JP7043019B1 - How to release humic substances slowly - Google Patents

How to release humic substances slowly Download PDF

Info

Publication number
JP7043019B1
JP7043019B1 JP2021185316A JP2021185316A JP7043019B1 JP 7043019 B1 JP7043019 B1 JP 7043019B1 JP 2021185316 A JP2021185316 A JP 2021185316A JP 2021185316 A JP2021185316 A JP 2021185316A JP 7043019 B1 JP7043019 B1 JP 7043019B1
Authority
JP
Japan
Prior art keywords
humic
sustained release
substance
storage body
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021185316A
Other languages
Japanese (ja)
Other versions
JP2023072714A (en
Inventor
義行 飛田和
定己 石橋
Original Assignee
株式会社日本ソフケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本ソフケン filed Critical 株式会社日本ソフケン
Priority to JP2021185316A priority Critical patent/JP7043019B1/en
Application granted granted Critical
Publication of JP7043019B1 publication Critical patent/JP7043019B1/en
Publication of JP2023072714A publication Critical patent/JP2023072714A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

【課題】 水中における腐植物質の徐放方法を提供する。【解決手段】 少なくとも腐植物質と多孔性物質からなる造粒物を、内部に収納部を有する収納体に収納し、これを水中に配置し、前記腐植物質から主にアルカリ性成分を徐放させる場合には、前記収納体の内部のpHを8より上に、前記腐植物質から主に酸性成分を徐放させる場合には、前記収納体の内部のpHを6より下に、前記腐植物質から全般の成分を徐放させる場合には、前記収納体の内部のpHを6~8にすることで、前記収納体の内外をつなぐ徐放経路を通じて腐植物質を徐放させる。【選択図】 なしPROBLEM TO BE SOLVED: To provide a method for sustained release of humic substances in water. SOLUTION: A case where an granulated substance composed of at least a humic substance and a porous substance is stored in a storage body having a storage portion inside, and this is placed in water to slowly release mainly alkaline components from the humic substance. The pH inside the container is set above 8 and, when the acidic component is mainly released from the humic substance, the pH inside the container is set below 6 in general from the humic substance. In the case of sustained release of the humic substance, the pH inside the container is set to 6 to 8, so that the humic substance is released slowly through the sustained release path connecting the inside and outside of the container. [Selection diagram] None

Description

本発明は、腐植物質を含む造粒物を、所定の収納体に収納し、これを海水等の水中に配置し、腐植物質中の所望の成分を徐放する方法に関するものである。 The present invention relates to a method of storing a granulated product containing humic substance in a predetermined storage body, arranging the granulated product in water such as seawater, and slowly releasing a desired component in the humic substance.

近年、栄養成分等を吸着材等に担持したものを水中に設置し、水質改善に役立てようとする取組みが増えてきた。 In recent years, there has been an increase in efforts to install nutrients and the like supported on adsorbents in water to help improve water quality.

例えば、鉄キレート発生材の利用方法において、木、又は草、又は野菜屑、又は落葉落枝の未分解の有機物を炭の製造過程で産出される極強酸性の有機酸である木酢液又は竹酢液に適量漬け込み、長期間養生することで製造される腐植液を鉄単独又は,炭単独又は,鉄及び炭の混合物に重量換算で10~100%浸み込ませることにより製造した鉄キレート発生材を河川、湖沼,海の水中又は底に設置して、キレート促進機能によってキレート鉄を発生させて植物プランクトンの光合成を活性化して増殖を促進して悪化した水質を改善することを特徴とする鉄キレート発生材の利用方法がある(特許文献1)。 For example, in the method of using an iron chelate generator, wood vinegar or bamboo vinegar, which is an extremely strongly acidic organic acid produced in the process of producing charcoal, is an undecomposed organic substance of wood, grass, vegetable waste, or deciduous branches. An iron chelate generator produced by immersing an appropriate amount of rot in a liquid and curing it for a long period of time soaked in iron alone, charcoal alone, or a mixture of iron and charcoal in an amount of 10 to 100% in terms of weight. Is characterized by the fact that the iron is installed in the water or bottom of rivers, lakes, and seas to generate chelated iron by the chelating promoting function, activate the photosynthesis of phytoplankton, promote the growth, and improve the deteriorated water quality. There is a method of using a chelate generator (Patent Document 1).

しかしながら、水中に設置された栄養成分は、短時間に拡散して消失する場合や、逆にほとんど徐放されない場合が多い。栄養成分が短時間に拡散して消失する場合、水質環境は、初期的には栄養過多となり、その後、栄養不足となる。また、栄養成分がほとんど徐放されない場合、水質環境は、元の状態とほとんど変わらない。 However, in many cases, the nutritional components placed in water diffuse and disappear in a short time, or conversely, they are hardly released slowly. When nutrients diffuse and disappear in a short period of time, the water quality environment is initially overnourished and then undernourished. In addition, when nutrients are hardly released, the water quality environment is almost the same as the original state.

このような問題の原因としては、栄養成分が、吸着材等に固定化されにくい、水流等の影響を受けやすい、逆に、吸着材等の内部に封じ込められたままの状態にある、といったことが挙げられる。 The causes of such problems are that the nutritional components are difficult to be immobilized on the adsorbent, etc., are easily affected by water flow, etc., and conversely, they are still contained inside the adsorbent, etc. Can be mentioned.

このように、水質環境を効果的に改善するためには、当該環境において所望の成分を目的に応じて過不足なく徐放させることが求められる。 As described above, in order to effectively improve the water quality environment, it is required to slowly release the desired component in the environment according to the purpose without excess or deficiency.

特開2017-209041号公報Japanese Unexamined Patent Publication No. 2017-209041

本発明が解決しようとする課題は、腐植物質を徐放する方法を提供することである。 An object to be solved by the present invention is to provide a method for slowly releasing humic substances.

第1の発明は、少なくとも腐植物質と多孔性物質からなる造粒物を、内部に収納部を有する収納体に収納し、これを水中に配置し、前記収納体の内外をつなぐ徐放経路を通じて腐植物質を徐放させる方法であり、前記腐植物質から主にアルカリ性成分を徐放させる場合には、前記収納体の内部のpHを8より上に、前記腐植物質から主に酸性成分を徐放させる場合には、前記収納体の内部のpHを6より下に、前記腐植物質から全般の成分を徐放させる場合には、前記収納体の内部のpHを6~8にする腐植物質徐放方法である。また、第2の発明は、少なくともフルボ酸と多孔性物質からなる造粒物を、内部に収納部を有する収納体に収納し、これを水中に配置し、前記収納体の内外をつなぐ徐放経路を通じてフルボ酸を徐放させる方法であり、フルボ酸の徐放を抑制させる場合には、前記収納体の内部のpHを8より上に、フルボ酸の徐放を促進させる場合には、前記収納体の内部のpHを6より下に、フルボ酸の徐放を前記の中間にする場合には、前記収納体の内部のpHを6~8にする腐植物質徐放方法である。また、第3の発明は、前記多孔性物質がゼオライトである第1または第2の発明の腐植物質徐放方法である。 In the first invention, an granule made of at least humic substance and a porous substance is stored in a storage body having a storage part inside, which is placed in water, and through a sustained release path connecting the inside and outside of the storage body. It is a method of slowly releasing a humic substance, and when the alkaline component is mainly released from the humic substance, the pH inside the container is set to a pH higher than 8, and the humic substance is mainly released from the humic substance. In the case of humic substance, the pH inside the container is lowered to 6 or less, and in the case of sustained release of all components from the humic substance, the pH inside the humic substance is set to 6 to 8. The method. Further, in the second invention, a granulated product composed of at least fulvic acid and a porous substance is stored in a storage body having a storage body inside, which is placed in water, and the sustained release connecting the inside and outside of the storage body. It is a method of sustained release of fulvic acid through a pathway. When the sustained release of fulvic acid is suppressed, the pH inside the container is set to a temperature higher than 8, and when the sustained release of fulvic acid is promoted, the above is mentioned. When the pH inside the container is lower than 6 and the sustained release of fulvic acid is in the middle of the above, the method is a sustained release method of rot plant substance in which the pH inside the container is 6 to 8. The third invention is the humic substance sustained release method of the first or second invention in which the porous substance is zeolite.

本発明では、腐植物質と多孔性物質からなる造粒物が収納体内部に留まり、当該造粒物が腐植物質を収納体外部に放出する効果が期待できる。また、収納体内部のpHの制御により、所望の成分を所望量徐放する効果が期待できる。また、多孔性物質としてゼオライトが選択されることで、腐植物質が短時間で拡散するのを防止し、長期間の徐放効果が期待できる。 In the present invention, it can be expected that the granulated product made of humic substance and the porous substance stays inside the storage body, and the granulated product releases the humic substance to the outside of the storage body. Further, by controlling the pH inside the container, the effect of slowly releasing a desired component in a desired amount can be expected. Further, by selecting zeolite as the porous substance, it is possible to prevent humic substances from diffusing in a short time, and a long-term sustained release effect can be expected.

造粒物の外観の一例である。This is an example of the appearance of the granulated product. 収納体の一例(左図)と当該収納体の連結イメージ(右図)である。It is an example of a storage body (left figure) and a connection image of the storage body (right figure). 本発明の実施イメージの一例である。This is an example of an implementation image of the present invention. 徐放試験の概念図である。It is a conceptual diagram of a sustained release test. 造粒物によって変色した溶液の色の評価イメージである。It is an evaluation image of the color of the solution discolored by the granulated product. 外部の影響を受けやすい収納体(左図)と受けにくい収納体(右図)の例である。This is an example of a storage body that is easily affected by the outside (left figure) and a storage body that is not easily affected (right figure).

<実施例1>
本発明に係る技術の構成要素を以下に示す。
<Example 1>
The components of the technique according to the present invention are shown below.

(1)腐植物質
腐植物質は、落ち葉や枯れ葉等の植物リターが微生物によって分解される過程で生じる有機物の総称のことである。分子量は、数百から数万であり、成分は、一般的に、フルボ酸、フミン酸、ヒューミンに分類される。腐植物質は、植物や微生物等への栄養分の供給や錯体形成等を通じて、環境中で多くの役割を担っている。
(1) Humic substance Humic substance is a general term for organic substances produced in the process of decomposition of plant litter such as fallen leaves and dead leaves by microorganisms. The molecular weight ranges from hundreds to tens of thousands, and the components are generally classified into fulvic acid, humic acid, and humin. Humic substances play many roles in the environment through the supply of nutrients to plants and microorganisms and the formation of complexes.

腐植物質の例としては、木、又は草、又は野菜屑、又は落葉落枝の未分解の有機物から製造されたものが挙げられる。その他、腐植物質やフルボ酸は、特開2017-209041号公報、特開2014-1160号公報、特許第6331206号公報に記載された方法や、これらに準じた方法によって製造されたものでよい。 Examples of humic substances include those produced from undecomposed organic matter of trees, or grass, or vegetable waste, or litter. In addition, the humic substance and fulvic acid may be produced by the methods described in JP-A-2017-209041, JP-A-2014-1160, and Patent No. 6331206, or methods similar thereto.

(2)多孔性物質
本発明における多孔性物質は、ゼオライト、タルク、クロライト、モンモリロナイト等の粘土鉱物、炭、シリカゲル等、表面から内部に孔を有する物質のことである。本発明において、多孔性物質は、腐植物質の担持体としての役割を有するものである。
(2) Porous substance The porous substance in the present invention is a substance having pores from the surface to the inside, such as clay minerals such as zeolite, talc, chlorite and montmorillonite, charcoal and silica gel. In the present invention, the porous substance has a role as a carrier of humic substances.

(3)腐植物質と多孔性物質からなる造粒物
本発明における造粒物は、腐植物質と多孔性物質を構成要素として含むものである。腐植物質は、いわゆる分画法における酸性画分、塩基性画分、中性画分中のいずれの成分を含むものでもよい。また、多孔性物質は、複数種類からなるものでもよい。また、これらの構成要素以外に、造粒物を形成するためのバインダーとなる成分(例えば、小麦粉や米粉、オガ粉等、含水率が高くなると粘性を帯び、乾燥すると固まるものが好ましいが、限定されるものではない)を含むものでもよい。その他、腐植物質とは異なる別の栄養成分や殺菌等の目的の異なる成分が含まれるものでもよい。図1は、造粒物の外観例である。
(3) Granulated product composed of humic substance and porous substance The granulated product in the present invention contains humic substance and porous substance as constituent elements. The humic substance may contain any of the components in the acidic fraction, the basic fraction, and the neutral fraction in the so-called fractionation method. Further, the porous substance may be composed of a plurality of types. In addition to these components, components that serve as a binder for forming granulated products (for example, wheat flour, rice flour, oga flour, etc., which become viscous when the water content is high and harden when dried are preferable, but are limited. It may be included). In addition, it may contain other nutritional components different from humic substances and components having different purposes such as sterilization. FIG. 1 is an example of the appearance of the granulated product.

(4)収納体
本発明における収納体は、造粒物の収納部、収納部と外部をつなぐ徐放経路を有するものであれば、どのようなものでもよく、形状、材質ともに限定されるものではない。形状としては、円筒、直方体、球等が、材質としては、金属製、樹脂製、木製等が挙げられる。また、例えば、造粒物がバインダー等によって円筒状やブロック状の大きな塊とされた場合には、その塊の周囲に巻き付けられ所定箇所に固定し得る縄状のものが収納体として用いられてもよい(縄状のものが使用方法によって収納体となる例)。
(4) Storage body The storage body in the present invention may be any storage body as long as it has a storage part for granulated material and a sustained-release path connecting the storage part and the outside, and is limited in shape and material. is not it. Examples of the shape include a cylinder, a rectangular parallelepiped, a sphere, and the like, and examples of the material include metal, resin, and wood. Further, for example, when the granulated material is formed into a large cylindrical or block-shaped mass by a binder or the like, a rope-shaped object that can be wrapped around the mass and fixed at a predetermined place is used as a storage body. It may be good (an example where a rope-shaped object becomes a storage body depending on how it is used).

収納体に求められる収納、徐放に係る機能は、造粒物が水流等の影響で外部に拡散しない程度に周囲から保護し、収納体の収納部から外部に腐植物質が徐放されるようにするものである。徐放経路の断面の大きさ(開口断面)は、造粒物の粒径レベルのものである必要はなく、造粒物の粒径に比べて大きなものでもよい。 The functions related to storage and sustained release required for the storage body are to protect the granulated material from the surroundings to the extent that it does not diffuse to the outside due to the influence of water flow, etc., so that humic substances are slowly released from the storage part of the storage body to the outside. It is something to do. The size of the cross section of the sustained release path (open cross section) does not have to be at the particle size level of the granulated product, and may be larger than the particle size of the granulated product.

また、pHの制御方法は、所定期間、所望のpH範囲を所望期間維持する方法であれば、どのような方法でもよい。例えば、収納体の収納部内壁(収納体素材)に所定の薬剤を塗り込む等して固定化させたものでもよいし、薬剤が必要に応じて収納部外から収納部内部に自動又は手動で投入されるものでもよい。このように、事前処置によって収納体内部が所望のpHを維持されたり、pHが途中から切り替わったりするものでもよいし、状況に応じた措置によって所望のpH範囲にされるものでもよい。また、pHの調整方法についても限定されるものではない。電気分解装置によって生成された所望のpHの電解水が用いられても良いし、重曹やクエン酸等のpH調整剤によってpHが調整された溶液が用いられても良い。 Further, the pH control method may be any method as long as it maintains a desired pH range for a predetermined period. For example, the inner wall (material of the storage body) of the storage body may be fixed by applying a predetermined drug, or the drug may be automatically or manually applied from the outside of the storage body to the inside of the storage body as needed. It may be thrown in. As described above, the inside of the container may be maintained at a desired pH by pretreatment, the pH may be switched from the middle, or the pH may be adjusted to a desired pH range by measures according to the situation. Further, the method of adjusting the pH is not limited. Electrolyzed water having a desired pH generated by an electrolyzer may be used, or a solution whose pH has been adjusted by a pH adjusting agent such as baking soda or citric acid may be used.

収納体の一例として、図2(左図)に示される天然ゴム由来の略円筒体が挙げられる。当該収納体の大きさは、外径約40mm、内径約30mm、長さ約1000mmである。収納体の中空は、造粒物を収納するとともに、収納体の端部と連結棒との嵌合によって複数の収納体同士をつなぐこともできる。図2(右図)は、2つの収納体が連結棒によって連結された状態をあらわす。 As an example of the storage body, there is a substantially cylindrical body derived from natural rubber shown in FIG. 2 (left figure). The size of the storage body is about 40 mm in outer diameter, about 30 mm in inner diameter, and about 1000 mm in length. The hollow of the storage body can store the granulated material, and can also connect a plurality of storage bodies to each other by fitting the end portion of the storage body and the connecting rod. FIG. 2 (right figure) shows a state in which two storage bodies are connected by a connecting rod.

収納体の中空から外表面にかけては、複数の孔が設けられる(図省略)。これらの孔径は、約1~6mm、各孔の間隔は約1~6mmである。腐植物質は、これらの孔を通じて外部に放出される。また、収納体の長手方向に50~100mmの切れ込みが設けられ、収納体のたわみによって切れ込みが開き、その間に腐植物質が、内部から放出されるものでもよい。孔の数や孔径、孔の有無、切れ込みの数や長さ、切れ込みの有無は、目的に応じて設計される。また、これらの孔や切れ込みは、収納体外表面の凹部に設けられていることから、凸部が徐放経路を外部の生物や浮遊物質等から保護する。 A plurality of holes are provided from the hollow of the housing to the outer surface (not shown). The diameter of these holes is about 1 to 6 mm, and the distance between the holes is about 1 to 6 mm. Humic substances are released to the outside through these pores. Further, a notch of 50 to 100 mm may be provided in the longitudinal direction of the storage body, and the notch may be opened by the deflection of the storage body, during which the humic substance may be released from the inside. The number and diameter of holes, the presence or absence of holes, the number and length of cuts, and the presence or absence of cuts are designed according to the purpose. Further, since these holes and notches are provided in the concave portions on the outer surface of the storage body, the convex portions protect the sustained release path from external organisms, suspended solids, and the like.

また、本実施例における連結棒は、円柱形状で収納体と同じ素材である。直径は約30mm、長さは約40mmである。連結棒の役割は、収納体同士を連結すること、中空に投入された造粒物を内部にとどめておくことである。また、内部が長手方向に貫通する中空構造の連結棒によって、連結された収納体の内部を各種成分が移動可能となる。 Further, the connecting rod in this embodiment has a cylindrical shape and is made of the same material as the storage body. The diameter is about 30 mm and the length is about 40 mm. The role of the connecting rod is to connect the storage bodies to each other and to keep the granulated material thrown into the hollow inside. Further, various components can move inside the connected storage body by the connecting rod having a hollow structure in which the inside penetrates in the longitudinal direction.

ここで、図3が示すように、収納体が複数連結され、端部から所定pHの液体が注入されることで、造粒物の収納部のpHが自由に制御される。当該収納体は、テトラポッド等の重量物に巻き付け固定されることで、所定箇所の水質改善に資する。 Here, as shown in FIG. 3, a plurality of storage bodies are connected and a liquid having a predetermined pH is injected from the end portion, whereby the pH of the storage portion of the granulated product is freely controlled. The storage body is wrapped around a heavy object such as a tetrapod and fixed to contribute to improving the water quality at a predetermined location.

<実施例2>
腐植物質の徐放試験を以下に示す。
<Example 2>
The sustained release test of humic substances is shown below.

(1)腐植物質担持体
本実施例における腐植物質の担持体は、平均粒径が1~20mmの粒状のもの及び粉末状のものである。本実施例においては、担持体としてゼオライト、タルク、ベントナイト、竹炭、シリカゲルが、比較対象として発泡ガラスが用いられた。
(1) Humic substance carrier The humic substance carrier in this example is a granular one having an average particle size of 1 to 20 mm and a powdery one. In this example, zeolite, talc, bentonite, bamboo charcoal, and silica gel were used as carriers, and foamed glass was used as a comparison target.

(2)腐植物質
本実施例における腐植物質は、バーク堆肥から得られた抽出溶液である(これを、「腐植液」と言う。腐植液として、腐植物質中の成分量が調整されたものが複数用意される。例えば、フルボ酸が1000~8000ppmの所定濃度の腐植液が用意される。)。この腐植液中に多孔性物質が24時間以上浸漬され、乾燥され、固形化されたものが、腐植物質と多孔性物質からなる造粒物である。
(2) Humic substance The humic substance in this example is an extract solution obtained from bark compost (this is called a "humus solution". The humic substance is an adjusted amount of components in the humic substance. A plurality of humic substances are prepared. For example, a humic solution having a predetermined concentration of humic acid of 1000 to 8000 ppm is prepared.) A porous substance is immersed in this humus solution for 24 hours or more, dried, and solidified to be a granulated product composed of humic substance and the porous substance.

(3)評価指標
腐植物質は、黒褐色から赤褐色まで、その中の成分に応じ独自の色を呈する。そこで、本実施例では、造粒物に用いられた腐植液の当初の色と、当該造粒物がpH調整水に投じられたことによる変色が、評価指標として利用された(図4、図5)。すなわち、図4が示すpH調整水のpH値と造粒物放置時間が変化した場合において、溶液の色の変化に基づくことで、造粒物からの腐植物質中の成分の徐放の有無や徐放量が推定される。例えば、黒褐色を呈する腐植物質が用いられた場合において、pH7の水に当該腐植物質を含む造粒物が投じられ、同様の黒褐色を呈した場合には、腐植物質が造粒物から水中に拡散したものと評価される。所定の時間経過後、当該造粒物が新たなpH7の水に投じられ、同様の変色が見られる場合は、当該造粒物の徐放機能が維持されているものと評価される。一方、変色が弱くなる(又は変色が見られない)場合は、徐放機能が弱くなった(又はなくなった)ものと評価される。また、成分の違いは、色合いの違いによって見分けられる。
(3) Evaluation index Humic substances exhibit a unique color from dark brown to reddish brown according to the components in them. Therefore, in this example, the initial color of the humus liquid used for the granulated product and the discoloration due to the granulated product being poured into the pH-adjusted water were used as evaluation indexes (FIGS. 4 and 4). 5). That is, when the pH value of the pH-adjusted water shown in FIG. 4 and the time for leaving the granulated product change, the presence or absence of sustained release of the components in the humus from the granulated product is determined based on the change in the color of the solution. The sustained release amount is estimated. For example, when a humic substance exhibiting a blackish brown color is used, a granule containing the humic substance is cast in water at pH 7, and when a similar blackish brown color is exhibited, the humic substance diffuses from the granules into water. It is evaluated as having been done. When the granulated product is poured into fresh water having a pH of 7 after a lapse of a predetermined time and the same discoloration is observed, it is evaluated that the sustained release function of the granulated product is maintained. On the other hand, when the discoloration is weakened (or no discoloration is observed), it is evaluated that the sustained release function is weakened (or disappeared). In addition, the difference in the components can be distinguished by the difference in the hue.

(4)評価結果
pH6~8の水では、腐植物質担持体としてゼオライトが用いられた場合が、腐植物質の色の再現が最も長期間持続した。すなわち、多孔性物質の中では、ゼオライトの徐放機能が最も長期間持続することが確認された。ゼオライトの徐放機能の持続期間は6カ月以上、タルク、ベントナイト、シリカゲル、竹炭の徐放機能の持続期間は6カ月未満であった。また、比較対象の発泡ガラスの場合、造粒物が水中に1日放置されると、2日目以降からは変色が確認されなかった。これは、上記多孔性物質と比較してかなり短いものであった。すなわち、比較対象よりも粘土鉱物系の多孔性物質の方が、腐植物質担持体として徐放機能が維持され、さらに、粘土鉱物の中でもゼオライトが最も徐放機能が維持されることが確認された。なお、造粒物の粒径による変色の差は確認されなかった。
(4) Evaluation Results In water with a pH of 6 to 8, when zeolite was used as the humic substance carrier, the color reproduction of the humic substance lasted for the longest period of time. That is, it was confirmed that the sustained release function of zeolite lasts for the longest time among the porous substances. The duration of the sustained release function of zeolite was 6 months or more, and the duration of the sustained release function of talc, bentonite, silica gel, and bamboo charcoal was less than 6 months. Further, in the case of the foam glass to be compared, when the granulated product was left in water for one day, no discoloration was confirmed from the second day onward. This was considerably shorter than the above-mentioned porous material. That is, it was confirmed that the clay mineral-based porous substance maintained the sustained-release function as a humic substance carrier, and that zeolite maintained the sustained-release function most among the clay minerals. .. No difference in discoloration due to the particle size of the granulated product was confirmed.

赤褐色を呈するフルボ酸を多く含む腐植物質とゼオライトの造粒物の場合、pH8より高いと、溶液は、薄い赤褐色となった。この変色(初期の変色)は、pHが高くなるほど弱くなった。すなわち、pHが8より高くなるほど、造粒物のフルボ酸の放出機能が抑制されることが確認された。一方、pH6より低い酸性水では、赤褐色が鮮明になった。すなわち、pHが低くなるほど、造粒物のフルボ酸放出機能が促進されることが確認された。また、フミン酸を多く含む腐植物質とゼオライトの造粒物の場合、pH6より低いと、溶液の変色が弱くなり、pH8より高いと、溶液の変色が鮮明になった。ヒューミンを多く含む腐植物質とゼオライトの造粒物の場合は、pH6~8において、溶液の変色が鮮明になり、pHがこの範囲から遠ざかるほど溶液の変色が弱くなった。 In the case of reddish brown fulvic acid-rich humic and zeolite granules, above pH 8, the solution turned light reddish brown. This discoloration (initial discoloration) became weaker as the pH increased. That is, it was confirmed that the higher the pH was, the more the function of releasing fulvic acid in the granulated product was suppressed. On the other hand, in acidic water having a pH lower than 6, the reddish brown color became clear. That is, it was confirmed that the lower the pH, the more the fulvic acid release function of the granulated product was promoted. Further, in the case of humic acid-rich humic acid and zeolite granules, the discoloration of the solution became weak when the pH was lower than 6, and the discoloration of the solution became clear when the pH was higher than 8. In the case of humic-rich humic substances and zeolite granules, the discoloration of the solution became clear at pH 6 to 8, and the discoloration of the solution became weaker as the pH moved away from this range.

(5)考察
粘土鉱物は、腐植物質の担持、徐放機能が発泡ガラスと比較して大きく、その中でも、ゼオライトの徐放機能が長期間維持されることが確認された。すなわち、ゼオライトが最も腐植物質との結合が最も強いことが示唆された。このことから、腐植物質を一定量、継続して放出したい場合には、ゼオライトによる造粒物が有用であり、一方、腐植物質の放出量を初期段階において多くしたい場合には、ゼオライトとその他の多孔性物質の組合せによる造粒物が有用であることが示唆された。
(5) Discussion It was confirmed that clay minerals have a larger support and sustained release function of humic substances than foamed glass, and among them, the sustained release function of zeolite is maintained for a long period of time. That is, it was suggested that zeolite has the strongest bond with humic substances. For this reason, zeolite granulation is useful when a certain amount of humic substance is to be released continuously, while zeolite and other substances are used when a large amount of humic substance is to be released in the initial stage. It was suggested that granulated products made from a combination of porous substances would be useful.

また、造粒物からの腐植物質の徐放速度は、pHの影響を大きく受けることが確認された。pHが低くなるほど酸性成分の徐放速度が大きくなり、pHが高くなるほどアルカリ性成分の徐放速度が大きくなり、pHが中間に近づくほど中性成分の徐放速度が大きくなるものと考えられる。また、pHが中性領域の場合は、中性成分と同時に酸性成分、アルカリ性成分も一定量徐放されており、腐植物質中の全般成分が同時に徐放される領域であると考えられる。これらのことから、造粒物が収納された収納体内部のpH制御によって、腐植物質の徐放速度を任意に制御できることが示唆された。 It was also confirmed that the sustained release rate of humic substances from the granules was greatly affected by pH. It is considered that the lower the pH, the higher the sustained release rate of the acidic component, the higher the pH, the higher the sustained release rate of the alkaline component, and the closer the pH is to the middle, the higher the sustained release rate of the neutral component. Further, when the pH is in the neutral region, a certain amount of acidic and alkaline components are gradually released at the same time as the neutral component, and it is considered that the general components in the humic substance are released at the same time. From these facts, it was suggested that the sustained release rate of humic substances could be arbitrarily controlled by controlling the pH inside the container in which the granules were stored.

すなわち、pHが6より低い環境は、アルカリ性成分の徐放を抑制(pHがより低くなるほど中性成分の徐放も抑制)するとともに、酸性成分の徐放を促進することが示唆された。また、pHが8より高い環境は、特に酸性成分の徐放を抑制(pHがより高くなるほど中性成分の徐放も抑制)するとともに、アルカリ性成分の徐放を促進することが示唆された。また、pHが6~8の環境は、中性成分を中心に、全般成分を徐放させることが示唆された。またこれらの結果は、多孔性物質の種類と腐植物質の相性を踏まえたpH調整(例えば、ある多孔性物質が、pH3~4付近で、想定以上にフルボ酸を徐放する場合、pH4より高めに調整)により、所望の徐放速度を実現できることを示唆するものである。 That is, it was suggested that an environment having a pH lower than 6 suppresses the sustained release of the alkaline component (the lower the pH, the more the sustained release of the neutral component) and promotes the sustained release of the acidic component. It was also suggested that an environment with a pH higher than 8 suppresses the sustained release of acidic components (the higher the pH, the more the sustained release of neutral components) and promotes the sustained release of alkaline components. In addition, it was suggested that in an environment with a pH of 6 to 8, the general components were slowly released, centering on the neutral components. In addition, these results show that the pH is adjusted based on the compatibility between the type of porous substance and humic substances (for example, when a certain porous substance releases fulvic acid more slowly than expected at around pH 3-4, it is higher than pH 4). (Adjusted to) suggests that the desired sustained release rate can be achieved.

また、本発明に係る方法によると、改善すべき水質環境に応じた対応が可能になる。例えば、フルボ酸の徐放による水質改善において、pH6~8によるフルボ酸の徐放では水質改善効果が低いと判断された場合(例えば、目視で水質環境が改善されないと判断された場合)、より低いpHによるフルボ酸放出量による対応への移行が考えられる。逆に、フルボ酸の放出量が過多であると判断された場合には、当初のpHよりも高いpHによる対応への移行が考えられる。 Further, according to the method according to the present invention, it is possible to take measures according to the water quality environment to be improved. For example, in the case of improving water quality by sustained release of fulvic acid, when it is judged that the effect of improving water quality is low by the sustained release of fulvic acid at pH 6 to 8 (for example, when it is judged that the water quality environment is not visually improved), It is conceivable that there will be a shift to a response based on the amount of fulvic acid released at low pH. On the contrary, if it is determined that the amount of fulvic acid released is excessive, it is conceivable that the pH will be higher than the initial pH.

また、pHの制御方法は、上述の通り、pH調整済みの溶液を収納体内部に供給する方法があるが、より簡易的には、酸性やアルカリ性を有する素材そのものを収納体とするものでもよい。例えば、コンクリート製収納体の利用が挙げられる。一般的に、コンクリートは、アルカリ性を示す。そのため、コンクリート製の収納体は、収納部がアルカリ性の雰囲気となるため、腐植物質中のアルカリ性成分の放出量を多くするとともに、中性成分や酸性成分の放出量を抑える。すなわち、コンクリート製の収納体に酸性成分であるフルボ酸が収納されると、フルボ酸の徐放速度は一定程度抑制され、長期間の徐放が可能となる。また、フルボ酸の放出量が所望する量よりも少ない場合や放出が認められない場合は、収納部内壁表面の化学的特性が、酸性成分によって中性や酸性に変えられたり、コーティング剤によって被覆されたり、pH調整剤によって収納部全体のpHが調整されたりする運用が考えられる。 Further, as the pH control method, as described above, there is a method of supplying the pH-adjusted solution to the inside of the storage body, but more simply, the material itself having acidity or alkalinity may be used as the storage body. .. For example, the use of a concrete storage body can be mentioned. In general, concrete is alkaline. Therefore, in the concrete storage body, the storage portion has an alkaline atmosphere, so that the amount of alkaline components released in the humic substance is increased and the amount of neutral components and acidic components released is suppressed. That is, when fulvic acid, which is an acidic component, is stored in a concrete storage body, the sustained release rate of fulvic acid is suppressed to a certain extent, and long-term sustained release is possible. If the amount of fulvic acid released is less than the desired amount or no release is observed, the chemical properties of the inner wall surface of the storage section may be changed to neutral or acidic by an acidic component, or coated with a coating agent. Or the pH of the entire storage unit may be adjusted by a pH adjuster.

このように、本発明における収納体内部は、所望のpHに制御される必要があるため、構造上、外部環境の影響を受け、急激に内部が薄められるようなものは好ましくない。図6は、それを示す例である。図6の左図は、上部全面が開口状態にある箱形状の収納体である。このように開口部の面と収納部の平行面が同程度の大きさである収納体の内部は、外部環境水と混ざりやすく、pHの制御が困難である。一方、図6の右図は、中央部分が貫通した蓋が上部に設置された収納体である。このように、開口断面が収納断面よりも小さく設定されることで、pHの制御が容易になる。図6に示される収納体による徐放評価に基づくと、箱形状の収納部を有する収納体においては、徐放に係る総開口面積が、その平行面たる収納断面の10分の1から2分の1程度の面積であることが好ましい。 As described above, since the inside of the housing in the present invention needs to be controlled to a desired pH, it is not preferable that the inside is rapidly diluted due to the influence of the external environment due to its structure. FIG. 6 is an example showing this. The left figure of FIG. 6 is a box-shaped storage body in which the entire upper surface is open. As described above, the inside of the storage body in which the surface of the opening and the parallel surface of the storage portion have the same size is easily mixed with the external environmental water, and it is difficult to control the pH. On the other hand, the right figure of FIG. 6 is a storage body in which a lid through which the central portion penetrates is installed at the upper part. By setting the opening cross section smaller than the storage cross section in this way, it becomes easy to control the pH. Based on the sustained release evaluation by the storage body shown in FIG. 6, in the storage body having the box-shaped storage portion, the total opening area related to the sustained release is 1/10 to 2 minutes of the storage cross section as the parallel plane. The area is preferably about 1.

また、実施例において、造粒物の粒径による腐植物質徐放機能に差は確認されなかったが、造粒物の粒径が小さいほど、水流等の影響を受け、造粒物そのものが拡散しやすいことがわかっている。従って、水流等の影響が少ない環境においては、収納体の内外をつなぐ徐放経路は、造粒物に比べて大きなものでもよいが、水流等の影響がある環境においては、収納体の内外をつなぐ徐放経路は造粒物よりも小さいことが望ましい。 Further, in the examples, no difference was confirmed in the sustained release function of humic substances depending on the particle size of the granulated product, but the smaller the particle size of the granulated product, the more affected by the water flow and the like, and the granulated product itself diffused. It turns out to be easy. Therefore, in an environment where the influence of water flow or the like is small, the sustained release path connecting the inside and outside of the storage body may be larger than that of the granulated product, but in an environment where the water flow or the like has an influence, the inside and outside of the storage body may be used. It is desirable that the sustained release route to be connected is smaller than that of the granulated product.

本発明は、各種成分の徐放に利用可能である。例えば、殺菌成分と栄養成分の徐放において、まずは殺菌対象に対して殺菌成分が徐放され、次に、繁殖対象に対して栄養成分が徐放される等の利用が考えられる。

The present invention can be used for sustained release of various components. For example, in the sustained release of the bactericidal component and the nutritional component, the bactericidal component is first released slowly to the sterilizing target, and then the nutritional component is gradually released to the breeding target.

Claims (3)

少なくとも腐植物質と多孔性物質からなる造粒物を、内部に収納部を有する収納体に収納し、これを水中に配置し、前記収納体の内外をつなぐ徐放経路を通じて腐植物質を徐放させる方法であり、
前記多孔性物質が、ゼオライトと、少なくとも、タルク、ベントナイト、シリカゲル、竹炭のいずれかと、を含む複数種類からなるものであり、
前記腐植物質から主にアルカリ性成分を徐放させる場合には、前記収納体の内部のpHを8より上に、
前記腐植物質から主に酸性成分を徐放させる場合には、前記収納体の内部のpHを6より下に、
前記腐植物質から全般の成分を徐放させる場合には、前記収納体の内部のpHを6~8にする腐植物質徐放方法。
Granulations consisting of at least humic substances and porous substances are stored in a storage body having a storage part inside, which is placed in water, and the humic substances are slowly released through a sustained-release route connecting the inside and outside of the storage body. Is the way
The porous substance is composed of a plurality of types including zeolite and at least one of talc, bentonite, silica gel, and bamboo charcoal.
When the alkaline component is mainly released slowly from the humic substance, the pH inside the container is set to a pH higher than 8.
When the acidic component is mainly released slowly from the humic substance, the pH inside the container is set to lower than 6.
A method for sustained release of humic substances, in which the pH inside the container is adjusted to 6 to 8 in the case of sustained release of all components from the humic substances.
少なくともフルボ酸と多孔性物質からなる造粒物を、内部に収納部を有する収納体に収納し、これを水中に配置し、前記収納体の内外をつなぐ徐放経路を通じてフルボ酸を徐放させる方法であり、
前記多孔性物質が、ゼオライトと、少なくとも、タルク、ベントナイト、シリカゲル、竹炭のいずれかと、を含む複数種類からなるものであり、
フルボ酸の徐放を抑制させる場合には、前記収納体の内部のpHを8より上に、
フルボ酸の徐放を促進させる場合には、前記収納体の内部のpHを6より下に、
フルボ酸の徐放を前記の中間にする場合には、前記収納体の内部のpHを6~8にする腐植物質徐放方法。
Granulations consisting of at least fulvic acid and a porous substance are stored in a storage body having an internal storage portion, which is placed in water, and fulvic acid is slowly released through a sustained-release route connecting the inside and outside of the storage body. Is the way
The porous substance is composed of a plurality of types including zeolite and at least one of talc, bentonite, silica gel, and bamboo charcoal.
In order to suppress the sustained release of fulvic acid, the pH inside the container should be set above 8.
To promote the sustained release of fulvic acid, the pH inside the enclosure should be below 6.
When the sustained release of fulvic acid is in the middle of the above, a method for sustained release of humic substances in which the pH inside the container is set to 6 to 8.
少なくとも腐植物質と多孔性物質からなる造粒物を、内部に収納部を有する収納体に収納し、これを水中に配置し、前記収納体の内外をつなぐ徐放経路を通じて腐植物質を徐放させる方法であり、Granulations consisting of at least humic substances and porous substances are stored in a storage body having a storage part inside, which is placed in water, and the humic substances are slowly released through a sustained-release route connecting the inside and outside of the storage body. Is the way
前記造粒物が、The granulated product
前記腐植物質中の最も長く徐放させる成分とゼオライトからなるものと、The longest sustained release component of the humic substance and those consisting of zeolite,
前記成分以外の徐放成分と少なくとも、タルク、ベントナイト、シリカゲル、竹炭のいずれかからなるものと、であり、It is composed of a sustained-release component other than the above-mentioned component and at least one of talc, bentonite, silica gel, and bamboo charcoal.
前記収納体の内部を所望のpHにする腐植物質の徐放方法。A method for slowly releasing humic substances to bring the inside of the container to a desired pH.
JP2021185316A 2021-11-14 2021-11-14 How to release humic substances slowly Active JP7043019B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021185316A JP7043019B1 (en) 2021-11-14 2021-11-14 How to release humic substances slowly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021185316A JP7043019B1 (en) 2021-11-14 2021-11-14 How to release humic substances slowly

Publications (2)

Publication Number Publication Date
JP7043019B1 true JP7043019B1 (en) 2022-03-29
JP2023072714A JP2023072714A (en) 2023-05-25

Family

ID=81215113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021185316A Active JP7043019B1 (en) 2021-11-14 2021-11-14 How to release humic substances slowly

Country Status (1)

Country Link
JP (1) JP7043019B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159082A (en) 2004-12-07 2006-06-22 Mitsuru Yamada Material and system for cleaning water quality
JP2014001160A (en) 2012-06-18 2014-01-09 Japan Conservation Engineers Co Ltd Method for producing a humic solution that enhances bioactivity of plants and animals and use method of humic solution
JP2014145016A (en) 2013-01-28 2014-08-14 Japan Conservation Engineers Co Ltd Method for enhancing and recovering function of inorganic material or organic material using humus liquid produced by organic acid
JP2017184731A (en) 2016-03-30 2017-10-12 太平洋セメント株式会社 Algae growth promotion material
JP2018127413A (en) 2017-02-08 2018-08-16 株式会社ケーツーコミュニケーションズ Method for extracting fulvic acid and humic acid and method for fractionating humus material
JP2019094297A (en) 2017-11-22 2019-06-20 株式会社日本ソフケン Method for evaluating the quality of fulvic acid solution and method for producing fulvic acid solution
JP2019097434A (en) 2017-11-30 2019-06-24 太平洋セメント株式会社 Nutrition supply grain
US20200230065A1 (en) 2017-02-14 2020-07-23 Agro Innovation International Humic Substance-Encapsulated Particles, Compositions and Method of Making the Same
JP2021037454A (en) 2019-09-02 2021-03-11 充日児 ▲高▼味 Water quality clarification material, water quality clarification device, water quality clarification method, and production method of fulvic acid-immobilized composite

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159082A (en) 2004-12-07 2006-06-22 Mitsuru Yamada Material and system for cleaning water quality
JP2014001160A (en) 2012-06-18 2014-01-09 Japan Conservation Engineers Co Ltd Method for producing a humic solution that enhances bioactivity of plants and animals and use method of humic solution
JP2014145016A (en) 2013-01-28 2014-08-14 Japan Conservation Engineers Co Ltd Method for enhancing and recovering function of inorganic material or organic material using humus liquid produced by organic acid
JP2017184731A (en) 2016-03-30 2017-10-12 太平洋セメント株式会社 Algae growth promotion material
JP2018127413A (en) 2017-02-08 2018-08-16 株式会社ケーツーコミュニケーションズ Method for extracting fulvic acid and humic acid and method for fractionating humus material
US20200230065A1 (en) 2017-02-14 2020-07-23 Agro Innovation International Humic Substance-Encapsulated Particles, Compositions and Method of Making the Same
JP2019094297A (en) 2017-11-22 2019-06-20 株式会社日本ソフケン Method for evaluating the quality of fulvic acid solution and method for producing fulvic acid solution
JP2019097434A (en) 2017-11-30 2019-06-24 太平洋セメント株式会社 Nutrition supply grain
JP2021037454A (en) 2019-09-02 2021-03-11 充日児 ▲高▼味 Water quality clarification material, water quality clarification device, water quality clarification method, and production method of fulvic acid-immobilized composite

Also Published As

Publication number Publication date
JP2023072714A (en) 2023-05-25

Similar Documents

Publication Publication Date Title
Nerlich et al. Soilless cultivation: Dynamically changing chemical properties and physical conditions of organic substrates influence the plant phenotype of lettuce
US20060150495A1 (en) Anaerobically digested fiber for use as a container media substrate
CA2187116C (en) Flower pot assembly and method employing same
JP7043019B1 (en) How to release humic substances slowly
JP6956409B2 (en) Circulation type breeding and cultivation equipment
JP2006199592A (en) Life-prolonging material for cut flower
Dickinson et al. The storage properties of wood-based peat-free growing media
JP2007044034A (en) Hybrid bio-chip
JP2017221120A (en) Solid material for plant cultivation
JP2006288221A (en) Method for preserving photosynthetic bacterium and preserved material of photosynthetic bacterium obtained by the method
KR20030018517A (en) The preparation and application of agrecultural products fresh keep complex adsorbent
JPS59115741A (en) Granular deodorant
Richard Effect of nursery media particle size distribution on container-grown woody ornamental production
Chalker-Scott How are Hydrangea Flower Colors Determined?
JPH0234591A (en) Perfumed fertilizer
US20220330472A1 (en) Degradable aroma product with seeds wrapped therein
CA2948969A1 (en) Wool pellets for plant fertilization and related methods
CN1126545A (en) Egg preservative of Chinese herbal medicines
CA2948971A1 (en) Wool pellets for water retention with plants and related methods
JP2007332038A (en) Method for producing dry flower
JP6205080B1 (en) Terrestrial divalent iron ion supplier
Neumaier et al. Longevity of cut flowers as influenced by water quality and floral foam
JPS63190802A (en) Plant growth regulating formed body
EP1769675B1 (en) Gel used for moisturizing plants or parts thereof
JP2003153631A (en) Method for utilizing absorptive resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211114

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220224

R150 Certificate of patent or registration of utility model

Ref document number: 7043019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350