含水量の低減は、混合前の成分毎に水分を低減してもよく、各成分の混合後に水分を低減してもよい。水分量の低減工程は1種以上を使用してもよい。水分量の低減工程後は水分の再混入を防ぐため、不活性ガス雰囲気下で取り扱うことが好ましい。 The water content may be reduced by reducing the water content for each component before mixing, or by reducing the water content after mixing each component. One or more types may be used in the water content reduction step. After the step of reducing the amount of water, it is preferable to handle the product under an inert gas atmosphere in order to prevent water from being reintroduced.

又、前述した通りOLED素子は酸素によっても容易に劣化してしまうため、本実施形態の組成物においては、溶存酸素量は少ない方が好ましい。OLED素子の信頼性の点から溶存酸素量は20ppm以下が好ましく、10ppm以下がより好ましい。一方、溶存酸素は組成物から発生する活性ラジカルと反応し、不活性なパーオキサイドラジカルを生成することにより、組成物の高分子化に伴う増粘を抑制する効果を有するため、貯蔵安定性の点から1ppm以上が好ましく、2ppm以上がより好ましい。 Further, as described above, since OLED elements are easily deteriorated by oxygen, it is preferable that the amount of dissolved oxygen be small in the composition of this embodiment. From the viewpoint of reliability of the OLED element, the amount of dissolved oxygen is preferably 20 ppm or less, more preferably 10 ppm or less. On the other hand, dissolved oxygen reacts with active radicals generated from the composition and generates inactive peroxide radicals, which has the effect of suppressing the thickening caused by polymerization of the composition, thereby improving storage stability. From this point of view, it is preferably 1 ppm or more, and more preferably 2 ppm or more.

このような溶存酸素量は、試薬を用いた滴定法、隔膜を用いた隔膜電極法、蛍光物質を用いた蛍光法等により測定できる。測定方法は特に限定されないが、隔膜電極法が簡便であり、好ましい。 Such dissolved oxygen amount can be measured by a titration method using a reagent, a diaphragm electrode method using a diaphragm, a fluorescence method using a fluorescent substance, or the like. Although the measuring method is not particularly limited, the diaphragm electrode method is simple and preferred.

溶存酸素量の低減方法としては、特に限定されないが、以下の方法が挙げられる。 Methods for reducing the amount of dissolved oxygen are not particularly limited, but include the following methods.

(1)減圧条件下に暴露し、酸素を除去する。(2)乾燥窒素や乾燥アルゴンガス等の不活性ガスを各成分に吹き込み酸素を除去する。(3)低酸素濃度下に暴露して酸素を除去する。 (1) Expose to reduced pressure conditions to remove oxygen. (2) Inert gas such as dry nitrogen or dry argon gas is blown into each component to remove oxygen. (3) Remove oxygen by exposing to low oxygen concentration.

溶存酸素量の低減は、混合前の成分毎に酸素を低減してもよく、各成分の混合後に酸素を低減してもよい。溶存酸素量の低減工程は1種以上を使用してもよい。溶存酸素量の低減工程後は酸素の再混入を防ぐため、不活性ガス雰囲気下で取り扱うことが好ましい。 The amount of dissolved oxygen may be reduced by reducing oxygen for each component before mixing, or by reducing oxygen after mixing each component. One or more types may be used in the step of reducing the amount of dissolved oxygen. After the step of reducing the amount of dissolved oxygen, it is preferable to handle the product under an inert gas atmosphere in order to prevent oxygen from being reintroduced.

本実施形態の組成物においては、インクジェット吐出性の点で、(メタ)アクリレートはモノマーが好ましい。(A)成分や(C)成分は、モノマーが好ましい。モノマーの分子量は、1000以下が好ましい。インクジェット吐出性の点で、2官能(メタ)アクリレートオリゴマー/ポリマー及び多官能(メタ)アクリレートオリゴマー/ポリマーは、(A)成分や(C)成分を含有する(メタ)アクリレート100質量部中、3質量部以下含有することが好ましく、1質量部以下含有することがより好ましく、含有しないことが最も好ましい。オリゴマー/ポリマーとは、オリゴマーとポリマーからなる群の1種以上をいう。オリゴマー/ポリマーの分子量は、1000を超えることが好ましい。 In the composition of this embodiment, the (meth)acrylate is preferably a monomer from the viewpoint of inkjet ejection properties. Component (A) and component (C) are preferably monomers. The molecular weight of the monomer is preferably 1000 or less. In terms of inkjet ejectability, bifunctional (meth)acrylate oligomers/polymers and polyfunctional (meth)acrylate oligomers/polymers contain 3 parts by mass of (meth)acrylate containing component (A) and (C). It is preferably contained in an amount of 1 part by mass or less, more preferably 1 part by mass or less, and most preferably not contained. Oligomer/polymer refers to one or more of the group consisting of oligomers and polymers. Preferably, the molecular weight of the oligomer/polymer is greater than 1000.

本実施形態の組成物は、貯蔵安定性向上のために、(D)酸化防止剤を使用できる。酸化防止剤としては、メチルハイドロキノン、ハイドロキノン、3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオン酸オクタデシル、2,2-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)、カテコール、ハイドロキノンモノメチルエーテル、モノtert-ブチルハイドロキノン、2,5-ジtert-ブチルハイドロキノン、p-ベンゾキノン、2,5-ジフェニル-p-ベンゾキノン、2,5-ジtert-ブチル-p-ベンゾキノン、ピクリン酸、クエン酸、フェノチアジン、tert-ブチルカテコール、2-ブチル-4-ヒドロキシアニソール及び2,6-ジtert-ブチル-p-クレゾール等が挙げられる。酸化防止剤は、2種以上を組み合わせることが好ましい。これらの中では、透明性や貯蔵安定性等の効果が大きい点で、フェノール系酸化防止剤が好ましい。フェノール系酸化防止剤の中では、ヒンダードフェノール系酸化防止剤が好ましい。ヒンダードフェノール系酸化防止剤としては、3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオン酸オクタデシル、2,2-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)からなる群のうちの1種以上が好ましく、3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオン酸オクタデシルと2,2-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)を含有することがより好ましい。3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオン酸オクタデシルとしては、BASFジャパン社製「Irganox 1076」等が挙げられる。2,2-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)としては、住友化学工業社製「SUMILIZER MDP-S」等が挙げられる。3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオン酸オクタデシルと2,2-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)を含有する場合、3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオン酸オクタデシルと2,2-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)の含有比率は、3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオン酸オクタデシルと2,2-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)の合計100質量部中、質量比で、3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオン酸オクタデシル:2,2-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)=10~90:90~10が好ましく、25~75:75~25がより好ましい。 In the composition of this embodiment, (D) an antioxidant can be used to improve storage stability. As antioxidants, methylhydroquinone, hydroquinone, octadecyl 3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionate, 2,2-methylene-bis(4-methyl-6-tert-butylphenol) ), catechol, hydroquinone monomethyl ether, mono-tert-butylhydroquinone, 2,5-di-tert-butylhydroquinone, p-benzoquinone, 2,5-diphenyl-p-benzoquinone, 2,5-di-tert-butyl-p-benzoquinone , picric acid, citric acid, phenothiazine, tert-butylcatechol, 2-butyl-4-hydroxyanisole, and 2,6-di-tert-butyl-p-cresol. It is preferable to use a combination of two or more kinds of antioxidants. Among these, phenolic antioxidants are preferred because they have great effects such as transparency and storage stability. Among the phenolic antioxidants, hindered phenolic antioxidants are preferred. Examples of hindered phenolic antioxidants include octadecyl 3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionate, 2,2-methylene-bis(4-methyl-6-tert-butylphenol) Preferably, one or more of the group consisting of octadecyl 3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionate and 2,2-methylene-bis(4-methyl-6-tert- butylphenol) is more preferably contained. Examples of octadecyl 3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionate include "Irganox 1076" manufactured by BASF Japan. Examples of 2,2-methylene-bis(4-methyl-6-tert-butylphenol) include "SUMILIZER MDP-S" manufactured by Sumitomo Chemical Co., Ltd. When containing octadecyl 3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionate and 2,2-methylene-bis(4-methyl-6-tert-butylphenol), 3-[3, The content ratio of octadecyl 5-di-tert-butyl-4-hydroxyphenyl]propionate and 2,2-methylene-bis(4-methyl-6-tert-butylphenol) is 3-[3,5-di-tert-butylphenol). -butyl-4-hydroxyphenyl] octadecyl propionate and 2,2-methylene-bis(4-methyl-6-tert-butylphenol), in a mass ratio of tert-butyl-4-hydroxyphenyl] octadecyl propionate: 2,2-methylene-bis(4-methyl-6-tert-butylphenol) = 10-90: preferably 90-10, 25-75: 75-25 More preferred.

酸化防止剤の含有量は、(A)成分及び(C)成分の合計100質量部に対して、0.001~3質量部が好ましく、0.01~2質量部がより好ましい。0.001質量部以上であれば貯蔵安定性が確保されるし、3質量部以下であれば良好な接着性が得られ、未硬化になることもない。 The content of the antioxidant is preferably 0.001 to 3 parts by weight, more preferably 0.01 to 2 parts by weight, based on a total of 100 parts by weight of components (A) and (C). When it is 0.001 parts by mass or more, storage stability is ensured, and when it is 3 parts by mass or less, good adhesiveness is obtained and it does not become uncured.

本実施形態の組成物は、樹脂組成物として使用できる。本実施形態の組成物は、光硬化性樹脂組成物として使用できる。本実施形態の組成物は、有機EL表示素子用封止剤として使用できる。 The composition of this embodiment can be used as a resin composition. The composition of this embodiment can be used as a photocurable resin composition. The composition of this embodiment can be used as a sealant for organic EL display elements.

可視光線又は紫外線を照射して、組成物を硬化させる方法としては、組成物に可視光線又は紫外線の少なくとも一方を照射して硬化する方法等が挙げられる。このような可視光線又は紫外線を照射するためのエネルギー照射源としては、重水素ランプ、高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、キセノンランプ、キセノン-水銀混成ランプ、ハロゲンランプ、エキシマランプ、インジウムランプ、タリウムランプ、LEDランプ、無電極放電ランプ等のエネルギー照射源が挙げられる。本実施形態の組成物は、有機EL素子にダメージを与えづらい点で、380nm以上の波長で硬化させることが好ましく、395nm以上の波長で硬化させることがより好ましく、395nmの波長で硬化させることが最も好ましい。エネルギー照射源の波長としては、赤外光を発光することにより照射部の温度が上がり、有機EL素子にダメージを与える可能性が生じるため、500nm以下であることが好ましい。エネルギー照射源としては、発光波長が単波長であるLEDランプが好ましい。 Examples of the method of curing the composition by irradiating the composition with visible light or ultraviolet rays include a method of curing the composition by irradiating at least one of visible light or ultraviolet rays. Energy irradiation sources for irradiating visible light or ultraviolet rays include deuterium lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, low-pressure mercury lamps, xenon lamps, xenon-mercury hybrid lamps, halogen lamps, excimer lamps, Examples of energy irradiation sources include indium lamps, thallium lamps, LED lamps, and electrodeless discharge lamps. The composition of this embodiment is preferably cured at a wavelength of 380 nm or more, more preferably cured at a wavelength of 395 nm or more, and preferably cured at a wavelength of 395 nm, since it is difficult to damage the organic EL element. Most preferred. The wavelength of the energy irradiation source is preferably 500 nm or less because emitting infrared light increases the temperature of the irradiation part and may damage the organic EL element. As the energy irradiation source, an LED lamp whose emission wavelength is a single wavelength is preferable.

可視光線又は紫外線を照射して、組成物を硬化させる際は、波長395nmにおいて100~8000mJ/cm2のエネルギー線を組成物に照射し硬化させることが好ましい。100~8000mJ/cm2であれば組成物が硬化し、十分な接着強度が得られる。100mJ/cm2以上であれば組成物が十分に硬化し、8000mJ/cm2以下であれば有機EL素子にダメージを与えない。組成物を硬化させる際のエネルギー量は、300~2000mJ/cm2がより好ましい。When curing the composition by irradiating it with visible light or ultraviolet rays, it is preferable to irradiate the composition with energy rays of 100 to 8000 mJ/cm 2 at a wavelength of 395 nm to cure the composition. If it is 100 to 8000 mJ/cm 2 , the composition will be cured and sufficient adhesive strength will be obtained. If it is 100 mJ/cm 2 or more, the composition will be sufficiently cured, and if it is 8000 mJ/cm 2 or less, it will not damage the organic EL element. The amount of energy for curing the composition is more preferably 300 to 2000 mJ/cm 2 .

本実施形態の組成物の透明性は、以下の通りである。有機物膜の厚さが1μm以上10μm以下の時、360nm以上800nm以下の紫外-可視光線領域の分光透過率は、95%以上が好ましく、97%以上がより好ましく、99%以上が最も好ましい。95%以上であれば、輝度、コントラストに優れた有機EL装置を提供することができる。 The transparency of the composition of this embodiment is as follows. When the thickness of the organic film is 1 μm or more and 10 μm or less, the spectral transmittance in the ultraviolet-visible region of 360 nm or more and 800 nm or less is preferably 95% or more, more preferably 97% or more, and most preferably 99% or more. If it is 95% or more, an organic EL device with excellent brightness and contrast can be provided.

本実施形態の組成物からなる封止層は、無機/有機積層体を1セットとして数えると、1~5セットであることが好ましい。無機/有機積層体が6セット以上の場合には、有機EL素子に対する封止効果が5セットの場合とほぼ同じとなるからである。無機/有機積層体の無機物膜の厚さは、50nm~1μmが好ましい。無機/有機積層体の有機物膜の厚さは1~15μmが好ましく、3~10μmがより好ましい。有機物膜の厚みが1μm以上だと、素子形成時に発生するパーティクルを完全に被覆し、無機物膜上に平坦性を確保しながら塗布できる。有機物膜の厚みが15μm以下だと、有機物膜の側面より水分が侵入せず、有機EL素子の信頼性が向上する。 It is preferable that there are 1 to 5 sets of the sealing layer made of the composition of the present embodiment, counting the inorganic/organic laminate as one set. This is because when there are six or more sets of inorganic/organic laminates, the sealing effect on the organic EL element is almost the same as when there are five sets. The thickness of the inorganic film of the inorganic/organic laminate is preferably 50 nm to 1 μm. The thickness of the organic film of the inorganic/organic laminate is preferably 1 to 15 μm, more preferably 3 to 10 μm. When the thickness of the organic film is 1 μm or more, it can completely cover particles generated during device formation and can be coated on the inorganic film while ensuring flatness. If the thickness of the organic film is 15 μm or less, moisture will not enter from the side surfaces of the organic film, improving the reliability of the organic EL device.

封止基板は、封止層の最上位有機物膜の上面全体を覆うように密着して形成される。この封止基板としては、前述の基板が挙げられる。これらの中では、可視光線に対して透明な基板が好ましい。可視光線に対して透明な基板(透明封止基板)の中では、ガラス基板、プラスチック基板からなる群のうちの1種以上が好ましく、ガラス基板がより好ましい。 The sealing substrate is formed in close contact so as to cover the entire upper surface of the uppermost organic film of the sealing layer. Examples of this sealing substrate include the aforementioned substrates. Among these, substrates that are transparent to visible light are preferred. Among the substrates (transparent sealing substrates) that are transparent to visible light, one or more selected from the group consisting of glass substrates and plastic substrates are preferred, and glass substrates are more preferred.

透明封止基板の厚さは、1μm以上1mm以下が好ましく、10μm以上800μm以下がより好ましく、50μm以上300μm以下が最も好ましい。透明封止基板を封止層の更に上層に設けることによって、最上位有機物膜の表面が気体に触れると進行する劣化を抑えることができ、有機EL装置のバリア性を高めることができる。 The thickness of the transparent sealing substrate is preferably 1 μm or more and 1 mm or less, more preferably 10 μm or more and 800 μm or less, and most preferably 50 μm or more and 300 μm or less. By providing the transparent sealing substrate further above the sealing layer, it is possible to suppress the deterioration that progresses when the surface of the uppermost organic film comes into contact with gas, and it is possible to improve the barrier properties of the organic EL device.

次に、このような構成を有する有機EL装置の製造方法について説明する。まず、第1の基板上に、従来公知の方法によって、所定の形状にパターニングした陽極、発光層を含む有機EL層、及び陰極を順に形成して、有機EL素子を形成する。例えば、有機EL装置をドットマトリックス表示装置として使用する場合、発光領域をマトリックス状に区切るためにバンクが形成され、このバンクで囲まれる領域に発光層を含む有機EL層が形成される。 Next, a method for manufacturing an organic EL device having such a configuration will be described. First, an anode patterned into a predetermined shape, an organic EL layer including a light emitting layer, and a cathode are sequentially formed on a first substrate by a conventionally known method to form an organic EL element. For example, when an organic EL device is used as a dot matrix display device, banks are formed to partition light emitting regions into a matrix, and an organic EL layer including a light emitting layer is formed in a region surrounded by the banks.

次いで、有機EL素子が形成された基板上に、スパッタ法等のPVD(Physical Vapor Deposition)法やプラズマCVD(Chemical Vapor Deposition)法等のCVD法等の成膜方法によって、所定の厚さを有する第1の無機物膜を形成する。その後、溶液塗布法やスプレー塗布法等の塗膜形成方法やフラッシュ蒸着法、インクジェット法等を用いて、第1の無機物膜上に本実施形態の組成物を付着させる。これらの中では、生産性の点でインクジェット法が好ましい。その後、紫外線や電子線、プラズマ等のエネルギー線の照射によって、組成物が硬化し、第1の有機物膜が形成される。以上の工程によって、1セットの無機/有機積層体が形成される。組成物の硬化率は、本実施形態の効果が奏される限りにおいては特に限定されないが、例えば、後述する測定方法に従って得られる値で90%以上が好ましく、95%以上がより好ましい。 Next, on the substrate on which the organic EL element is formed, a film having a predetermined thickness is formed by a film forming method such as a PVD (Physical Vapor Deposition) method such as a sputtering method or a CVD method such as a plasma CVD (Chemical Vapor Deposition) method. A first inorganic film is formed. Thereafter, the composition of the present embodiment is deposited on the first inorganic film using a coating film forming method such as a solution coating method or a spray coating method, a flash vapor deposition method, an inkjet method, or the like. Among these, the inkjet method is preferred in terms of productivity. Thereafter, the composition is cured by irradiation with energy rays such as ultraviolet rays, electron beams, and plasma, and a first organic film is formed. Through the above steps, one set of inorganic/organic laminate is formed. The curing rate of the composition is not particularly limited as long as the effects of the present embodiment are achieved, but, for example, it is preferably 90% or more, more preferably 95% or more, as determined by the measurement method described below.

以上に示される無機/有機積層体の形成工程が、所定の回数だけ繰り返される。但し、最後のセット、即ち、最上層の無機/有機積層体に関しては、上面が平坦化するように組成物を、塗布法やフラッシュ蒸着法、インクジェット法等によって、無機物膜の上面に付着させても良い。 The process of forming the inorganic/organic laminate described above is repeated a predetermined number of times. However, for the last set, that is, the top layer of the inorganic/organic laminate, the composition is applied to the top surface of the inorganic film by a coating method, flash vapor deposition method, inkjet method, etc. so that the top surface is flat. Also good.

次いで、基板上の組成物を付着させた面に、透明封止基板を貼り合わせる。貼り合わせの際、位置合わせを行う。その後、透明封止基板側から、エネルギー線を照射することによって、最上層の無機物膜と透明封止基板との間に存在する、本実施形態の組成物を硬化させる。これによって、組成物が硬化し、最上位有機物膜を形成すると共に、最上位有機物膜と透明封止基板とが接着される。以上によって、有機EL装置の製造方法が終了する。 Next, a transparent sealing substrate is bonded to the surface of the substrate to which the composition is attached. Perform positioning when pasting. Thereafter, the composition of this embodiment present between the uppermost inorganic film and the transparent sealing substrate is cured by irradiating energy rays from the transparent sealing substrate side. As a result, the composition is cured to form the uppermost organic film, and the uppermost organic film and the transparent sealing substrate are bonded together. With the above steps, the method for manufacturing an organic EL device is completed.

無機物膜上に組成物を付着させた後、部分的にエネルギー線を照射して重合させてもよい。このようにすることで、透明封止基板を載置した時に、最上位有機物膜となる組成物の形状の崩れを防止できる。無機物膜と有機物膜の厚さは、各無機/有機積層体で同じにしてもよいし、各無機/有機積層体で異なっていてもよい。 After the composition is deposited on the inorganic film, it may be partially irradiated with energy rays to polymerize it. By doing so, when the transparent sealing substrate is placed, it is possible to prevent the composition serving as the uppermost organic film from deforming. The thickness of the inorganic film and the organic film may be the same for each inorganic/organic laminate, or may be different for each inorganic/organic laminate.

上述した説明では、トップエミッション型の有機EL装置を例に挙げて説明した。有機EL層で生じる光を基板側から出射するボトムエミッション型の有機EL装置にも、本実施形態を適用することができる。 In the above description, a top emission type organic EL device was used as an example. This embodiment can also be applied to a bottom emission type organic EL device in which light generated in an organic EL layer is emitted from the substrate side.

本実施形態の有機EL素子は、面状光源、セグメント表示装置、ドットマトリックス表示装置として用いることができる。 The organic EL element of this embodiment can be used as a planar light source, a segment display device, or a dot matrix display device.

本実施形態によれば、第1の基板上に形成された有機EL素子を外気と遮断するための封止層を形成し、更にその封止層上に透明封止基板を配置するので、有機EL素子に対する十分な水蒸気と酸素に対するバリア性を有する封止構造を得ることができる。本実施形態によれば、透明封止基板と封止層との間で十分な接着強度を有する封止構造を得ることができる。 According to this embodiment, a sealing layer is formed to isolate the organic EL element formed on the first substrate from the outside air, and a transparent sealing substrate is further placed on the sealing layer. A sealing structure having sufficient water vapor and oxygen barrier properties for the EL element can be obtained. According to this embodiment, a sealing structure having sufficient adhesive strength between the transparent sealing substrate and the sealing layer can be obtained.

本実施形態によれば、封止層の最上位有機物膜を構成する本実施形態の組成物を付着させた後に、組成物を硬化させることなく透明封止基板を載置して、その後に組成物を硬化させるようにするので、封止層を構成する最上位有機物膜の形成と同時に、封止層と透明封止基板との間の接着を行うことができる。その結果、本実施形態は、封止層と透明封止基板とを接着剤で接着する場合に比して、工程を簡略化できるという効果を有する。 According to this embodiment, after the composition of this embodiment constituting the uppermost organic film of the sealing layer is attached, a transparent sealing substrate is placed without curing the composition, and then the composition is formed. Since the material is cured, the sealing layer and the transparent sealing substrate can be bonded together at the same time as the uppermost organic film constituting the sealing layer is formed. As a result, this embodiment has the effect that the process can be simplified compared to the case where the sealing layer and the transparent sealing substrate are bonded together with an adhesive.

本実施形態の組成物は、JIS Z 0208:1976に準拠して、硬化体を85℃、85%RHの環境下に24時間暴露して測定した100μm厚での透湿度の値が、350g/m2以下であることが好ましい。透湿度が350g/m2以下だと、有機発光材料層に水分が到達せず、ダークスポットが発生しにくい。The composition of this embodiment has a moisture permeability value of 350 g/m at a thickness of 100 μm, which is measured by exposing the cured product to an environment of 85° C. and 85% RH for 24 hours, in accordance with JIS Z 0208:1976. It is preferable that it is less than m2 . If the moisture permeability is 350 g/m 2 or less, moisture will not reach the organic light-emitting material layer and dark spots will be less likely to occur.

本実施形態によれば、インクジェット法により容易に塗布することができ、OLED素子の信頼性、硬化体の透明性及びバリア性に優れる有機EL表示素子用封止剤を提供できる。本実施形態によれば、有機EL表示素子用封止剤を用いた有機EL表示素子の製造方法を提供できる。インクジェット法とは、ノズルから微細な液滴を吐出し、対象物に非接触で塗布を行う方法をいう。 According to this embodiment, it is possible to provide an encapsulant for an organic EL display element that can be easily applied by an inkjet method and has excellent reliability of OLED elements, transparency of a cured product, and barrier properties. According to this embodiment, it is possible to provide a method for manufacturing an organic EL display element using a sealant for an organic EL display element. The inkjet method is a method in which fine droplets are ejected from a nozzle and applied to an object without contact.

(実験例1~17)
以下の方法により組成物を作製し、評価した。
(Experiment Examples 1 to 17)
A composition was prepared and evaluated by the following method.

(組成物の作製)
表1の使用材料を用いた。表2の組成で各使用材料を混合した後にモレキュラーシーブ(ユニオン昭和社製 5Aペレット状)を用いて脱水した後に酸素濃度を5ppm以下としたグローブボックス内に72時間以上暴露することで組成物を調製した。得られた組成物を使用して、以下に示す評価方法にてE型粘度、含水量、溶存酸素量、透湿度、塗布面積の拡大率、硬化率、透明性、有機EL評価の測定を行った。結果を表2に示す。表2の組成物名には、表1に示す略号を用いた。
(Preparation of composition)
The materials shown in Table 1 were used. After mixing the materials in Table 2 and dehydrating them using molecular sieves (manufactured by Union Showa Co., Ltd. in the form of 5A pellets), the compositions were exposed for 72 hours or more in a glove box with an oxygen concentration of 5 ppm or less. Prepared. Using the obtained composition, E-type viscosity, water content, dissolved oxygen amount, moisture permeability, coating area expansion rate, curing rate, transparency, and organic EL evaluation were measured using the evaluation methods shown below. Ta. The results are shown in Table 2. The abbreviations shown in Table 1 were used for the composition names in Table 2.

Figure 0007360131000004
Figure 0007360131000004

Figure 0007360131000005
Figure 0007360131000005

〔E型粘度〕
組成物の粘度はE型粘度計(コーンプレート型:コーン角度1°34′、コーンロータの半径24mm)を用い、温度25℃、回転数100rpmの条件下で測定した。
[E type viscosity]
The viscosity of the composition was measured using an E-type viscometer (cone plate type: cone angle 1° 34', cone rotor radius 24 mm) at a temperature of 25° C. and a rotation speed of 100 rpm.

[含水量]
組成物の含水量は、カールフィッシャー溶液としてアクアミクロンAX(三菱化学(株)製)を用い、微量水分測定装置CA-06(三菱化学(株)製)により測定した。
[Water content]
The water content of the composition was measured using Aquamicron AX (manufactured by Mitsubishi Chemical Corporation) as a Karl Fischer solution and a trace moisture measuring device CA-06 (manufactured by Mitsubishi Chemical Corporation).

[溶存酸素量]
組成物の溶存酸素量は溶存酸素計(飯島電子工業社製、商品名「DOメーター B-506(隔膜型ガルバニ電池式)」)を用いて測定した。
[Dissolved oxygen amount]
The amount of dissolved oxygen in the composition was measured using a dissolved oxygen meter (manufactured by Iijima Electronics Co., Ltd., trade name: "DO Meter B-506 (diaphragm type galvanic cell type)").

〔光硬化条件〕
組成物の硬化物性の評価に際し、下記光照射条件により、組成物を硬化させた。395nmの波長を発光するLEDランプ(HOYA社製UV-LED LIGHT SOURCE H-4MLH200-V1)により、395nmの波長の積算光量1,500mJ/cm2の条件にて、組成物を光硬化させ、硬化体を得た。
[Light curing conditions]
In evaluating the cured physical properties of the composition, the composition was cured under the following light irradiation conditions. The composition was photocured using an LED lamp that emits light at a wavelength of 395 nm (UV-LED LIGHT SOURCE H-4MLH200-V1 manufactured by HOYA) under conditions of an integrated light intensity of 1,500 mJ/cm 2 at a wavelength of 395 nm, and then cured. I got a body.

〔透湿度〕
厚さ0.1mmのシート状の硬化体を前記光硬化条件にて作製し、JIS Z0208:1976「防湿包装材料の透湿度試験方法(カップ法)」に準じ、吸湿剤として塩化カルシウム(無水)を用い、雰囲気温度85℃、相対湿度85%の条件で測定した。
[Moisture permeability]
A sheet-like cured product with a thickness of 0.1 mm was produced under the above photocuring conditions, and calcium chloride (anhydrous) was added as a moisture absorbent according to JIS Z0208:1976 "Moisture permeability test method for moisture-proof packaging materials (cup method)". The measurement was carried out under conditions of an ambient temperature of 85° C. and a relative humidity of 85%.

硬化後の上記組成物及び硬化前の上記組成物に、赤外分光装置(サーモサイエンティフィック社製、Nicolet is5、DTGS検出器、分解能4cm-1)を用い、該測定試料に赤外光を入射して赤外分光スペクトルを測定した。得られた赤外分光スペクトルにて、硬化前後でピーク変化を生じない、2950cm-1付近に観測されるメチレン基の炭素-水素結合の伸縮振動ピークを内部標準とし、この内部標準の硬化前後のピーク面積と、(メタ)アクリレートの炭素-炭素二重結合に結合する炭素-水素結合の面外変角振動のピークに帰属される、810cm-1付近のピークの硬化前後の面積から、次式を用い硬化率を算出した。
硬化率(%)=[1-(Ax/Bx)/(Ao/Bo)]×100
ここで、
Ao:810cm-1付近の硬化前のピーク面積を表す。
Ax:810cm-1付近の硬化後のピーク面積を表す。
Bo:2950cm-1付近の硬化前のピーク面積を表す。
Bx:2950cm-1付近の硬化後のピーク面積を表す。
Using an infrared spectrometer (manufactured by Thermo Scientific, Nicolet is5, DTGS detector, resolution 4 cm -1 ), infrared light was applied to the composition after curing and the composition before curing to the measurement sample. The infrared spectra were measured. In the obtained infrared spectra, the stretching vibration peak of the carbon-hydrogen bond of the methylene group observed around 2950 cm -1 , which does not change before and after curing, was used as an internal standard. From the peak area and the area before and after curing of the peak around 810 cm -1 , which is attributed to the peak of out-of-plane bending vibration of the carbon-hydrogen bond bonded to the carbon-carbon double bond of (meth)acrylate, the following formula The curing rate was calculated using
Curing rate (%) = [1-(Ax/Bx)/(Ao/Bo)] x 100
here,
Ao: represents the peak area before curing near 810 cm -1 .
Ax: represents the peak area after curing around 810 cm -1 .
Bo: represents the peak area before curing near 2950 cm -1 .
Bx: represents the peak area after curing around 2950 cm −1 .

〔透明性〕
各実験例で得られた組成物をそれぞれ25mm×25mm×1mmt(mm厚)のガラス板(無アルカリガラス、Corning社製 Eagle XG)2枚の間に10μmの厚みに形成し、LEDランプを用いて波長395nmの紫外線を照射量が1500mJ/cm2となるように照射することにより硬化させて硬化体を得た。得られた硬化体について、紫外-可視分光光度計(島津製作所社製「UV-2550」)にて380nm、412nm、800nmの分光透過率を測定し、透明性とした。
〔transparency〕
The composition obtained in each experimental example was formed to a thickness of 10 μm between two 25 mm x 25 mm x 1 mm thick (mm thick) glass plates (alkali-free glass, Eagle A cured product was obtained by irradiating ultraviolet rays with a wavelength of 395 nm at an irradiation amount of 1500 mJ/cm 2 . The spectral transmittance of the obtained cured product at 380 nm, 412 nm, and 800 nm was measured using an ultraviolet-visible spectrophotometer ("UV-2550" manufactured by Shimadzu Corporation), and the transparency was determined.

〔塗布面積の拡大率〕
各実験例で得られた組成物を70mm×70mm×0.7mmtの基材(無アルカリガラス(Corning社製 Eagle XG))上にインクジェット吐出装置(武蔵エンジニアリング社製MID500B、溶剤系ヘッド「MIDヘッド」)を用いて4mm×4mm×10μmtとなるようにパターン塗布した。無アルカリガラスは使用前に、アセトン、イソプロパノールそれぞれを用いて洗浄し、その後にテクノビジョン社製UVオゾン洗浄装置UV-208を用いて5分間洗浄した。パターン塗布直後に雰囲気温度23℃、相対湿度50%の条件で5分間放置し、塗布面積の拡大率(下記式参照)によりインクジェット塗布後の平坦性を評価した。塗布面積の拡大率が小さい程、塗布後の形状が維持され、位置制御性に優れ、好ましいと評価した。
(塗布面積の拡大率)=((パターン塗布してから5分後に、基材表面に接触した組成物の接触面積)/(パターン塗布直後の、基材表面に接触した組成物の接触面積))×100(%)
[Expansion rate of coating area]
The composition obtained in each experimental example was applied onto a 70 mm x 70 mm x 0.7 mm base material (alkali-free glass (Eagle '') to form a pattern of 4 mm x 4 mm x 10 μm. Before use, the alkali-free glass was cleaned using acetone and isopropanol, and then washed for 5 minutes using a UV ozone cleaning device UV-208 manufactured by Technovision. Immediately after pattern coating, the pattern was left to stand for 5 minutes at an ambient temperature of 23° C. and a relative humidity of 50%, and the flatness after inkjet coating was evaluated based on the expansion rate of the coating area (see the formula below). The smaller the enlargement rate of the coating area, the better the shape after coating was maintained and the better the position controllability, which was evaluated as more preferable.
(Expansion rate of coating area) = ((Contact area of the composition in contact with the substrate surface 5 minutes after pattern coating) / (Contact area of the composition in contact with the substrate surface immediately after pattern coating) )×100(%)

〔有機EL評価〕 [Organic EL evaluation]

〔有機EL素子基板の作製〕
30mm角のITO電極付きガラス基板(厚さ700μm)を、アセトン、イソプロパノールそれぞれを用いて洗浄した。その後、真空蒸着法にて以下の化合物を薄膜となるように順次蒸着し、陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極からなる2mm角の有機EL素子を有する基板を得た。各層の構成は以下の通りである。
・陽極 ITO、陽極の膜厚150nm
・正孔注入層 4,4’,4”-トリス{2-ナフチル(フェニル)アミノ}トリフェニルアミン(2-TNATA)
・正孔輸送層 N,N’-ジフェニル-N,N’-ジナフチルベンジジン(α-NPD)
・発光層 トリス(8-ヒドロキシキノリナト)アルミニウム(金属錯体系材料)、発光層の膜厚1000Å、発光層は電子輸送層としても機能する。
・電子注入層 フッ化リチウム
・陰極 アルミニウム 膜厚150nm
[Preparation of organic EL element substrate]
A 30 mm square glass substrate with an ITO electrode (thickness: 700 μm) was cleaned using acetone and isopropanol, respectively. Thereafter, the following compounds were sequentially deposited into a thin film using a vacuum evaporation method to form a 2 mm square organic EL element consisting of an anode/hole injection layer/hole transport layer/light emitting layer/electron injection layer/cathode. I got the board. The structure of each layer is as follows.
・Anode ITO, anode film thickness 150nm
・Hole injection layer 4,4',4''-tris {2-naphthyl(phenyl)amino}triphenylamine (2-TNATA)
・Hole transport layer N,N'-diphenyl-N,N'-dinaphthylbenzidine (α-NPD)
- Light-emitting layer Tris(8-hydroxyquinolinato)aluminum (metal complex material), thickness of the light-emitting layer is 1000 Å, and the light-emitting layer also functions as an electron transport layer.
・Electron injection layer lithium fluoride ・Cathode aluminum film thickness 150 nm

〔有機EL素子の作製〕
その後、2mm×2mmの有機EL素子を覆うように、10mm×10mmの開口部を有するマスク(覆い)を設置し、プラズマCVD法にてSiN膜を形成した。次に、各実験例で得られた組成物(有機物膜)を、窒素雰囲気下にて上記インクジェット装置を用いて2mm×2mmの有機EL素子を覆うように厚み10μmで塗布し、前記光硬化条件にて、この組成物を硬化させた後、該硬化体の全体を覆うように、10mm×10mmの開口部を有するマスク(覆い)を設置し、プラズマCVD法にてSiN膜を形成して有機EL表示素子を得た。
[Production of organic EL device]
Thereafter, a mask (cover) having a 10 mm x 10 mm opening was placed to cover the 2 mm x 2 mm organic EL element, and a SiN film was formed by plasma CVD. Next, the composition (organic film) obtained in each experimental example was applied to a thickness of 10 μm using the above inkjet apparatus under a nitrogen atmosphere so as to cover a 2 mm x 2 mm organic EL element, and the photocuring conditions were as follows. After curing this composition, a mask (cover) having an opening of 10 mm x 10 mm was installed so as to cover the entire cured product, and a SiN film was formed using a plasma CVD method. An EL display element was obtained.

形成されたSiN(無機物膜)の厚さは、約1μmであった。その後、30mm×30mm×25μmtの透明な基材レス両面テープを用いて30mm×30mm×0.7mmtの無アルカリガラス(Corning社製 Eagle XG)と貼り合わせ、有機EL素子を作製した(有機EL評価)。 The thickness of the formed SiN (inorganic film) was about 1 μm. Thereafter, a 30 mm x 30 mm x 25 μm transparent base-less double-sided tape was used to bond it to a 30 mm x 30 mm x 0.7 mm thick alkali-free glass (Eagle XG manufactured by Corning) to produce an organic EL element (organic EL evaluation). ).

〔初期〕
作製した直後の有機EL素子に6Vの電圧を印加し、有機EL素子の発光状態を目視と顕微鏡で観察し、ダークスポットの直径を測定した。
〔initial〕
A voltage of 6 V was applied to the organic EL element immediately after fabrication, the light emitting state of the organic EL element was observed visually and with a microscope, and the diameter of the dark spot was measured.

〔耐久性〕
作製した直後の有機EL素子を、85℃、相対湿度85質量%の条件下にて500時間暴露した後、6Vの電圧を印加し、有機EL素子の発光状態を目視と顕微鏡で観察し、ダークスポットの直径を測定した。
〔durability〕
After exposing the organic EL device immediately after fabrication for 500 hours under the conditions of 85° C. and relative humidity of 85% by mass, a voltage of 6 V was applied, and the light emitting state of the organic EL device was observed visually and with a microscope. The diameter of the spot was measured.

ダークスポットの直径は、パッシベーション膜のピンホールへの封止剤の浸透の程度及び封止剤中の水分がアウトガスとして排出される程度を評価する指標として捉えることができる。ダークスポットの直径は、300μm以下が好ましく、50μm以下がより好ましく、ダークスポットが存在しないことが最も好ましいとして評価した。 The diameter of the dark spot can be taken as an index for evaluating the degree of penetration of the sealant into the pinhole of the passivation film and the degree to which water in the sealant is discharged as outgas. The diameter of the dark spot was evaluated as preferably 300 μm or less, more preferably 50 μm or less, and most preferably no dark spot.

上記実験例から以下のことが判った。 The following was found from the above experimental example.

本実施形態に係る組成物は、有機EL素子の信頼性や高精度なインクジェットによる吐出性、インクジェット塗布後の形状維持性に優れ、低透湿性に優れた組成物を提供できる。 The composition according to the present embodiment can provide a composition that is excellent in reliability of an organic EL element, high-precision inkjet ejection properties, shape retention after inkjet coating, and excellent in low moisture permeability.

(A)成分として炭素数4以上20以下のアルカンジオールジ(メタ)アクリレートと、(B)成分として光重合開始剤を含有し、(メタ)アクリレートあたりの親水性官能基量が4.80~7.60mmol/gの範囲にあることを満たした場合、信頼性、インクジェット吐出性、塗布後の平坦性、低透湿性が優れていた。又、初期に発生するダークスポットの直径も小さかった(実験例1~12)。 It contains an alkanediol di(meth)acrylate having 4 to 20 carbon atoms as the component (A) and a photopolymerization initiator as the component (B), and the amount of hydrophilic functional groups per (meth)acrylate is from 4.80 to When the content was within the range of 7.60 mmol/g, reliability, inkjet ejection properties, flatness after coating, and low moisture permeability were excellent. Furthermore, the diameter of the dark spots that appeared initially was also small (Experimental Examples 1 to 12).

一方、親水性官能基量が4.80~7.60mmol/gの範囲にあることを満たさない場合、初期に発生するダークスポットの直径が大きいだけで無く、透湿性が高く信頼性に問題があった(実験例13~17)。 On the other hand, if the amount of hydrophilic functional groups does not satisfy the range of 4.80 to 7.60 mmol/g, not only the diameter of the dark spot that occurs initially will be large, but also the moisture permeability will be high, causing reliability problems. (Experimental Examples 13 to 17).

又、炭素数4以上20以下のアルカンジオールジ(メタ)アクリレートを用いない場合、塗布面積の拡大率が小さく、インクジェット吐出性、塗布後の平坦性に問題があるだけで無く、透湿性も高く信頼性に問題があった(実験例15)。 Furthermore, if an alkanediol di(meth)acrylate having a carbon number of 4 or more and 20 or less is not used, the expansion rate of the coating area is small, and there are problems with inkjet ejection properties and flatness after coating, as well as high moisture permeability. There was a problem with reliability (Experiment Example 15).

本実施形態の組成物は、高精度なインクジェットによる吐出性とインクジェット塗布後の平坦性に優れ、低透湿性、透明性を有し、有機EL素子を劣化させない。本実施形態は、短時間でインクジェット塗布ができる。本実施形態の組成物は、エレクトロニクス製品、特に、有機EL等のディスプレイ部品や、CCD、CMOSといったイメージセンサー等の電子部品、更には半導体部品等で用いられる素子パッケージ等の接着において、好適に適用できる。特に、有機EL封止用の接着において最適であり、有機EL素子等の素子パッケージ用接着剤に要求される特性を満足する。 The composition of the present embodiment has excellent ejection properties by highly accurate inkjet and flatness after inkjet application, has low moisture permeability and transparency, and does not deteriorate organic EL elements. In this embodiment, inkjet coating can be performed in a short time. The composition of the present embodiment is suitable for adhesion of electronic products, particularly display parts such as organic EL, electronic parts such as image sensors such as CCD and CMOS, and even element packages used in semiconductor parts. can. It is particularly suitable for adhesives for sealing organic EL devices, and satisfies the characteristics required for adhesives for packaging devices such as organic EL devices.

上記組成物は本実施形態の一態様であり、本実施形態に係る組成物を使用した有機EL素子用封止剤、硬化体、被覆体、接合体、有機EL装置、ディスプレイ、並びにそれらの製造方法等も、同様の構成及び効果を有する。 The above-mentioned composition is one aspect of the present embodiment, and a sealant for an organic EL element, a cured body, a covering body, a bonded body, an organic EL device, a display, and the production thereof using the composition according to the present embodiment. The methods and the like also have similar configurations and effects.

Claims (21)

(A)炭素数4以上20以下のアルカンジオールジ(メタ)アクリレートと、(B)光重合開始剤を含有し、(メタ)アクリレートあたりの親水性官能基量が5.00~7.60mmol/gの範囲にあり、
含水量が90ppm以下である、有機エレクトロルミネッセンス表示素子用封止剤。
Contains (A) alkanediol di(meth)acrylate having 4 to 20 carbon atoms and (B) a photopolymerization initiator, and the amount of hydrophilic functional groups per (meth)acrylate is 5.00 to 7.60 mmol/ in the range of g ,
A sealing agent for an organic electroluminescent display element having a water content of 90 ppm or less .
(C)(A)成分以外の(メタ)アクリレートを更に含有し、(A)成分と(C)成分の合計100質量部に対して、(A)成分を30質量部以上100質量部未満、(B)成分を0.05~6質量部、(C)成分を0質量部超70質量部以下含有する請求項1記載の有機エレクトロルミネッセンス表示素子用封止剤。 (C) further contains a (meth)acrylate other than the component (A), with the component (A) being 30 parts by mass or more and less than 100 parts by mass, based on a total of 100 parts by mass of the components (A) and (C); The encapsulant for an organic electroluminescent display element according to claim 1, containing 0.05 to 6 parts by mass of component (B) and more than 0 parts by mass and 70 parts by mass or less of component (C). (C)成分中の(メタ)アクリレートあたりの親水性官能基量が3.00~15.00mmol/gである請求項2記載の有機エレクトロルミネッセンス表示素子用封止剤。 The encapsulant for organic electroluminescent display elements according to claim 2, wherein the amount of hydrophilic functional groups per (meth)acrylate in component (C) is 3.00 to 15.00 mmol/g. 25℃においてE型粘度計により測定される粘度が2mPa・s以上50mPa・s以下である請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。 The sealant for organic electroluminescent display elements according to any one of claims 1 to 3, which has a viscosity of 2 mPa·s or more and 50 mPa·s or less as measured by an E-type viscometer at 25°C. 含水量が50ppm以下である請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。 The encapsulant for organic electroluminescent display elements according to any one of claims 1 to 4, which has a water content of 50 ppm or less. 溶存酸素量が1ppm以上20ppm以下である請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。 The sealant for an organic electroluminescent display element according to any one of claims 1 to 5, wherein the amount of dissolved oxygen is 1 ppm or more and 20 ppm or less. 2官能(メタ)アクリレートオリゴマー/ポリマー及び多官能(メタ)アクリレートオリゴマー/ポリマーを含有しない請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。 The encapsulant for an organic electroluminescent display element according to any one of claims 1 to 6, which does not contain a difunctional (meth)acrylate oligomer/polymer and a polyfunctional (meth)acrylate oligomer/polymer. (A)成分が、炭素数12以上16以下のアルカンジオールジ(メタ)アクリレートである請求項1~7のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。 The encapsulant for organic electroluminescent display elements according to any one of claims 1 to 7, wherein component (A) is an alkanediol di(meth)acrylate having 12 to 16 carbon atoms. (A)成分が、1,12-ドデカンジオールジ(メタ)アクリレートである請求項1~8のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。 The encapsulant for organic electroluminescent display elements according to any one of claims 1 to 8, wherein component (A) is 1,12-dodecanediol di(meth)acrylate. (C)成分が、炭素数8以上のアルキル(メタ)アクリレート、脂環式炭化水素基を有する(メタ)アクリレート、及び芳香族炭化水素基を有する(メタ)アクリレートからなる群の1種以上である請求項2~9のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。 Component (C) is one or more of the group consisting of alkyl (meth)acrylates having 8 or more carbon atoms, (meth)acrylates having an alicyclic hydrocarbon group, and (meth)acrylates having an aromatic hydrocarbon group. The encapsulant for organic electroluminescent display elements according to any one of claims 2 to 9. (C)成分が、ラウリル(メタ)アクリレートを含有する請求項2~10のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。 The encapsulant for organic electroluminescent display elements according to any one of claims 2 to 10, wherein component (C) contains lauryl (meth)acrylate. (C)成分が、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、及びジシクロペンタニルオキシエチル(メタ)アクリレートからなる群の1種以上を含有する請求項2~11のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。 Component (C) is dicyclopentanyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, and dicyclopentanyloxy The encapsulant for an organic electroluminescent display element according to any one of claims 2 to 11, containing one or more members of the group consisting of ethyl (meth)acrylate. (C)成分が、エトキシ化-o-フェニルフェノール(メタ)アクリレートを含有する請求項2~12のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。 The encapsulant for organic electroluminescent display elements according to any one of claims 2 to 12, wherein component (C) contains ethoxylated-o-phenylphenol (meth)acrylate. (B)成分が、アシルホスフィンオキサイド誘導体である請求項1~13のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤。 The encapsulant for an organic electroluminescent display element according to any one of claims 1 to 13, wherein the component (B) is an acylphosphine oxide derivative. 請求項1~14のいずれか1項に記載の有機エレクトロルミネッセンス表示素子用封止剤を硬化した硬化体。 A cured product obtained by curing the sealant for organic electroluminescent display elements according to any one of claims 1 to 14. 請求項1~14のいずれか1項に記載の有機エレクトロルミネッセンス表示素子用封止剤で接合した接合体。 A bonded body bonded with the sealant for organic electroluminescent display elements according to any one of claims 1 to 14. 380nm以上500nm以下の波長を用いて硬化することを特徴とする、請求項1~14のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤の硬化方法。 The method for curing a sealant for an organic electroluminescent display element according to any one of claims 1 to 14, characterized in that curing is performed using a wavelength of 380 nm or more and 500 nm or less. 発光波長395nmのLEDランプを用いて硬化することを特徴とする、請求項1~14のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤の硬化方法。 The method for curing a sealant for an organic electroluminescent display element according to any one of claims 1 to 14, characterized in that curing is performed using an LED lamp with an emission wavelength of 395 nm. インクジェット法を用いて塗布する請求項1~14のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤の塗布方法。 A method for applying a sealant for an organic electroluminescent display element according to any one of claims 1 to 14, which is applied using an inkjet method. 請求項1~14のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤を含んだ有機EL装置。 An organic EL device comprising the sealant for an organic electroluminescent display element according to any one of claims 1 to 14. 請求項1~14のいずれか一項に記載の有機エレクトロルミネッセンス表示素子用封止剤を含んだディスプレイ。 A display comprising the sealant for an organic electroluminescent display element according to any one of claims 1 to 14.
JP2020514095A 2018-04-16 2019-04-09 Encapsulant for organic electroluminescent display elements Active JP7360131B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018078530 2018-04-16
JP2018078530 2018-04-16
PCT/JP2019/015509 WO2019203071A1 (en) 2018-04-16 2019-04-09 Encapsulating material for organic-electroluminescent display element

Publications (2)

Publication Number Publication Date
JPWO2019203071A1 JPWO2019203071A1 (en) 2021-08-26
JP7360131B2 true JP7360131B2 (en) 2023-10-12

Family

ID=68239675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020514095A Active JP7360131B2 (en) 2018-04-16 2019-04-09 Encapsulant for organic electroluminescent display elements

Country Status (5)

Country Link
JP (1) JP7360131B2 (en)
KR (1) KR20200143442A (en)
CN (1) CN111972047A (en)
TW (2) TW201945403A (en)
WO (1) WO2019203071A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7170245B2 (en) * 2018-12-27 2022-11-14 パナソニックIpマネジメント株式会社 UV-Curable Resin Composition, Method for Manufacturing Light-Emitting Device, and Light-Emitting Device
JP7170246B2 (en) * 2018-12-27 2022-11-14 パナソニックIpマネジメント株式会社 UV-Curable Resin Composition, Method for Manufacturing Light-Emitting Device, and Light-Emitting Device
WO2021100711A1 (en) * 2019-11-18 2021-05-27 デンカ株式会社 Composition, cured object, sealing material for organic electroluminescent display element, and organic electroluminescent display device
JP2021123692A (en) * 2020-02-07 2021-08-30 パナソニックIpマネジメント株式会社 Uv-curable resin composition, optical component, method for producing optical component, light emitting device, and method for producing light emitting device
JPWO2021200668A1 (en) 2020-03-31 2021-10-07
CN115698095B (en) 2020-05-29 2024-04-02 电化株式会社 Photosensitive composition, cured product thereof, organic electroluminescent display device, and method for producing photosensitive composition
JPWO2023182281A1 (en) * 2022-03-25 2023-09-28

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156593A1 (en) 2013-03-29 2014-10-02 古河電気工業株式会社 Resin composition for element encapsulation for organic electronic devices, resin sheet for element encapsulation for organic electronic devices, organic electroluminescent element and image display device
JP2016040365A (en) 2014-02-18 2016-03-24 積水化学工業株式会社 Curable resin composition for electrostatic application, resin protection film, electronic device, and method for producing electronic device
JP2017061606A (en) 2015-09-24 2017-03-30 Jsr株式会社 Curable composition, cured product, method for forming cured product, laminate and organic EL device
JP2017523549A (en) 2014-04-23 2017-08-17 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Composition for sealing organic light emitting element and organic light emitting element display device manufactured using the same
JP2017536429A (en) 2014-10-29 2017-12-07 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Composition for display sealing material, organic protective layer including the same, and display device including the same
WO2018051732A1 (en) 2016-09-15 2018-03-22 Jnc株式会社 Ink composition and organic electroluminescent element using same
WO2018070488A1 (en) 2016-10-14 2018-04-19 デンカ株式会社 Composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074583A (en) 1996-08-30 1998-03-17 Sanyo Electric Co Ltd Organic el display and manufacture of organic el display
JP2001307873A (en) 2000-04-21 2001-11-02 Toppan Printing Co Ltd Organic electroluminescence display element and its manufacturing method
JP2009037812A (en) 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd Organic el device and its manufacturing method
JP2012190612A (en) 2011-03-09 2012-10-04 Sekisui Chem Co Ltd Manufacturing method of organic optical device
JP6099198B2 (en) 2013-03-29 2017-03-22 日本化薬株式会社 Energy ray curable resin composition and cured product thereof
JP6284217B2 (en) 2013-03-29 2018-02-28 日本化薬株式会社 Energy ray curable resin composition and cured product thereof
JP6112603B2 (en) 2013-03-29 2017-04-12 日本化薬株式会社 Energy ray curable resin composition and cured product thereof
JP6200203B2 (en) 2013-05-16 2017-09-20 積水化学工業株式会社 Sealant for organic electroluminescence display element and method for producing organic electroluminescence display element
JP6274639B2 (en) 2013-05-23 2018-02-07 日本化薬株式会社 Energy ray curable resin composition and cured product thereof
WO2016068415A1 (en) 2014-10-28 2016-05-06 삼성에스디아이 주식회사 Photocurable composition, organic protective layer comprising same, and device comprising same
KR20180048690A (en) 2015-08-31 2018-05-10 카티바, 인크. Di- and mono (meth) acrylate-based organic thin film ink compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156593A1 (en) 2013-03-29 2014-10-02 古河電気工業株式会社 Resin composition for element encapsulation for organic electronic devices, resin sheet for element encapsulation for organic electronic devices, organic electroluminescent element and image display device
JP2016040365A (en) 2014-02-18 2016-03-24 積水化学工業株式会社 Curable resin composition for electrostatic application, resin protection film, electronic device, and method for producing electronic device
JP2017523549A (en) 2014-04-23 2017-08-17 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Composition for sealing organic light emitting element and organic light emitting element display device manufactured using the same
JP2017536429A (en) 2014-10-29 2017-12-07 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Composition for display sealing material, organic protective layer including the same, and display device including the same
JP2017061606A (en) 2015-09-24 2017-03-30 Jsr株式会社 Curable composition, cured product, method for forming cured product, laminate and organic EL device
WO2018051732A1 (en) 2016-09-15 2018-03-22 Jnc株式会社 Ink composition and organic electroluminescent element using same
WO2018070488A1 (en) 2016-10-14 2018-04-19 デンカ株式会社 Composition

Also Published As

Publication number Publication date
TW201945403A (en) 2019-12-01
CN111972047A (en) 2020-11-20
WO2019203071A1 (en) 2019-10-24
TW202340285A (en) 2023-10-16
KR20200143442A (en) 2020-12-23
JPWO2019203071A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP7360131B2 (en) Encapsulant for organic electroluminescent display elements
JP7203903B2 (en) Sealant for organic electroluminescence display elements
JP7057403B2 (en) Composition
JP6095978B2 (en) Resin composition for organic EL device and organic EL device
JP7253542B2 (en) Sealant for organic electroluminescence display elements
WO2021100710A1 (en) Composition, cured body, sealing material for organic electroluminescent display element, and organic electroluminescent display device
CN114555661B (en) Composition, cured product, sealing material for organic electroluminescent display element, and organic electroluminescent display device
WO2021241437A1 (en) Photosensitive composition, cured product thereof, organic electroluminescent display device, and method for producing photosensitive composition
JP2023067519A (en) Encapsulant for organic electroluminescent display element and cured product thereof and organic electroluminescent display device including the same
JP2020138477A (en) Laminate, method for producing laminate, and organic electroluminescence display device

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230921

R150 Certificate of patent or registration of utility model

Ref document number: 7360131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150