JP7053591B2 - 粒子を操作するためのデバイスおよび方法 - Google Patents

粒子を操作するためのデバイスおよび方法 Download PDF

Info

Publication number
JP7053591B2
JP7053591B2 JP2019516940A JP2019516940A JP7053591B2 JP 7053591 B2 JP7053591 B2 JP 7053591B2 JP 2019516940 A JP2019516940 A JP 2019516940A JP 2019516940 A JP2019516940 A JP 2019516940A JP 7053591 B2 JP7053591 B2 JP 7053591B2
Authority
JP
Japan
Prior art keywords
particles
screen
particle
flow generator
fluid flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019516940A
Other languages
English (en)
Other versions
JP2019529189A (ja
Inventor
ベドレト、アレクシス
イック、マシアス
エッケス、ケヴィン
Original Assignee
アエロサン エスア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アエロサン エスア filed Critical アエロサン エスア
Publication of JP2019529189A publication Critical patent/JP2019529189A/ja
Application granted granted Critical
Publication of JP7053591B2 publication Critical patent/JP7053591B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/159Processes of additive manufacturing using only gaseous substances, e.g. vapour deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/08Screen moulding, e.g. forcing the moulding material through a perforated screen on to a moulding surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/57Metering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Printing Plates And Materials Therefor (AREA)

Description

第1の態様によれば、本発明は、粒子を操作するためのデバイスに関する。第2の態様によれば、本発明は、粒子を操作するための方法に関する。
文献の米国特許第5767877号明細書は、粒子を操作するためのデバイスを開示している。このデバイスは、トナーの粒子を受け入れるように意図された2次元のプリンティング・マトリックスを含む。マトリックスのピクセルのそれぞれは、バルブおよびキャビティーを含む。キャビティーは、表面の一部分によって互いから分離されている。したがって、マトリックスは、第1の外側表面を有するサポートを形成し、第1の外側表面は、トナー粒子がその中に設置される開口部を有している。トナーの粒子は、バルブが開いている間に、キャビティーの中に吸引される。それぞれのキャビティーは、トナーの単一の粒子を受け入れるように提供されている。粒子がキャビティーの中にあるときに、粒子は、その吸引ダクトを塞ぎ、他の粒子の吸引を防止する。
この公知のデバイスは、いくつかの問題を有している。第1に、粒子は、キャビティーの中へ侵入し、吸引ダクトを塞ぐことができるように、実質的に球形の形状を有していなければならない。次いで、粒子は、キャビティーの中へ侵入し、吸引ダクトを塞ぐことができるように、実質的にすべて同じサイズのものでなければならない。そのうえ、キャビティー同士の間の分離は、このデバイスが粒子の連続的な構造体を構成することを可能にしないようになっている。
第1の態様によれば、本発明の目的のうちの1つは、さまざまなサイズおよび形状の粒子の連続的な構造体を生成させることを可能にするデバイスを提供することである。この目的のために、本発明は、粒子を操作するためのデバイスであって、デバイスは、輸送流体フローを発生させるように配置されているフロー発生器を含む、デバイスにおいて、デバイスは、第1の外側表面を有するスクリーンをさらに含み、粒子によって形成される構造体が、第1の外側表面から形成され得り、スクリーンは、貫通孔部を含み、貫通孔部は、開口部を介して前記第1の外側表面の上へ開口しており、輸送流体フローは、スクリーンの第1の外側表面へまたはスクリーンの第1の外側表面から粒子を輸送するように提供されることを特徴とする、デバイスを提案する。
スクリーンは、粒子によって形成される構造体が、スクリーンの中ではなく第1の外側表面に対抗して積み重なる粒子によって形成されることを可能にする。この第1の外側表面は、単に「外側」だけであるので、それは、孔部の「内側」壁部を含まない。したがって、さまざまなサイズ、形状、および材料の粒子が、スクリーンの第1の外側表面に対抗して粒によって形成される同じ構造体の中に含まれ得る。実際に、粒子の材料、サイズ、または形状についての条件は存在しない。そのうえ、粒子は、それらの間に分離体なしに、互いに対抗していることが可能であり、それは、それらが粒子の連続的な構造体を形成することを可能にする。また、それらが、スクリーンの第1の外側表面に対して垂直の方向に積み重なることが可能であり、したがって、特定の厚さの構造体を形成する。
本文献の範囲において、スクリーンは、流体に対して浸透性の多孔性の媒体であり(たとえば、スクリーンは、流体が通ることができる貫通孔部を含むことが可能である)、その少なくとも1つの第1の外側表面は、構造体の粒子によって侵入されることができない(すなわち、粒子は、前記第1の外側表面に対抗して遮断されたままであり、スクリーンの中へ侵入しない)。
スクリーン、および、とりわけ、その第1の外側表面は、粒子構造体のためのサポートとして使用される。
本発明のある実施形態では、スクリーンは、貫通孔部を含み、貫通孔部は、開口部を介して第1の外側表面の上に開口している。孔部およびその開口部は、輸送流体フローが少なくとも部分的にスクリーンを通過することを許容するように配置されており、開口部は、第1の外側表面の上のその形状および配置を通して、粒子を遮断するように配置されている。好ましくは、孔部およびその開口部は、輸送流体フローのすべてがスクリーンを通過することを許容するように配置されている。好ましくは、孔部は、その厚さを通して、すなわち、局所的に第1の外側表面に対して実質的に垂直の方向に沿って、スクリーンを通過している。好ましくは、スクリーンは、第1の外側表面に対して実質的に平行の第2の外側表面を有しており、スクリーンの厚さは、第1および第2の外側表面によって境界を定められている。
換言すれば、スクリーンの第1の外側表面の中の開口部は、輸送流体フローが孔部を介してスクリーンを通過することを依然として許容しながら、第1の外側表面がスクリーンの外側の粒子を遮断するように配置されている。したがって、粒子は、スクリーンの孔部の中にではなく、スクリーンの外側に遮断される。したがって、スクリーンの第1の外側表面は、粒子構造体がそれに対抗して形成され得るように提供される。
本文献の範囲において、スクリーンの第1の外側表面は、スクリーンの中の孔部の内側壁部を含まないものとして理解される。その理由は、第1の外側表面は、単に外側表面であるからである。したがって、粒子は、スクリーンの第1の外側表面の孔部なしの部分に対抗して遮断される。
スクリーンの第1の外側表面は、実質的に平坦になっていることが可能である。スクリーンの第1の外側表面は、スクリーンの第1の外側表面の2つのポイントを接続する真っ直ぐなセグメントがスクリーンの第1の外側表面の中に完全に含まれるようになっていることが可能である。スクリーンの第1の外側表面は、凸形になっていることが可能である。スクリーンの第1の外側表面は、主に円筒形状になっていることが可能である。
本発明によるデバイスによって、粒子を個別に操作するか、または、粒子のセットを操作することが可能である。
たとえば、スクレイピングによって、または、輸送フローを制御することによって、粒子構造体の厚さを制御することが可能である。
本発明によるデバイスは、粒子を操作すること、および、粒子構造体を生成させることができる。
本発明のある実施形態では、デバイスは、たとえば、第1の基板の上に、粒子構造体の一部分を選択的に堆積させることを可能にする。
本文献の範囲において、「ピクセル」は、表面の一部分、たとえば、スクリーンの第1の外側表面の一部分であり、それは、前記表面の残りの部分から独立して、粒子によってカバーされ得る。したがって、ピクセルは、表面のアドレス可能な部分であり、たとえば、スクリーンの第1の外側表面のアドレス可能な部分である。本文献の範囲において、「ボクセル」は、1つのピクセルに対応する粒子構造体の一部分である。
輸送流体フローは、所与の瞬間において、流体フロー・エレメントのセットとして見られ得り、それぞれのフロー・エレメントが、好ましくは、異なるピクセルに対応した状態になっている。好ましくは、それぞれの輸送流体フロー・エレメントは、主に、正方形または丸形の断面を有している。これは、ピクセルが方向のすべてにおいておおよそ均一な広がりを有することを可能にする。
粒子は、たとえば、ポリマー、金属、塩、セラミック、または有機材料を含むことが可能である。粒子は、1μm、10μm、100μm、1mm、または10mmの平均サイズを有するサイズ分布を有することが可能である。粒子は、主に球形の形状または任意の他の形状を有することが可能である。粒子は、選択的な凝集の方法を介した3Dプリンティングを介して、物体を形成するのに適切であることが可能である。粒子は、対照的に、不活性であることが可能であり、また、凝集することが困難であることが可能であり、3Dプリンティングの間にサポートとして使用される。
スクリーンは、異なる材料(金属、有機、ポリマー、セラミックなど)から作製され得り、また、異なる方法(製織、穿孔、打ち抜き、化学的なフォトエングレービング、金属(ニッケル、銅、金など)の電鋳、焼結された粉末またはファイバー、フィルトレーション・フォーム)によって作り出され得る。
本文献の範囲において、「粒子の層」は、スクリーンの第1の外側表面に対抗して形成される粒子構造体であることが可能であり、または、スクリーンの第1の外側表面の上に形成された粒子構造体から第1の基板の上に生成され得る。また、粒子の層は、とりわけ、スクリーンの第1の外側表面からの堆積の後に、階層とも呼ばれ得る。粒子の層は、粒子の「イメージ」を形成する主に連続的な粒子の層である。
第1の基板は、事前に凝集された粒子、および/または、粒子と一体化されることとなる固体の物体を含むことが可能である。
粒子によって形成される構造体の生成は、「組成」と呼ばれ得る。
デバイスは、好ましくは、スクリーンの第1の外側表面によって遮断されるのに十分なサイズの粒子を供給する粒子の供給部を含む。
スクリーンの第1の外側表面は、好ましくは、フロー発生器の反対側に位置付けされているスクリーンの表面である。
デバイスは、スクリーンを深く洗浄するためのパージ・システムをさらに含むことが可能である。それは、たとえば、吸引ストリップであることが可能であり、吸引ストリップは、スクリーンに接触させられるかまたはスクリーンの付近に配置されるように提供されている。パージ・システムは、たとえば、アスピレーターを含むか、スクリーンの第1の外側表面が凸形になっている場合には、スクリーンの内部スペースの中に噴出ブレードを含むか、または、スクリーンの第1の外側表面が凸形になっている場合には、スクリーンの外側に吸引ブレードを含むことが可能である。
本発明のある実施形態では、孔部の開口部は、直径が1mmよりも大きい、好ましくは、直径が10μmよりも大きい、より好ましくは、直径が1μmよりも大きい、および、さらにより好ましくは、直径が0.1μmよりも大きい任意の球体を、スクリーンの外側に遮断するように配置されている。
本発明のある実施形態では、孔部の開口部は、前記開口部のうちのいずれかの中に外接される最小の円の直径が、粒子のうちのいずれかの中に内接される最小の球の直径よりも小さくなるようになっている。
この条件は、粒子がいずれの開口部にも侵入しないために十分である。
好ましくは、スクリーンは、格子である。
これは、スクリーンがとりわけ簡単かつ安価になることを可能にする。格子は、たとえば、メッシュを形成することによって交差する複数のエレメントを含む。格子は、規則的または不規則的であることが可能である。
本発明のある実施形態では、デバイスは、輸送流体フローがスクリーンの第1の外側表面の所定の部分のみを通過するように配置されている。
これは、第1の外側表面の異なる部分において、とりわけ、いくつかのタイプの粒子が第1の外側表面に対抗して遮断されることを可能にする。したがって、粒子によって形成される構造体は、第1のタイプの粒子のみを含む少なくとも1つの第1の部分と、第2のタイプの粒子のみを含む第2の部分とを含むことが可能である。粒子のタイプは、たとえば、そのサイズ分布、その材料、その形状、その色、そのヤング率、その密度、その熱伝導率、その電気伝導度、その透磁率、その腐食に対する抵抗力、その硬度、その溶融温度、その溶解度、その可燃性、その疎水性、その化学組成のうちの少なくとも1つによって差別化される。
また、これは、粒子が第1の外側表面の上に正確なパターンを形成することを可能にし、このパターンは、潜在的にいくつかのステップの間に、輸送流体フローによって通過される第1の外側表面の部分に対応している。
本発明のある実施形態では、デバイスは、フロー発生器の移動の手段を含む。
これは、輸送流体フローによって通過される第1の外側表面の部分を修正することを可能にする。また、第1の表面の部分は、「サブ表面」とも呼ばれ得る。
本発明のある実施形態では、デバイスは、フロー発生器とスクリーンとの間にマスクを含む。
マスクは、第1の外側表面のどの部分が輸送流体フローを受けるかということを選択することを可能にする。実際に、マスクされた第1の外側表面の部分は、輸送流体フローによって通過されない。マスクは、静的であることが可能であり、すなわち、その構造は、修正されることができない。マスクは、動的であることが可能であり、すなわち、その構造は、たとえば、アドレス指定を介して修正され得る。マスクは、それが静的であるかまたは動的であるかにかかわらず、可動性であることが可能である。マスクは、第1の外側表面全体に対応するか、または、その一部分のみに対応することが可能である。マスクが可撓性である場合には、スクリーンは、好ましくは、マスクに特定の剛性を提供することを可能にする。マスクは、好ましくは、スクリーンから剥離させられることができる。したがって、マスクをそれに損傷を与える可能性のある大気(温度、湿度、ダストなど)に露出させることを回避することを可能にする。たとえば、焼結の前にマスクを剥離することは、焼結に関連する温度をマスクに回避させるために、重要である可能性がある。
ピクセルのサイズは、輸送流体フローの特性、ならびに、マスク、フロー発生器、およびスクリーンの間の距離に依存する。
本発明のある実施形態では、デバイスは、マスクの移動の手段を含む。
これは、マスクが第1の外側表面の1つの部分のみに対応しているときに、とりわけ有用であることが可能である。マスクの移動の手段は、フロー発生器の移動の手段と連結され得り、輸送流体フローおよびマスクが、第1の外側表面の同じ部分にシステマティックに対応するようになっている。マスクは、好ましくは、第1の外側表面に対して平行に移動させられる。また、マスクの移動は、より良好な解像度を取得すること、および、生産コストを低減させることを可能にする。また、フロー発生器の移動は、より良好な解像度を取得すること、および、生産コストを低減させることを可能にする。
本発明のある実施形態では、マスクは、マスクの開放部分および閉鎖部分の構成が修正され得るように配置されている。
本発明のある実施形態では、デバイスは、バルブ・マトリックスを含む。たとえば、マスクは、バルブ・マトリックスを含む。好ましくは、バルブは、アドレス指定され得る。より好ましくは、それぞれのバルブは、他のバルブから独立してアドレス指定され得る。好ましくは、それぞれのバルブは、輸送流体フロー・エレメントを制御するように配置されている。
本発明のある実施形態では、それぞれのバルブのサイズは、1つのピクセルのサイズに対応している。本発明の別の実施形態では、バルブのサイズは、1つのピクセルのサイズよりも小さくなっているかまたは大きくなっている。開放したバルブは、輸送流体フローが通ることを許容することを可能にし、第1の外側表面に向けて粒子を吸引するようになっているか、または、第1の外側表面から粒子を吹き飛ばすようになっている。バルブ・マトリックスから分離したスクリーンを使用することは、作業環境(熱、放射線、衝撃、湿度、静電効果)のバルブ・マトリックスを保護することを可能にする。そのうえ、マトリックスを変更することが必要でない状態で、スクリーンが、メンテナンスの間に変更され得り、また、スクリーンを変更することが必要でない状態で、マトリックスが変更され得る。バルブ・マトリックスは、好ましくは、第1の外側表面に対して平行になっている。
バルブは、たとえば、ソレノイド・バルブ、マイクロ・スピーカー、MEMS(圧電、静電、ソレノイドなど)であることが可能である。
本発明のある実施形態では、デバイスは、フロー発生器の移動の手段と、フロー発生器とスクリーンとの間のマスクと、マスクの移動の手段とを含み、マスクの移動の手段は、フロー発生器の移動の手段と連結されており、輸送流体フローおよびマスクが、第1の外側表面の同じ部分に対応するようになっている。
本発明のある実施形態では、フロー発生器は、吸引デバイスを含み、吸引デバイスは、第1の外側表面からフロー発生器へ輸送流体フローを生成させるように提供される。
これは、第1の外側表面に向けて粒子を吸引することを可能にし、すなわち、第1の外側表面に粒子を引き付けることを可能にする。
本発明のある実施形態では、デバイスは、粒子のリザーバーを含む。
リザーバーは、粒子を伴う輸送フローの供給を可能にする。リザーバーは、これらの粒子を吸引するフローがリザーバーからそれらを吸引することができるように配置されている。リザーバーは、平坦な表面を含むことが可能であり、平坦な表面は、第1の外側表面に面して位置付けされており、粒子がその上に分配されている。
本発明のある実施形態では、フロー発生器は、噴出デバイスを含み、噴出デバイスは、フロー発生器から第1の外側表面へ輸送流体フローを生成させるように提供される。
これは、第1の外側表面から粒子を噴出することを可能にし、すなわち、それからそれを噴出することを可能にする。好ましくは、輸送流体フローは、第2の外側表面から第1の外側表面へスクリーンを通過し、第1の外側表面の上に存在する粒子を噴出するようになっている。噴出デバイスは、たとえば、ブロワーまたは音波エミッターを含むことが可能である。噴出デバイスは、たとえば、0.1msから1sのパルスによって輸送流体を噴出するように配置され得る。輸送流体フローは、第1の外側表面と粒子との間の保持力または接着力を破壊するように選択される。
本発明のある実施形態では、デバイスは、第1の外側表面から来る粒子を収集するように配置されている粒子コレクターをさらに含む。
本発明のある実施形態では、デバイスは、スクリーンの第1の外側表面に対抗して粒子を散布する手段をさらに含む。
この散布手段は、第1の外側表面に粒子を供給することを可能にする。散布は、スクリーンの上にまたはスクリーンの下に位置付けされている粒子構造体に関して実施され得る。散布手段は、スクレイパーを含むことが可能であり、スクレイパーは、粒子構造体がおおよそ均一になることおよびスクレイピングによって制御されることを可能にする。
本発明のある実施形態では、スクリーンの第1の外側表面は、主に、第1の方向に、および、第1の方向に対して垂直の第2の方向に延在しており、また、フロー発生器が発生させる輸送流体フローが、実質的に、第1の方向および第2の方向に対して垂直の第3の方向となるように、フロー発生器が配置されている。
これは、主に平坦になっている第1の外側表面を有することを可能にする。次いで、マスクは、1つ存在する場合には、好ましくは、また、主に平坦になっている。
本発明のある実施形態では、スクリーンの第1の外側表面は、実質的に、凸形表面、たとえば、シリンダーであり、少なくとも部分的に内部スペースの境界を定めている。
好ましくは、凸形表面は、自分自身の上に閉じられ、ループを形成するようになっている。これは、たとえば、コーン、シリンダー、搬送表面、マット、またはベルトであることが可能である。好ましくは、デバイスは、凸形表面が回転できるように配置されており、凸形表面の一部分が、剥離ゾーンに向けて粒子を連続的に供給するために、循環的に移動させられ得るようになっている。
これは、粒子構造体および粒子構造体の堆積を第1の基板の上に連続的に生成させることを可能にする。
本発明のある実施形態では、フロー発生器は、凸形表面の内部スペースの中に少なくとも部分的に位置付けされている。
好ましくは、デバイスは、円筒形状のスクリーンがその軸線の周りに回転することができるように配置されている。シリンダーは、好ましくは、中空になっている。
本発明のある実施形態では、フロー発生器は、内部スペースの中に位置付けされている第1の部分と、内部スペースの外側に位置付けされている第2の部分とを含み、第1の部分および第2の部分は、流体連通手段によって流体接続されている。
流体連通手段は、好ましくは、パイプまたは複数のパイプを含む。流体連通手段が、凸形表面の端部、たとえば、シリンダーの端部を通過し、フロー発生器の第1の部分と第2の部分との間に接合を作製するということが好適である。
ある実施形態では、フロー発生器の第1の部分は、凸形表面の回転軸線に対して固定された位置にある。別の実施形態では、デバイスは、フロー発生器の第1の部分がこの回転軸線に対して移動させられ得るように構成されている。たとえば、フロー発生器の第1の部分が、スクリーンの(たとえば、円筒形状のスクリーンの)凸形の第1の外側表面の回転軸線に対して平行および/または垂直の並進移動を生成させるように配置されていることが可能である。
たとえば、軸線に対して平行の並進移動は、フロー発生器の第1の部分の開口部のそれぞれが、いくつかの平行なラインにわたって粒子を堆積させることを可能にする。
また、フロー発生器の第1の部分は、「プリンティング・ヘッド」と呼ばれ得る。フロー発生器の第1の部分は、好ましくは、回転軸線と、粒子がそこから噴出されるスクリーンの部分との間に、少なくとも部分的に位置付けされている。
本発明のある実施形態では、フロー発生器の第1の部分は、リジッドのサポートであり、それは、流体連通手段をグループ化すること、および、スクリーンの特定の部分に向けて輸送流体フローを方向付けすることを可能にする。好ましくは、それぞれの流体連通手段は、輸送流体フロー・エレメントに対応している。フロー発生器の第1の部分は、スクリーンの第1の外側表面に対して主に平行の、および、好ましくは、スクリーンの第1の外側表面に対して主に垂直の方向を、流体フロー・エレメントが有するように、流体連通手段を整合させることを可能にする。
本発明の別の実施形態では、流体フロー・エレメントの数は、流体連通手段の数よりも大きくなっている。たとえば、フロー発生器の第1の部分と第2の部分との間に1つだけの単一のパイプが存在していてもよく、フロー発生器の第1の部分は、アドレス指定され得る複数のバルブを含むことが可能である。次いで、それぞれの流体フロー・エレメントは、バルブに対応している。次いで、デバイスは、好ましくは、バルブを制御することを可能にする電気的な通信手段を含む。この電気的な通信手段は、たとえば、凸形の第1の外側表面の端部を通過する、たとえば、シリンダーの端部を通過するケーブルであることが可能である。
好ましくは、輸送流体フロー、および、とりわけ、輸送流体フロー・エレメントは、剥離ゾーンの中のスクリーンの第1の外側表面に対して垂直になっており、剥離ゾーンにおいて、粒子が輸送流体フローによって駆動される。
本発明のある実施形態では、フロー発生器の第1の部分または第2の部分は、複数のバルブを含む。
たとえば、フロー発生器の第1の部分または第2の部分は、バルブ・マトリックスを含むことが可能である。バルブを含むのが第2の部分である場合には、それぞれのバルブは、流体連通手段に接続され得る。それぞれの流体フロー・エレメントは、バルブに対応している。
本発明のある実施形態では、それぞれのバルブは、スクリーンの第1の外側表面の一部分を通過するように配置されている輸送流体フロー・エレメントを制御するように配置されている。これは、噴出または吸引されることとなる粒子の正確な制御を可能にする。
本発明のある実施形態では、フロー発生器の第1の部分は、スクリーンの第1の外側表面に向けて方向付けされた複数の開口部を含み、デバイスは、輸送流体フロー・エレメントが前記開口部のうちの1つの中に入るように配置されている。好ましくは、それぞれの開口部は、バルブと流体連通している。
本発明のある実施形態では、スクリーンは、開口部に面する材料を連続的に提供し、それは、制御された様式で第1の基板の上に粒子を堆積させる。堆積させられる粒子の厚さの制御は、とりわけ、第2のスクレイパーの位置によって、および/または、スクリーンの回転速度を制御することによって、行われ得る。
それぞれの開口部は、粒子のラインを堆積させることができる。輸送流体フローがパルスから作製される場合には、それぞれの開口部は、ピクセルのラインを堆積させることができる。
本発明のある実施形態では、フロー発生器の第1の部分の開口部は、互い違いになるように配置されている。
本発明のある実施形態では、デバイスは、第1の外側表面の上に粒子を保持するように配置されている吸引手段をさらに含む。
この吸引手段は、たとえば、第1の凸形外側表面によって境界を定める内部スペースの中に陥凹部を生成させるデバイスであることが可能である。陥凹部を生成させるためのこのデバイスは、たとえば、ファンを含むことが可能である。
本発明のある実施形態では、デバイスは、たとえば、回転および/または並進の、スクリーンの移動の手段をさらに含む。
好ましくは、この移動の手段は、その回転軸線に対して垂直の、たとえば、円筒形状のスクリーンの軸線に対して垂直の方向に、第1の凸形外側表面を有するスクリーンを並進させることを可能にする。たとえば、この軸線が水平方向になっている場合には、この移動手段は、水平方向におよび/または垂直方向にスクリーンを移動させるように配置され得る。そのうえ、また、この移動手段がスクリーンをその回転軸線に対して平行の方向に並進させることを可能にすることも可能である。
本発明のある実施形態では、流体は、ガスである。
本発明のある実施形態では、流体は、液体である。
本発明のある実施形態では、スクリーンは、スクリーンの第1の外側表面に対して垂直の貫通孔部を含み、好ましくは、孔部は、真っ直ぐな角柱または真っ直ぐな円柱である。
孔部が第1の外側表面に対して垂直の内側壁部を有するという事実は、粒子が孔部の中に遮断されないということを可能にする。
そのうえ、本発明は、
・本発明の実施形態のうちの1つによる少なくとも1つのデバイスと、
・凝集手段と
を含む、3Dプリンティング・システムを提案する。
3Dプリンティング・システムは、たとえば、第1の凸形外側表面を有するスクリーンをそれぞれ有する、2つ、3つ、4つなどのデバイスを含むことが可能である。
したがって、好ましくは、デバイスは、粒子の階層の少なくとも1つの部分を堆積させることを可能にし、凝集手段は、粒子の階層の少なくとも1つの部分を凝集することを可能にする。
本文献の範囲において、粒子の階層は、粒子の層である。たとえば、階層は、本発明の実施形態による粒子を操作するための1つまたは複数のデバイスを使用して、少なくとも部分的に堆積させられ得る。
本発明による3Dプリンティング・システムは、多くの利点を有しており、そのなかでも、以下のものがある。
・材料の勾配を形成することが可能である。
・腐食に対して抵抗力のある階層を形成することが可能である。
・2つの異なる材料の間に機械的な非化学的な接続を生成させることが可能である。
・プリントされたパーツを形成するボクセルは、異なる形状を有することが可能であり、異なる材料から構成され得り、これらの材料が、異なる機能(色、ヤング率、密度、熱伝導率、電気伝導度、透磁率、腐食もしくは疲労に対する抵抗力、硬度、溶融温度、溶解度、可燃性、湿潤性、化学組成、または任意の他の物理的な特性)に応答することができるようになっている。
本発明のある実施形態では、3Dプリンティング・システムは、3Dプリンティング構造体の上に堆積させられる粉末の階層の高さの均一化の手段をさらに含む。これは、たとえば、突起を形成する粒子をスクレイプするブレード、階層をよりコンパクトにするコンパクション・ローラー、階層をよりコンパクトにするコンパクション・プレート、および/または、階層を平坦化する振動の発生器であることが可能である。たとえば、コンパクション・ローラー自身は振動していることが可能であり、粉末を流動化させ、スクレイピングを改善するようになっている(より良好な表面条件およびより高速のスクレイピング)。均一化の手段は、非スティック・コーティングによってカバーされ得り、粒子がそれに付着することを防止するようになっている。
好ましくは、3Dプリンティング構造体は、内部雰囲気、たとえば、窒素雰囲気を生成させるためのデバイスを含む。これは、爆発および酸化のリスク、ならびに/または、粉末の変更のリスクを限定することを可能にする。好ましくは、粉末リザーバー、スクリーン、および3Dプリンティング構造体は、この不活性な雰囲気の中にある。
好ましくは、3Dプリンティング・システムは、チャンバーを含み、チャンバーは、粒子のリザーバー、スクリーン、および3Dプリンティング構造体を取り囲む。好ましくは、半結晶ポリマー粉末に関して、このチャンバーの内側は、粉末の結晶化温度よりも高く、粉末の溶融温度よりも低い温度まで加熱される。これは、過度に高い温度が粉末のスクレイピングの品質に損傷を与えることとなるので、構築中のパーツの任意の変形を制限することを可能にする。たとえば、この温度は、PA12粉末に関して、178℃に近いことが可能である。
本発明による3Dプリンティング・システムは、任意の材料に適合可能である。
本発明のある実施形態では、構築中のパーツを形成するために使用される粉末は、以下の材料、すなわち、ポリマー(たとえば:TPE、PP、PA12、PA6、TPU、導電性TPU、PEEK、PPS)、金属(チタン、スチール、アルミニウム、銅、パラジウム、金、クロム、マグネシウム、コバルト、銀、合金など)、セラミック(シリカ、アルミナなど)、塩、または有機粉末のうちの少なくとも1つを含む。
本発明による3Dプリンティング・システムは、第1のタイプの粒子、および、第1のタイプとは異なる第2のタイプの粒子を選択的に堆積させることを可能にする。異なるタイプの粒子は、好ましくは、連続的な階層を形成するように噴出され、3Dプリンティング構造体の上に粒子孔部がない状態になっている。
たとえば、第1のタイプの粒子は、構築中の物体を形成するために焼結されるように提供され得り、第2のタイプの粒子は、焼結の間に不活性であることが可能である。また、2つのタイプの粒子が物体の構築のために使用されることが可能であり、それは、マルチ材料の物体を生成させることを可能にする。これは、導電性材料から作製された特定の部分と非導電性材料から作製された他の部分とを有する物体、リジッドの部分と可撓性の部分とを有する物体、いくつかの色、いくつかの表面状態を有する物体、可溶性部分と不溶性部分とを有する物体、磁性部分と非磁性部分とを有する物体を生成させることを可能にする。
好ましくは、3Dプリンティング・システムは、3Dプリンティング構造体の移動の手段、および/または、第1の基板の移動の手段を含む。この移動手段は、垂直方向の並進、第1の方向(たとえば、左右)への水平方向の並進、第2の方向(たとえば、前後)への水平方向の並進の中から、少なくとも1つを可能にすることができる。
凝集手段は、3Dプリンティング構造体に堆積させられた粒子の少なくとも1つの部分に付着することを可能にし、これらの粒子がこの3Dプリンティング構造体に一体化されるようになっている。本文献の範囲において、粒子の凝集は、前記粒子を一緒に締結することである。凝集は、好ましくは、不活性な粒子が凝集されないという点において選択的である。凝集は、以下のもの、すなわち、熱処理、焼結、溶融、グルーの塗布、結合剤の塗布の中から、少なくとも1つの方法を含むことが可能である。たとえば、凝集手段は、炉、レーザー、電子ビーム、階層全体を加熱することができるようにスキャニング・システムを設けられたレーザー、ハロゲン・ランプ、局所的なまたは均一な化学反応の中から、少なくとも1つを含むことが可能である。凝集は、ラインに沿って材料を加熱するビームによって単一の方向にスイープすることによって、均一にラインごとに実施され得る。凝集手段は、スクリーンと同時に移動することが可能であり、または、スクリーンから切り離され得る。
好ましくは、粒子が3Dプリンティング構造体の上に堆積させられる剥離ゾーンの外側の粒子を、凝集の手段が凝集するように、システムは配置されている。
本発明のある実施形態では、3Dプリンティング・システムは、スクリーンの第1の外側表面に対抗して存在する粒子の構造体の堆積の手段をさらに含む。そのうえ、堆積手段は、噴出デバイスであることが可能である。
堆積手段は、粒子を操作するためのデバイスの一部を形成することが可能であり、堆積手段は、粒子の階層を形成することを可能にすることができる。
堆積手段は、スクリーンの第1の外側表面から粒子構造体を剥離することを可能にする。堆積手段は、好ましくは、3Dプリンティング構造体に対抗して、好ましくは、3Dプリンティング構造体の上に、粒子構造体を堆積させることを可能にする。また、随意的に、第1の外側表面の粒子構造体が3Dプリンティング構造体に対抗するように、たとえば、垂直方向に、スクリーンを移動させることを可能にすることが可能である。とりわけ、フロー発生器が噴出デバイスである場合には、粒子構造体の堆積手段は、たとえば、フロー発生器を含むことが可能である。
本発明のある実施形態では、堆積手段は、可動性移送基板を含み、可動性移送基板は、移送表面を有しており、移送表面は、スクリーンの第1の外側表面に面して位置決めされ得り、スクリーンの第1の外側表面に対抗して存在する粒子の少なくとも1つの部分が、移送基板の移送表面の上に移送され得るようになっている。好ましくは、たとえば、スクリーンの第1の外側表面に対抗する粒子のいくつかの連続的な噴出によって、移送表面に対抗する粒子の層が数回生成される。
したがって、粒子の層は、移送基板の移送表面の上に形成され得る。移送基板の移送表面は、主に平坦で水平になっていることが可能である。それは、下向きにまたは上向きに配向され得る。それは、3Dプリンティング構造体に対抗して堆積させられる移送表面に対抗する粒子の層である。移送表面に対抗する粒子の層は、好ましくは、連続的になっている。その理由は、たとえば、スクリーンの第1の外側表面に対抗する粒子構造体が、連続的であったからであり、または、いくつかの異なる粒子構造体が、移送表面に対抗して粒子の層を形成するために使用されたからである。移送基板は、第2のスクリーンを含むことが可能であり、その場合には、粒子によって形成される構造体がそれに対抗して位置付けされるスクリーンは、第1のスクリーンと呼ばれ得る。
本発明のある実施形態では、3Dプリンティング・システムは、複数のスクリーンを含む。好ましくは、それぞれのスクリーンは、異なる粉末を操作する。たとえば、スクリーンは、回転軸線にしたがって回転するように配置されている第1の凸形外側表面を含むことが可能である。スクリーンは、その回転軸線が平行になるように配置され得る。また、スクリーンは、2つの異なる方向に粉末を堆積させるように配置され得る。
これは、それぞれのスクリーンが3Dプリンティング構造体の上に異なる粉末を堆積させることを可能にする。システムは、1つ、2つ、3つ、4つなどのスクリーンを含むことが可能である。好ましくは、それぞれのスクリーンは、3Dプリンティング構造体の上に異なる粉末を堆積させるために使用される。それらは、異なる粒子サイズ、材料、および形状を有することが可能であり、または、たとえば、異なる厚さでスクレイプされ得る。
本発明のある実施形態では、3Dプリンティング・システムは、スクリーンおよび3Dプリンティング構造体を一つにまとめるおよび分離するための手段をさらに含む。
これは、粒子のそれぞれの階層の形成の後に、3Dプリンティング構造体を少しずつ分離することを可能にする。たとえば、3Dプリンティング構造体は、好ましくは、20μmから1000μmの間の距離、より好ましくは、50μmから200μmの間の距離によって、毎回分離され得る。これは、3Dプリンティング構造体から離れるように移動するスクリーン、および/または、スクリーンから離れるように移動する3Dプリンティング構造体であることが可能である。
第2の態様によれば、本発明は、粒子を操作するための方法であって、方法は、
(a)本発明による粒子を操作するためのデバイスを供給するステップと、
(b)前記デバイスに粒子を供給するステップと、
(c)スクリーンの第1の外側表面へ、または、スクリーンの第1の外側表面から、輸送流体フローによって粒子を輸送するステップと
を含む、方法を提案する。
これは、粒子によって形成される構造体を、スクリーンの第1の外側表面に対抗して、または、スクリーンの第1の外側表面からの噴出によって生成させることを可能にする。
第1の外側表面が凸形になっている本発明のある実施形態では、方法は、粉末がスクリーンから3Dプリンティング構造体へ噴出される剥離ゾーンにおいて、スクリーンの回転速度および3Dプリンティング構造体の並進速度が、接線方向速度の差がゼロになるように選択されるということを含む。3Dプリンティング構造体の並進における前進速度よりも速いまたは遅い回転を確保するということは、より早いかまたはより遅い粒子の移送流量を制御することを可能にする。
本システムに関して述べられている利点は、本方法に変更すべきところは変更して適用する。
本発明のある実施形態では、ステップ(c)は、スクリーンの第1の外側表面の所定の部分へ、または、所定の部分から、輸送流体フローによって粒子を輸送するステップを含む。これは、どの粒子が輸送されるかということを選択することを可能にする。粒子の輸送は、粒子とスクリーンとの間の接着の力の破壊から結果として生じることが可能である。本文献の範囲において、音波が、輸送流体フローとして考えられる。
これは、第1の外側表面の特定のピクセルが粒子によってカバーされること、または、対照的に、粒子からリリースされることを可能にする。これは、たとえば、粒子の輸送が求められていない第1の外側表面の部分の中にマスクを適用することによって行われ得る。また、これは、粒子の輸送が求められている第1の外側表面の部分の中のみに輸送流体フローを適用することによって行われ得る。
本発明のある実施形態では、ステップ(b)は、第1のタイプの粒子および第2のタイプの粒子を供給するステップを含み、ステップ(c)は、
・スクリーンの第1の外側表面の第1の所定の部分へ、または、第1の所定の部分から、輸送流体フローによって、第1のタイプの粒子を輸送するステップ(c1)と、
・スクリーンの第1の外側表面の第2の所定の部分へ、または、第2の所定の部分から、輸送流体フローによって、第2のタイプの粒子を輸送するステップ(c2)と
を含む。
本発明のある実施形態では、ステップ(b)は、第1のタイプの粒子および第2のタイプの粒子を供給するステップを含み、ステップ(c)は、
・第1のスクリーンの第1の外側表面の第1の所定の部分へ、または、第1の所定の部分から、輸送流体フローによって、第1のタイプの粒子を輸送するステップ(c1)と、
・第2のスクリーンの第1の外側表面の第2の所定の部分へ、または、第2の所定の部分から、輸送流体フローによって、第2のタイプの粒子を輸送するステップ(c2)と
を含む。
粒子のタイプは、粒子の特性、または、粒子の特性のセットによって特定され得る。たとえば、異なる材料、異なる形状、異なるサイズ分布を有する粒子は、異なるタイプのものであるはずである。そのような構造体は、異なるタイプの粒子の組成である。
本発明のある実施形態では、第1のタイプの粒子は、決定された方法によって凝集される傾向にあり、第2のタイプの粒子は、前記方法によって凝集されない傾向にある。たとえば、第1のタイプの粒子は、第1の焼結温度において焼結される傾向にあり、第2のタイプの粒子は、第1の焼結温度において焼結されない傾向にある。
第1のタイプの粒子は、3Dプリンティングのために使用され得り、第2のタイプの粒子は、3Dプリンティングのためのサポートとして使用される。第2のタイプの粒子は、たとえば、シリカであることが可能である。
そのうえ、本発明は、
・本発明による粒子を操作するための方法のステップと、
・粒子のうちの少なくとも1つの部分の凝集と
を含む、3Dプリンティング方法を提案する。
凝集は、階層同士の間の、階層の粒子の少なくとも1つの部分の凝集を含み、および/または、3Dプリンティング構造体との、階層の粒子の少なくとも1つの部分の凝集を含むことが可能である。凝集は、ポイントごとに、ラインごとに、平面ごとに、または、3Dプリンティング構造体の体積全体に一度に、起こることが可能である。後者のケースでは、粒子構造体の堆積は数回実施され、凝集は1回だけ実施される。
そのうえ、本発明は、
・本発明による粒子を操作するための方法のステップと、
・粒子の階層を形成するように、スクリーンの第1の外側表面に対抗して存在する粒子の構造体を堆積するステップと、
・粒子の階層の少なくとも1つの部分を凝集するステップと
を含む、3Dプリンティング方法を提案する。
堆積は、好ましくは、3Dプリンティング構造体の上の堆積であり、3Dプリンティング構造体は、3Dプリンティングを介してプリントされたパーツのすでに構築された部分である。
本発明の他の特性および利点は、その理解のために以下の詳細な説明を読むと明らかになることとなり、添付の図を参照されることとなる。
本発明による粒子を操作するためのデバイスを示す図である。 本発明による粒子を操作するためのデバイスを示す図である。 本発明の実施形態による粒子を操作するためのデバイスを使用する2つのステップを示す図である。 本発明の実施形態による粒子を操作するためのデバイスを使用する2つのステップを示す図である。 本発明の実施形態による粒子を操作するためのデバイスを使用する3つのステップを示す図である。 本発明の実施形態による粒子を操作するためのデバイスを使用する3つのステップを示す図である。 本発明の実施形態による粒子を操作するためのデバイスを使用する3つのステップを示す図である。 本発明の実施形態による粒子を操作するためのデバイスを使用する4つのステップを示す図である。 本発明の実施形態による粒子を操作するためのデバイスを使用する4つのステップを示す図である。 本発明の実施形態による粒子を操作するためのデバイスを使用する4つのステップを示す図である。 本発明の実施形態による粒子を操作するためのデバイスを使用する4つのステップを示す図である。 本発明の実施形態による粒子を操作するためのデバイスを示す図である。 本発明の実施形態による粒子を操作するためのデバイスの使用を示す図である。 本発明の実施形態による3Dプリンティングにおける粒子構造体の使用を示す図である。 本発明の実施形態による3Dプリンティングにおける粒子構造体の使用を示す図である。 本発明の実施形態による3Dプリンティングにおける粒子構造体の使用を示す図である。 本発明の実施形態による3Dプリンティングにおける粒子構造体の使用を示す図である。 本発明の実施形態による粒子を操作するためのデバイスを示す図である。 本発明の実施形態による粒子を操作するためのデバイスを示す図である。 本発明の実施形態によるバルブ・マトリックス41の一部分を示す図である。 本発明の実施形態によるバルブ・マトリックス41の一部分を示す図である。 スクリーンが円筒形状になっている、本発明の実施形態によるデバイスを示す図である。 スクリーンが円筒形状になっている、本発明の別の実施形態によるデバイスを示す図である。 本発明の実施形態による粒子を操作するための少なくとも2つのデバイスを含むシステムを示す図である。 本発明の実施形態による粒子を操作するための少なくとも2つのデバイスを含むシステムを示す図である。
本発明は、特定の実施形態によって説明されており、図を参照しているが、本発明は、それによって限定されない。説明されている図面または図は、単に概略的なものに過ぎず、限定するものではない。
本文献の文脈において、「第1の」および「第2の」という用語は、さまざまなエレメントを差別化するためだけに使用されており、これらのエレメントの間の順序を暗示してはいない。
図において、同一または類似のエレメントは、同じ参照符号を付されている可能性がある。
図1aは、本発明による粒子3構造体30を生成させるためのデバイス1を示している。図1bは、本発明による粒子3構造体30を生成させるためのデバイス1を示している。デバイス1は、輸送流体フローを発生させることができるフロー発生器20を含む。フロー発生器20は、輸送流体フローを発生させるかまたはカット・オフするように、オンまたはオフすることが可能である。依然として本発明の範囲の中にありながら、輸送流体フロー2がパルスから構成されることが可能である。
デバイス1は、スクリーン10を含み、スクリーン10は、粒子3構造体30のためのサポートである。スクリーン10は、第1の外側表面11および第2の外側表面19を有している。スクリーン10は、貫通孔部12(図2aにおいて見ることができる)を有しており、貫通孔部12は、開口部によって第1の外側表面11の上に開口している。また、孔部12は、第2の外側表面19の上に開口している。開口部は、スクリーン10の外側の粒子3を遮断し、輸送流体フロー2がスクリーン10を通る孔部12を通過することを許容する。デバイス1は、好ましくは、たとえば、粒子3のリザーバー21の形態の粒子を供給する手段(図1a)、または、粒子3の散布のための手段22(図1b)を含む。
粒子3のこの遮断は、たとえば、粒子3のうちのいずれかの中に内接される最小の球の直径が、第1の外側表面11の開口部のうちのいずれかの中に外接される最小の円の直径よりも大きくなっているときに、起こることが可能である。そのうえ、遮断は、粒子3が開口部の上方にブリッジを生成させるときにも起こることが可能である。ブリッジは、粒子3の直径が開口部の直径の3分の1よりも大きくなっているときに生じる可能性がある。次いで、粒子3は、粒子に関する障害物を上流に構成し、それらが積み重なることによって終了することとなる。
粒子3は、一般的に、特定のサイズ分布、たとえば、ガウス分布を有している。結果的に、特定の粒子3が、スクリーン10を通過するリスクがあり、したがって、粒子構造体30の一部にならないリスクがある。
好ましくは、輸送流体2は、ガス、好ましくは、空気、アルゴン、または窒素である。輸送流体2は、液体、たとえば、水であることが可能である。
本発明のある実施形態では、スクリーン10は、交差するエレメントを含み、直径が10μmを超える、好ましくは、直径が1μmを超える、より好ましくは、直径が0.1μmを超える任意の球体を遮断するようになっている。したがって、この直径よりも大きい実質的にサイズの任意の粒子3が、スクリーン10によって遮断される。
本発明のある実施形態では、スクリーン10は、格子であり、すなわち、スクリーン10は、メッシュを形成するエレメントを含む。
本発明のある実施形態では、スクリーン10は、生体適合性材料から作製されている。好ましくは、スクリーン10は、3Dプリンティング環境の制約(高温、衝撃、湿度、および静電電荷に対して良好な抵抗力がある)に適合可能な材料から作製されている。
好ましくは、スクリーン10の構造体は、長期にわたって固定されており、可動パーツは存在していない。好ましくは、スクリーン10は、電気的な機能を有していない。依然として本発明の範囲の中にありながら、スクリーンがグランドに接続され、荷電粒子を放出するようになっていることが可能である。
本発明のある実施形態では、スクリーン10の第1の外側表面11は、フロー発生器20に関してスクリーン10の反対の側にある。これは、スクリーン10が粒子3によるファウリングからフロー発生器20を保護することを可能にすることができる。
スクリーン10は、以下の方法、すなわち、製織、穿孔、化学的なフォトエングレービング、電鋳、焼結される粉末またはファイバー、およびフォームの生産のうちの少なくとも1つによって作り出され得る。
本発明のある実施形態では、スクリーン10の第1の外側表面11は、第1の方向101と第1の方向101に対して垂直の第2の方向102とに沿って主に延在している。したがって、フロー発生器20が発生させる輸送流体フロー2が、主に、第1の方向101および第2の方向102に対して垂直の第3の方向103になるように、フロー発生器20が配置されている。したがって、粒子3構造体30は、主に2次元になっている。
粒子3構造体30は、粒子3の連続的な層を含むことが可能である。また、それは、互いから分離されている粒子3の島を含むことが可能である。粒子3構造体30は、いくつかのタイプの粒子3を含むことが可能である。
フロー発生器20は、好ましくは、多くの粒子3、たとえば、少なくとも10個の粒子3、または、少なくとも100個の粒子3を同時に操作することを可能にする。また、フロー発生器20が、粒子3を1つずつ操作することを可能にするということも可能である。
本発明のある実施形態では、デバイス1は、均等化デバイス(たとえば、スクレイパー)を含み、均等化デバイスは、粒子3によって形成された構造体30の厚さを均等化することを可能にする。
図1aに示されている本発明の実施形態では、フロー発生器20は、吸引デバイスを含み、吸引デバイスは、第1の外側表面11からフロー発生器20へ輸送流体フロー2を生成させるように提供されている(図2、図4、図5、図9、および図11)。これは、フロー発生器20に関してスクリーン10の他方の側に初期に位置付けされている粒子3を、第1の外側表面11に向けて吸引することを可能にする。フロー発生器20が吸引デバイスを含むときには、吸引デバイスは、好ましくは、スクリーン10よりも高く位置付けされており、粒子3構造体30が、スクリーン10の下に形成される。
図1bに示されている本発明の実施形態では、フロー発生器20は、噴出デバイスを含み、噴出デバイスは、フロー発生器20から第1の外側表面11へ輸送流体フロー2を生成させるように提供されている(図3、図6、図10、および図12)。これは、フロー発生器20に関してスクリーン10の他方の側に初期に位置付けされている粒子3を、第1の外側表面11から噴出することを可能にする。図1bに示されている本発明の実施形態では、デバイス1は、散布手段22をさらに含み、散布手段22は、スクレイパーを含むことが可能であり、第1の外側表面11に粒子3を供給することを可能にする。散布手段22は、第1の外側表面11を覆って粒子3を散布し、次いで、噴出デバイスは、粒子3の少なくとも1つの部分を噴出する。好ましくは、噴出させられた粒子3は、粒子3コレクター23によって収集される。
好ましくは、とりわけ、粒子によって形成された構造体30がスクリーン10の下方にあるときには、輸送流体フロー2が維持されるために、および/または、以下の力、すなわち、重力、向心力、機械的パルス、磁力、空気力学的な力、静電気力、接触力、ファンデルワールス力、毛細管力、音圧のうちの少なくとも1つによって、粒子によって形成された構造体30が第1の外側表面11に付着する。これらの力は、局所的であることが可能であり、すなわち、第1の外側表面11の特定の部分のみに対応することが可能であり、または、分配され得り、すなわち、第1の外側表面11全体に対応することが可能である。そのうえ、これらの同じ力は、構造体30の一部を形成する粒子3をスクリーン10から局所的にまたは全体的に剥離するために使用され得る。
好ましくは、輸送流体フロー2がスクリーン10の第1の外側表面11の所定の部分のみを通過するように、デバイス1が配置されている。この配置は、異なる方式で実施され得り、それは、以降に説明されることとなる。これは、とりわけ、マスク40(図2、図3、図4、および図6)を使用して、および/または、フロー発生器20の移動によって実施され得る。第1の外側表面11の残りの部分から独立して、輸送流体フロー2によって通過される第1の外側表面11の一部分は、「ピクセル」と呼ばれ得る。ピクセルは、第1の外側表面11のピクセルから第1の基板60(図6)の上に堆積させられる粒子のセットであることが可能である。本発明のある実施形態では、ピクセルは、10μmx10μmから1mmx10mmの間にあり、好ましくは、ピクセルは、おおよそ100μmx100μmである。ピクセルは、正方形、長方形、ダイヤモンド、多角形、円形であるか、または、任意の他の形状を有することが可能である。ピクセルは、異なるサイズであることが可能であり、および/または、同じスクリーン10の上に形成している。ボクセルは、ピクセルに対応する粒子構造体30の部分である。スクリーン10の厚さ、および、他のパラメーターは、ボクセルの厚さに影響を有することが可能である。本発明のある実施形態では、ピクセルは隣接している。本発明のある実施形態では、ピクセルは、部分的に重なり合っている。
マスク40は、開放部分と閉鎖部分とを含み、開放部分は、輸送流体フロー2が通過することを許容し、閉鎖部分は、輸送流体フロー2が通過することを許容しない。
本発明のある実施形態では、マスク40は動的であり、すなわち、その開放部分および閉鎖部分の構成が修正され得る。そのような動的なマスク40は、たとえば、バルブ・マトリックス41を含むことが可能である(図2、図3、図4、図6、図11、および図12)。
本発明の別の実施形態では、マスク40は静的であり、すなわち、その開放部分および閉鎖部分の構成は修正されることができない。したがって、デバイス1は、好ましくは、フロー発生器20の移動の手段を含む。
マスク40は、たとえば、第1の外側表面11全体、第1の外側表面11のピクセルのライン、第1の外側表面11のピクセルの2つから20個のライン、第1の外側表面11の1つから25個のピクセル、または、第1の外側表面11の単一のピクセルに対応することが可能である。好ましくは、それが第1の外側表面11の1つの部分のみに対応している場合には、それは動的になっているか、または、デバイス1は、マスク40の移動の手段を含む。
本発明のある実施形態では、フロー発生器20およびマスク40は、スクリーン10の第1の外側表面11全体に対応している。次いで、フロー発生器20およびマスク40は、好ましくは、移動させられるように提供されてはいない。
図2aおよび図2bは、フロー発生器20が吸引デバイスを含むケースにおける、本発明のそのような実施形態によるデバイス1を使用する2つのステップを示している。好ましくは、マスク40は、バルブ・マトリックス41を含む。好ましくは、バルブ41は、互いから独立して開放され得り、マスク40は、バルブ41が開放している場所を輸送流体フロー2が通過することを許容するようになっている。
図2aに示されているステップの間に、2つの第1のバルブ41が開放しており、輸送流体フロー2は、これらの2つの第1のバルブ41に対応する第1の外側表面11の部分のみを通過する。したがって、第1のタイプの粒子3aを含有する第1のリザーバー(図示せず)は、第1の外側表面11に面して開放していることが可能であり、第1のタイプの粒子3aが、輸送流体フロー2によって吸引され、これらの2つの第1のバルブ41に対応する第1の外側表面11の部分に対抗して設置されるようになっている。
図2bに示されているステップの間に、2つの第2のバルブ41が開放しており、輸送流体フロー2は、これらの2つの第2のバルブ41に対応する第1の外側表面11の部分のみを通過する。したがって、第2のタイプの粒子3bを含有する第2のリザーバー(図示せず)は、第1の外側表面11に面して開放していることが可能であり、第2のタイプの粒子3bが、輸送流体フロー2によって吸引され、これらの2つの第2のバルブ41に対応する第1の外側表面11の部分に対抗して設置されるようになっている。たとえば、2つの第1のバルブ41が開放したままになっているので、および/または、上記に述べられている他の力のうちの少なくとも1つを使用して、第1のタイプの粒子3aは、第1の外側表面11に対抗して残っている。
この瞬間に取得される粒子構造体30が所望の構造体30である場合には、構造体30を形成する方法が停止する。そうでなければ、フロー発生器20が活性化され得り、バルブ41が開放され得り、粒子3のピクセルを吸引する。したがって、第3のタイプの粒子を吸引することが可能である。
図3aから図3cは、フロー発生器20が噴出デバイスを含むケースにおける、本発明の別の実施形態によるデバイス1を使用する3つのステップを示しており、フロー発生器20およびマスク40は、スクリーン10の第1の外側表面11全体に対応している。好ましくは、マスク40は、バルブ・マトリックス41を含む。好ましくは、バルブ41は、互いから独立して開放され得り、マスク40は、バルブ41が開放している場所を輸送流体フロー2が通過することを許容するようになっている。図3aから図3cは、粒子構造体30がスクリーン10の上方に位置付けされており、噴出デバイスがスクリーン10の下方にある状況を示しているが、依然として本発明の範囲の中にありながら、粒子構造体30がスクリーン10の下に位置付けされ、噴出デバイスがスクリーン10の上方にあるということも可能である。これは、図3aから図3cのそれぞれのすべてを水平方向の平面の中で反転させることに対応する。
図3aは、フロー発生器20の使用の前の状況を示している。第1の外側表面11は、第1のタイプの粒子3aの初期層31によってカバーされている。初期層31は、たとえば、散布の手段22(図1b)によって、事前に堆積させられている。好ましくは、初期層31は、単一のタイプの粒子3aのみを含む。
図3bに示されているステップの間に、2つの第1のバルブ41が開放しており、輸送流体フロー2は、これらの2つの第1のバルブ41に対応する第1の外側表面11の部分のみを通過する。これらの2つの第1のバルブ41に対応する第1の外側表面11の部分に対抗して位置付けされている第1のタイプの粒子3aは、輸送流体フロー2によって噴出させられ、粒子なしの孔部32を残す。噴出させられた粒子3aは、粒子コレクター23によって収集され得る。第1の外側表面の上に残っている粒子3aは、この瞬間に粒子構造体30を形成している。
図3cに示されているステップの間に、粒子なしの孔部32は、たとえば、散布手段22(図1b)によって、粒子3bの供給を使用して、第2のタイプの粒子3bによって充填される。この瞬間に取得される粒子構造体30が所望の構造体30である場合には、構造体30を形成するための方法が停止する。そうでなければ、フロー発生器20が活性化され得り、バルブ41が開放され得り、粒子3のボクセルを噴出するようになっている。したがって、第3のタイプの粒子を散布することが可能である。
本発明のある実施形態では、フロー発生器20およびマスク40は、第1の外側表面11の一部分のみに対応している。好ましくは、フロー発生器20およびマスク40は、第1の外側表面11の同じ部分に対応している。次いで、好ましくは、フロー発生器20およびマスク40は、好ましくは、第1の外側表面11に対して平行に移動させられるように提供される。
図4aから図4dは、フロー発生器20が吸引デバイスを含むケースにおける、本発明のそのような実施形態によるデバイス1を使用する4つのステップを示している。好ましくは、マスク40は、バルブ・マトリックス41を含む。好ましくは、デバイス1は、フロー発生器20の移動の手段を含む。好ましくは、バルブ41は、互いから独立して開放され得り、マスク40は、バルブ41が開放している場所を輸送流体フロー2が通過することを許容するようになっている。
図4aに示されているステップの間に、第1のバルブ41が開放しており、輸送流体フロー2は、この第1のバルブ41に対応する第1の外側表面11のみを通過する。第1のタイプの粒子3aを含有する第1のリザーバー(図示せず)は、第1の外側表面11に面して開放していることが可能であり、第1のタイプの粒子3aが、輸送流体フロー2によって吸引され、この第1のバルブ41に対応する第1の外側表面11の部分に対抗して設置されるようになっている。
図4bに示されているステップの間に、フロー発生器20およびマスク40は、図4aに示されている配置に対して移動させられる。第1のバルブ41が開放しており、輸送流体フロー2は、この第1のバルブ41に対応する第1の外側表面11の部分のみを通過する。第1のタイプの粒子3aを含有する第1のリザーバー(図示せず)は、第1の外側表面11に面して開放していることが可能であり、第1のタイプの粒子3aが、輸送流体フロー2によって吸引され、この瞬間においてこの第1のバルブ41に対応する第1の外側表面11の部分に対抗して設置されるようになっている。
図4cに示されているステップの間に、フロー発生器20およびマスク40は、図4bに示されている配置に対して移動させられる。第1のバルブ41が開放しており、輸送流体フロー2は、この第1のバルブ41に対応する第1の外側表面11の部分のみを通過する。第2のタイプの粒子3bを含有する第2のリザーバー(図示せず)は、第1の外側表面11に面して開放していることが可能であり、第2のタイプの粒子3bが、輸送流体フロー2によって吸引され、この瞬間においてこの第1のバルブ41に対応する第1の外側表面11の部分に対抗して設置されるようになっている。
図4dに示されているステップの間に、フロー発生器20およびマスク40は、図4cに示されている配置に対して移動させられる。第1のバルブ41が開放しており、輸送流体フロー2は、この第1のバルブ41に対応する第1の外側表面11の部分のみを通過する。第2のタイプの粒子3bを含有する第2のリザーバー(図示せず)は、第1の外側表面11に面して開放していることが可能であり、第2のタイプの粒子3bが、輸送流体フロー2によって吸引され、この瞬間においてこの第1のバルブ41に対応する第1の外側表面11の部分に対抗して設置されるようになっている。
この瞬間に取得される粒子構造体30が所望の構造体30である場合には、構造体30を形成する方法が停止する。そうでなければ、フロー発生器20が活性化され得り、バルブ41が開放され得り、粒子3のボクセルを吸引することが可能である。したがって、第3のリザーバーから来る第3のタイプの粒子を吸引することが可能である。
また、依然として本発明の範囲の中にありながら、図4aから図4dを参照して説明されているステップのうちの1つの間に、第1のバルブ41以外のバルブが開放していることも可能である。
粒子3a、3bは、たとえば、上記に述べられている他の力のうちの少なくとも1つを使用して、第1の外側表面11に対抗して残っている。
示されていない本発明のある実施形態では、フロー発生器20およびマスク40は、第1の外側表面11の一部分のみに対応しており、フロー発生器20は、噴出デバイスを含む。
本発明のある実施形態では、マスク40は、移動させられるように提供されておらず(それは、たとえば、第1の外側表面11全体に対応していることが可能である)、フロー発生器20は、たとえば、フロー発生器20の移動の手段を使用して、移動させられるように提供されている。
本発明のある実施形態では、デバイス1は、マスク40を含まず、フロー発生器20は、たとえば、フロー発生器20の移動の手段を使用して、移動させられるように提供されている。
図5は、本発明のそのような実施形態によるデバイス1を示している。フロー発生器20は、輸送流体フロー2が第1の外側表面11の1つのピクセルのみを通過するように配置されている。フロー発生器20が移動させられ、したがって、第1の外側表面11のピクセルが、粒子3によってカバーされるように、次々にアドレス指定される。粒子の供給は、たとえば、フロー発生器20と平行にスクリーン10の下方に移動させられる粒子のリザーバーを介して行われ得る。
示されていない本発明のある実施形態では、デバイス1は、マスク40を含まず、フロー発生器20は、たとえば、フロー発生器20の移動の手段を使用して、移動させられるように提供されており、フロー発生器20は、噴出デバイスを含む。
本発明のある実施形態では、たとえば、図6に示されているものでは、スクリーン10に対抗して存在する構造体30の所定の部分は、噴出デバイスを含むフロー発生器20によって発生させられる輸送流体フロー2を使用して、第1の基板60の表面の上に選択的に移送される。粒子の噴出が音圧によって実施されることが可能である。この移送は、たとえば、ピクセルごとに実施され得る。第1の基板60は、3Dプリンティング構造体72(図7)の上側部分を構成することが可能である。
本発明の可能な実施形態によれば、粒子構造体30から第1の基板60の表面へ、いくつかの連続的な移送が起こる。
本発明の可能な実施形態によれば、第1のタイプの粒子3aのみを含む第1の均一な構造体30が、スクリーン10の上または下に最初に形成される。次いで、第1の構造体30の所定の部分が、第1の基板60の上に移送される。次いで、第1の構造体30の残りの部分が、スクリーン10から除去され、第2のタイプの粒子3bのみを含む第2の均一な構造体30が、スクリーン10の上または下に形成され、第2の構造体30の所定の部分が、第1の基板60の上に移送される。このプロセスが繰り返され得る。
したがって、異なるタイプの粒子の島61を含む粒子の層を第1の基板60の上に作り出すことが可能である。この層は、その後に、スクリーン10の第1の外側表面11に対抗して位置付けされている粒子構造体30の代わりに、3Dプリンティングに関して使用され得る。
本発明のある実施形態では、マスク40は、互いから1mmの間隔を置いて配置された10列および100行の空気圧式静電バルブ41を含むマトリックスである。列は、100μmの解像度を取得するために、100μmだけ互いから垂直方向にオフセットされている。マスク40は、約10cm×1cmである。マスク40およびフロー発生器20は、同時に移動させられるように連結されている。マスク40およびフロー発生器20は、スクリーン10の第1の外側表面11全体をスイープし、スクリーン10に対抗して粉末の構造体30を構成し、または、第1の基板60に対抗して粉末の層を構成するようになっている。
デバイス1は、3Dプリンティングに関して使用され得る。たとえば、粒子3aの第1のタイプは、焼結を使用して3Dプリンティングを介して物体を形成するのに適切であり得り、第2のタイプの粒子3bは、焼結されていないサポート粉末であることが可能である。とりわけ、第1のタイプの粒子3aは、第1の焼結温度において焼結され得り、第2のタイプの粒子3bは、第1の焼結温度においては焼結されることができない傾向にあり、または、不活性であることが可能である。第2のタイプの粒子3bは、3Dプリンティングの間に上側階層のためのサポートとして使用され得り、3Dプリンティングの終わりに回収され得る。
本発明のある実施形態では、第1のタイプの粒子3aは、レーザー焼結のために提供されるSLS粉末の粒子である。本発明のある実施形態では、第1のタイプの粒子3aは、熱可塑性のポリマー、たとえば、PA12から作製されている。本発明のある実施形態では、第2のタイプの粒子3bは、セラミック、石膏、またはアルミナから作製されている。
図7aおよび図7bは、本発明の実施形態による、3Dプリンティングにおける粒子3構造体30の使用を示している。
図7aは、スクリーン10および3Dプリンティング構造体72を示しており、粒子3構造体30がスクリーン10の下に形成されており、3Dプリンティング構造体72は、3Dプリンティングのプロセスにおける対象物である。3Dプリンティング構造体72は、すでに一緒に凝集された多くの粒子を含む。換言すれば、3Dプリンティング72は、すでに凝集された階層のスタックを含む。粒子3構造体30の堆積の手段は、3Dプリンティング構造体72の上に粒子3構造体30を堆積させることを可能にする。したがって、粒子3構造体30は、粒子3の階層35になる。したがって、階層35の粒子3は、3Dプリンティング構造体72によって凝集され得り(図7b)、新しい3Dプリンティング構造体を形成するようになっており、新しい3Dプリンティング構造体の上に、別の粒子3構造体30が堆積させられ得る。凝集は、凝集手段75によって実施され得り、凝集手段75は、たとえば、粒子3の階層35を加熱または放射する。凝集は、第1のタイプの粒子3aを凝集するのに適切であり得るが、第2のタイプの粒子3bを凝集するのに適切ではない。
本発明のある実施形態では、凝集手段75は、レーザーを含む。本発明のある実施形態では、凝集手段75は、赤外放射線を放出する手段(たとえば、ハロゲン・ランプ)を含み、それは、粒子3の階層35全体にわたって均一であることが可能である。
堆積手段は、好ましくは、粒子3構造体30を伴うスクリーン10を、粒子3構造体30が形成された形成ゾーンから、3Dプリンティング構造体72が位置付けされているプリンティングゾーンへ移動させることを可能にする。この第1の移動は、たとえば、水平方向および/または垂直方向であることが可能である。堆積手段は、好ましくは、図7aの中の矢印73によって示されているように、粒子3構造体30を伴うスクリーン10を3Dプリンティング構造体72へ移動させることを可能にする。
また、堆積手段は、好ましくは、スクリーン10の第1の外側表面11から粒子3構造体30を剥離することを可能にする。堆積手段は、一気に第1の外側表面11から構造体30全体を剥離するように配置され得り、または、第1の外側表面11から選択された部分を剥離するように配置され得る。
図8aおよび図8bは、本発明の実施形態による、3Dプリンティングにおける粒子3構造体30の使用を示している。
第1の外側表面11の上に存在する粒子構造体30は、可動性移送基板50の移送表面51の下に最初に移送される。これは、たとえば、フロー発生器20の噴出デバイスを使用して実施され得る。
次いで、移送基板50は、図8bの中の矢印73によって示されているように、3Dプリンティング構造体72の上に粒子3構造体30を堆積させるように移動させられる。次いで、図7bに示されている凝集方法が使用され得る。
3Dプリンティングが完了したとき、第2のタイプの粒子3bが凝集されていない場合には、それらは、プリントされた対象物から剥離される。
図9は、本発明の実施形態によるデバイス1を示しており、そこでは、スクリーン10は、矢印85によって示されているようにシリンダー軸線にしたがって回転するように配置されているシリンダーである。スクリーン10の第1の外側表面11は、円筒形状になっている。好ましくは、フロー発生器20は、シリンダー軸線に対して垂直の少なくとも1つの成分を有する輸送流体フロー2を発生させる。粒子3の供給は、供給エレメント80によって提供される。供給エレメント80は、第1の外側表面11へ粒子3を送るための供給チャネル81と、スクレイパー(図示せず)と、余剰の粒子3を回収するための収集チャネル82とを含む。フロー発生器20は、スクリーン10によって形成されたシリンダーの内側に位置付けされている。それは、輸送流体フロー2を制御し、粒子3がその上に堆積させられる第1の外側表面11の部分を決定する。フロー発生器20は、好ましくは、噴出デバイスを含む。
粒子3構造体30は、第1の外側表面21にわたって分配された接着を使用して、第1の外側表面11の上に維持される。それは、剥離シリンダー83を使用して、第1の外側表面11から剥離され、剥離シリンダー83は、第1の外側表面11と粒子3との間の接着力を局所的に破壊することを可能にする。次いで、剥離された粒子3は、第1の基板60の上に堆積させられる。
図10に示されている本発明のある実施形態では、フロー発生器20は、第1の基板60に面して位置付けされている。供給エレメント80は、スクリーンの上に粒子3を連続的に堆積させる。円筒形状のスクリーン10は、フロー発生器20に面して、粒子3を連続的に供給する。たとえば、フロー発生器20が噴出デバイスを含む場合には、粒子3は、フロー発生器20の制御を使用して噴出を介して第1の基板60の上に選択的に堆積させられる。
図11は、本発明の実施形態によるバルブ・マトリックス41の一部分を示している。図12は、本発明の実施形態によるバルブ・マトリックス41の一部分を示している。それぞれのバルブは、好ましくは、リジッドの部分42、第1の電極43、誘電体部分44、および第2の電極45を含む。第2の電極45は、可撓性であり、開放および閉鎖するように提供されている。第2の電極45は、たとえば、犠牲層を使用して、または、組み立てを介して作製され得る。バルブ41は、好ましくは、ラインおよび列のネットワークにしたがって配置されている。バルブ41は、好ましくは、パッシブ・アドレッシングによってアドレス指定され得る。
図11は、フロー発生器20が吸引デバイスを含むケースに対応している。
図12は、フロー発生器20が噴出デバイスを含むケースに対応している。本発明のある実施形態では、セパレーター46が、スクリーン10とバルブ・マトリックス41との間のスペースの中に設けられており、第2の電極45がスクリーン10にタッチすることを防止する。
一般的に、それぞれのバルブ41は、マイクロアクチュエーター、および/または、MEMSもしくはPCB空気圧式マイクロバルブを含むことが可能である。そのようなマイクロアクチュエーターは、たとえば、静電式、熱式、電磁式、圧電式、または他のものであることが可能である。バルブ・マトリックス41は、たとえば、シリコン・ウエハーからのマイクロ・マシンニング技法によって実施され得る。それぞれのバルブ41は、1つのキャビティーを含むことが可能であり、それは、たとえば、KOHによる異方性エッチングまたはディープ反応性エッチングの技法によって実施される。それぞれのバルブ41は、LPCVD堆積(低圧化学蒸着)の技法によって実施される電極を含むことが可能である。
図13は、スクリーン10が円筒形状になっている、本発明の実施形態によるデバイス1を示している。図14は、スクリーン10が円筒形状になっている、本発明の別の実施形態によるデバイス1を示している。任意の他の形状のスクリーン10も可能である。それは、たとえば、スクリーン10の第1の外側表面が凸形になっており、少なくとも部分的に内部スペース18の境界を定めているような、任意の形状である。スクリーン10は、剥離ゾーン129を含み、剥離ゾーン129において、粒子が第1の外側表面11から分離される。この剥離ゾーン129は、好ましくは、下向きに位置付けされ、たとえば、3Dプリンティング構造体72に面して位置付けされている。フロー発生器20は、好ましくは、噴出デバイスである。
フロー発生器20は、円筒形状のスクリーン10の内側に位置付けされている第1の部分121を含む。第1の部分121は、プリント・ヘッドを含み、プリント・ヘッドは、剥離ゾーン129の付近に位置付けされている。好ましくは、プリント・ヘッドは、円筒形状のスクリーン10の軸線と剥離ゾーン129との間に位置付けされている。
好ましくは、フロー発生器20の第1の部分121は、複数の開口部を含み、複数の開口部は、スクリーン10の第1の外側表面11に向けて、および、とりわけ、剥離ゾーン129に向けて方向付けされている。開口部のそれぞれは、輸送流体フロー・エレメントを噴出または吸引することを可能にする。したがって、それは、どの粒子がスクリーン10から噴出されるか、またはスクリーン10の上に吸引されるかということを決定することが可能である。開口部は、好ましくは、互い違いになるように配置されており、異なるラインのピクセルがオフセットされるようになっている。
フロー発生器20の第1の部分121は、少なくとも1つの流体連通手段123に流体接続されている。この流体連通123手段は、たとえば、複数のパイプ124を含むことが可能である(図13)。流体連通手段123は、円筒形状のスクリーン10の一方の端部によって、円筒形状のスクリーン10から出ていく。好ましくは、パイプ124は、リジッドのダクト125を通過し、円筒形状のスクリーン10から出ていく(図13)。
フロー発生器20は、円筒形状のスクリーン10の外側に位置付けされている第2の部分122を含む。
図13に示されている本発明の実施形態では、フロー発生器20の第2の部分122は、好ましくは、バルブ41を含み、バルブ41は、たとえば、バルブ・マトリックス41の中に配置されている。それぞれのバルブ41は、パイプ124に接続されている。バルブ41は、フロー発生器20の第1の部分121の開口部から出ていく流体フロー・エレメントを制御することを可能にする。したがって、スクリーン10の第1の外側表面から剥離され、剥離ゾーンの下に位置付けされている3Dプリンティング構造体72または任意の他のサポートの上に堆積させられる、粒子のピクセルを制御することが可能である。
デバイス1は、好ましくは、10個から500個の間のパイプ124を含み、より好ましくは、50個からおよび200個のパイプ124を含む。好ましくは、剥離ゾーン129に向けてのパイプ124の出力は、互い違いになるように配置されており、堆積の解像度を増加させるようになっている。
デバイス1は、好ましくは、バルブ41を冷却するための手段を含む。
図14に示されている本発明の実施形態では、フロー発生器20の第1の部分121は、好ましくは、バルブ41を含み、バルブ41は、たとえば、バルブ・マトリックス41の中に配置されている。バルブ41は、流体連通手段123によって、フロー発生器20の第2の部分122に流体接続されている。好ましくは、流体連通手段123は、単一のパイプを含む。しかし、依然として本発明の範囲の中にありながら、それが、複数のパイプを含むことも可能である。バルブ41は、剥離ゾーン129に面してフロー発生器20の第1の部分121の開口部から出ていく流体フロー・エレメントを制御することを可能にする。したがって、スクリーン10の第1の外側表面から剥離され、剥離ゾーンの下に位置付けされている3Dプリンティング構造体72または任意の他のサポートの上に堆積させられる、粒子のピクセルを制御することが可能である。
バルブ・マトリックス41は、好ましくは、電気的な接続手段130によって制御ユニット130に接続されている。この電気的な接続手段130は、ワイヤレスであるか、または、少なくとも1つのワイヤーを含むことが可能であり、次いで、少なくとも1つのワイヤーは、好ましくは、円筒形状のスクリーン10の一方の端部を通過する。
図15および図16は、本発明の実施形態による、粒子を操作するための少なくとも2つのデバイス1a、1bを含むシステム100を示している。このシステムは、たとえば、3Dプリンティングにおいて使用され得る。スクリーン10a、10bおよびフロー発生器は、好ましくは、図13または図14を参照して説明されているようなものである。とりわけ、好ましくは、フロー発生器は、それぞれ、剥離ゾーン129a、129bの付近に、円筒形状のスクリーン10の内側に位置付けされている第1の部分121a、121bを含む。したがって、フロー発生器の第1の部分121a、121bによって放出される流体フロー・エレメントは、スクリーン10a、10bの第1の外側表面の上に存在する粒子3a、3bを、3Dプリンティング構造体72の正確な位置に向けて噴出することが可能である。依然として本発明の範囲の中にありながら、システム100が本発明による3つ以上のデバイス1を含むことが可能である。スクリーン10a、10bは、好ましくは、その軸線が同じ水平方向の平面の中にある状態で、互いに平行に配置されている。
好ましくは、デバイス1a、1bは、第1のスクレイパー86a、86bおよび第2のスクレイパー87a、87bによって形成される供給エレメント80a、80bをそれぞれ含む。粒子3a、3bは、スクリーン10a、10bが回転しているときに、供給エレメント80a、80bによってスクリーン10a、10bの第1の外側表面の上にリリースされる。好ましくは、第1の外側表面に対する第2のスクレイパー87a、87bの位置は、第1の外側表面の上の望まれる粒子3a、3bの層の厚さにしたがって選択される。スクレイパーは、ローラー・スクレイパー、たとえば、逆回転シリンダーであることが可能であり、それは、好ましくは、振動することが可能である。
次いで、粒子3a、3bは、吸引手段(図示せず)によって第1の外側表面の上に保持される。
好ましくは、第1のデバイス1aによって配置されている粒子3aは、第1のタイプの粒子3aであり、それは、たとえば、決定された方法によって凝集される傾向にある。好ましくは、第2のデバイス1bによって配置されている粒子3bは、第2のタイプの粒子3bであり、それは、たとえば、この決定された方法によって凝集されない傾向にある。
好ましくは、スクリーン10a、10bは、階層35が堆積させられているときに、その回転軸線を固定された状態で維持することによって回転し、第1の基板60(それは、3Dプリンティング構造体72のためのサポートとして使用される)は、1つの方向にまたは別の方向に前進する。また、依然として本発明の範囲の中にありながら、スクリーン10a、10bが、第1の基板60に対して平行に移動させられる回転軸線を有しており、第1の基板60が固定されているということも可能である。また、スクリーン10a、10bおよび第1の基板60が協働した様式で移動させられるということも可能である。
デバイス1a、1bのフロー発生器、たとえば、バルブ・マトリックス41は、所望の3Dプリンティング構造体72を取得するように制御される。好ましくは、デバイス1a、1bによって堆積させられる粒子3a、3bによって形成される階層35が連続的となるように、および、任意の孔部を含まないように、それらは制御される。
粒子の階層35が堆積させられたときに、および、次に続く階層35を堆積させる前に、スクリーン10a、10bは、好ましくは、階層35の厚さに等しい距離だけ、3Dプリンティング構造体72から離れるように移動させられる。これは、次に続く階層35を堆積させることを可能にする。連続的な階層35が異なる厚さを有することが可能である。
本発明のある実施形態では、システム100は、3Dプリンティング構造体の上に堆積させられる粉末の階層の高さの均一化のための手段を形成する少なくとも1つのコンパクション・ローラー141をさらに含む。好ましくは、システム100は、2つの均一化手段を含み、2つの均一化手段は、スクリーン10a、10bの側部にそれぞれ位置付けされている。本発明のある実施形態では、システム100は、少なくとも1つの凝集手段75をさらに含む。好ましくは、システム100は、2つの凝集手段75を含み、2つの凝集手段75は、均一化手段よりも遠くに、スクリーン10a、10bの側部にそれぞれ位置付けされている。
好ましくは、システム100は、以下の様式で動作する。
第2のタイプ3bの粒子のベッド(それは、凝集手段75によって実施される方法によって凝集されない傾向にある)が、第1の基板60の上に堆積させられる。粒子ベッドは、3Dプリンティング構造体72の始まりを形成する。
供給エレメント80aが、第1のタイプ3aの粒子によって充填され、それは、凝集手段75によって実施される方法によって凝集される傾向にある。供給エレメント80bは、第2のタイプ3bの粒子によって充填される。
スクリーン10a、10bは、その軸線の周りにそれぞれ回転し、供給エレメント80a、80bの粒子を駆動し、それは、たとえば、外部ファンによって実施される空気吸引を使用して上方に維持される。吸引の空気フローは、粉末のタイプにしたがって選択される。スクリーン10の上の粒子3a、3bの層の厚さは、好ましくは、50μmから500μmの間にある。それは、とりわけ、第2のスクレイパー87a、87bの位置を使用して決定される。階層35の厚さは、スクリーン10の上の層の厚さとは異なっていることが可能である。その代わりに、階層35の粒子は、堆積の後に広がることが可能である。また、スクリーンの回転速度、および/または、3Dプリンティング構造体72の並進速度を変化させることによって、階層35の厚さを変化させることも可能である。
スクリーン10a、10bは、その軸線に対して垂直の方向に水平方向に移動させられ、それら自身の周りに回転しながら、3Dプリンティング構造体72をトラベルするようになっている。好ましくは、回転速度および並進速度は同期化されており、スクリーン10に最も近い点と3Dプリンティング構造体72の相対速度がゼロになるようになっている。したがって、粒子は、移送の間にスクリーンの接線方向に速度を有しておらず、それは、より正確な堆積を可能にする。
堆積させられなかった粒子は、供給エレメント80a、80bに向けて上昇して戻され、その後に使用され得る。
好ましくは、階層35が堆積させられると、それは、コンパクション・ローラー141によって均一にされ、次いで、凝集手段75によって凝集され、3Dプリンティング構造体72を一体化するようになっている。したがって、それに続く階層35が堆積させられる。
3Dプリンティング構造体72の中へ一体化されたばかりの階層に対して、それに続く階層35がリターン経路の上で堆積させられることが可能である。たとえば、階層の堆積(ならびに、圧縮および凝集)は、右から左へ、および、左から右へ行われ得る。このケースでは、システムが、図16に示されているように、2つの均一化手段および2つの凝集手段75を含むことが好適である。
本発明によるデバイス1の可能な適用例は、3Dプリンティング、2Dプリンティング、および、製薬産業における投薬に関する。
換言すれば、本発明は、粒子3を操作するためのデバイス1および方法に関する。デバイス1は、スクリーン10を含み、スクリーン10は、第1の基板60の上に選択的に堆積させられ得る粒子3構造体30のためのサポートとして使用される。デバイス1は、フロー発生器20を含み、スクリーン10の第1の外側表面11へ、または、スクリーン10の第1の外側表面11から、輸送流体フロー2を発生させ、輸送流体フロー2は、粒子3を輸送するように提供される。デバイス1は、3Dプリンティング・システムの中に含まれ得る。
本発明は、特定の実施形態を参照して説明されており、特定の実施形態は、純粋に例示目的の値を有しており、限定するものとして考慮されてはならない。一般的に、本発明は、上記に示されおよび/または説明されている実施形態に限定されない。「を含む(include)」、「含む(comprise)」、「含有する(contain)」という動詞、または、任意の他の変化形、ならびに、その活用形の使用は、述べられているもの以外のエレメントの存在を決して除外することはできない。エレメントを導入するための不定冠詞「a」、「an」、または、定冠詞「the」の使用は、複数のこれらのエレメントの存在を除外しない。特許請求の範囲の中の参照数字は、その範囲を限定しない。

Claims (13)

  1. 粒子(3)を操作するためのデバイス(1)であって、前記デバイス(1)は、輸送流体フロー(2)を発生させるように配置されているフロー発生器(20)を含む、デバイス(1)において、
    前記デバイス(1)は、第1の外側表面(11)を有するスクリーン(10)をさらに含み、粒子(3)構造体(30)が、前記第1の外側表面(11)から形成され得り、前記スクリーン(10)は、貫通孔部(12)を含み、前記貫通孔部(12)は、開口部を介して前記第1の外側表面(11)の上へ開口しており、前記輸送流体フロー(2)は、前記第1の外側表面(11)へまたは前記第1の外側表面(11)から前記粒子(3)を輸送するように提供され、
    前記フロー発生器(20)は、噴出デバイスを含み、前記噴出デバイスは、前記フロー発生器(20)から前記第1の外側表面(11)へ前記輸送流体フロー(2)を生成させるように提供されることを特徴とする、デバイス(1)。
  2. 前記デバイス(1)は、前記輸送流体フロー(2)が前記スクリーン(10)の前記第1の外側表面(11)の所定の部分のみを通過するように配置されていることを特徴とする、請求項1に記載のデバイス(1)。
  3. 前記デバイス(1)は、前記フロー発生器(20)の移動の手段を含むことを特徴とする、請求項2に記載のデバイス(1)。
  4. 前記デバイス(1)は、前記フロー発生器(20)と前記スクリーン(10)との間にマスク(40)を含むことを特徴とする、請求項2または3に記載のデバイス(1)。
  5. 前記マスク(40)は、前記マスク(40)の開放部分および閉鎖部分の構成が修正され得るように配置されていることを特徴とする、請求項4に記載のデバイス(1)。
  6. 前記デバイス(1)は、バルブ・マトリックス(41)を含むことを特徴とする、請求項1から5のいずれか一項に記載のデバイス(1)。
  7. 前記スクリーン(10)の前記第1の外側表面(11)は、凸形表面であり、少なくとも部分的に内部スペース(18)の境界を定めていることを特徴とする、請求項1から6のいずれか一項に記載のデバイス(1)。
  8. 前記フロー発生器(20)は、前記内部スペース(18)の中に位置付けされている第1の部分(121)と、前記内部スペース(18)の外側に位置付けされている第2の部分(122)とを含み、前記第1の部分(121)および前記第2の部分(122)は、流体連通手段(123)によって流体接続されていることを特徴とする、請求項7に記載のデバイス(1)。
  9. 前記フロー発生器(20)の前記第1の部分(121)は、前記スクリーン(10)の前記第1の外側表面(11)に向けて方向付けされた複数の開口部を含むことを特徴とする、請求項8に記載のデバイス(1)。
  10. 前記デバイス(1)は、前記第1の外側表面(11)の上に前記粒子を保持するように配置されている吸引手段をさらに含むことを特徴とする、請求項1から9のいずれか一項に記載のデバイス(1)。
  11. 前記デバイス(1)は、前記スクリーン(10)の移動の手段をさらに含むことを特徴とする、請求項1から10のいずれか一項に記載のデバイス(1)。
  12. 請求項1から11のいずれか一項に記載の少なくとも1つのデバイス(1)と、凝集手段(75)とを含む、3Dプリンティング・システム。
  13. 粒子(3)を操作するための方法であって、前記方法は、
    (a)請求項1から11のいずれか一項に記載の粒子(3)を操作するためのデバイス(1)を供給するステップと、
    (b)前記デバイス(1)に粒子(3)を供給するステップと、
    (c)前記スクリーン(10)の前記第1の外側表面(11)へ、または、前記スクリーン(10)の前記第1の外側表面(11)から、前記輸送流体フロー(2)によって粒子(3)を輸送するステップと
    を含む、方法。
JP2019516940A 2016-09-29 2017-08-21 粒子を操作するためのデバイスおよび方法 Active JP7053591B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BE2016/5725A BE1024613B1 (fr) 2016-09-29 2016-09-29 Dispositif et méthode pour créer une structure de particules
BEBE2016/5725 2016-09-29
PCT/EP2017/071039 WO2018059833A1 (fr) 2016-09-29 2017-08-21 Dispositif et méthode pour manipuler des particules

Publications (2)

Publication Number Publication Date
JP2019529189A JP2019529189A (ja) 2019-10-17
JP7053591B2 true JP7053591B2 (ja) 2022-04-12

Family

ID=57132930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019516940A Active JP7053591B2 (ja) 2016-09-29 2017-08-21 粒子を操作するためのデバイスおよび方法

Country Status (10)

Country Link
US (2) US11338509B2 (ja)
EP (1) EP3519163A1 (ja)
JP (1) JP7053591B2 (ja)
KR (1) KR102369144B1 (ja)
CN (1) CN109803775B (ja)
AU (1) AU2017333287B2 (ja)
BE (1) BE1024613B1 (ja)
CA (1) CA3037789A1 (ja)
RU (1) RU2742939C2 (ja)
WO (1) WO2018059833A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180311769A1 (en) * 2017-04-28 2018-11-01 Divergent Technologies, Inc. Multi-materials and print parameters for additive manufacturing
BE1026152B1 (fr) * 2018-03-28 2019-10-29 Aerosint Sa Méthode et dispositif pour former un motif de matière
BE1026143B1 (fr) 2018-03-28 2019-10-28 Aerosint Sa Dispositif pour manipuler des particules
CN113518703B (zh) * 2019-06-25 2023-04-04 惠普发展公司,有限责任合伙企业 用于3d打印机的辊控制
BE1027856B1 (fr) 2019-12-13 2021-07-13 Aerosint Sa Système et méthode de nivellement
US11766832B2 (en) 2020-05-13 2023-09-26 The Boeing Company System and method for additively manufacturing an object
US11590705B2 (en) 2020-05-13 2023-02-28 The Boeing Company System and method for additively manufacturing an object
AU2021296908A1 (en) 2020-06-26 2023-02-16 Aprecia Pharmaceuticals LLC Rapidly-orodispersible tablets having an interior cavity
EP4182145A4 (en) * 2020-07-14 2024-06-19 Hewlett-Packard Development Company, L.P. REMOVAL OF PORES FROM FILTERING DEVICES TO INCREASE FLOW UNIFORMITY
EP4011537A1 (de) * 2020-12-14 2022-06-15 Hilti Aktiengesellschaft Vorrichtung zum positionieren von partikeln und verfahren zum positionieren von partikeln mittels der vorrichtung
DE102021109393A1 (de) 2021-04-14 2022-10-20 Gottfried Wilhelm Leibniz Universität Hannover, Körperschaft des öffentlichen Rechts Verfahren zum additiven Herstellen eines Bauteils, Bauteil und additive Fertigungsanlage zum Herstellen eines Bauteils
CN115415553A (zh) * 2022-09-16 2022-12-02 北京科技大学 三维多材料梯度粉层铺放装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517350A (ja) 2011-05-31 2014-07-17 ユニバーシティ・オブ・ウォーリック 付加的構築
CN103978206A (zh) 2014-05-14 2014-08-13 陕西科技大学 一种网格铺粉的增材制造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863538A (en) * 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
DE9018138U1 (de) * 1989-09-05 1996-02-08 Board of Regents, the University of Texas System, Austin, Tex. Vorrichtung für selektives Strahlungssintern
JPH0818375B2 (ja) 1990-05-15 1996-02-28 日東紡績株式会社 光硬化性樹脂を用いたプリント配線板用基材とその製造方法
US5257657A (en) * 1990-07-11 1993-11-02 Incre, Inc. Method for producing a free-form solid-phase object from a material in the liquid phase
US6206672B1 (en) * 1994-03-31 2001-03-27 Edward P. Grenda Apparatus of fabricating 3 dimensional objects by means of electrophotography, ionography or a similar process
US5637176A (en) * 1994-06-16 1997-06-10 Fry's Metals, Inc. Methods for producing ordered Z-axis adhesive materials, materials so produced, and devices, incorporating such materials
US5767877A (en) 1996-08-13 1998-06-16 Xerox Corporation Toner jet printer
US20020155254A1 (en) * 2001-04-20 2002-10-24 Mcquate William M. Apparatus and method for placing particles in a pattern onto a substrate
US20040084814A1 (en) 2002-10-31 2004-05-06 Boyd Melissa D. Powder removal system for three-dimensional object fabricator
EP1759791A1 (en) * 2005-09-05 2007-03-07 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Apparatus and method for building a three-dimensional article
US20070126157A1 (en) 2005-12-02 2007-06-07 Z Corporation Apparatus and methods for removing printed articles from a 3-D printer
GB0606685D0 (en) * 2006-04-03 2006-05-10 Xaar Technology Ltd Droplet Deposition Apparatus
DE102006041320B4 (de) * 2006-09-01 2013-11-28 Cl Schutzrechtsverwaltungs Gmbh Beschichtereinrichtung für eine Bauvorrichtung zur Erstellung von Formteilen aus pulverartigem Baumaterial unter Einbringung von Strahlungsenergie
DE102006055073A1 (de) 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts
DE102006055055A1 (de) 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts
EP2374546A1 (en) * 2010-04-12 2011-10-12 Nordson Corporation Powder supply system and method for colour change in a powder supply system
US8488994B2 (en) * 2011-09-23 2013-07-16 Stratasys, Inc. Electrophotography-based additive manufacturing system with transfer-medium service loops
US10144175B2 (en) 2014-03-18 2018-12-04 Evolve Additive Solutions, Inc. Electrophotography-based additive manufacturing with solvent-assisted planarization
JP2016064649A (ja) 2014-09-24 2016-04-28 キヤノン株式会社 立体物の製造に用いられる造形粒子、それを含む粉体、及びそれを用いた立体物の製造方法
JP6518344B2 (ja) 2015-04-30 2019-05-22 ザ エクスワン カンパニー 3次元プリンタ用の粉末リコータ
WO2017015217A2 (en) * 2015-07-20 2017-01-26 Velo3D, Inc. Transfer of particulate material
US20170072466A1 (en) * 2015-09-16 2017-03-16 Applied Materials, Inc. Selectively openable support platen for additive manufacturing
US20190022937A1 (en) * 2015-12-31 2019-01-24 Evolve Additive Solutions, Inc. Building with cylindrical layers in additive manufacturing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517350A (ja) 2011-05-31 2014-07-17 ユニバーシティ・オブ・ウォーリック 付加的構築
CN103978206A (zh) 2014-05-14 2014-08-13 陕西科技大学 一种网格铺粉的增材制造方法

Also Published As

Publication number Publication date
CA3037789A1 (fr) 2018-04-05
JP2019529189A (ja) 2019-10-17
US11931957B2 (en) 2024-03-19
US11338509B2 (en) 2022-05-24
KR20190061020A (ko) 2019-06-04
RU2019109654A3 (ja) 2020-10-29
CN109803775B (zh) 2021-10-22
AU2017333287B2 (en) 2023-01-19
RU2742939C2 (ru) 2021-02-11
BE1024613B1 (fr) 2018-05-02
EP3519163A1 (fr) 2019-08-07
RU2019109654A (ru) 2020-10-29
US20190240902A1 (en) 2019-08-08
BE1024613A1 (fr) 2018-04-24
AU2017333287A1 (en) 2019-04-18
US20220234290A1 (en) 2022-07-28
CN109803775A (zh) 2019-05-24
KR102369144B1 (ko) 2022-02-28
WO2018059833A1 (fr) 2018-04-05

Similar Documents

Publication Publication Date Title
JP7053591B2 (ja) 粒子を操作するためのデバイスおよび方法
US5940674A (en) Three-dimensional product manufacture using masks
JP7162624B2 (ja) 粉末層3次元プリンタ向け改良型微粉末分配システムおよび集塵システムならびに関連する方法
US10471631B2 (en) Electrohydrodynamic additive manufacturing systems and methods for high temperature modeling
US10144207B2 (en) Three-dimensional printing excess deposited particulate handling
TWI707769B (zh) 積層沈積系統
CN106536165A (zh) 增材制造中的层状加热、线状加热、等离子体加热及多重馈给材料
RU2007134981A (ru) Способ изготовления абразивных изделий
JP6736487B2 (ja) 付加堆積システムおよび方法
CN110014651B (zh) 用于从增材制造的零件移除构建材料的系统和方法
US11273599B2 (en) Device for manipulating particles
JP2006198577A (ja) 微粒子の分級方法および成膜方法
JP6699240B2 (ja) 積層造形装置及び積層造形方法
JP2004122341A (ja) 成膜方法
CN106715094B (zh) 几何学上紧密填料的粉末层的构造和应用
CN115072754A (zh) 氧化铝陶瓷空心微球及其制备方法、应用
KR102040286B1 (ko) 종이기반 디지털 미세 유체역학기기의 제조 방법
US11590575B2 (en) Metal condensate control during additive manufacturing
US20220016831A1 (en) Apparatus and methods for dispensing powder
JPH10202171A (ja) 微細造形方法及び装置
Van Geite et al. Impact-induced generation of single airborne microspheres and the subsequent vacuum-driven assembly of ordered arrays
JP2020108953A (ja) 電子写真法を使用する3次元部品の構築
KR20240105301A (ko) 3d 프린터에 공급되는 분말의 미분 제거 장치
JP2022018944A (ja) 立体造形装置、及び立体造形方法
JP2024500362A (ja) 流体抽出器を持つ電気流体力学的プリンタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150