JP7042568B2 - Motor control device and motor control method - Google Patents

Motor control device and motor control method Download PDF

Info

Publication number
JP7042568B2
JP7042568B2 JP2017146210A JP2017146210A JP7042568B2 JP 7042568 B2 JP7042568 B2 JP 7042568B2 JP 2017146210 A JP2017146210 A JP 2017146210A JP 2017146210 A JP2017146210 A JP 2017146210A JP 7042568 B2 JP7042568 B2 JP 7042568B2
Authority
JP
Japan
Prior art keywords
axis
voltage
current
unit
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017146210A
Other languages
Japanese (ja)
Other versions
JP2019030095A (en
Inventor
健二 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sawafuji Electric Co Ltd
Original Assignee
Sawafuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sawafuji Electric Co Ltd filed Critical Sawafuji Electric Co Ltd
Priority to JP2017146210A priority Critical patent/JP7042568B2/en
Priority to DE112018003835.1T priority patent/DE112018003835T5/en
Priority to PCT/JP2018/024755 priority patent/WO2019021745A1/en
Priority to CN201880042361.9A priority patent/CN110785923A/en
Publication of JP2019030095A publication Critical patent/JP2019030095A/en
Application granted granted Critical
Publication of JP7042568B2 publication Critical patent/JP7042568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting

Description

本発明は、特に矩形波制御時のモータの駆動電流のオフセット等を補正するモータ制御装置及びモータ制御方法に関するものである。 The present invention particularly relates to a motor control device and a motor control method for correcting an offset of a motor drive current during square wave control.

多くの家電や機械設備の動力源として電動モータが使用されている。このうち、回転子側に永久磁石を設け、固定子側に電機子巻線を設け、この電機子巻線の磁界を制御することで回転子を回転させるPM(Permanent Magnet)モータ(永久磁石モータ)は、界磁損失が存在しないため低損失、高効率であり、近年の省エネルギー化の流れから大型の機械機器にも多く採用されている。そして、このPMモータの制御方法としては、外部(システムの上位の制御部等)から指示されるトルク指令値と、PMモータの現在のトルクTとから所定の駆動信号Su、Sv、Swを生成し、この駆動信号Su、Sv、Swによってインバータをスイッチング動作させ、これにより出力する3相交流の駆動電流Iu、Iv、Iwで行う事が一般的である。また、この駆動信号Su、Sv、Swの生成は、PMモータの運転状況に応じて正弦波制御と矩形波制御とを切り換えて行うものが多い。この制御方法では、中・低速回転の動作領域では正弦波制御(PWM制御)にてPMモータを動作制御(駆動信号Su、Sv、Swの生成)し、高速回転・高トルクの動作領域では高出力が可能な矩形波制御にて動作制御を行う。ただし、正弦波制御の場合でも矩形波制御の場合でも、PMモータの制御にはインバータが出力するモータの駆動電流Iu、Iv、Iwのフィードバック電流の情報とPMモータの電気角の情報が必要となる。 Electric motors are used as a power source for many home appliances and machinery. Of these, a permanent magnet is provided on the rotor side, an armature winding is provided on the stator side, and a PM (Permanent Magnet) motor (permanent magnet motor) that rotates the rotor by controlling the magnetic field of the armature winding. ) Has low loss and high efficiency because there is no field loss, and is widely used in large machinery and equipment due to the recent trend of energy saving. Then, as a control method of this PM motor, predetermined drive signals Su, Sv, Sw are generated from the torque command value instructed from the outside (upper control unit of the system, etc.) and the current torque T of the PM motor. However, it is common that the inverter is switched by the drive signals Su, Sv, and Sw, and the drive currents Iu, Iv, and Iw of the three-phase alternating current output by the switching operation are used. Further, in many cases, the drive signals Su, Sv, and Sw are generated by switching between sine wave control and rectangular wave control according to the operating condition of the PM motor. In this control method, the PM motor is controlled by sine wave control (PWM control) in the operating region of medium / low speed rotation (generation of drive signals Su, Sv, Sw), and is high in the operating region of high speed rotation / high torque. The operation is controlled by the square wave control that can output. However, in both sine wave control and square wave control, PM motor control requires information on the feedback currents of the motor drive currents Iu, Iv, and Iw output by the inverter and information on the electrical angle of the PM motor. Become.

しかしながら、電気角取得のための角度センサの精度やインバータのスイッチング素子の応答バラつき等により駆動電流Iu、Iv、Iwにオフセットが生じる場合があり、このオフセットはモータの振動の発生やトルク低下、損失等の要因となる。特に、矩形波制御では電圧位相によりモータのトルクを直接制御することが一般的であるため、フィードバック電流中のオフセット成分に対する補正処理がされず、オフセットによる影響が顕著に表れる傾向が高い。 However, the drive currents Iu, Iv, and Iw may be offset due to the accuracy of the angle sensor for acquiring the electric angle and the response variation of the switching element of the inverter. It becomes a factor such as. In particular, in the square wave control, since the torque of the motor is generally directly controlled by the voltage phase, the offset component in the feedback current is not corrected, and the influence of the offset tends to be noticeable.

ここで、図4に三相の駆動電流Iu、Iv、Iwと、これを3相/dq変換したd軸、q軸電流のシミュレーショングラフを示す。尚、図4(a)が振幅にアンバランスが存在する場合の駆動電流Iu、Iv、Iwのシミュレーショングラフであり、図4(b)はこれを3相/dq変換したd軸、q軸電流のシミュレーショングラフである。また、図4(c)はオフセットが存在する場合の駆動電流Iu、Iv、Iwのシミュレーショングラフであり、図4(d)はこれを3相/dq変換したd軸、q軸電流のシミュレーショングラフである。 Here, FIG. 4 shows a simulation graph of three-phase drive currents Iu, Iv, and Iw, and d-axis and q-axis currents obtained by converting them into three-phase / dq. Note that FIG. 4A is a simulation graph of drive currents Iu, Iv, and Iw when there is an unbalanced amplitude, and FIG. 4B is a d-axis and q-axis current obtained by converting the drive currents Iu, Iv, and Iw into three phases / dq. It is a simulation graph of. Further, FIG. 4 (c) is a simulation graph of drive currents Iu, Iv, and Iw when an offset exists, and FIG. 4 (d) is a simulation graph of d-axis and q-axis current obtained by converting the drive currents Iu, Iv, and Iw into three phases / dq. Is.

先ず、図4(b)、(d)の破線で示すように、駆動電流Iu、Iv、Iwに振幅アンバランスやオフセットが存在しない場合、d軸電流、q軸電流は一定値を示す。しかしながら、駆動電流Iu、Iv、Iwに振幅アンバランスやオフセットが存在する場合、d軸電流、q軸電流には図4(b)、(d)の実線で示すような変動が生じる。従って、オフセットや振幅アンバランスを抑制するためには、この変動成分を補正、もしくは除去、平滑することが有効と考えられる。 First, as shown by the broken lines in FIGS. 4 (b) and 4 (d), when there is no amplitude imbalance or offset in the drive currents Iu, Iv, and Iw, the d-axis current and the q-axis current show constant values. However, when the drive currents Iu, Iv, and Iw have an amplitude imbalance or an offset, the d-axis current and the q-axis current fluctuate as shown by the solid lines in FIGS. 4 (b) and 4 (d). Therefore, in order to suppress offset and amplitude imbalance, it is considered effective to correct, remove, or smooth this fluctuation component.

そして、この問題点に関し下記[特許文献1]では、駆動電流Iu、Iv、Iwの1周期分の平均値やローパスフィルタによって各相のオフセット量を算出し、これにより駆動信号を補正してオフセットを修正する発明が開示されている。 Regarding this problem, in the following [Patent Document 1], the offset amount of each phase is calculated by the average value for one cycle of the drive currents Iu, Iv, and Iw and the low-pass filter, and the drive signal is corrected and offset. The invention that modifies the above is disclosed.

特開2001-298992号公報Japanese Unexamined Patent Publication No. 2001-298992

しかしながら、[特許文献1]に記載の発明は、三相交流の駆動電流Iu、Iv、Iwそれぞれの1周期分の平均値が必要なためオフセット量の算出に時間を要し、応答性が悪いという問題点がある。また、[特許文献1]に記載のローパスフィルタを用いてオフセット量を算出する構成ではモータの動作状態が変化する度にオフセット補正に遅れが生じる虞があり、これも応答性が悪いという問題点がある。また、オフセット量を3相で個別に算出し、それぞれ個別にオフセット補正を行うため、ある相への補正が他の相へ悪影響を及ぼす可能性が有る。また、上記の平均値やローパスフィルタを用いて補正量を算出する方法では、三相間の振幅アンバランスを検出できず、その補正を行うことができないという問題点がある。 However, the invention described in [Patent Document 1] requires an average value for one cycle of each of the three-phase alternating current drive currents Iu, Iv, and Iw, so that it takes time to calculate the offset amount and the responsiveness is poor. There is a problem. Further, in the configuration in which the offset amount is calculated using the low-pass filter described in [Patent Document 1], there is a possibility that the offset correction may be delayed every time the operating state of the motor changes, which also has a problem of poor responsiveness. There is. Further, since the offset amount is calculated individually for each of the three phases and the offset correction is performed individually for each phase, the correction to one phase may adversely affect the other phase. Further, the method of calculating the correction amount using the above-mentioned average value or the low-pass filter has a problem that the amplitude imbalance between the three phases cannot be detected and the correction cannot be performed.

本発明は上記事情に鑑みてなされたものであり、矩形波制御おけるオフセットや振幅アンバランスの補正を高い応答性で行うことが可能なモータ制御装置及びモータ制御方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a motor control device and a motor control method capable of correcting offset and amplitude imbalance in rectangular wave control with high responsiveness.

本発明は、
(1)PMモータ10に3相交流の駆動電流Iu、Iv、Iwを出力するインバータ20と、前記駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、前記PMモータ10の電気角θを取得する角度検出部14と、前記電気角θに基づいて電気角速度ωを算出する角速度演算部16と、前記電気角θに基づいて前記駆動電流検出部12u、12vが取得した駆動電流Iu、Iv、(Iw)をd軸、q軸フィードバック電流Id、Iqに変換する3相/dq変換部22と、
矩形波制御時に、トルク指令値Tに基づく電圧位相θvを出力するトルク制御部502と、前記電圧位相θvに基づいてd軸、q軸電圧指令Vd、Vqを生成する電圧指令生成部516と、を有する矩形波制御部50と、
前記d軸、q軸電圧指令を補正する線形補正部38と、前記線形補正部38が補正したd軸、q軸電圧指令に基づいて3相の電圧指令Vu、Vv、Vwを生成するdq/3相変換部32と、前記3相の電圧指令Vu、Vv、Vwと三角波とを比較して前記インバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を備えた制御信号生成部30と、を有するモータ制御装置において、
前記d軸、q軸フィードバック電流Id、Iqをそれぞれ平滑して推定d軸、q軸電流指令Id、Iqを生成する平滑部72と、
前記矩形波制御部50が、前記推定d軸、q軸電流指令Id、Iqから前記d軸、q軸フィードバック電流Id、Iqをそれぞれ減算してd軸、q軸補正電流ΔId、ΔIqをそれぞれ生成する補正電流生成部74と、
前記d軸、q軸補正電流ΔId、ΔIqからd軸、q軸補正電圧ΔVd、ΔVqを生成する補正電圧生成部76と、
前記d軸、q軸補正電圧ΔVd、ΔVqを前記d軸、q軸電圧指令Vd、Vqにそれぞれ加算して前記制御信号生成部30に出力する電圧指令補正部78と、同期制御部520と、をさらに有し、
前記同期制御部520は、前記電気角速度ωに基づいて前記三角波の周波数を前記3相の電圧指令Vu、Vv、Vwの周波数の奇数の3の整数倍とするキャリア設定情報Scを設定して前記駆動信号生成部36に出力するとともに、前記三角波と前記3相の電圧指令Vu、Vv、Vwとが前記3相の電圧指令Vu、Vv、Vwの1周期の間で2回交差し三角波比較により生成される駆動信号が1パルスの矩形波となるような矩形波形成電圧|Va’|を設定して前記電圧指令生成部516と前記線形補正部38とに出力し、
前記電圧指令生成部516は前記電圧位相θvと前記矩形波形成電圧|Va’|に基づいてd軸、q軸電圧指令Vd、Vqを生成するとともに、前記線形補正部38は前記矩形波形成電圧|Va’|に基づいて前記d軸、q軸電圧指令を補正し、さらに駆動信号生成部36は前記キャリア設定情報Scに基づいた周期の三角波により前記3相の電圧指令Vu、Vv、Vwとの三角波比較を行うことを特徴とするモータ制御装置100を提供することにより、上記課題を解決する。
(2)正弦波制御同期制御部420を備えるとともに、正弦波制御時に、トルク指令値に基づいてd軸、q軸電流指令を算出し、このd軸、q軸電流指令に基づいてd軸、q軸電圧指令を生成する正弦波制御部40と、
d軸電圧指令、q軸電圧指令の生成を前記正弦波制御部40と矩形波制御部50とで切り替える切替部24と、をさらに有し、
前記正弦波制御同期制御部420は、電気角速度ωに基づいて三角波の周波数を3相の電圧指令Vu、Vv、Vwの周波数の奇数の3の整数倍とするキャリア設定情報Scを設定して駆動信号生成部36に出力することを特徴とする上記(1)記載のモータ制御装置100を提供することにより、上記課題を解決する。
)インバータ20からPMモータ10に出力される3相交流の駆動電流Iu、Iv、(Iw)の値を取得する駆動電流取得ステップと、
前記PMモータ10の電気角θを取得する電気角取得ステップと、
前記電気角θに基づいて電気角速度ωを算出するステップと、
前記駆動電流Iu、Iv、(Iw)をd軸、q軸フィードバック電流Id、Iqに変換するフィードバック電流生成ステップと、
矩形波制御時に、トルク指令値Tに基づく電圧位相θvを生成する電圧位相生成ステップと、
前記電圧位相θvと前記電気角速度ωに基づいて三角波比較に用いる三角波を設定するためのキャリア設定情報Scを生成するステップと、
三角波比較により生成される駆動信号が1パルスの矩形波となるような矩形波形成電圧|Va’|を出力するステップと、
前記電圧位相θvと前記矩形波形成電圧|Va’|に基づいてd軸、q軸電圧指令Vd、Vqを生成するdq電圧指令生成ステップと、
前記d軸、q軸フィードバック電流Id、Iqをそれぞれ平滑して推定d軸、q軸電流指令Id、Iqを生成する電流指令生成ステップと、
前記推定d軸、q軸電流指令Id、Iqから前記d軸、q軸フィードバック電流Id、Iqをそれぞれ減算してd軸、q軸補正電流ΔId、ΔIqをそれぞれ生成する補正電流生成ステップと、
前記d軸、q軸補正電流ΔId、ΔIqからd軸、q軸補正電圧ΔVd、ΔVqを生成する補正電圧生成ステップと、
前記d軸、q軸補正電圧ΔVd、ΔVqを前記d軸、q軸電圧指令Vd、Vqにそれぞれ加算する補正ステップと、
前記補正ステップで補正されたd軸、q軸電圧指令Vd’、Vq’を前記矩形波形成電圧|Va’|に基づいて更に補正した後、3相の電圧指令Vu、Vv、Vwに変換し、前記キャリア設定情報Scに基づく周波数が前記3相の電圧指令Vu、Vv、Vwの周波数の奇数の3の整数倍の三角波と前記3相の電圧指令Vu、Vv、Vwとを比較して駆動信号Su、Sv、Swを生成する駆動信号生成ステップと、
前記駆動信号Su、Sv、Swにより前記インバータ20をスイッチング動作させ駆動電流Iu、Iv、Iwを出力する駆動ステップと、を有することを特徴とするモータ制御方法を提供することにより、上記課題を解決する。
(4)PMモータ10の運転状況に応じてd軸、q軸電圧指令の生成を正弦波制御と矩形波制御で切り替えるステップと、
正弦波制御時に、トルク指令値に基づいてd軸、q軸電流指令を算出し、このd軸、q軸電流指令に基づいてd軸、q軸電圧指令を生成するステップと、
正弦波制御時に、電圧位相θvと電気角速度ωに基づいて周波数が3相の電圧指令Vu、Vv、Vwの周波数の奇数の3の整数倍となる三角波を設定するためのキャリア設定情報Scを生成するステップと、をさらに有することを特徴とする上記(3)記載のモータ制御方法を提供することにより、上記課題を解決する。
The present invention
(1) The inverter 20 that outputs the three-phase AC drive currents Iu, Iv, and Iw to the PM motor 10, the drive current detectors 12u, 12v that acquire the values of the drive currents Iu, Iv, and (Iw), and the above. The angle detection unit 14 that acquires the electric angle θ of the PM motor 10, the angular speed calculation unit 16 that calculates the electric angle velocity ω based on the electric angle θ, and the drive current detection units 12u, 12v based on the electric angle θ. The 3-phase / dq conversion unit 22 that converts the drive currents Iu, Iv, (Iw) acquired by the company into the d-axis and q-axis feedback currents Id and Iq.
A torque control unit 502 that outputs a voltage phase θv based on the torque command value T * during square wave control, and a voltage command generation unit 516 that generates d-axis, q-axis voltage commands Vd, and Vq based on the voltage phase θv. , And a square wave control unit 50 having
A linear correction unit 38 that corrects the d-axis and q-axis voltage commands , and dq / that generates three-phase voltage commands Vu, Vv, and Vw based on the d-axis and q-axis voltage commands corrected by the linear correction unit 38. A three-phase conversion unit 32 and a drive signal generation unit 36 for generating drive signals Su, Sv, Sw to switch the inverter 20 by comparing the three-phase voltage commands Vu, Vv, Vw with a triangular wave are provided. In the motor control device including the control signal generation unit 30
The smoothing portion 72 that smoothes the d-axis and q-axis feedback currents Id and Iq to generate the estimated d-axis and q-axis current commands Id * and Iq * , respectively.
The square wave control unit 50 subtracts the d-axis and q-axis feedback currents Id and Iq from the estimated d-axis and q-axis current commands Id * and Iq * to obtain the d-axis and q-axis correction currents ΔId and ΔIq, respectively. The correction current generation unit 74 that generates each, and
The correction voltage generation unit 76 that generates the d-axis and q-axis correction voltages ΔVd and ΔVq from the d-axis and q-axis correction currents ΔId and ΔIq.
The voltage command correction unit 78, the synchronization control unit 520, and the voltage command correction unit 78 that add the d-axis and q-axis correction voltages ΔVd and ΔVq to the d-axis, q-axis voltage commands Vd and Vq, respectively, and output them to the control signal generation unit 30. Has more,
The synchronous control unit 520 sets carrier setting information Sc that makes the frequency of the triangular wave an odd multiple of 3 of the frequencies of the voltage commands Vu, Vv, and Vw of the three phases based on the electric angular velocity ω. While outputting to the drive signal generation unit 36, the triangular wave and the three-phase voltage commands Vu, Vv, Vw intersect twice during one cycle of the three-phase voltage commands Vu, Vv, Vw, and the triangle wave is compared. A square wave forming voltage | Va'| is set so that the generated drive signal becomes a one-pulse square wave, and is output to the voltage command generation unit 516 and the linear correction unit 38.
The voltage command generation unit 516 generates d-axis, q-axis voltage commands Vd, and Vq based on the voltage phase θv and the square wave forming voltage | Va'|, and the linear correction unit 38 generates the square wave forming voltage. The d-axis and q-axis voltage commands are corrected based on | Va'|, and the drive signal generation unit 36 receives the three-phase voltage commands Vu, Vv, and Vw by means of a triangular wave having a period based on the carrier setting information Sc. The above-mentioned problem is solved by providing the motor control device 100 characterized by performing the triangular wave comparison of the above.
(2) Sine wave control Synchronous control unit 420 is provided, and during sine wave control, the d-axis and q-axis current commands are calculated based on the torque command value, and the d-axis and q-axis current commands are calculated based on the d-axis and q-axis current commands. A sine wave control unit 40 that generates a q-axis voltage command,
Further, it has a switching unit 24 for switching the generation of the d-axis voltage command and the q-axis voltage command between the sine wave control unit 40 and the square wave control unit 50.
The sine wave control synchronous control unit 420 is driven by setting carrier setting information Sc that makes the frequency of the triangular wave an integral multiple of an odd number 3 of the frequencies of the three-phase voltage commands Vu, Vv, and Vw based on the electric angular velocity ω. The above problem is solved by providing the motor control device 100 according to the above (1), which is characterized by outputting to the signal generation unit 36.
( 3 ) A drive current acquisition step for acquiring the values of the three-phase alternating current drive currents Iu, Iv, and (Iw) output from the inverter 20 to the PM motor 10.
The electric angle acquisition step for acquiring the electric angle θ of the PM motor 10 and
The step of calculating the electric angular velocity ω based on the electric angle θ,
A feedback current generation step for converting the drive currents Iu, Iv, (Iw) into d-axis and q-axis feedback currents Id and Iq, and
A voltage phase generation step that generates a voltage phase θv based on the torque command value T * during square wave control,
A step of generating carrier setting information Sc for setting a triangular wave used for triangular wave comparison based on the voltage phase θv and the electric angular velocity ω, and a step of generating the carrier setting information Sc.
A step of outputting a square wave forming voltage | Va'| such that the drive signal generated by the triangular wave comparison becomes a one-pulse rectangular wave, and
A dq voltage command generation step that generates d-axis, q-axis voltage commands Vd, and Vq based on the voltage phase θv and the square wave forming voltage | Va'|
The current command generation step of smoothing the d-axis and q-axis feedback currents Id and Iq to generate the estimated d-axis and q-axis current commands Id * and Iq * , respectively.
With the correction current generation step of subtracting the d-axis and q-axis feedback currents Id and Iq from the estimated d-axis and q-axis current commands Id * and Iq * to generate the d-axis and q-axis correction currents ΔId and ΔIq, respectively. ,
The correction voltage generation step of generating the d-axis and q-axis correction voltages ΔVd and ΔVq from the d-axis and q-axis correction currents ΔId and ΔIq.
A correction step of adding the d-axis and q-axis correction voltages ΔVd and ΔVq to the d-axis and q-axis voltage commands Vd and Vq, respectively.
The d-axis and q-axis voltage commands Vd'and Vq'corrected in the correction step are further corrected based on the square wave forming voltage | Va'|, and then converted into three-phase voltage commands Vu, Vv and Vw. , The frequency based on the carrier setting information Sc is driven by comparing the triangular wave having an odd multiple of 3 of the frequencies of the three-phase voltage commands Vu, Vv, Vw and the three-phase voltage commands Vu, Vv, Vw. A drive signal generation step for generating signals Su, Sv, Sw, and
The problem is solved by providing a motor control method characterized by having a drive step in which the inverter 20 is switched and operated by the drive signals Su, Sv, Sw to output drive currents Iu, Iv, Iw. do.
(4) A step of switching the generation of d-axis and q-axis voltage commands between sine wave control and square wave control according to the operating condition of the PM motor 10.
During sine wave control, the d-axis and q-axis current commands are calculated based on the torque command value, and the d-axis and q-axis voltage commands are generated based on the d-axis and q-axis current commands.
During sine wave control, carrier setting information Sc is generated to set a triangular wave whose frequency is an odd multiple of 3 of the frequencies of the three-phase voltage commands Vu, Vv, and Vw based on the voltage phase θv and the electric angular velocity ω. The above problem is solved by providing the motor control method according to the above (3), which further comprises the steps to be performed.

本発明に係るモータ制御装置及びモータ制御方法は、矩形波制御時にd軸、q軸フィードバック電流を平滑処理して推定d軸、q軸電流指令を生成し、この推定d軸、q軸電流指令を用いてd軸、q軸電流の変動成分の補正を行う。このため、優れた応答性で矩形波制御時におけるモータの駆動電流のオフセットや振幅アンバランスの補正を行うことができる。また、本発明に係るモータ制御装置及びモータ制御方法はdq二相状態で補正を行うため、ある相への補正が他の相へ悪影響を及ぼすことも無い。 The motor control device and the motor control method according to the present invention smooth the d-axis and q-axis feedback currents during rectangular wave control to generate estimated d-axis and q-axis current commands, and the estimated d-axis and q-axis current commands. Is used to correct the fluctuation components of the d-axis and q-axis currents. Therefore, it is possible to correct the offset and the amplitude imbalance of the drive current of the motor at the time of rectangular wave control with excellent responsiveness. Further, since the motor control device and the motor control method according to the present invention perform correction in the dq two-phase state, the correction to one phase does not adversely affect the other phase.

本発明に係るモータ制御装置のブロック図である。It is a block diagram of the motor control device which concerns on this invention. 本発明に係るモータ制御装置の三角波と電圧指令Vuの位置関係を説明する図である。It is a figure explaining the positional relationship between the triangular wave of the motor control device which concerns on this invention, and the voltage command Vu. 本発明に係るモータ制御装置及び制御方法の効果を示すグラフである。It is a graph which shows the effect of the motor control device and the control method which concerns on this invention. 3相電流のオフセットおよび振幅アンバランスとdq軸電流の変動成分を説明する図である。It is a figure explaining the offset and amplitude unbalance of a three-phase current, and the fluctuation component of a dq axis current.

本発明に係るモータ制御装置100及びモータ制御方法の実施の形態について図面に基づいて説明する。ここで、図1は本発明に係るモータ制御装置100のブロック図である。先ず、本発明に係るモータ制御装置100は、PMモータ(永久磁石モータ)10の動作を制御するものであり、このPMモータ10に3相交流の駆動電流Iu、Iv、Iwを出力するインバータ20と、この駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、PMモータ10の電気角θを取得する角度検出部14と、駆動電流検出部12u、12vが取得した駆動電流Iu、Iv、(Iw)をd軸フィードバック電流Id、q軸フィードバック電流Iqに変換する3相/dq変換部22と、外部(システムの上位の制御部等)から指示されるトルク指令値Tに応じたd軸電圧指令Vd’、q軸電圧指令Vq’を出力する正弦波制御部40と矩形波制御部50と、d軸電圧指令Vd’、q軸電圧指令Vq’に基づいてインバータ20の駆動信号Su、Sv、Swを生成する制御信号生成部30と、PMモータ10の運転状況に応じてPMモータ10の制御を矩形波制御部50と正弦波制御部40とで切り替える切替部24と、を有している。 An embodiment of the motor control device 100 and the motor control method according to the present invention will be described with reference to the drawings. Here, FIG. 1 is a block diagram of the motor control device 100 according to the present invention. First, the motor control device 100 according to the present invention controls the operation of the PM motor (permanent magnet motor) 10, and the inverter 20 outputs the three-phase AC drive currents Iu, Iv, and Iw to the PM motor 10. The drive current detection units 12u and 12v for acquiring the values of the drive currents Iu, Iv and (Iw), the angle detection unit 14 for acquiring the electric angle θ of the PM motor 10, and the drive current detection units 12u and 12v The 3-phase / dq conversion unit 22 that converts the acquired drive currents Iu, Iv, (Iw) into the d-axis feedback current Id and q-axis feedback current Iq, and the torque instructed from the outside (upper control unit of the system, etc.). The d-axis voltage command Vd'and q-axis voltage command Vq'corresponding to the command value T * are output to the sinusoidal wave control unit 40 and the rectangular wave control unit 50, and the d-axis voltage command Vd'and q-axis voltage command Vq'. Based on this, the control signal generation unit 30 that generates the drive signals Su, Sv, Sw of the inverter 20, and the rectangular wave control unit 50 and the sinusoidal wave control unit 40 control the PM motor 10 according to the operating condition of the PM motor 10. It has a switching unit 24 for switching.

また、PMモータ10は、前述のように回転子側に永久磁石を設けるとともに、固定子側に3相の電機子巻線を設け、この3相の電機子巻線に交流の駆動電流Iu、Iv、Iwをそれぞれ流下させることで各電機子巻線の磁極及び磁束を連続的に変化させ、回転子を回転させるものである。尚、PMモータ10としては永久磁石を回転子に埋め込んだIPM(Interior Permanent Magnet)モータを用いることが好ましい。 Further, the PM motor 10 is provided with a permanent magnet on the rotor side and a three-phase armature winding on the stator side as described above, and the AC drive current Iu is provided on the three-phase armature winding. By flowing Iv and Iw respectively, the magnetic poles and magnetic flux of each armature winding are continuously changed to rotate the rotor. As the PM motor 10, it is preferable to use an IPM (Interior Permanent Magnet) motor in which a permanent magnet is embedded in a rotor.

また、角度検出部14としては、回転子の角度を取得可能な周知の角度センサを用いることができる。また、角度検出部14は回転子の機械角を取得して、この機械角から電気角θを演算等で算出するようにしても良いが、回転子内の永久磁石の極対数と同じ数の回転子極数を有するレゾルバ回転角センサを用い、PMモータ10の電気角θを直接取得することが好ましい。 Further, as the angle detection unit 14, a well-known angle sensor capable of acquiring the angle of the rotor can be used. Further, the angle detection unit 14 may acquire the mechanical angle of the rotor and calculate the electric angle θ from this mechanical angle by calculation or the like, but the number is the same as the number of pole pairs of the permanent magnet in the rotor. It is preferable to directly acquire the electric angle θ of the PM motor 10 by using a resolver rotation angle sensor having the number of rotor poles.

また、駆動電流検出部12u、12vはインバータ20から出力される駆動電流Iu、Iv、Iwを非接触で取得可能な周知の電流センサを用いることができる。尚、本例では駆動電流Iu、Iv、Iwのうちの2つの駆動電流Iu、Ivを取得し、d軸、q軸フィードバック電流Id、Iqに変換する例を示している。また、上記の電気角θと駆動電流Iu、Ivの取得は、後述の三角波の頂点と谷の両方のタイミングで行い、三角波の半周期毎に後述のモータ制御装置100の各部にて使用することが好ましい。 Further, the drive current detection units 12u and 12v can use a well-known current sensor that can acquire the drive currents Iu, Iv and Iw output from the inverter 20 in a non-contact manner. In this example, two drive currents Iu and Iv out of the drive currents Iu, Iv and Iw are acquired and converted into d-axis and q-axis feedback currents Id and Iq. Further, the above-mentioned electric angle θ and the drive currents Iu and Iv are acquired at the timings of both the apex and the valley of the triangular wave described later, and are used in each part of the motor control device 100 described later every half cycle of the triangular wave. Is preferable.

次に、本発明に係るモータ制御装置100の各部の構成、動作及び本発明に係るモータ制御方法を説明する。先ず、インバータ20は制御信号生成部30から出力される駆動信号Su、Sv、Swにより内部のスイッチング素子がオン・オフし、位相が1/3周期(2/3π(rad))づつずれた交流の駆動電流Iu、Iv、IwをPMモータ10の電機子巻線にそれぞれ流下させる。これにより、PMモータ10の電機子巻線は磁極及び磁束が連続的に変化して回転磁界を発生する。そして、回転子はこの回転磁界との引力及び斥力によって回転動作する。 Next, the configuration and operation of each part of the motor control device 100 according to the present invention and the motor control method according to the present invention will be described. First, in the inverter 20, the internal switching element is turned on and off by the drive signals Su, Sv, and Sw output from the control signal generation unit 30, and the phase is shifted by 1/3 cycle (2 / 3π (rad)). The drive currents Iu, Iv, and Iw of the above are allowed to flow down to the armature winding of the PM motor 10, respectively. As a result, the armature winding of the PM motor 10 continuously changes the magnetic pole and the magnetic flux to generate a rotating magnetic field. Then, the rotor rotates by the attractive force and the repulsive force with the rotating magnetic field.

このとき、駆動電流検出部12u、12vがインバータ20の出力する駆動電流Iu、Ivの値を取得して3相/dq変換部22に出力する(駆動電流取得ステップ)。また、角度検出部14がPMモータ10の電気角θ(rad)を取得して3相/dq変換部22に出力する(電気角取得ステップ)。これにより、3相/dq変換部22はPMモータ10の電気角θに基づいて駆動電流Iu、Iv、(Iw)に対する3相2相変換及び回転座標変換を行い、駆動電流Iu、Iv、(Iw)をd軸電流(磁束分電流)Idとq軸電流(トルク分電流)Iqとに変換する(フィードバック電流生成ステップ)。そして、これらをd軸フィードバック電流Id、q軸フィードバック電流Iqとして切替部24に出力する。 At this time, the drive current detection units 12u and 12v acquire the values of the drive currents Iu and Iv output by the inverter 20 and output them to the three-phase / dq conversion unit 22 (drive current acquisition step). Further, the angle detection unit 14 acquires the electric angle θ (rad) of the PM motor 10 and outputs it to the three-phase / dq conversion unit 22 (electric angle acquisition step). As a result, the 3-phase / dq conversion unit 22 performs 3-phase 2-phase conversion and rotational coordinate conversion for the drive currents Iu, Iv, (Iw) based on the electric angle θ of the PM motor 10, and the drive currents Iu, Iv, ( Iw) is converted into a d-axis current (magnetic flux component current) Id and a q-axis current (torque component current) Iq (feedback current generation step). Then, these are output to the switching unit 24 as the d-axis feedback current Id and the q-axis feedback current Iq.

また、角度検出部14が取得した電気角θは角速度演算部16にも出力され、この角速度演算部16は入力した電気角θから電気角速度ω(rad/s)を算出し、各部に出力する。 Further, the electric angle θ acquired by the angle detection unit 14 is also output to the angular velocity calculation unit 16, and the angular velocity calculation unit 16 calculates the electric angular velocity ω (rad / s) from the input electric angle θ and outputs it to each unit. ..

切替部24はPMモータ10の運転状況に応じてd軸電圧指令Vd’、q軸電圧指令Vq’の生成方法を切り換える切り替え回路であり、PMモータ10が予め設定されている高回転速度、高トルクの動作領域で動作する場合には、d軸電圧指令Vd’、q軸電圧指令Vq’の生成を正弦波制御部40から矩形波制御部50に切り替える。これにより、PMモータ10は中・低速回転動作時ではトルク変動の少ない正弦波制御により動作制御され、高速回転・高トルク動作時には高出力が可能な矩形波制御で動作制御される。 The switching unit 24 is a switching circuit that switches the generation method of the d-axis voltage command Vd'and the q-axis voltage command Vq' according to the operating condition of the PM motor 10, and the PM motor 10 has a preset high rotation speed and high speed. When operating in the torque operating region, the generation of the d-axis voltage command Vd'and the q-axis voltage command Vq'is switched from the sine wave control unit 40 to the square wave control unit 50. As a result, the PM motor 10 is controlled by a sine wave control with little torque fluctuation during medium / low speed rotation operation, and is controlled by a square wave control capable of high output during high speed rotation / high torque operation.

次に、正弦波制御部40の構成及び動作を説明する。尚、以下で説明する正弦波制御部40の構成は本発明に好適な一例であるから、下記の構成に限定されるわけではなく、他の如何なる正弦波制御機構を用いても良い。 Next, the configuration and operation of the sine wave control unit 40 will be described. Since the configuration of the sine wave control unit 40 described below is an example suitable for the present invention, the configuration is not limited to the following, and any other sine wave control mechanism may be used.

先ず、上位システムの制御部等からトルク指令値Tが出力される。このトルク指令値TはPMモータ10の動作目標となるトルクである。そして、このトルク指令値Tは切替部24が正弦波制御部40を選択している場合、正弦波制御部40のトルク制御部402に入力する。また、トルク制御部402にはトルク計算部404からPMモータ10の現在のトルクTが入力する。 First, the torque command value T * is output from the control unit of the host system or the like. This torque command value T * is the torque that is the operating target of the PM motor 10. Then, this torque command value T * is input to the torque control unit 402 of the sine wave control unit 40 when the switching unit 24 selects the sine wave control unit 40. Further, the current torque T of the PM motor 10 is input from the torque calculation unit 404 to the torque control unit 402.

ここで、トルク計算部404はPMモータ10のモータパラメータとしての誘起電圧定数φa、d軸インダクタンスLd、q軸インダクタンスLq等を有している。尚、誘起電圧定数φa、d軸インダクタンスLd、q軸インダクタンスLqは予め設定された固定値としても良いし、PMモータ10の温度や動作状況に応じて予め設定された適切な値を例えばデータテーブル等から適宜取得するようにしても良い。そして、トルク計算部404はこれらの値と、d軸、q軸フィードバック電流Id、Iqもしくは電流指令生成部406から出力されるd軸、q軸電流指令Id、Iqに基づいて、PMモータ10の現在のトルクTを例えば下記式に基づいて算出する。尚、本例ではd軸、q軸電流指令Id、Iqに基づいてトルクTを算出する例を示している。
T=P(φaIq+(Ld-Lq)IdIq) [N・m]
P:PMモータの永久磁石の極対数
φa:誘起電圧定数
Ld:d軸インダクタンス
Lq:q軸インダクタンス
Here, the torque calculation unit 404 has an induced voltage constant φa, a d-axis inductance Ld, a q-axis inductance Lq, and the like as motor parameters of the PM motor 10. The induced voltage constants φa, d-axis inductance Ld, and q-axis inductance Lq may be preset fixed values, or appropriate values preset according to the temperature and operating conditions of the PM motor 10 may be set as, for example, a data table. It may be obtained from such sources as appropriate. Then, the torque calculation unit 404 is based on these values and the d-axis, q-axis current commands Id * , Iq * output from the d-axis, q-axis feedback currents Id, Iq or the current command generation unit 406, and the PM motor. The current torque T of 10 is calculated based on, for example, the following equation. In this example, an example of calculating the torque T based on the d-axis, q-axis current commands Id * , and Iq * is shown.
T = P (φaIq * + (Ld-Lq) Id * Iq * ) [Nm]
P: Number of pole pairs of permanent magnet of PM motor φa: Induced voltage constant Ld: d-axis inductance Lq: q-axis inductance

そして、トルク制御部402はトルク指令値Tと現在のトルクTとから、PMモータ10が目標のトルクで動作する電流指令値Iaを設定し、電流指令生成部406に出力する。尚、電流指令値Iaは積分制御、比例制御などの演算により算出しても良い。 Then, the torque control unit 402 sets the current command value Ia * in which the PM motor 10 operates at the target torque from the torque command value T * and the current torque T, and outputs the current command value Ia * to the current command generation unit 406. The current command value Ia * may be calculated by operations such as integral control and proportional control.

電流指令生成部406はトルク計算部404と同様のモータパラメータを有するとともに、角速度演算部16からの電気角速度ωと、図示しない電源部からの電源電圧Vdcが入力する。そして、電流指令生成部406はトルク制御部402からの電流指令値Ia、電源電圧Vdc、及びモータパラメータ、電気角速度ωを用いた所定の演算や電圧制御によりd軸電流指令Id、q軸電流指令Iqを算出し、正弦波制御部40の電圧指令生成部416に出力する。尚、このとき、後述の電圧指令の大きさ|Va|が K×Vdc(K:電圧利用率設定値)の値を超えないようにd軸、q軸電流指令Id、Iqを調整することで、正弦波制御領域と矩形波制御領域との間に過変調制御領域を設けることが可能となり、中高速動作領域での出力向上を図ることができる。また、電流指令値Ia、d軸電流指令Id、q軸電流指令Iqには必要に応じて電流リミッタを設けても良い。 The current command generation unit 406 has the same motor parameters as the torque calculation unit 404, and the electric angular velocity ω from the angular velocity calculation unit 16 and the power supply voltage Vdc from the power supply unit (not shown) are input. Then, the current command generation unit 406 uses the current command value Ia * from the torque control unit 402, the power supply voltage Vdc, the motor parameters, and the d-axis current command Id * and q-axis by predetermined calculation and voltage control using the electric angular velocity ω. The current command Iq * is calculated and output to the voltage command generation unit 416 of the sine wave control unit 40. At this time, the d-axis and q-axis current commands Id * and Iq * are adjusted so that the magnitude | Va | of the voltage command described later does not exceed the value of K × Vdc (K: voltage utilization rate set value). This makes it possible to provide an overmodulation control area between the sine wave control area and the square wave control area, and it is possible to improve the output in the medium- and high-speed operation areas. Further, a current limiter may be provided for the current command value Ia * , the d-axis current command Id * , and the q-axis current command Iq * , if necessary.

ここで、電圧指令生成部416の好適な一例を説明する。先ず、電圧指令生成部416に入力したd軸、q軸電流指令Id、Iqは2分岐して、一方は非干渉制御部414に入力する。そして、非干渉制御部414にてd軸、q軸電流指令Id、Iq間で干渉する速度起電力成分が算出され、d軸、q軸電圧指令Vd’’、Vq’’として電流制御部410に出力される。また、d軸、q軸電流指令Id、Iqの他方は、減算部412においてd軸、q軸フィードバック電流Id、Iqが減算されて変動成分ΔId、ΔIqとされた後、電流制御部410に入力する。そして、電流制御部410において、適宜、電流積分制御、電流比例制御等の電流制御が施されるとともに、非干渉制御部414からのd軸、q軸電圧指令Vd’’、Vq’’が適切な位置で加算されd軸電圧指令Vd’、q軸電圧指令Vq’が生成される。そして、この電流制御部410における電流制御によりd軸、q軸電流指令の変動成分(駆動電流Iu、Iv、Iwのオフセットや振幅アンバランス成分)は低減もしくは平滑化する。 Here, a suitable example of the voltage command generation unit 416 will be described. First, the d-axis, q-axis current commands Id * , and Iq * input to the voltage command generation unit 416 are branched into two, and one is input to the non-interference control unit 414. Then, the non-interference control unit 414 calculates the velocity electromotive force component that interferes between the d-axis and q-axis current commands Id * and Iq * , and controls the current as the d-axis and q-axis voltage commands Vd'' and Vq''. It is output to the unit 410. Further, the other of the d-axis and q-axis current commands Id * and Iq * is obtained by subtracting the d-axis and q-axis feedback currents Id and Iq in the subtraction unit 412 to obtain variable components ΔId and ΔIq, and then the current control unit 410. Enter in. Then, in the current control unit 410, current control such as current integration control and current proportional control is appropriately performed, and the d-axis, q-axis voltage commands Vd ″ and Vq'' from the non-interference control unit 414 are appropriate. The d-axis voltage command Vd'and the q-axis voltage command Vq'are generated at various positions. Then, the fluctuation components of the d-axis and q-axis current commands (offsets and amplitude imbalance components of the drive currents Iu, Iv, and Iw) are reduced or smoothed by the current control in the current control unit 410.

尚、電圧指令生成部416にはd軸、q軸電圧指令Vd’、Vq’に基づく電圧指令Vu、Vv、Vwがインバータ20の出力限界となる最大電圧(1パルスの矩形波電圧となる電圧)の近傍とならないように制限するリミッタ部を設けることが好ましい。このリミッタ部の制限電圧は後述の正弦波制御同期制御部420が設定する三角波の同期数に準じて設定することが好ましい。 In the voltage command generation unit 416, the voltage commands Vu, Vv, and Vw based on the d-axis and q-axis voltage commands Vd'and Vq'are the maximum voltage (voltage that becomes the square wave voltage of one pulse) that is the output limit of the inverter 20. It is preferable to provide a limiter portion that limits the voltage so that it does not become in the vicinity of). The limit voltage of this limiter unit is preferably set according to the number of triangular wave synchronizations set by the sine wave control synchronization control unit 420 described later.

また、正弦波制御部40は、電流制御部410のd軸、q軸電圧指令Vd’’’、Vq’’’を取得して極座標変換を行い電圧位相θvと電圧指令の大きさ|Va|を取得する極座標変換部418と、この極座標変換部418で得られた電圧位相θvと電気角速度ωと電気角θとから後述する三角波のキャリア設定情報Scを生成し三角波生成部34に出力する正弦波制御同期制御部420と、を有している。尚、キャリア設定情報Scに関しては後述する。 Further, the sine wave control unit 40 acquires the d-axis, q-axis voltage commands Vd'', Vq'''' of the current control unit 410, performs polar coordinate conversion, and performs voltage phase θv and the magnitude of the voltage command | Va | A sine wave that generates carrier setting information Sc for a triangular wave, which will be described later, from the voltage phase θv, the electric angular velocity ω, and the electric angle θ obtained by the polar coordinate conversion unit 418, and outputs the sine wave to the triangular wave generation unit 34. It has a wave control synchronous control unit 420 . The carrier setting information Sc will be described later.

そして、電流制御部410から出力したd軸電圧指令Vd’、q軸電圧指令Vq’は切替部24を介して制御信号生成部30に入力する。ここで、制御信号生成部30の好適な一例を説明する。尚、以下で説明する制御信号生成部30の構成は本発明に好適な一例であるから、下記の構成に限定されるわけではなく、他の如何なる制御信号生成機構を用いても良い。 Then, the d-axis voltage command Vd'and the q-axis voltage command Vq' output from the current control unit 410 are input to the control signal generation unit 30 via the switching unit 24. Here, a suitable example of the control signal generation unit 30 will be described. Since the configuration of the control signal generation unit 30 described below is an example suitable for the present invention, the configuration is not limited to the following, and any other control signal generation mechanism may be used.

先ず、電流制御部410から出力したd軸電圧指令Vd’、q軸電圧指令Vq’は制御信号生成部30のdq/3相変換部32に入力する。尚、制御信号生成部30は、dq/3相変換部32の前段に矩形波制御時、過変調制御時におけるd軸、q軸電圧指令Vd’、Vq’と電圧指令Vu、Vv、Vwとの非線形性を補正するための線形補正部38を有していても良い。尚、この線形補正部38で用いる補正値は矩形波形成電圧|Va’|と対応して設定する。 First, the d-axis voltage command Vd'and the q-axis voltage command Vq' output from the current control unit 410 are input to the dq / 3-phase conversion unit 32 of the control signal generation unit 30. In addition, the control signal generation unit 30 has the d-axis and q-axis voltage commands Vd', Vq'and the voltage commands Vu, Vv, Vw in the front stage of the dq / 3 phase conversion unit 32 during rectangular wave control and overmodulation control. It may have a linear correction unit 38 for correcting the non-linearity of the above. The correction value used in the linear correction unit 38 is set in correspondence with the rectangular wave forming voltage | Va'|.

また、dq/3相変換部32には角度検出部14からの電気角θと角速度演算部16からの電気角速度ωが入力し、この電気角θと電気角速度ωとに基づいてインバータ20がスイッチング動作を行う新たなタイミングの予測電気角θ’を算出し、この予測電気角θ’に基づいてd軸、q軸電圧指令Vd’、Vq’を3相の電圧指令Vu、Vv、Vwに変換し、駆動信号生成部36に出力する。 Further, the electric angle θ from the angle detection unit 14 and the electric angular velocity ω from the angular velocity calculation unit 16 are input to the dq / 3 phase conversion unit 32, and the inverter 20 switches based on the electric angle θ and the electric angular velocity ω. Calculates the predicted electrical angle θ'of the new timing of operation, and converts the d-axis, q-axis voltage commands Vd', Vq'to the three-phase voltage commands Vu, Vv, Vw based on this predicted electrical angle θ'. Then, it is output to the drive signal generation unit 36.

駆動信号生成部36は三角波生成部34を有しており、この三角波生成部34にはキャリア設定情報Scが入力して、このキャリア設定情報Scに基づいた周期の三角波を生成する。 The drive signal generation unit 36 has a triangular wave generation unit 34, and carrier setting information Sc is input to the triangular wave generation unit 34 to generate a triangular wave having a period based on the carrier setting information Sc.

そして、駆動信号生成部36はこの三角波と電圧指令Vu、Vv、Vwとをそれぞれ三角波比較する。このとき、三角波の振幅は後述のキャリア設定情報Scによって増減する。よって、電圧指令Vu、Vv、Vwを三角波の振幅と比例する換算係数によって調整し、この調整後の電圧指令Vu、Vv、Vwを用いて三角波比較を行う。これにより、Hi-Lowの駆動信号Su、Sv、Swが生成される。この駆動信号Su、Sv、Swはインバータ20に出力され、インバータ20はこの駆動信号Su、Sv、Swによりスイッチング動作して3相交流の駆動電流Iu、Iv、Iwを出力し、PMモータ10を動作させる。 Then, the drive signal generation unit 36 compares the triangular wave with the voltage commands Vu, Vv, and Vw, respectively. At this time, the amplitude of the triangular wave increases or decreases according to the carrier setting information Sc described later. Therefore, the voltage commands Vu, Vv, and Vw are adjusted by a conversion coefficient proportional to the amplitude of the triangular wave, and the triangular wave comparison is performed using the adjusted voltage commands Vu, Vv, and Vw. As a result, Hi-Low drive signals Su, Sv, and Sw are generated. The drive signals Su, Sv, and Sw are output to the inverter 20, and the inverter 20 switches by the drive signals Su, Sv, and Sw to output three-phase AC drive currents Iu, Iv, and Iw, and outputs the PM motor 10. Make it work.

また、切替部24はPMモータ10が高回転速度、高トルクの動作領域で動作すると、PMモータ10の制御を正弦波制御部40から矩形波制御部50に切り替える。これにより、トルク指令値Tは矩形波制御部50のトルク制御部502に入力する。また、矩形波制御部50のトルク計算部504にはd軸フィードバック電流Id、q軸フィードバック電流Iqが入力する。尚、トルク計算部504は正弦波制御部40のトルク計算部404と同様にモータパラメータを有しており、これらモータパラメータとd軸、q軸フィードバック電流Id、IqとからPMモータ10の現在のトルクTを算出して、トルク制御部502に出力する。そして、トルク制御部502は、トルク指令値TとトルクTとから、PMモータ10が目標のトルクで動作するような電圧位相θvを積分制御、比例制御などにより生成する(電圧位相生成ステップ)。そして、矩形波制御部50の電圧指令生成部516と同期制御部520に出力する。 Further, when the PM motor 10 operates in the operating region of high rotation speed and high torque, the switching unit 24 switches the control of the PM motor 10 from the sine wave control unit 40 to the rectangular wave control unit 50. As a result, the torque command value T * is input to the torque control unit 502 of the rectangular wave control unit 50. Further, the d-axis feedback current Id and the q-axis feedback current Iq are input to the torque calculation unit 504 of the square wave control unit 50. The torque calculation unit 504 has motor parameters similar to the torque calculation unit 404 of the sine wave control unit 40, and the current motor 10 is obtained from these motor parameters and the d-axis and q-axis feedback currents Id and Iq. The torque T is calculated and output to the torque control unit 502. Then, the torque control unit 502 generates a voltage phase θv from the torque command value T * and the torque T so that the PM motor 10 operates at the target torque by integral control, proportional control, or the like (voltage phase generation step). .. Then, it is output to the voltage command generation unit 516 and the synchronization control unit 520 of the rectangular wave control unit 50.

同期制御部520は電圧位相θvと電気角速度ωと電気角θとから三角波比較に用いる三角波を設定するためのキャリア設定情報Scを生成する。そして、三角波生成部34に出力する。ここで、キャリア設定情報Scが設定する三角波は、三角波の周波数が電圧指令Vu、Vv、Vwの周波数の奇数の3の整数倍、即ち、9、15、21、27倍など(以後、この倍数を同期数とする)であり、かつ図2中の点Aに示す三角波の立ち下がりの中央位置と電圧指令Vuの立ち上がりのゼロ位置とがクロスすることが好ましい。尚、三角波の同期数は電気角速度ωに応じて設定される。そして、同期制御部520は電圧位相θvと電気角θとに基づいて三角波の中央位置と電圧指令Vuのゼロ位置とがクロスする三角波の周期を設定すると同時に、三角波の周波数が設定された同期数となるような三角波の周期を設定する。また、同期制御部520は電気角速度ωの変化に連動して周期の設定情報を変化させ、三角波を上記の状態に追従、維持させる。さらに、同期制御部520は電気角速度ωが予め設定された所定の値を超えた場合、同期数を1段階下げてキャリア設定情報Scを設定し出力する。また、電気角速度ωが予め設定された所定の値を下回った場合、同期数を1段階上げてキャリア設定情報Scを設定し出力する。尚、同期数を変化させる電気角速度ωの値は同期数毎にデータテーブル等に予め記憶しておき、同期制御部520は入力した電気角速度ωに応じて対応する同期数をデータテーブルから取得し設定を行う事が好ましい。このとき、同期数を上下する電気角速度ωにはヒステリシス幅を持たせることが好ましい。これらの同期制御部520の動作は正弦波制御同期制御部420においても基本的に同じである。尚、これらの三角波の周期の変化と連動して、後述の補正電圧生成部76の補正ゲイン(Kd、Kq)、平滑部72の時定数、各制御のゲイン等は調整され再設定される。 The synchronous control unit 520 generates carrier setting information Sc for setting a triangular wave to be used for triangular wave comparison from the voltage phase θv, the electric angular velocity ω, and the electric angle θ. Then, it is output to the triangular wave generation unit 34. Here, in the triangular wave set by the carrier setting information Sc, the frequency of the triangular wave is an integral multiple of an odd number of 3 of the frequencies of the voltage commands Vu, Vv, and Vw, that is, 9, 15, 21, 27 times, and the like (hereinafter, this). It is preferable that the multiple is the synchronous number) and the center position of the falling edge of the triangular wave shown at the point A in FIG. 2 and the zero position of the rising edge of the voltage command Vu cross. The number of synchronizations of the triangular wave is set according to the electric angular velocity ω. Then, the synchronization control unit 520 sets the period of the triangular wave at which the center position of the triangular wave and the zero position of the voltage command Vu cross each other based on the voltage phase θv and the electric angle θ, and at the same time, the frequency of the triangular wave is set. Set the period of the triangular wave so that Further, the synchronous control unit 520 changes the cycle setting information in conjunction with the change in the electric angular velocity ω, and makes the triangular wave follow and maintain the above state. Further, when the electric angular velocity ω exceeds a predetermined value set in advance, the synchronization control unit 520 reduces the number of synchronizations by one step to set and output the carrier setting information Sc. Further, when the electric angular velocity ω falls below a predetermined value set in advance, the number of synchronizations is increased by one step to set and output the carrier setting information Sc. The value of the electric angular velocity ω that changes the synchronization number is stored in advance in a data table or the like for each synchronization number, and the synchronization control unit 520 acquires the corresponding synchronization number from the data table according to the input electric angular velocity ω. It is preferable to set it. At this time, it is preferable to give a hysteresis width to the electric angular velocity ω that fluctuates the number of synchronizations. The operation of these synchronous control units 520 is basically the same in the sine wave control synchronous control unit 420 . In conjunction with the change in the period of these triangular waves, the correction gain (Kd, Kq) of the correction voltage generation unit 76, the time constant of the smoothing unit 72, the gain of each control, and the like, which will be described later, are adjusted and reset.

また、同期制御部520は三角波と電圧指令Vu、Vv、Vwとが、電圧指令Vu、Vv、Vwの1周期の間で2回交差する、即ち、三角波比較により生成される駆動信号Su、Sv、Swが1パルスの矩形波となるような矩形波形成電圧|Va’|を取得し電圧指令生成部516に出力する。尚、同期制御部520による矩形波形成電圧|Va’|の設定は、2点で交差する矩形波形成電圧|Va’|の値を予め三角波の同期数毎にデータテーブルに設定しておき、同期制御部520が三角波の同期数を決定すると同時に、この同期数と対応した矩形波形成電圧|Va’|を選択して設定することが好ましい。そして、同期制御部520はこの矩形波形成電圧|Va’|を電圧指令生成部516及び線形補正部38に出力する。 Further, in the synchronous control unit 520, the triangular wave and the voltage commands Vu, Vv, Vw intersect twice during one cycle of the voltage commands Vu, Vv, Vw, that is, the drive signals Su, Sv generated by the triangular wave comparison. , Acquires a square wave forming voltage | Va'| such that Sw becomes a square wave of one pulse, and outputs the voltage command generation unit 516. For the setting of the square wave formation voltage | Va'| by the synchronization control unit 520, the value of the square wave formation voltage | Va'| that intersects at two points is set in advance in the data table for each number of synchronizations of the triangular wave. It is preferable that the synchronization control unit 520 determines the synchronization number of the triangular wave, and at the same time, selects and sets the square wave forming voltage | Va'| corresponding to this synchronization number. Then, the synchronous control unit 520 outputs this rectangular wave forming voltage | Va'| to the voltage command generation unit 516 and the linear correction unit 38.

電圧指令生成部516は、トルク制御部502から入力した電圧位相θvと、同期制御部520から入力した矩形波形成電圧|Va’|とから、d軸電圧指令Vd、q軸電圧指令Vqを生成する(dq電圧指令生成ステップ)。 The voltage command generation unit 516 generates a d-axis voltage command Vd and a q-axis voltage command Vq from the voltage phase θv input from the torque control unit 502 and the square wave forming voltage | Va'| input from the synchronous control unit 520. (Dq voltage command generation step).

ここで本発明に係るモータ制御装置100の矩形波制御部50は、本発明の特徴的な構成として平滑部72と、補正電流生成部74と、補正電圧生成部76と、電圧指令補正部78と、を備えた補正部70を有している。 Here, the square wave control unit 50 of the motor control device 100 according to the present invention has a smoothing unit 72, a correction current generation unit 74, a correction voltage generation unit 76, and a voltage command correction unit 78 as characteristic configurations of the present invention. The correction unit 70 is provided with the above.

そして、補正部70の平滑部72は、切替部24を介して入力したd軸、q軸フィードバック電流Id、Iqを例えば移動平均処理もしくはなまし処理を行ってそれぞれ平滑化する。尚、ここでのなまし処理とは、入力信号(d軸、q軸フィードバック電流Id、Iq)に対し、任意の周期ごとに下記(1)式の処理を行う事で平滑化する処理を意味する。
C=B(1-K)+K×A・・・・(1)
ここで、Aは入力値(d軸、q軸フィードバック電流Id、Iq)であり、Bは直前の周期のなまし処理後の出力値であり、Kはなまし定数であり、Cが出力値(推定d軸、q軸電流指令Id、Iq)である。
Then, the smoothing unit 72 of the correction unit 70 smoothes the d-axis, q-axis feedback currents Id, and Iq input via the switching unit 24 by performing, for example, a moving average process or a smoothing process, respectively. The smoothing process here means a process of smoothing the input signal (d-axis, q-axis feedback current Id, Iq) by performing the process of the following equation (1) every arbitrary cycle. do.
C = B (1-K) + K × A ... (1)
Here, A is an input value (d-axis, q-axis feedback current Id, Iq), B is an output value after the smoothing process of the immediately preceding cycle, K is a smoothing constant, and C is an output value. (Estimated d-axis, q-axis current command Id * , Iq * ).

この平滑化処理により、オフセット等による変動成分が平滑化された疑似的な推定d軸電流指令Id、推定q軸電流指令Iqが生成される(電流指令生成ステップ)。そして、これら推定d軸、q軸電流指令Id、Iqは補正電流生成部74に出力される。 By this smoothing process, a pseudo estimated d-axis current command Id * and an estimated q-axis current command Iq * in which fluctuation components due to offset or the like are smoothed are generated (current command generation step). Then, these estimated d-axis, q-axis current commands Id * , and Iq * are output to the correction current generation unit 74.

また、補正電流生成部74にはd軸フィードバック電流Id、q軸フィードバック電流Iqがそれぞれ入力しており、補正電流生成部74は平滑部72で生成された推定d軸電流指令Id、推定q軸電流指令Iqからd軸フィードバック電流Id、q軸フィードバック電流Iqをそれぞれ減算する。これにより、変動成分としてのd軸補正電流ΔId、q軸補正電流ΔIqが生成される(補正電流生成ステップ)。そして、これらd軸補正電流ΔId、q軸補正電流ΔIqを補正電圧生成部76に出力する。尚、このd軸補正電流ΔId、q軸補正電流ΔIqは、オフセットや振幅アンバランスの成分(変動成分)が平滑化した推定d軸、q軸電流指令Id、Iqからオフセットや振幅アンバランスの成分(変動成分)を含むd軸、q軸フィードバック電流Id、Iqをそれぞれ減算したものであるから、基本的に変動成分の逆相をとる。 Further, the d-axis feedback current Id and the q-axis feedback current Iq are input to the correction current generation unit 74, respectively, and the correction current generation unit 74 receives the estimated d-axis current command Id * and the estimated q generated by the smoothing unit 72. The d-axis feedback current Id and the q-axis feedback current Iq are subtracted from the shaft current command Iq * , respectively. As a result, the d-axis correction current ΔId and the q-axis correction current ΔIq as fluctuation components are generated (correction current generation step). Then, these d-axis correction currents ΔId and q-axis correction currents ΔIq are output to the correction voltage generation unit 76. The d-axis correction current ΔId and q-axis correction current ΔIq are offset and amplitude unbalanced from the estimated d-axis, q-axis current commands Id * and Iq * in which the offset and amplitude imbalance components (fluctuation components) are smoothed. Since the d-axis, q-axis feedback currents Id, and Iq including the component (variable component) of are subtracted, basically the reverse phase of the variable component is taken.

また、補正電圧生成部76は、補正電流生成部74から入力したd軸補正電流ΔId、q軸補正電流ΔIqから、例えば所定の補正ゲイン(Kd、Kq)による比例制御等によりd軸補正電圧ΔVd、q軸補正電圧ΔVqを生成し(補正電圧生成ステップ)、電圧指令補正部78に出力する。 Further, the correction voltage generation unit 76 has a d-axis correction voltage ΔVd from the d-axis correction current ΔId and the q-axis correction current ΔIq input from the correction current generation unit 74 by, for example, proportional control by a predetermined correction gain (Kd, Kq). , Q-axis correction voltage ΔVq is generated (correction voltage generation step) and output to the voltage command correction unit 78.

電圧指令補正部78は、補正電圧生成部76から入力したd軸補正電圧ΔVd、q軸補正電圧ΔVqを電圧指令生成部516から出力したd軸電圧指令Vd、q軸電圧指令Vqにそれぞれ加算してd軸電圧指令Vd’、q軸電圧指令Vq’を生成する(補正ステップ)。ここで、d軸、q軸電圧指令Vd’、Vq’は、前述のようにオフセットや振幅アンバランス成分(変動成分)の逆相のd軸、q軸補正電圧ΔVd、ΔVqが加算されたものである。即ち、d軸、q軸電圧指令Vd’、Vq’には駆動電流Iu、Iv、Iwに生じるオフセットや振幅アンバランス分の逆の電圧(d軸、q軸補正電圧ΔVd、ΔVq)が加味されたものである。 The voltage command correction unit 78 adds the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq input from the correction voltage generation unit 76 to the d-axis voltage command Vd and the q-axis voltage command Vq output from the voltage command generation unit 516, respectively. The d-axis voltage command Vd'and the q-axis voltage command Vq'are generated (correction step). Here, the d-axis and q-axis voltage commands Vd'and Vq' are obtained by adding the offset and amplitude unbalanced components (fluctuation components) opposite-phase d-axis and q-axis correction voltages ΔVd and ΔVq as described above. Is. That is, the opposite voltage (d-axis, q-axis correction voltage ΔVd, ΔVq) of the offset and amplitude imbalance generated in the drive currents Iu, Iv, and Iw is added to the d-axis and q-axis voltage commands Vd'and Vq'. It is an offset.

ここで図3に、補正部70を備えていない従来の矩形波制御部の使用でオフセットが生じている駆動電流Iu、Iv、Iwのグラフと、同条件にて補正部70を備えた矩形波制御部50を使用したときの駆動電流Iu、Iv、Iwのグラフを示す。尚、図3(a)は補正部70を備えていない矩形波制御部の駆動電流Iu、Iv、Iwのグラフであり、図3(b)は補正部70を備えた矩形波制御部50の駆動電流Iu、Iv、Iwのグラフである。 Here, FIG. 3 shows a graph of drive currents Iu, Iv, and Iw in which offset occurs due to the use of a conventional rectangular wave control unit that does not have a correction unit 70, and a rectangular wave that has a correction unit 70 under the same conditions. The graph of the drive current Iu, Iv, Iw when the control unit 50 is used is shown. 3A is a graph of the drive currents Iu, Iv, and Iw of the rectangular wave control unit without the correction unit 70, and FIG. 3B is a graph of the rectangular wave control unit 50 with the correction unit 70. It is a graph of the drive current Iu, Iv, Iw.

図3から、補正部70を備えていない矩形波制御部の駆動電流Iu、Iv、Iwは波形の中心位置が上下にズレたオフセットが生じているのに対し、補正部70を備えた矩形波制御部50の駆動電流Iu、Iv、Iwは波形の中心位置にズレが無くオフセットが解消されていることがわかる。これは、補正部70によるd軸、q軸補正電圧ΔVd、ΔVqの加算により駆動電流Iu、Iv、Iwのオフセットが補正され解消したことを意味している。 From FIG. 3, the drive currents Iu, Iv, and Iw of the square wave control unit without the correction unit 70 have an offset in which the center position of the waveform is vertically displaced, whereas the square wave with the correction unit 70 is provided. It can be seen that the drive currents Iu, Iv, and Iw of the control unit 50 have no deviation in the center position of the waveform and the offset is eliminated. This means that the offsets of the drive currents Iu, Iv, and Iw are corrected and eliminated by the addition of the d-axis and q-axis correction voltages ΔVd and ΔVq by the correction unit 70.

そして、これらd軸電圧指令Vd’、q軸電圧指令Vq’は切替部24を介して制御信号生成部30に入力する。そして、正弦波制御部40の時と同様に、線形補正部38を介してdq/3相変換部32にて3相の電圧指令Vu、Vv、Vwに変換される。 Then, these d-axis voltage command Vd'and q-axis voltage command Vq'are input to the control signal generation unit 30 via the switching unit 24. Then, as in the case of the sine wave control unit 40, the voltage commands Vu, Vv, and Vw of the three phases are converted by the dq / three-phase conversion unit 32 via the linear correction unit 38.

そして、駆動信号生成部36において、三角波比較が行われ駆動信号Su、Sv、Swが生成される(駆動信号生成ステップ)。尚、このときの三角波は同期制御部520からのキャリア設定情報Scによって、周波数が電圧指令Vu、Vv、Vwの奇数の3の整数倍の三角波となる。 Then, in the drive signal generation unit 36, a triangular wave comparison is performed and drive signals Su, Sv, and Sw are generated (drive signal generation step). The triangular wave at this time becomes a triangular wave whose frequency is an odd multiple of 3 of the voltage commands Vu, Vv, and Vw according to the carrier setting information Sc from the synchronization control unit 520.

そして、この駆動信号Su、Sv、Swによりインバータ20をスイッチング動作させる。これにより三相交流の駆動電流Iu、Iv、IwがPMモータ10に出力される(駆動ステップ)。そして、この駆動電流Iu、Iv、IwによってPMモータ10がトルク指令値Tに応じたトルクで回転動作する。このとき、この駆動電流Iu、Iv、Iwの基となるd軸電圧指令Vd’、q軸電圧指令Vq’は前述のように変動成分とは逆相のd軸補正電圧ΔVd、q軸補正電圧ΔVqがそれぞれ加算されてオフセットや振幅アンバランスの成分(変動成分)が補正されているから、この駆動電流Iu、Iv、Iwで動作するPMモータ10のオフセットや振幅アンバランスは解消され、矩形波制御時であっても低振動かつ高効率で回転動作することができる。 Then, the inverter 20 is switched by the drive signals Su, Sv, and Sw. As a result, the three-phase alternating current drive currents Iu, Iv, and Iw are output to the PM motor 10 (drive step). Then, the PM motor 10 rotates with a torque corresponding to the torque command value T * by the drive currents Iu, Iv, and Iw. At this time, the d-axis voltage command Vd'and q-axis voltage command Vq', which are the basis of the drive currents Iu, Iv, and Iw, are the d-axis correction voltage ΔVd and the q-axis correction voltage having the opposite phase to the fluctuation component as described above. Since ΔVq is added to correct the offset and amplitude imbalance components (fluctuation components), the offset and amplitude imbalance of the PM motor 10 operating at the drive currents Iu, Iv, and Iw are eliminated, and the square wave is used. Even during control, it can rotate with low vibration and high efficiency.

以上のように、本発明に係るモータ制御装置100及びモータ制御方法は、矩形波制御時にd軸、q軸フィードバック電流Id、Iqを平滑処理して推定d軸、q軸電流指令Id、Iqを生成するとともに、この推定d軸、q軸電流指令Id、Iqからd軸、q軸フィードバック電流Id、Iqを減算し、変動成分としてのd軸、q軸補正電流ΔId、ΔIqを生成する。そして、このd軸、q軸補正電流ΔId、ΔIqからd軸、q軸補正電圧ΔVd、ΔVqを生成した後、電圧指令生成部516から出力したd軸、q軸電圧指令Vd、Vqにそれぞれ加算することで変動成分を補正する。このため、d軸、q軸フィードバック電流Id、Iqの瞬時値によって変動成分の補正が可能となる。これにより、極めて高い応答性で矩形波制御時におけるPMモータ10の駆動電流Iu、Iv、Iwのオフセットおよび振幅アンバランスの補正を行うことができる。また、本発明に係るモータ制御装置100及びモータ制御方法は、dq二相状態、即ちd軸、q軸電圧指令Vd’、Vq’の状態で補正を行う。即ち、各相(U相、V相、W相)への補正を個別に行うものではないため、ある相への補正が他の相へ悪影響を及ぼすことも無い。 As described above, in the motor control device 100 and the motor control method according to the present invention, the d-axis, q-axis feedback currents Id, and Iq are smoothed during rectangular wave control to estimate d-axis, q-axis current commands Id * , and Iq. * Is generated, and the d-axis and q-axis feedback currents Id and Iq are subtracted from the estimated d-axis and q-axis current commands Id * and Iq * to obtain the d-axis and q-axis correction currents ΔId and ΔIq as variable components. Generate. Then, after the d-axis and q-axis correction voltages ΔVd and ΔVq are generated from the d-axis and q-axis correction currents ΔId and ΔIq, they are added to the d-axis and q-axis voltage commands Vd and Vq output from the voltage command generation unit 516, respectively. By doing so, the fluctuation component is corrected. Therefore, the fluctuation component can be corrected by the instantaneous values of the d-axis and q-axis feedback currents Id and Iq. This makes it possible to correct the offset and amplitude imbalance of the drive currents Iu, Iv, and Iw of the PM motor 10 during rectangular wave control with extremely high responsiveness. Further, the motor control device 100 and the motor control method according to the present invention perform correction in the dq two-phase state, that is, in the d-axis, q-axis voltage commands Vd', Vq'. That is, since the correction to each phase (U phase, V phase, W phase) is not performed individually, the correction to one phase does not adversely affect the other phase.

尚、本例で示したモータ制御装置100の各部の構成、機構、モータ制御方法の手順等は一例であるから上記の例に限定されるわけでは無く、本発明は本発明の要旨を逸脱しない範囲で変更して実施することが可能である。 Since the configuration, mechanism, procedure of the motor control method, etc. of each part of the motor control device 100 shown in this example is an example, the present invention is not limited to the above example, and the present invention does not deviate from the gist of the present invention. It is possible to change and implement within the range.

10 PMモータ
12u、12v 駆動電流検出部
14 角度検出部
20 インバータ
22 3相/dq変換部
30 制御信号生成部
502 トルク制御部
516 電圧指令生成部
72 平滑部
74 補正電流生成部
76 補正電圧生成部
78 電圧指令補正部
100 モータ制御装置
Iu、Iv、Iw 駆動電流
Id、Iq d軸、q軸フィードバック電流
Id、Iq 推定d軸、q軸電流指令(矩形波制御時)
ΔId、ΔIq d軸、q軸補正電流(矩形波制御時)
Vd、Vq d軸、q軸電圧指令(矩形波制御時)
ΔVd、ΔVq d軸、q軸補正電圧(矩形波制御時)
Su、Sv、Sw 駆動信号
トルク指令値
θ 電気角
θv 電圧位相
10 PM motor
12u, 12v drive current detector
14 Angle detector
20 Inverter
22 3-phase / dq converter
30 Control signal generator
502 Torque control unit
516 Voltage command generator
72 Smooth part
74 Corrected current generator
76 Correction voltage generator
78 Voltage command correction unit
100 motor controller
Iu, Iv, Iw drive current
Id, IQ d-axis, q-axis feedback current
Id * , Iq * Estimated d-axis, q-axis current command (during square wave control)
ΔId, ΔIq d-axis, q-axis correction current (when controlling a square wave)
Vd, Vq d-axis, q-axis voltage command (when controlling square wave)
ΔVd, ΔVq d-axis, q-axis correction voltage (when controlling square wave)
Su, Sv, Sw drive signal
T * Torque command value
θ electrical angle
θv voltage phase

Claims (4)

PMモータに3相交流の駆動電流を出力するインバータと、
前記駆動電流の値を取得する駆動電流検出部と、
前記PMモータの電気角を取得する角度検出部と、
前記電気角に基づいて電気角速度を算出する角速度演算部と、
前記電気角に基づいて前記駆動電流検出部が取得した駆動電流をd軸、q軸フィードバック電流に変換する3相/dq変換部と、
矩形波制御時に、トルク指令値に基づく電圧位相を出力するトルク制御部と、前記電圧位相に基づいてd軸、q軸電圧指令を生成する電圧指令生成部と、を有する矩形波制御部と、
前記d軸、q軸電圧指令を補正する線形補正部と、前記線形補正部が補正したd軸、q軸電圧指令に基づいて3相の電圧指令を生成するdq/3相変換部と、前記3相の電圧指令と三角波とを比較して前記インバータをスイッチングする駆動信号を生成する駆動信号生成部と、を備えた制御信号生成部と、
を有するモータ制御装置において、
前記矩形波制御部が、前記d軸、q軸フィードバック電流をそれぞれ平滑して推定d軸、q軸電流指令を生成する平滑部と、前記推定d軸、q軸電流指令から前記d軸、q軸フィードバック電流の瞬時値をそれぞれ減算してd軸、q軸補正電流をそれぞれ生成する補正電流生成部と、前記d軸、q軸補正電流からd軸、q軸補正電圧を生成する補正電圧生成部と、前記d軸、q軸補正電圧を前記d軸、q軸電圧指令にそれぞれ加算して前記制御信号生成部に出力する電圧指令補正部と、同期制御部と、をさらに有し、
前記同期制御部は、前記電気角速度に基づいて前記三角波の周波数を前記3相の電圧指令の周波数の奇数の3の整数倍とするキャリア設定情報を設定して前記駆動信号生成部に出力するとともに、前記三角波と前記3相の電圧指令とが前記3相の電圧指令の1周期の間で2回交差し三角波比較により生成される駆動信号が1パルスの矩形波となるような矩形波形成電圧を設定して前記電圧指令生成部と前記線形補正部とに出力し、
前記電圧指令生成部は前記電圧位相と前記矩形波形成電圧に基づいてd軸、q軸電圧指令を生成するとともに、前記線形補正部は前記矩形波形成電圧に基づいて前記d軸、q軸電圧指令を補正し、さらに駆動信号生成部は前記キャリア設定情報に基づいた周期の三角波により前記3相の電圧指令との三角波比較を行うことを特徴とするモータ制御装置。
An inverter that outputs a three-phase alternating current drive current to the PM motor,
A drive current detector that acquires the value of the drive current,
An angle detection unit that acquires the electric angle of the PM motor,
An angular velocity calculation unit that calculates the electrical angular velocity based on the electrical angle,
A three-phase / dq conversion unit that converts the drive current acquired by the drive current detection unit based on the electric angle into d-axis and q-axis feedback currents.
A square wave control unit having a torque control unit that outputs a voltage phase based on a torque command value and a voltage command generation unit that generates d-axis and q-axis voltage commands based on the voltage phase during rectangular wave control.
A linear correction unit that corrects the d-axis and q-axis voltage commands, a dq / 3-phase conversion unit that generates a three-phase voltage command based on the d-axis and q-axis voltage commands corrected by the linear correction unit, and the above. A control signal generation unit including a drive signal generation unit that generates a drive signal for switching the inverter by comparing a three-phase voltage command and a triangular wave .
In the motor control device with
The rectangular wave control unit smoothes the d-axis and q-axis feedback currents to generate an estimated d-axis and q-axis current command, and the estimated d-axis and q-axis current commands are used to generate the d-axis and q. A correction current generator that generates d-axis and q-axis correction currents by subtracting the instantaneous values of the axis feedback currents, respectively, and a correction voltage generation unit that generates d-axis and q-axis correction voltages from the d-axis and q-axis correction currents, respectively. Further, it has a voltage command correction unit, a voltage command correction unit, and a synchronization control unit, which add the d-axis and q-axis correction voltages to the d-axis and q-axis voltage commands and output them to the control signal generation unit.
The synchronous control unit sets carrier setting information in which the frequency of the triangular wave is an integral multiple of an odd number of 3 of the frequency of the voltage command of the three phases based on the electric angular velocity, and outputs the carrier setting information to the drive signal generation unit. , The square wave forming voltage such that the triangular wave and the three-phase voltage command intersect twice during one cycle of the three-phase voltage command and the drive signal generated by the triangle wave comparison becomes a one-pulse square wave. Is set and output to the voltage command generation unit and the linear correction unit.
The voltage command generation unit generates d-axis and q-axis voltage commands based on the voltage phase and the square wave forming voltage, and the linear correction unit generates the d-axis and q-axis voltage based on the square wave forming voltage. A motor control device characterized in that a command is corrected and a drive signal generation unit performs a triangular wave comparison with the three-phase voltage command by a triangular wave having a period based on the carrier setting information .
正弦波制御同期制御部を備えるとともに、正弦波制御時に、トルク指令値に基づいてd軸、q軸電流指令を算出し、このd軸、q軸電流指令に基づいてd軸、q軸電圧指令を生成する正弦波制御部と、A sine wave control synchronous control unit is provided, and during sine wave control, d-axis and q-axis current commands are calculated based on the torque command value, and d-axis and q-axis voltage commands are calculated based on the d-axis and q-axis current commands. With a sine wave control unit that produces
d軸電圧指令、q軸電圧指令の生成を前記正弦波制御部と矩形波制御部とで切り替える切替部と、をさらに有し、It further has a switching unit for switching the generation of the d-axis voltage command and the q-axis voltage command between the sine wave control unit and the square wave control unit.
前記正弦波制御同期制御部は、電気角速度に基づいて三角波の周波数を3相の電圧指令の周波数の奇数の3の整数倍とするキャリア設定情報を設定して駆動信号生成部に出力することを特徴とする請求項1記載のモータ制御装置。The sine wave control synchronous control unit sets carrier setting information in which the frequency of the triangular wave is an integral multiple of an odd number of 3 of the frequency of the three-phase voltage command based on the electric angular velocity, and outputs the carrier setting information to the drive signal generation unit. The motor control device according to claim 1, wherein the motor control device is characterized.
インバータからPMモータに出力される3相交流の駆動電流の値を取得する駆動電流取得ステップと、
前記PMモータの電気角を取得する電気角取得ステップと、
前記電気角に基づいて電気角速度を算出するステップと、
前記駆動電流をd軸、q軸フィードバック電流に変換するフィードバック電流生成ステップと、
矩形波制御時に、トルク指令値に基づく電圧位相を生成する電圧位相生成ステップと、
前記電圧位相と前記電気角速度に基づいて三角波比較に用いる三角波を設定するためのキャリア設定情報を生成するステップと、
三角波比較により生成される駆動信号が1パルスの矩形波となるような矩形波形成電圧を出力するステップと、
前記電圧位相と前記矩形波形成電圧に基づいてd軸、q軸電圧指令を生成するdq電圧指令生成ステップと、
前記d軸、q軸フィードバック電流をそれぞれ平滑して推定d軸、q軸電流指令を生成する電流指令生成ステップと、
前記推定d軸、q軸電流指令から前記d軸、q軸フィードバック電流の瞬時値をそれぞれ減算してd軸、q軸補正電流をそれぞれ生成する補正電流生成ステップと、
前記d軸、q軸補正電流からd軸、q軸補正電圧を生成する補正電圧生成ステップと、
前記d軸、q軸補正電圧を前記d軸、q軸電圧指令にそれぞれ加算する補正ステップと、
前記補正ステップで補正されたd軸、q軸電圧指令を前記矩形波形成電圧に基づいて更に補正した後、3相の電圧指令に変換し、前記キャリア設定情報に基づく周波数が前記3相の電圧指令の周波数の奇数の3の整数倍の三角波と前記3相の電圧指令とを比較して駆動信号を生成する駆動信号生成ステップと、
前記駆動信号により前記インバータをスイッチング動作させ駆動電流を出力する駆動ステップと、を有することを特徴とするモータ制御方法。
The drive current acquisition step to acquire the value of the three-phase AC drive current output from the inverter to the PM motor,
The electric angle acquisition step for acquiring the electric angle of the PM motor, and
The step of calculating the electric angular velocity based on the electric angle, and
A feedback current generation step that converts the drive current into a d-axis and q-axis feedback current,
A voltage phase generation step that generates a voltage phase based on the torque command value during square wave control,
A step of generating carrier setting information for setting a triangular wave used for triangular wave comparison based on the voltage phase and the electric angular velocity, and
A step of outputting a square wave forming voltage such that the drive signal generated by the triangular wave comparison becomes a one-pulse square wave, and
A dq voltage command generation step for generating a d-axis and q-axis voltage command based on the voltage phase and the square wave forming voltage , and
The current command generation step of smoothing the d-axis and q-axis feedback currents to generate the estimated d-axis and q-axis current commands, respectively.
A correction current generation step of subtracting the instantaneous values of the d-axis and q-axis feedback currents from the estimated d-axis and q-axis current commands to generate d-axis and q-axis correction currents, respectively.
The correction voltage generation step of generating the d-axis and q-axis correction voltage from the d-axis and q-axis correction current,
A correction step of adding the d-axis and q-axis correction voltages to the d-axis and q-axis voltage commands, respectively.
The d-axis and q-axis voltage commands corrected in the correction step are further corrected based on the square wave forming voltage, then converted into three-phase voltage commands, and the frequency based on the carrier setting information is the voltage of the three-phase. A drive signal generation step of comparing a triangular wave having an odd multiple of 3 with an odd frequency of the command and the voltage command of the three phases to generate a drive signal, and
A motor control method comprising: a drive step for switching an inverter with the drive signal and outputting a drive current.
PMモータの運転状況に応じてd軸、q軸電圧指令の生成を正弦波制御と矩形波制御で切り替えるステップと、A step to switch the generation of d-axis and q-axis voltage commands between sine wave control and square wave control according to the operating conditions of the PM motor.
正弦波制御時に、トルク指令値に基づいてd軸、q軸電流指令を算出し、このd軸、q軸電流指令に基づいてd軸、q軸電圧指令を生成するステップと、During sine wave control, the d-axis and q-axis current commands are calculated based on the torque command value, and the d-axis and q-axis voltage commands are generated based on the d-axis and q-axis current commands.
正弦波制御時に、電圧位相と電気角速度に基づいて周波数が3相の電圧指令の周波数の奇数の3の整数倍となる三角波を設定するためのキャリア設定情報を生成するステップと、をさらに有することを特徴とする請求項3記載のモータ制御方法。Further having, during sine wave control, a step of generating carrier setting information for setting a triangular wave whose frequency is an integral multiple of an odd number of 3 of the frequency of the three-phase voltage command based on the voltage phase and the electrical angular velocity. 3. The motor control method according to claim 3.
JP2017146210A 2017-07-28 2017-07-28 Motor control device and motor control method Active JP7042568B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017146210A JP7042568B2 (en) 2017-07-28 2017-07-28 Motor control device and motor control method
DE112018003835.1T DE112018003835T5 (en) 2017-07-28 2018-06-29 Engine control device and engine control method
PCT/JP2018/024755 WO2019021745A1 (en) 2017-07-28 2018-06-29 Motor control device and motor control method
CN201880042361.9A CN110785923A (en) 2017-07-28 2018-06-29 Motor control device and motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017146210A JP7042568B2 (en) 2017-07-28 2017-07-28 Motor control device and motor control method

Publications (2)

Publication Number Publication Date
JP2019030095A JP2019030095A (en) 2019-02-21
JP7042568B2 true JP7042568B2 (en) 2022-03-28

Family

ID=65039563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017146210A Active JP7042568B2 (en) 2017-07-28 2017-07-28 Motor control device and motor control method

Country Status (4)

Country Link
JP (1) JP7042568B2 (en)
CN (1) CN110785923A (en)
DE (1) DE112018003835T5 (en)
WO (1) WO2019021745A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056991B2 (en) * 2019-11-22 2021-07-06 GM Global Technology Operations LLC Method and apparatus for controlling operation of a rotary electric machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158886A (en) 2001-11-19 2003-05-30 Matsushita Electric Ind Co Ltd Motor controller
JP2009219239A (en) 2008-03-10 2009-09-24 Toyota Motor Corp Motor control device
JP2010029027A (en) 2008-07-23 2010-02-04 Jtekt Corp Motor control device
JP4765700B2 (en) 2005-06-01 2011-09-07 日産自動車株式会社 Power converter
JP2014132815A (en) 2012-12-03 2014-07-17 Denso Corp Control apparatus for ac motor
JP2017093218A (en) 2015-11-13 2017-05-25 トヨタ自動車株式会社 Control system of ac motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281779A (en) * 2001-03-16 2002-09-27 Yaskawa Electric Corp Ac motor driver
JP5387878B2 (en) * 2008-03-31 2014-01-15 株式会社ジェイテクト Motor control device
JP5133834B2 (en) * 2008-09-30 2013-01-30 トヨタ自動車株式会社 AC motor control device
JP2011019302A (en) * 2009-07-07 2011-01-27 Toyota Motor Corp Controller for motor driving system
DE102010002121B8 (en) * 2010-02-18 2012-07-19 Lorch Schweißtechnik GmbH Arc welding process and welding power source for carrying out the method
CN103176132B (en) * 2011-12-22 2015-08-12 联芯科技有限公司 The evaluation method of battery electric quantity and terminal device
CN102857082B (en) * 2012-08-30 2015-04-22 永济新时速电机电器有限责任公司 Harmonic suppression method of grid-connected photovoltaic inverter
JP6095561B2 (en) * 2013-12-24 2017-03-15 三菱電機株式会社 Motor drive control device
CN204258316U (en) * 2014-11-27 2015-04-08 哈尔滨理工大学 Cascade H bridge Static Synchronous reactive-load compensator under three-phase imbalance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158886A (en) 2001-11-19 2003-05-30 Matsushita Electric Ind Co Ltd Motor controller
JP4765700B2 (en) 2005-06-01 2011-09-07 日産自動車株式会社 Power converter
JP2009219239A (en) 2008-03-10 2009-09-24 Toyota Motor Corp Motor control device
JP2010029027A (en) 2008-07-23 2010-02-04 Jtekt Corp Motor control device
JP2014132815A (en) 2012-12-03 2014-07-17 Denso Corp Control apparatus for ac motor
JP2017093218A (en) 2015-11-13 2017-05-25 トヨタ自動車株式会社 Control system of ac motor

Also Published As

Publication number Publication date
JP2019030095A (en) 2019-02-21
CN110785923A (en) 2020-02-11
DE112018003835T5 (en) 2020-04-09
WO2019021745A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
JP5321614B2 (en) Rotating machine control device
JP4067949B2 (en) Motor control device
US20130278200A1 (en) System for controlling controlled variable of rotary machine
JP2011120322A (en) Control unit of motor drive unit
US20160352269A1 (en) Apparatus for controlling rotary electric machine
JP7126910B2 (en) MOTOR CONTROL DEVICE AND MOTOR CONTROL METHOD
JP2003204694A (en) Motor controller
JP5898407B2 (en) Motor control device
JP2012235659A (en) Controller of rotary machine
JP2010200430A (en) Drive controller for motors
JP4402600B2 (en) Synchronous motor drive system and synchronous motor drive method
JP7094859B2 (en) Motor control device and motor control method
JP4867307B2 (en) Inverter dead time compensation device
JP5790390B2 (en) AC motor control device and control method
JP2013141345A (en) Motor control device and air conditioner
JP7042568B2 (en) Motor control device and motor control method
KR101316945B1 (en) Doubly-fed wound machine with constant ac or dc source and control method thereof
JP5230682B2 (en) Control device for synchronous motor
JP2011217574A (en) Wind power generation system, and device and method for controlling rotating machine
JPH08266099A (en) Controller for permanent-magnet synchronous motor
WO2017030055A1 (en) Device and method for controlling rotary machine
JP7082369B2 (en) Motor drive
JP6951945B2 (en) Motor control device and motor control method
JP5444983B2 (en) Rotating machine control device
JP5412772B2 (en) Rotating machine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7042568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150