WO2017030055A1 - Device and method for controlling rotary machine - Google Patents

Device and method for controlling rotary machine Download PDF

Info

Publication number
WO2017030055A1
WO2017030055A1 PCT/JP2016/073484 JP2016073484W WO2017030055A1 WO 2017030055 A1 WO2017030055 A1 WO 2017030055A1 JP 2016073484 W JP2016073484 W JP 2016073484W WO 2017030055 A1 WO2017030055 A1 WO 2017030055A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic flux
rotating machine
pattern
pulse pattern
phase
Prior art date
Application number
PCT/JP2016/073484
Other languages
French (fr)
Japanese (ja)
Inventor
青木 康明
友哉 高橋
洋介 松木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017030055A1 publication Critical patent/WO2017030055A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present disclosure relates to a control device and a control method for a rotating machine that controls driving of the rotating machine using an output voltage having a pulse waveform.
  • PWM control is widely used in which the fundamental wave voltage output from the controller is modulated by PWM (pulse width modulation) to control inverter switching.
  • PWM pulse width modulation
  • the switching loss increases.
  • the PWM frequency is lowered in order to reduce the switching loss, the motor current ripple, particularly the d-axis current ripple with a small electric resistance value, increases, leading to an increase in iron loss.
  • Patent Document 1 discloses a technique for generating an output voltage pattern (hereinafter referred to as “pulse pattern”) having an optimal pulse waveform synchronized with the electrical angle of a motor, and controlling switching of the inverter using the pulse pattern. Is disclosed. When a pulse pattern is used, the number of times of switching in one electrical cycle can be reduced with respect to PWM control, and switching loss can be reduced. In the technique of Patent Document 1, an optimal pulse pattern is set so as to mainly reduce the power loss of the motor.
  • the present disclosure relates to a rotating machine control device that controls switching of an inverter using a pulse pattern, while reducing the iron loss of the rotating machine and the switching loss of the inverter while taking into account the actual magnetic characteristic distortion of the rotating machine.
  • An object of the present invention is to provide a control device for a rotating machine that satisfies both requirements.
  • a rotating machine control device that controls switching of an inverter by a switching signal output from a modulator, and controls energization of a multi-phase rotating machine having three or more phases.
  • the magnetic flux predicting unit integrates the voltage output from the inverter over a predetermined period, and calculates a predicted magnetic flux generated in the rotating machine by the switching operation of the inverter.
  • the target magnetic flux setting unit sets the target magnetic flux based on the actual magnetic characteristic distortion of the rotating machine.
  • the magnetic flux error evaluation unit calculates an evaluation difference value based on a difference between the predicted magnetic flux and the target magnetic flux in a predetermined period.
  • the pulse pattern generation unit generates a pulse pattern synchronized with the electrical angle of the rotating machine based on the voltage command value and closes the evaluation difference value to zero, and outputs a switching signal based on the generated pulse pattern. .
  • a pulse pattern is generated so that the evaluation difference value between the predicted magnetic flux and the target magnetic flux is close to zero, and switching of the inverter is controlled by a switching signal based on the pulse pattern.
  • the target magnetic flux is set based on the actual magnetic characteristic distortion of the rotating machine.
  • the target magnetic flux setting unit changes the target magnetic flux according to the rotational position of the rotating machine. Thereby, the actual magnetic characteristic distortion can be accurately reflected in the target magnetic flux.
  • the pulse pattern generation unit generates a pulse pattern in the electrical angle 360 [deg] section by inverting the line symmetry and the point symmetry with the section of the electrical angle 90 [deg] as one unit for one phase. .
  • the pulse pattern generation unit corrects the pattern based on a preset basic pattern so that the evaluation difference value calculated by the magnetic flux error evaluation unit approaches zero.
  • a control method for a rotating machine that controls switching of an inverter by a switching signal output from a modulator and controls energization of a multi-phase rotating machine having three or more phases.
  • the integrator integrates the voltage output from the inverter over a predetermined period, calculates the predicted magnetic flux generated in the rotating machine by the switching operation of the inverter, sets the target magnetic flux based on the actual magnetic characteristic distortion of the rotating machine, , A pulse that is synchronized with the electrical angle of the rotating machine so as to calculate an evaluation difference value used for evaluating the difference between the predicted magnetic flux and the target magnetic flux, and to bring the evaluation difference value close to zero based on the voltage command value A pattern is generated, and a switching signal based on the generated pulse pattern is output.
  • FIG. 1 is a schematic configuration diagram of a control device for a rotating machine according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram of the modulator of FIG. 3A is a diagram illustrating the ⁇ coordinate system
  • FIG. 3B is a diagram illustrating the magnetic flux vectors of the predicted magnetic flux and the target magnetic flux
  • FIG. 4 is a diagram for explaining the difference between magnetic flux vectors.
  • FIG. 5 is a time chart for explaining setting of a pulse pattern based on magnetic flux error evaluation.
  • FIG. 6 is a diagram for explaining the definition of the pulse pattern.
  • 7A and 7B are PWM patterns (related techniques), and FIG.
  • FIGS. 8A and 8B are diagrams of magnetic flux trajectories according to the basic pattern and FIGS. 9A and 9B are diagrams of magnetic flux trajectories by the first correction pattern and FIG. 9C by the same pattern, 10A and 10B are diagrams of the second correction pattern, FIG. 10C is a magnetic flux trajectory by the pattern, FIG. 11A and FIG. 11B are diagrams of the third correction pattern, and FIG. 12A and 12B are diagrams of the fourth correction pattern, and FIG. 12C is a magnetic flux locus of the same pattern.
  • FIG. 8A and 8B are diagrams of magnetic flux trajectories according to the basic pattern and FIGS. 9A and 9B are diagrams of magnetic flux trajectories by the first correction pattern and FIG. 9C by the same pattern, 10A and 10B are diagrams of the second correction pattern, FIG. 10C is a magnetic flux trajectory by the pattern, FIG. 11A and FIG. 11B are diagrams of the third correction pattern, and FIG. 12A and 12B are
  • FIG. 13 shows evaluation difference values ((a) phase difference, (b) amplitude difference, (c) phase change difference, and (d) amplitude change difference between the predicted magnetic flux and the target magnetic flux by the PWM pattern (related technology). )
  • FIG. 14 is a diagram illustrating an evaluation difference value between the predicted magnetic flux and the target magnetic flux according to the basic pattern.
  • FIG. 15 is a diagram illustrating an evaluation difference value between the predicted magnetic flux and the target magnetic flux according to the first correction pattern.
  • FIG. 16 is a diagram illustrating an evaluation difference value between the predicted magnetic flux and the target magnetic flux according to the second correction pattern
  • FIG. 17 is a diagram illustrating an evaluation difference value between the predicted magnetic flux and the target magnetic flux according to the third correction pattern.
  • FIG. 18 is a diagram illustrating an evaluation difference value between the predicted magnetic flux and the target magnetic flux according to the fourth correction pattern,
  • FIG. 19 is a diagram for explaining motor current ripple and iron loss by PWM control according to related art.
  • the three-phase motor corresponds to a multi-phase rotating machine
  • the motor control device corresponds to a rotating machine control device.
  • the motor control device 10 outputs a switching signal to the inverter 4 connected to the motor 5 to control switching. Thereby, the electric power supplied from the inverter 4 to the motor 5 is controlled.
  • the inverter 4 includes three-phase upper and lower arm switching elements 41 to 46 that are bridge-connected. Specifically, switching elements 41, 42, and 43 are U-arm, V-phase, and W-phase upper arm switching elements, respectively, and switching elements 44, 45, and 46 are respectively under the U-phase, V-phase, and W-phase. This is an arm switching element. As the switching elements 41 to 46, for example, IGBT or the like is used. The inverter 4 converts the input DC power into three-phase AC power by the operations of the switching elements 41 to 46.
  • the motor 5 is, for example, a permanent magnet type synchronous three-phase AC motor.
  • the motor 5 for example, a motor generator that is a power source of a hybrid vehicle or an electric vehicle is assumed.
  • a position sensor 55 such as a resolver for detecting the rotor position (electrical angle) ⁇ e is provided in the vicinity of the rotor of the motor 5.
  • a current sensor 6 for detecting the three-phase currents Iu, Iv, Iw is provided.
  • the current sensor 6 may detect a two-phase current, and the other one-phase current may be calculated according to Kirchhoff's law.
  • a technique for estimating the current of the other two phases based on the detected current value of one phase, or a technique of estimating the current based on the detected DC current value may be employed.
  • the motor control device 10 includes a dq converter 11, a current subtractor 12, a current controller 13, an inverse dq converter 14, a modulator 15, a differentiator 16, and the like as a configuration of current feedback control.
  • the dq conversion unit 11 receives the phase current detection value from the current sensor 6.
  • the dq conversion unit 11 uses the electrical angle ⁇ e acquired from the position sensor 55 to dq convert the three-phase current detection values Iu, Iv, and Iw into dq-axis current detection values Id and Iq, and feeds back to the current subtractor 12. .
  • the current subtractor 12 subtracts the dq-axis current detection values Id and Iq fed back from the dq converter 11 from the dq-axis current command values Id * and Iq * to calculate dq-axis current deviations ⁇ Id and ⁇ Iq.
  • the current controller 13 calculates the dq axis voltage command values Vd * and Vq * by PI control calculation or the like so that the dq axis current deviations ⁇ Id and ⁇ Iq converge to zero.
  • the inverse dq conversion unit 14 converts the dq axis voltage command values Vd * and Vq * into the three-phase voltage command values Vu *, Vv * and Vw * using the electrical angle ⁇ e.
  • the modulator 15 receives the three-phase voltage command values Vu *, Vv *, Vw *, the electrical angle ⁇ e, and the electrical angular velocity ⁇ obtained by time differentiation of the electrical angle ⁇ e by the differentiator 16.
  • the electrical angular velocity ⁇ may be read as the motor rotation speed.
  • the modulator 15 switches the switching signals UU, VU, WU corresponding to the switching elements 41, 42, 43 of the three-phase upper arm and the switching elements 44, 45, three-phase of the lower arm.
  • the switching signals UL, VL, WL corresponding to 46 are generated and output to the inverter 4. Further, the modulator 15 acquires an induced voltage e when the inverter 4 is stopped.
  • the modulator 15 includes a pulse pattern generation unit 20, a magnetic flux prediction unit 31, a target magnetic flux setting unit 32, and a magnetic flux error evaluation unit 33.
  • the motor control device 10 of this embodiment controls switching of the inverter 4 using a pulse pattern synchronized with the electrical angle of the motor 5 instead of PWM control widely used in motor control technology.
  • the pulse pattern is used, the number of times of switching in one electrical cycle can be reduced with respect to PWM control, and the switching loss can be reduced.
  • the motor generator of a hybrid vehicle is required to be small and have high output, performance in a high rotation overmodulation region is important. Therefore, it is effective to reduce switching loss using a pulse pattern.
  • the pulse pattern generation unit 20 preferably includes a basic pattern setting unit 21, a pattern correction unit 23, and storage units 22 and 24.
  • the basic pattern setting unit 21 sets a “basic pattern” based on the voltage command value, the electrical angle ⁇ e, and the electrical angular velocity ⁇ (rotation speed).
  • a plurality of pulse patterns are stored in advance in the storage unit 22 in the form of a map or the like, and stored in the storage unit 22 when the basic pattern setting unit 21 acquires the voltage command value, the electrical angle ⁇ e, and the electrical angular velocity ⁇ .
  • An optimum pattern may be selected from the plurality of pulse patterns.
  • the modulation factor and the voltage phase may be calculated from the voltage command value and the inverter DC voltage, and the pattern may be selected from the modulation factor and the voltage phase.
  • the pattern correction unit 23 acquires an “evaluation difference value”, which will be described later, from the magnetic flux error evaluation unit 33, acquires the electrical angle ⁇ e, and corrects the basic pattern so that the evaluation difference value approaches zero. Is generated. Specifically, the pattern correction unit 23 generates a pulse pattern so that the peak value, the integrated value, or the average value of the evaluation difference values in a predetermined period approaches zero.
  • the correction pattern generated by the pattern correction unit 23 may be stored in the storage unit 24 in the form of a map or the like representing the relationship with each parameter, just like the basic pattern is stored in the storage unit 22.
  • the pattern correction unit 23 may further re-correct the corrected pattern read from the storage unit 24.
  • the pulse pattern generation unit 20 outputs a switching signal (UU, VU, WU, UL, VL, WL) based on the correction pattern thus obtained to the inverter 4.
  • the switching signal generated by the pulse pattern generation unit 20 is acquired by the magnetic flux prediction unit 31.
  • the magnetic flux predicting unit 31 integrates the voltage output from the inverter 4 over a predetermined period based on the switching signal, and predicts the actual magnetic flux generated in each phase of the motor 5 by the switching operation of the inverter 4.
  • the magnetic flux predicted by the magnetic flux predicting unit 31 based on the pulse pattern is referred to as “predicted magnetic flux ⁇ est”.
  • the magnetic flux predicting unit 31 may switch the calculation so that, for example, the formula (1.1) is used when the rotational speed is less than the predetermined rotational speed, and the formula (1.2) is used when the rotational speed is the predetermined rotational speed or higher.
  • the target magnetic flux setting unit 32 sets the target magnetic flux ⁇ tgt for the predicted magnetic flux ⁇ est based on the actual magnetic characteristic distortion of the motor 5.
  • the target magnetic flux ⁇ tgt includes components such as a magnetic flux distortion of a permanent magnet or an inductance distortion of a coil as “real magnetic characteristic distortion”, and individual variations and aging of the motor 5 depending on component characteristics and structure Etc.
  • the target magnetic flux setting unit 32 acquires, for example, the induced voltage e of the motor 5 when the inverter 4 is stopped, and sets the target magnetic flux ⁇ tgt based on the magnet magnetic flux waveform detected from the induced voltage e.
  • the target magnetic flux setting unit 32 may internally store distortion information inspected for each individual when the motor 5 is manufactured, and may set the target magnetic flux ⁇ tgt based on the distortion information.
  • the magnetic flux error evaluation unit 33 calculates an evaluation difference value used for evaluating a difference between the predicted magnetic flux ⁇ est and the target magnetic flux ⁇ tgt in a predetermined period.
  • FIG. 3 will be referred to regarding the fixed coordinates ( ⁇ coordinates) at which the magnetic flux error is evaluated in this embodiment.
  • FIG. 3A shows ⁇ coordinates based on the U phase. Conversion from the UVW three-phase axis to the ⁇ -axis and ⁇ -axis two-phase axes is expressed by Expression (2).
  • the ⁇ axis indicates the component in the U phase direction
  • the ⁇ axis indicates the component in the direction orthogonal to the U phase.
  • the phase ⁇ e of the electrical angle is defined counterclockwise with respect to the ⁇ axis.
  • the magnetic flux vector is expressed as shown in FIG. Assuming that the magnetic characteristic distortion of the motor 5 is uniform regardless of the position, the broken line target magnetic flux ⁇ tgt is ideally circular. However, the target magnetic flux ⁇ tgt is a distorted circle when the magnetic characteristic distortion varies depending on the position or between the three phases. Thus, the target magnetic flux setting unit 32 changes the target magnetic flux ⁇ tgt according to the rotational position of the motor 5.
  • the predicted magnetic flux ⁇ est calculated based on the pulse pattern appears in rotational symmetry with 60 [deg] as one unit.
  • the predicted magnetic flux ⁇ est is a polygonal line that straddles the target magnetic flux ⁇ tgt. Therefore, the portion where the predicted magnetic flux ⁇ est exceeds the target magnetic flux ⁇ tgt and the portion where the predicted magnetic flux ⁇ est falls below the target magnetic flux ⁇ tgt appear alternately depending on the phase.
  • phase of the predicted magnetic flux vector ⁇ est (t) at time t is expressed as ⁇ est (t)
  • the phase of the target magnetic flux vector ⁇ tgt (t) is expressed as ⁇ tgt (t).
  • the magnetic flux phase difference ⁇ is calculated by the equation (3.1).
  • ⁇ (t) ⁇ est (t) ⁇ tgt (t) (3.1)
  • ⁇ a (t)
  • the magnetic flux phase difference, the magnetic flux amplitude difference, the magnetic flux phase change difference, or the magnetic flux amplitude change difference can all be used for the error evaluation between the predicted magnetic flux ⁇ est and the target magnetic flux ⁇ tgt in the magnetic flux error evaluation unit 33. Value. In the present specification, these difference values are referred to as “evaluation difference values”. As described above, the magnetic flux error evaluation unit 33 calculates the evaluation difference value on the fixed coordinate ( ⁇ coordinate) axis. Then, the pattern correction unit 23 of the pulse pattern generation unit 20 generates a correction pattern so that the evaluation difference value approaches zero.
  • the pattern correcting unit 23 corrects the correction pattern based on the evaluation difference value. Is generated.
  • the correction pattern is reflected in the subsequent control cycle. For example, the pattern T1 is generated based on the evaluation difference value in a certain predetermined period T1, and the next pattern T2 is generated based on the evaluation difference value in the next predetermined period T2.
  • the electrical angle section of the phase axis is converted to the period of the time axis.
  • a period corresponding to one period of electrical angle is illustrated as a predetermined period on the time axis.
  • the evaluation difference value of the three-phase motor periodically fluctuates with an electrical angle of 60 [deg] as one unit. Therefore, it is preferable that the predetermined period for evaluating the magnetic flux error between the predicted magnetic flux ⁇ est and the target magnetic flux ⁇ tgt is a period corresponding to the electrical angle 60 [deg] or more of the motor 5. Stable evaluation is possible by evaluating the magnetic flux error over a period of 60 electrical degrees or more. If the predetermined period is set to a period that is an integral multiple of the control period, the evaluation result can be efficiently reflected in the pulse pattern calculation in the next control period.
  • the pulse pattern of one phase (for example, U phase) among the three phases is set by a model having a section of an electrical angle of 90 [deg] as one unit.
  • two off periods and two times in the section of electrical angle 0 to 90 [deg]. Is set to the ON period.
  • the pulse width in the first off period from the electrical angle 0 [deg] is ⁇ 1.
  • the center position of the second off period is ⁇ c1
  • half the width of the second off period is the pulse width ⁇ 2. If these center position ⁇ c1 and pulse widths ⁇ 1 and ⁇ 2 are determined, the pulse pattern in the section of electrical angle 0 to 90 [deg] is determined.
  • the pulse pattern of electrical angles 90 to 180 [deg] as shown by the broken line is set by inverting the pulse pattern of electrical angles 0 to 90 [deg] around the electrical angle 90 [deg] as a line symmetry.
  • the pulse pattern of electrical angles 180 to 360 [deg] is set by inverting the pulse pattern of electrical angles 0 to 180 [deg] around the electrical angle 180 [deg] as a point symmetry.
  • “Point symmetry” means to invert line symmetry and to invert the on and off sides of the pulse.
  • a pulse pattern of one electrical cycle for one phase is determined.
  • the other two phases (V phase and W phase) are set by shifting the pulse pattern of one phase by an electrical angle of ⁇ 120 [deg].
  • the pulse pattern in the section of the electrical angle 360 [deg] of the U phase and the V phase is expressed as shown in FIG.
  • This pulse pattern means ON / OFF of the switching elements 41, 42, and 43 of the upper arms of each phase. If the dead time is ignored, the pulse pattern of the switching elements 44, 45, and 46 in the lower arm of each phase is complementary to the pulse pattern of the switching elements 41, 42, and 43 in the same phase, that is, a vertically inverted form. Become.
  • the inverter 4 outputs a voltage when each phase switching element 41 to 46 operates according to the switching signal based on each phase pulse pattern.
  • FIG. 6B shows a line voltage pulse pattern of the U-V phase based on the U-phase and V-phase pulse patterns.
  • the line voltage pulse pattern has a “half-wave symmetry” relationship in which the voltage in the electrical angle range of 330 to 150 [deg] and the voltage in the electrical angle range of 150 to 330 [deg] are inverted.
  • the electrical angle reference may be changed as appropriate.
  • the electrical angle shown in parentheses in the lower row (c) may be used to define the solid line section in FIG. 6A as a section of 270 to 360 [deg].
  • the pulse pattern of electrical angles 90 to 270 [deg] is set by inverting the pulse pattern of electrical angles 270 to 360 and 0 to 90 [deg] around the electrical angle 90 [deg] as a point symmetry.
  • FIG. 3 This pulse pattern corresponds to a sinusoidal fundamental voltage indicated by a broken line.
  • FIG. 7 to FIG. 12 the pulse pattern displayed in this electrical angle section is described.
  • pulse pattern means “each phase pulse pattern”.
  • FIGS. examples of specific pulse patterns and magnetic flux trajectories between the predicted magnetic flux ⁇ est and the target magnetic flux ⁇ tgt based on the pulse patterns are shown in FIGS. Specifically, each of FIGS. (A) and (b) shows a pulse pattern in the range of 90 [deg] and 360 [deg]. Also, in each figure (c), the magnetic flux trajectories of the predicted magnetic flux ⁇ est and the target magnetic flux ⁇ tgt are shown by ⁇ coordinates according to FIG. 3 (b).
  • Fig. 7 shows the pattern when the number of pulses is 7 in the related art PWM control.
  • a zigzag waveform appears every electrical angle 60 [deg].
  • the amplitudes of the predicted magnetic flux ⁇ est and the target magnetic flux ⁇ tgt are different.
  • the deviation of the magnetic flux amplitude is relatively large.
  • FIG. 1 This basic pattern is set so that the number of pulses is the same as that of the PWM pattern, and the effective values are equal.
  • the basic pattern has a smaller amplitude divergence from the zigzag waveform target magnetic flux ⁇ tgt in the trajectory of the predicted magnetic flux ⁇ est compared to the PWM pattern.
  • Fig. 9 to Fig. 12 show four types of correction patterns that are part of the basic pattern.
  • the number of pulses of the first to third correction patterns is 7 as in the basic pattern.
  • the first correction pattern shown in FIG. 9 is obtained by changing the pulse width from ⁇ 2 to ⁇ 2 * with respect to the basic pattern.
  • the second correction pattern shown in FIG. 10 is obtained by changing the pulse position, that is, the center position ⁇ c1 to ⁇ c1 * with respect to the basic pattern.
  • the third correction pattern shown in FIG. 11 is obtained by changing both the pulse width and the pulse position to ⁇ 2 ** and ⁇ c1 ** so that the effective values are equal to those of the basic pattern.
  • the number of bending of the zigzag waveform in the locus of the predicted magnetic flux ⁇ est is the same as that of the basic pattern, and the shape and size of the zigzag waveform is slightly different from the basic pattern.
  • the fourth correction pattern shown in FIG. 12 is obtained by increasing the number of pulses from 7 to 11 with respect to the basic pattern.
  • the number of bends of the zigzag waveform in the locus of the predicted magnetic flux ⁇ est increases from 7 to 11 with respect to the basic pattern, and the size of each zigzag is smaller than the basic pattern as a whole.
  • the horizontal axis represents an electrical angle
  • the vertical axis represents four evaluation difference values: (a) magnetic flux phase difference, (b) magnetic flux amplitude difference, (c) magnetic flux phase change difference, (d) magnetic flux Indicates the difference in amplitude change.
  • a specific unit is not shown in each evaluation difference value, and relative evaluation is performed using the scale [div] on the vertical axis as an index.
  • the magnetic flux phase difference is an angular dimension such as [deg] or [rad]
  • the magnetic flux amplitude difference is a magnetic flux dimension such as [Wb].
  • the difference in magnetic flux phase change is the angular velocity dimension of [deg / s] or [rad / s]
  • width from the maximum peak to the minimum peak of the magnetic flux amplitude difference (hereinafter, “width between peaks”) is about 3.0 [div]. Further, (c) the maximum peak of the difference in magnetic flux phase change is about 1.5 [div], and (d) the maximum peak of the difference in magnetic flux amplitude change is about 3.0 [div], which is relatively large.
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-162660
  • the motor iron loss depends on a motor distortion component such as a magnetic flux distortion of a permanent magnet or an inductance distortion of a coil, a magnetic characteristic distortion due to individual variation, aging deterioration, and the like. Therefore, even if the pulse pattern is set without considering the motor distortion, the motor iron loss cannot be effectively reduced.
  • the present embodiment aims to reduce the motor iron loss by generating a pulse pattern so that the evaluation difference value approaches zero and controlling the switching of the inverter 4 based on the pulse pattern. .
  • the peak value of the evaluation difference value in a predetermined period may be close to zero. Or you may make it the integral value or average value of the evaluation difference value in a predetermined period approach zero.
  • the use of an integral value or an average value is less susceptible to noise than the use of a peak value.
  • the weighted average may be calculated so that the more recent values are weighted.
  • the width between the peaks of the magnetic flux amplitude difference is about 2.4 [div], which is smaller than the width of the PWM pattern.
  • the maximum peak of the difference in magnetic flux phase change is about 1.2 [div]
  • the maximum peak of the difference in magnetic flux amplitude change is about 2.5 [div], both of which are compared with the PWM pattern. Small. That is, the peak value of the evaluation difference value approaches zero. Therefore, by controlling the switching of the inverter 4 based on the basic pattern of the present embodiment, the motor iron loss can be reduced as compared with the related technology using the PWM pattern.
  • all of the first, second, and third correction patterns are compared with the PWM pattern, (b) the width between peaks of the magnetic flux amplitude difference, and (c) the magnetic flux phase.
  • the maximum peak of the difference in change and (d) the maximum peak of the difference in magnetic flux amplitude change are small.
  • the first correction pattern is about 2.0 [div]
  • the second correction pattern is about 2.0 [div]
  • the third correction pattern is about 1. 8 [div]. That is, it is smaller than about 2.4 [div] of the basic pattern.
  • (c) the maximum peak of the difference in magnetic flux phase change and (d) the maximum peak of the difference in magnetic flux amplitude change of the first, second, and third correction patterns are similar to the basic pattern.
  • the peak value of the evaluation difference value can be further reduced. Therefore, by controlling the switching of the inverter 4 based on the first to third correction patterns, the motor iron loss can be further reduced as compared with the case where the basic pattern is used.
  • a pulse pattern is generated so that the evaluation difference value between the predicted magnetic flux ⁇ est and the target magnetic flux ⁇ tgt is close to zero, and switching of the inverter 4 is controlled by a switching signal based on the pulse pattern.
  • the target magnetic flux ⁇ tgt is set based on the actual magnetic characteristic distortion of the motor 5.
  • the target magnetic flux setting unit 32 can accurately reflect the actual magnetic characteristic distortion on the target magnetic flux ⁇ tgt by changing the target magnetic flux ⁇ tgt according to the rotational position of the motor 5.
  • the section of the electrical angle of 90 [deg] is set as one unit for one phase, and the pulse in the section of electrical angle of 360 [deg] is inverted by line symmetry and point symmetry.
  • Generate a pattern With such a pattern generation method, the amount of pattern storage can be reduced, and the calculation load for generating a new pattern can be reduced.
  • the pulse pattern generation unit 20 of the present embodiment is configured so that the evaluation difference value calculated by the magnetic flux error evaluation unit 33 approaches zero based on the basic pattern previously set by the basic pattern setting unit 21.
  • the correction unit 23 generates a correction pattern.
  • the basic pattern and the correction pattern are stored in the storage units 22 and 24 together with the parameters used for calculating the pattern.
  • the calculation load can be reduced and the calculation time can be shortened. it can. Furthermore, it is possible to learn efficiently by storing the correction pattern in the storage unit 24 anew.
  • the electrical angle ⁇ 120 [deg] is shifted from the other two-phase pulse pattern with respect to the single-phase pulse pattern, and the electrical angle is 60 [deg] or more as a predetermined period for evaluating the magnetic flux error.
  • the period corresponding to is set because the number of phases of the motor is three phases.
  • the number of phases of the multiphase rotating machine to which the present disclosure is applied may be four or more, and in this case, the electrical angle is appropriately set according to the number of phases.
  • the pulse pattern generation unit of the other embodiments may not include the basic pattern setting unit. That is, the pulse pattern for making the evaluation difference value close to zero may be directly calculated without setting the basic pattern once.
  • the pulse pattern generation unit does not include a storage unit, and an optimal pulse pattern may be calculated from the beginning each time.
  • the storage unit 24 of the pattern correction unit 23 may not be provided, and the pattern correction unit 23 may correct the storage unit 22 of the basic pattern setting unit 21.
  • the pulse pattern generation unit of the present disclosure may output a switching signal based on the pulse pattern generated so that the evaluation difference value approaches zero to the inverter.
  • the rotating machine to be controlled in the present disclosure is not limited to a permanent magnet synchronous motor such as IPMSM and SPMSM, but all rotating machines that have a coil and can cause iron loss, such as an induction motor and a switched reluctance motor. included.
  • the rotating machine is not limited to a motor generator or the like used as a power source for a vehicle, but may be used for auxiliary equipment of a vehicle, a train other than the vehicle, an elevator, a general machine, or the like.
  • the method for controlling the energization of the motor is not limited to the current feedback control as shown in FIG. 1, but may be torque feedback control. Further, voltage open control that directly generates a voltage command value from a torque command or a rotation speed command without performing current feedback may be used.

Abstract

A control device for a rotary machine (5) that controls the switching of an inverter (4) by means of a switching signal output by a modulator (15), thereby controlling the energization of a multi-phase rotary machine having three or more phases. The modulator is equipped with a magnetic flux prediction unit (31), a target magnetic flux setting unit (32), a magnetic flux error evaluation unit (33), and a pulse pattern generation unit (20). The magnetic flux prediction unit integrates the voltage output by the inverter in a prescribed time period, and calculates a predicted magnetic flux generated by the rotary machine by means of the switching of the inverter. The target magnetic flux setting unit sets a target magnetic flux on the basis of the actual magnetic characteristic distortion of the rotary machine. The magnetic flux error evaluation unit calculates an evaluation difference value based on the difference between the predicted magnetic flux and the target magnetic flux in the prescribed time period. On the basis of a voltage command value, the pulse pattern generation unit generates a pulse pattern synchronized with the electrical angle of the rotary machine such that the evaluation difference value approaches zero, and outputs a switching signal based on the generated pulse pattern.

Description

回転機の制御装置および制御方法Rotating machine control device and control method 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年8月19日に出願された日本出願番号2015-161961号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on Japanese Patent Application No. 2015-161961 filed on August 19, 2015, and claims the benefit of its priority. Is incorporated herein by reference.
 本開示は、パルス波形の出力電圧を用いて回転機の駆動を制御する回転機の制御装置および制御方法に関する。 The present disclosure relates to a control device and a control method for a rotating machine that controls driving of the rotating machine using an output voltage having a pulse waveform.
 従来、モータ等の回転機の制御において、制御器が出力した基本波電圧をPWM(pulse width modulation)変調し、インバータのスイッチングを制御するPWM制御が広く用いられている。しかし、PWM周波数が高いとスイッチング損失が大きくなる。一方、スイッチング損失を低減させようとしてPWM周波数を下げると、モータの電流リップル、特に電気抵抗値の小さいd軸電流リップルが増大し、鉄損の増大につながるという問題がある。 Conventionally, in the control of rotating machines such as motors, PWM control is widely used in which the fundamental wave voltage output from the controller is modulated by PWM (pulse width modulation) to control inverter switching. However, when the PWM frequency is high, the switching loss increases. On the other hand, if the PWM frequency is lowered in order to reduce the switching loss, the motor current ripple, particularly the d-axis current ripple with a small electric resistance value, increases, leading to an increase in iron loss.
 また、例えば特許文献1には、モータの電気角に同期した最適なパルス波形の出力電圧パターン(以下、「パルスパターン」という)を生成し、当該パルスパターンを用いてインバータのスイッチングを制御する技術が開示されている。パルスパターンを用いると、PWM制御に対し電気1周期のスイッチング回数を減らし、スイッチング損失を低減することができる。また、特許文献1の技術では、主にモータの電力損失を低減するように、最適なパルスパターンを設定する。 For example, Patent Document 1 discloses a technique for generating an output voltage pattern (hereinafter referred to as “pulse pattern”) having an optimal pulse waveform synchronized with the electrical angle of a motor, and controlling switching of the inverter using the pulse pattern. Is disclosed. When a pulse pattern is used, the number of times of switching in one electrical cycle can be reduced with respect to PWM control, and switching loss can be reduced. In the technique of Patent Document 1, an optimal pulse pattern is set so as to mainly reduce the power loss of the motor.
特開2013-162660号公報JP 2013-162660 A
 特許文献1の技術では、パルスパターンの生成にあたり、モータの歪成分や個体ばらつき、経年劣化等の現実の磁気特性歪が考慮されていない。そのため、設定したパルスパターンに基づきモータに発生する磁束の状態によっては、モータ鉄損が増大する場合がある。特に高回転時には、モータ鉄損の影響が顕著に現れる。 In the technique of Patent Document 1, actual magnetic characteristic distortions such as motor distortion components, individual variations, and aging degradation are not taken into consideration when generating a pulse pattern. Therefore, depending on the state of magnetic flux generated in the motor based on the set pulse pattern, the motor iron loss may increase. In particular, at the time of high rotation, the influence of motor iron loss appears remarkably.
 本開示は、パルスパターンを用いてインバータのスイッチングを制御する回転機の制御装置において、回転機の現実の磁気特性歪を考慮しつつ、回転機の鉄損の低減とインバータのスイッチング損失の低減とを両立する回転機の制御装置を提供することを目的とする。 The present disclosure relates to a rotating machine control device that controls switching of an inverter using a pulse pattern, while reducing the iron loss of the rotating machine and the switching loss of the inverter while taking into account the actual magnetic characteristic distortion of the rotating machine. An object of the present invention is to provide a control device for a rotating machine that satisfies both requirements.
 本開示の第1の態様において、変調器から出力されるスイッチング信号によりインバータのスイッチングを制御し、三相以上の多相の回転機の通電を制御する回転機の制御装置であって、変調器は、磁束予測部、目標磁束設定部、磁束誤差評価部、及びパルスパターン生成部を備える。磁束予測部は、インバータが出力する電圧を所定期間で積分し、インバータのスイッチング動作により回転機に生じる予測磁束を算出する。目標磁束設定部は、回転機の現実の磁気特性歪に基づいて目標磁束を設定する。磁束誤差評価部は、所定期間において、予測磁束と目標磁束との差に基づく評価差分値を算出する。パルスパターン生成部は、電圧指令値に基づいて、且つ、評価差分値をゼロに近づけるように、回転機の電気角に同期したパルスパターンを生成し、生成したパルスパターンに基づくスイッチング信号を出力する。 In the first aspect of the present disclosure, there is provided a rotating machine control device that controls switching of an inverter by a switching signal output from a modulator, and controls energization of a multi-phase rotating machine having three or more phases. Includes a magnetic flux prediction unit, a target magnetic flux setting unit, a magnetic flux error evaluation unit, and a pulse pattern generation unit. The magnetic flux predicting unit integrates the voltage output from the inverter over a predetermined period, and calculates a predicted magnetic flux generated in the rotating machine by the switching operation of the inverter. The target magnetic flux setting unit sets the target magnetic flux based on the actual magnetic characteristic distortion of the rotating machine. The magnetic flux error evaluation unit calculates an evaluation difference value based on a difference between the predicted magnetic flux and the target magnetic flux in a predetermined period. The pulse pattern generation unit generates a pulse pattern synchronized with the electrical angle of the rotating machine based on the voltage command value and closes the evaluation difference value to zero, and outputs a switching signal based on the generated pulse pattern. .
 これによれば、予測磁束と目標磁束との評価差分値をゼロに近づけるようにパルスパターンを生成し、そのパルスパターンに基づくスイッチング信号によりインバータのスイッチングを制御する。ここで、目標磁束は、回転機の現実の磁気特性歪に基づいて設定される。 According to this, a pulse pattern is generated so that the evaluation difference value between the predicted magnetic flux and the target magnetic flux is close to zero, and switching of the inverter is controlled by a switching signal based on the pulse pattern. Here, the target magnetic flux is set based on the actual magnetic characteristic distortion of the rotating machine.
 これにより、現実の磁石歪等の磁気特性歪を考慮しつつ、回転機の鉄損を適切に低減することができる。よって、パルスパターン制御によるスイッチング損失低減効果と合わせ、回転機の鉄損の低減とスイッチング損失の低減とを両立することができる。 This makes it possible to appropriately reduce the iron loss of the rotating machine while taking into account magnetic characteristic distortion such as actual magnet distortion. Therefore, it is possible to achieve both reduction of the iron loss of the rotating machine and reduction of the switching loss together with the effect of reducing the switching loss by the pulse pattern control.
 また、目標磁束設定部は、回転機の回転位置に応じて目標磁束を変化させることが好ましい。これにより、現実の磁気特性歪を目標磁束に正確に反映させることができる。また、パルスパターン生成部は、一相について電気角90[deg]の区間を一単位とし、線対称及び点対称に反転して電気角360[deg]区間でのパルスパターンを生成することが好ましい。さらに、パルスパターン生成部は、予め設定された基本パターンを元に、磁束誤差評価部で算出された評価差分値をゼロに近づけるようにパターンを修正することが好ましい。 Also, it is preferable that the target magnetic flux setting unit changes the target magnetic flux according to the rotational position of the rotating machine. Thereby, the actual magnetic characteristic distortion can be accurately reflected in the target magnetic flux. Further, it is preferable that the pulse pattern generation unit generates a pulse pattern in the electrical angle 360 [deg] section by inverting the line symmetry and the point symmetry with the section of the electrical angle 90 [deg] as one unit for one phase. . Furthermore, it is preferable that the pulse pattern generation unit corrects the pattern based on a preset basic pattern so that the evaluation difference value calculated by the magnetic flux error evaluation unit approaches zero.
 また、本開示の第2の態様において、変調器が出力するスイッチング信号によりインバータのスイッチングを制御し、三相以上の多相の回転機の通電を制御する回転機の制御方法であって、変調器が、インバータが出力する電圧を所定期間で積分し、インバータのスイッチング動作により前記回転機に生じる予測磁束を算出し、回転機の現実の磁気特性歪に基づいて目標磁束を設定し、所定期間において、予測磁束と前記目標磁束との差の評価に用いる評価差分値を算出し、電圧指令値に基づいて、且つ、評価差分値をゼロに近づけるように、回転機の電気角に同期したパルスパターンを生成し、生成したパルスパターンに基づくスイッチング信号を出力する。 Also, in the second aspect of the present disclosure, there is provided a control method for a rotating machine that controls switching of an inverter by a switching signal output from a modulator and controls energization of a multi-phase rotating machine having three or more phases. The integrator integrates the voltage output from the inverter over a predetermined period, calculates the predicted magnetic flux generated in the rotating machine by the switching operation of the inverter, sets the target magnetic flux based on the actual magnetic characteristic distortion of the rotating machine, , A pulse that is synchronized with the electrical angle of the rotating machine so as to calculate an evaluation difference value used for evaluating the difference between the predicted magnetic flux and the target magnetic flux, and to bring the evaluation difference value close to zero based on the voltage command value A pattern is generated, and a switching signal based on the generated pulse pattern is output.
 本開示についての上記の目的、その他の目的、特徴、及び利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の一実施形態による回転機の制御装置の概略構成図であり、 図2は、図1の変調器の構成図であり、 図3は、(a)がαβ座標系を説明する図、(b)が予測磁束及び目標磁束の磁束ベクトルを示す図であり、 図4は、磁束ベクトルの差を説明する図であり、 図5は、磁束誤差評価に基づくパルスパターンの設定を説明するタイムチャートであり、 図6は、パルスパターンの定義を説明する図であり、 図7は、(a)及び(b)がPWMパターン(関連技術)、(c)が同パターンによる磁束軌跡の図であり、 図8は、(a)及び(b)が基本パターン、(c)が同パターンによる磁束軌跡の図であり、 図9は、(a)及び(b)が第1修正パターン、(c)が同パターンによる磁束軌跡の図であり、 図10は、(a)及び(b)が第2修正パターン、(c)が同パターンによる磁束軌跡の図であり、 図11は、(a)及び(b)が第3修正パターン、(c)が同パターンによる磁束軌跡の図であり、 図12は、(a)及び(b)が第4修正パターン、(c)が同パターンによる磁束軌跡の図であり、 図13は、PWMパターン(関連技術)による予測磁束と目標磁束との各評価差分値((a)位相差、(b)振幅差、(c)位相変化の差、(d)振幅変化の差)を示す図であり、 図14は、基本パターンによる予測磁束と目標磁束との評価差分値を示す図であり、 図15は、第1修正パターンによる予測磁束と目標磁束との評価差分値を示す図であり、 図16は、第2修正パターンによる予測磁束と目標磁束との評価差分値を示す図であり、 図17は、第3修正パターンによる予測磁束と目標磁束との評価差分値を示す図であり、 図18は、第4修正パターンによる予測磁束と目標磁束との評価差分値を示す図であり、 図19は、関連技術のPWM制御によるモータ電流リップル及び鉄損を説明する図である。
The above object, other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a schematic configuration diagram of a control device for a rotating machine according to an embodiment of the present disclosure. FIG. 2 is a block diagram of the modulator of FIG. 3A is a diagram illustrating the αβ coordinate system, and FIG. 3B is a diagram illustrating the magnetic flux vectors of the predicted magnetic flux and the target magnetic flux, FIG. 4 is a diagram for explaining the difference between magnetic flux vectors. FIG. 5 is a time chart for explaining setting of a pulse pattern based on magnetic flux error evaluation. FIG. 6 is a diagram for explaining the definition of the pulse pattern. 7A and 7B are PWM patterns (related techniques), and FIG. 7C is a magnetic flux trajectory according to the same pattern. FIGS. 8A and 8B are diagrams of magnetic flux trajectories according to the basic pattern and FIGS. 9A and 9B are diagrams of magnetic flux trajectories by the first correction pattern and FIG. 9C by the same pattern, 10A and 10B are diagrams of the second correction pattern, FIG. 10C is a magnetic flux trajectory by the pattern, FIG. 11A and FIG. 11B are diagrams of the third correction pattern, and FIG. 12A and 12B are diagrams of the fourth correction pattern, and FIG. 12C is a magnetic flux locus of the same pattern. FIG. 13 shows evaluation difference values ((a) phase difference, (b) amplitude difference, (c) phase change difference, and (d) amplitude change difference between the predicted magnetic flux and the target magnetic flux by the PWM pattern (related technology). ) FIG. 14 is a diagram illustrating an evaluation difference value between the predicted magnetic flux and the target magnetic flux according to the basic pattern. FIG. 15 is a diagram illustrating an evaluation difference value between the predicted magnetic flux and the target magnetic flux according to the first correction pattern. FIG. 16 is a diagram illustrating an evaluation difference value between the predicted magnetic flux and the target magnetic flux according to the second correction pattern, FIG. 17 is a diagram illustrating an evaluation difference value between the predicted magnetic flux and the target magnetic flux according to the third correction pattern. FIG. 18 is a diagram illustrating an evaluation difference value between the predicted magnetic flux and the target magnetic flux according to the fourth correction pattern, FIG. 19 is a diagram for explaining motor current ripple and iron loss by PWM control according to related art.
 以下、本開示の実施形態による回転機の制御装置を図面に基づいて説明する。 Hereinafter, a control device for a rotating machine according to an embodiment of the present disclosure will be described with reference to the drawings.
 (第1実施形態)
 本実施形態の回転機の制御装置の概略構成及び作用について、図1~図5を参照して説明する。本実施形態では、三相のモータが多相の回転機に相当し、モータ制御装置が回転機の制御装置に相当する。図1に示すように、モータ制御装置10は、モータ5に接続されたインバータ4にスイッチング信号を出力し、スイッチングを制御する。これにより、インバータ4からモータ5へ供給される電力が制御される。
(First embodiment)
A schematic configuration and operation of the control device for a rotating machine according to the present embodiment will be described with reference to FIGS. In the present embodiment, the three-phase motor corresponds to a multi-phase rotating machine, and the motor control device corresponds to a rotating machine control device. As shown in FIG. 1, the motor control device 10 outputs a switching signal to the inverter 4 connected to the motor 5 to control switching. Thereby, the electric power supplied from the inverter 4 to the motor 5 is controlled.
 インバータ4は、ブリッジ接続された三相の上下アームのスイッチング素子41~46を含む。詳しくは、スイッチング素子41、42、43は、それぞれU相、V相、W相の上アームのスイッチング素子であり、スイッチング素子44、45、46は、それぞれU相、V相、W相の下アームのスイッチング素子である。スイッチング素子41~46としては、例えばIGBT等が用いられる。インバータ4は、各スイッチング素子41~46の動作によって、入力された直流電力を三相交流電力に変換する。 The inverter 4 includes three-phase upper and lower arm switching elements 41 to 46 that are bridge-connected. Specifically, switching elements 41, 42, and 43 are U-arm, V-phase, and W-phase upper arm switching elements, respectively, and switching elements 44, 45, and 46 are respectively under the U-phase, V-phase, and W-phase. This is an arm switching element. As the switching elements 41 to 46, for example, IGBT or the like is used. The inverter 4 converts the input DC power into three-phase AC power by the operations of the switching elements 41 to 46.
 モータ5は、例えば永久磁石式同期型の三相交流電動機である。本実施形態では、モータ5として、例えばハイブリッド自動車や電気自動車の動力源であるモータジェネレータを想定する。モータ5のロータ近傍には、ロータ位置(電気角)θeを検出するレゾルバ等の位置センサ55が設けられる。 The motor 5 is, for example, a permanent magnet type synchronous three-phase AC motor. In this embodiment, as the motor 5, for example, a motor generator that is a power source of a hybrid vehicle or an electric vehicle is assumed. A position sensor 55 such as a resolver for detecting the rotor position (electrical angle) θe is provided in the vicinity of the rotor of the motor 5.
 インバータ4からモータ5への電流経路には、三相電流Iu、Iv、Iwを検出する電流センサ6が設けられている。なお、電流センサ6により二相の電流を検出し、他の一相の電流をキルヒホッフの法則により算出してもよい。或いは、一相の電流検出値に基づいて他の二相の電流を推定する技術や、直流電流検出値に基づいて電流を推定する技術を採用してもよい。 In the current path from the inverter 4 to the motor 5, a current sensor 6 for detecting the three-phase currents Iu, Iv, Iw is provided. The current sensor 6 may detect a two-phase current, and the other one-phase current may be calculated according to Kirchhoff's law. Alternatively, a technique for estimating the current of the other two phases based on the detected current value of one phase, or a technique of estimating the current based on the detected DC current value may be employed.
 モータ制御装置10は、電流フィードバック制御の構成として、dq変換部11、電流減算器12、電流制御器13、逆dq変換部14、変調器15、微分器16等を含む。 The motor control device 10 includes a dq converter 11, a current subtractor 12, a current controller 13, an inverse dq converter 14, a modulator 15, a differentiator 16, and the like as a configuration of current feedback control.
 dq変換部11は、電流センサ6から相電流検出値が入力される。dq変換部11は、位置センサ55から取得した電気角θeを用いて、三相電流検出値Iu、Iv、Iwをdq軸電流検出値Id、Iqにdq変換し、電流減算器12にフィードバックする。 The dq conversion unit 11 receives the phase current detection value from the current sensor 6. The dq conversion unit 11 uses the electrical angle θe acquired from the position sensor 55 to dq convert the three-phase current detection values Iu, Iv, and Iw into dq-axis current detection values Id and Iq, and feeds back to the current subtractor 12. .
 電流減算器12は、dq変換部11からフィードバックされるdq軸電流検出値Id、Iqをdq軸電流指令値Id*、Iq*から減算してdq軸電流偏差ΔId、ΔIqを算出する。 The current subtractor 12 subtracts the dq-axis current detection values Id and Iq fed back from the dq converter 11 from the dq-axis current command values Id * and Iq * to calculate dq-axis current deviations ΔId and ΔIq.
 電流制御器13は、dq軸電流偏差ΔId、ΔIqをゼロに収束させるようにPI制御演算等によってdq軸電圧指令値Vd*、Vq*を算出する。 The current controller 13 calculates the dq axis voltage command values Vd * and Vq * by PI control calculation or the like so that the dq axis current deviations ΔId and ΔIq converge to zero.
 逆dq変換部14は、電気角θeを用いて、dq軸電圧指令値Vd*、Vq*を三相電圧指令値Vu*、Vv*、Vw*に変換する。 The inverse dq conversion unit 14 converts the dq axis voltage command values Vd * and Vq * into the three-phase voltage command values Vu *, Vv * and Vw * using the electrical angle θe.
 変調器15は、三相電圧指令値Vu*、Vv*、Vw*、電気角θe、及び、微分器16にて電気角θeを時間微分した電気角速度ωが入力される。ここで、電気角速度ωはモータ回転数と読み替えてもよい。変調器15は、これらの情報に基づいて、三相の上アームのスイッチング素子41、42、43に対応するスイッチング信号UU、VU、WU、及び、三相の下アームのスイッチング素子44、45、46に対応するスイッチング信号UL、VL、WLを生成し、インバータ4に出力する。また、変調器15は、インバータ4の停止時における誘起電圧eを取得する。 The modulator 15 receives the three-phase voltage command values Vu *, Vv *, Vw *, the electrical angle θe, and the electrical angular velocity ω obtained by time differentiation of the electrical angle θe by the differentiator 16. Here, the electrical angular velocity ω may be read as the motor rotation speed. Based on this information, the modulator 15 switches the switching signals UU, VU, WU corresponding to the switching elements 41, 42, 43 of the three-phase upper arm and the switching elements 44, 45, three-phase of the lower arm. The switching signals UL, VL, WL corresponding to 46 are generated and output to the inverter 4. Further, the modulator 15 acquires an induced voltage e when the inverter 4 is stopped.
 図2に示すように、変調器15は、パルスパターン生成部20、磁束予測部31、目標磁束設定部32、磁束誤差評価部33を含む。 2, the modulator 15 includes a pulse pattern generation unit 20, a magnetic flux prediction unit 31, a target magnetic flux setting unit 32, and a magnetic flux error evaluation unit 33.
 まず、本実施形態のモータ制御装置10は、モータ制御技術において広く用いられているPWM制御に代えて、モータ5の電気角に同期したパルスパターンを用いてインバータ4のスイッチングを制御する。パルスパターンを用いると、PWM制御に対し電気1周期のスイッチング回数を減らし、スイッチング損失を低減することができる。特にハイブリッド自動車のモータジェネレータは、小型で高出力であることが要求されるため、高回転過変調領域での性能が重要となる。したがって、パルスパターンを用いてスイッチング損失を低減することが有効である。 First, the motor control device 10 of this embodiment controls switching of the inverter 4 using a pulse pattern synchronized with the electrical angle of the motor 5 instead of PWM control widely used in motor control technology. When the pulse pattern is used, the number of times of switching in one electrical cycle can be reduced with respect to PWM control, and the switching loss can be reduced. In particular, since the motor generator of a hybrid vehicle is required to be small and have high output, performance in a high rotation overmodulation region is important. Therefore, it is effective to reduce switching loss using a pulse pattern.
 パルスパターン生成部20は、好ましくは、基本パターン設定部21、パターン修正部23、及び記憶部22、24を有する。基本パターン設定部21は、電圧指令値、電気角θe及び電気角速度ω(回転数)に基づいて、「基本パターン」を設定する。この場合、予め複数のパルスパターンをマップ等の形式で記憶部22に記憶しておき、基本パターン設定部21が電圧指令値、電気角θe及び電気角速度ωを取得したとき、記憶部22に記憶された複数のパルスパターンから最適パターンを選択するようにしてもよい。或いは、電圧指令値とインバータ直流電圧より変調率と電圧位相とを計算し、変調率と電圧位相とからパターンを選択するようにしてもよい。 The pulse pattern generation unit 20 preferably includes a basic pattern setting unit 21, a pattern correction unit 23, and storage units 22 and 24. The basic pattern setting unit 21 sets a “basic pattern” based on the voltage command value, the electrical angle θe, and the electrical angular velocity ω (rotation speed). In this case, a plurality of pulse patterns are stored in advance in the storage unit 22 in the form of a map or the like, and stored in the storage unit 22 when the basic pattern setting unit 21 acquires the voltage command value, the electrical angle θe, and the electrical angular velocity ω. An optimum pattern may be selected from the plurality of pulse patterns. Alternatively, the modulation factor and the voltage phase may be calculated from the voltage command value and the inverter DC voltage, and the pattern may be selected from the modulation factor and the voltage phase.
 ここで、「最適なパターン」を選択する指標として、電力損失やトルクリップルを最小にする技術が知られているが、本実施形態では、さらにモータ5の実磁束に着目する。そこで、パターン修正部23は、後述する「評価差分値」を磁束誤差評価部33から取得すると共に電気角θeを取得し、評価差分値をゼロに近づけるように基本パターンを修正して「修正パターン」を生成する。具体的には、パターン修正部23は、所定期間における評価差分値のピーク値、積分値又は平均値をゼロに近づけるように、パルスパターンを生成する。 Here, as an index for selecting the “optimum pattern”, a technique for minimizing power loss and torque ripple is known. In the present embodiment, attention is paid to the actual magnetic flux of the motor 5. Therefore, the pattern correction unit 23 acquires an “evaluation difference value”, which will be described later, from the magnetic flux error evaluation unit 33, acquires the electrical angle θe, and corrects the basic pattern so that the evaluation difference value approaches zero. Is generated. Specifically, the pattern correction unit 23 generates a pulse pattern so that the peak value, the integrated value, or the average value of the evaluation difference values in a predetermined period approaches zero.
 パターン修正部23で生成された修正パターンは、基本パターンが記憶部22に記憶されるのと同様に、各パラメータとの関係を表したマップ等の形式で記憶部24に記憶されてもよい。また、パターン修正部23は、記憶部24から読み出した修正済のパターンをさらに再修正してもよい。 The correction pattern generated by the pattern correction unit 23 may be stored in the storage unit 24 in the form of a map or the like representing the relationship with each parameter, just like the basic pattern is stored in the storage unit 22. The pattern correction unit 23 may further re-correct the corrected pattern read from the storage unit 24.
 パルスパターン生成部20は、こうして得られた修正パターンに基づくスイッチング信号(UU、VU、WU、UL、VL、WL)をインバータ4に出力する。 The pulse pattern generation unit 20 outputs a switching signal (UU, VU, WU, UL, VL, WL) based on the correction pattern thus obtained to the inverter 4.
 また、パルスパターン生成部20が生成したスイッチング信号は磁束予測部31に取得される。磁束予測部31は、スイッチング信号に基づき、インバータ4が出力する電圧を所定期間で積分し、インバータ4のスイッチング動作によりモータ5の各相に生じる実磁束を予測する。磁束予測部31がパルスパターンに基づいて予測した磁束を「予測磁束Φest」という。 In addition, the switching signal generated by the pulse pattern generation unit 20 is acquired by the magnetic flux prediction unit 31. The magnetic flux predicting unit 31 integrates the voltage output from the inverter 4 over a predetermined period based on the switching signal, and predicts the actual magnetic flux generated in each phase of the motor 5 by the switching operation of the inverter 4. The magnetic flux predicted by the magnetic flux predicting unit 31 based on the pulse pattern is referred to as “predicted magnetic flux Φest”.
 電圧をv、抵抗をR、電流をIで表すと、予測磁束Φestは、式(1.1)で算出される。なお、磁束単位[Wb]は、[Wb]=[V・s]の関係にある。 When the voltage is v, the resistance is R, and the current is I, the predicted magnetic flux Φest is calculated by the equation (1.1). The magnetic flux unit [Wb] has a relationship of [Wb] = [V · s].
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ただし、高回転域ではRI項は電圧vに比べて十分に小さいため、RI項を無視した式(1.2)を用いることができる。 However, since the RI term is sufficiently smaller than the voltage v in the high rotation region, the equation (1.2) ignoring the RI term can be used.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 鉄損が問題となるのは特に高回転域であるから、実用上、式(1.2)が用いられる。磁束予測部31は、例えば所定の回転数未満で式(1.1)を用い、所定の回転数以上で式(1.2)を用いるように演算を切り替えてもよい。 Since iron loss is a problem particularly in the high rotation range, the formula (1.2) is practically used. The magnetic flux predicting unit 31 may switch the calculation so that, for example, the formula (1.1) is used when the rotational speed is less than the predetermined rotational speed, and the formula (1.2) is used when the rotational speed is the predetermined rotational speed or higher.
 また、本実施形態の制御は、回転数が安定した状態で実施されることを想定している。したがって、電気角速度ω(=dθe/dt)を定数とみなし、式(1.3)のように、式(1.2)の積分区間を時間tから電気角θeに変換してもよい。 Further, it is assumed that the control of the present embodiment is performed in a state where the rotational speed is stable. Therefore, the electrical angular velocity ω (= dθe / dt) may be regarded as a constant, and the integration interval of the equation (1.2) may be converted from the time t to the electrical angle θe as in the equation (1.3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 目標磁束設定部32は、モータ5の現実の磁気特性歪に基づいて、予測磁束Φestに対する目標磁束Φtgtを設定する。目標磁束Φtgtには、「現実の磁気特性歪」として、永久磁石の磁束歪、又は、コイルのインダクタンス歪等の成分が含まれ、部品特性や構造等に依存するモータ5の個体ばらつきや経年劣化等の影響を受ける。 The target magnetic flux setting unit 32 sets the target magnetic flux Φtgt for the predicted magnetic flux Φest based on the actual magnetic characteristic distortion of the motor 5. The target magnetic flux Φtgt includes components such as a magnetic flux distortion of a permanent magnet or an inductance distortion of a coil as “real magnetic characteristic distortion”, and individual variations and aging of the motor 5 depending on component characteristics and structure Etc.
 目標磁束設定部32は、例えば、インバータ4の停止時におけるモータ5の誘起電圧eを随時取得し、誘起電圧eから検出した磁石磁束波形に基づいて目標磁束Φtgtを設定する。或いは、目標磁束設定部32は、モータ5の製造時等に個体毎に検査された歪情報を内部に記憶し、その歪情報に基づいて目標磁束Φtgtを設定してもよい。 The target magnetic flux setting unit 32 acquires, for example, the induced voltage e of the motor 5 when the inverter 4 is stopped, and sets the target magnetic flux Φtgt based on the magnet magnetic flux waveform detected from the induced voltage e. Alternatively, the target magnetic flux setting unit 32 may internally store distortion information inspected for each individual when the motor 5 is manufactured, and may set the target magnetic flux Φtgt based on the distortion information.
 磁束誤差評価部33は、所定期間において、予測磁束Φestと目標磁束Φtgtとの差の評価に用いる評価差分値を算出する。 The magnetic flux error evaluation unit 33 calculates an evaluation difference value used for evaluating a difference between the predicted magnetic flux Φest and the target magnetic flux Φtgt in a predetermined period.
 ここで、本実施形態において磁束誤差の評価が行われる固定座標(αβ座標)について図3を参照する。図3(a)は、U相を基準としたαβ座標を示す。UVWの三相軸からα軸、β軸の二相軸への変換は、式(2)で表現される。α軸はU相方向の成分を示し、β軸はU相に直交する方向の成分を示す。また、α軸を基準として反時計回りに電気角の位相θeを定義する。 Here, FIG. 3 will be referred to regarding the fixed coordinates (αβ coordinates) at which the magnetic flux error is evaluated in this embodiment. FIG. 3A shows αβ coordinates based on the U phase. Conversion from the UVW three-phase axis to the α-axis and β-axis two-phase axes is expressed by Expression (2). The α axis indicates the component in the U phase direction, and the β axis indicates the component in the direction orthogonal to the U phase. Further, the phase θe of the electrical angle is defined counterclockwise with respect to the α axis.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 αβ座標軸で、磁束ベクトルは図3(b)のように表される。モータ5の磁気特性歪が位置によらず均等であると仮定すると、破線の目標磁束Φtgtは理想的に円形となる。ただし、磁気特性歪が位置によって、或いは三相間でばらついている場合等、目標磁束Φtgtは歪んだ円形となる。このように、目標磁束設定部32は、モータ5の回転位置に応じて目標磁束Φtgtを変化させる。 The magnetic flux vector is expressed as shown in FIG. Assuming that the magnetic characteristic distortion of the motor 5 is uniform regardless of the position, the broken line target magnetic flux Φtgt is ideally circular. However, the target magnetic flux Φtgt is a distorted circle when the magnetic characteristic distortion varies depending on the position or between the three phases. Thus, the target magnetic flux setting unit 32 changes the target magnetic flux Φtgt according to the rotational position of the motor 5.
 パルスパターンに基づいて算出される予測磁束Φestは、60[deg]を一単位とする回転対称に現れる。また、概して予測磁束Φestは、目標磁束Φtgtを跨がるような折れ線状となる。したがって、位相によって、予測磁束Φestが目標磁束Φtgtを上回る部分と、予測磁束Φestが目標磁束Φtgtを下回る部分とが交互に現れる。 The predicted magnetic flux Φest calculated based on the pulse pattern appears in rotational symmetry with 60 [deg] as one unit. In general, the predicted magnetic flux Φest is a polygonal line that straddles the target magnetic flux Φtgt. Therefore, the portion where the predicted magnetic flux Φest exceeds the target magnetic flux Φtgt and the portion where the predicted magnetic flux Φest falls below the target magnetic flux Φtgt appear alternately depending on the phase.
 続いて図4を参照し、予測磁束Φestと目標磁束Φtgtとの誤差について模式的に説明する。時刻tにおける予測磁束ベクトルΦest(t)の位相をθest(t)、目標磁束ベクトルΦtgt(t)の位相をθtgt(t)と表す。 Subsequently, an error between the predicted magnetic flux Φest and the target magnetic flux Φtgt will be schematically described with reference to FIG. The phase of the predicted magnetic flux vector Φest (t) at time t is expressed as θest (t), and the phase of the target magnetic flux vector Φtgt (t) is expressed as θtgt (t).
 磁束位相差Δθは、式(3.1)で算出される。
Δθ(t)=θest(t)-θtgt(t) ・・・(3.1)
The magnetic flux phase difference Δθ is calculated by the equation (3.1).
Δθ (t) = θest (t) −θtgt (t) (3.1)
 また、磁束振幅差ΔΦaは、式(3.2)で算出される。
ΔΦa(t)=|Φest(t)|-|Φtgt(t)| ・・・(3.2)
Further, the magnetic flux amplitude difference ΔΦa is calculated by the equation (3.2).
ΔΦa (t) = | Φest (t) | − | Φtgt (t) | (3.2)
 さらに、磁束位相変化の差は式(3.3)で、磁束振幅変化の差は式(3.4)で算出される。
d(Δθ(t))/dt=d(θest(t)-θtgt(t))/dt ・・・(3.3)
d(ΔΦa(t))/dt=d(|Φest(t)|-|Φtgt(t)|)/dt ・・・(3.4)
Further, the difference in magnetic flux phase change is calculated by equation (3.3), and the difference in magnetic flux amplitude change is calculated by equation (3.4).
d (Δθ (t)) / dt = d (θest (t) −θtgt (t)) / dt (3.3)
d (ΔΦa (t)) / dt = d (| Φest (t) | − | Φtgt (t) |) / dt (3.4)
 なお、式(3.1)~(3.4)における符号の正負は適宜設定してよい。 It should be noted that the sign of the expressions (3.1) to (3.4) may be set as appropriate.
 磁束位相差、磁束振幅差、磁束位相変化の差、又は、磁束振幅変化の差は、いずれも、磁束誤差評価部33において予測磁束Φestと目標磁束Φtgtとの誤差評価に用いることが可能な差分値である。本明細書では、これらの差分値を「評価差分値」という。
 以上のように、磁束誤差評価部33は、固定座標(αβ座標)軸上で評価差分値を算出する。そして、パルスパターン生成部20のパターン修正部23は、評価差分値をゼロに近づけるように修正パターンを生成する。
The magnetic flux phase difference, the magnetic flux amplitude difference, the magnetic flux phase change difference, or the magnetic flux amplitude change difference can all be used for the error evaluation between the predicted magnetic flux Φest and the target magnetic flux Φtgt in the magnetic flux error evaluation unit 33. Value. In the present specification, these difference values are referred to as “evaluation difference values”.
As described above, the magnetic flux error evaluation unit 33 calculates the evaluation difference value on the fixed coordinate (αβ coordinate) axis. Then, the pattern correction unit 23 of the pulse pattern generation unit 20 generates a correction pattern so that the evaluation difference value approaches zero.
 次に、変調器15の作用について、図5のタイムチャートを参照して説明する。 Next, the operation of the modulator 15 will be described with reference to the time chart of FIG.
 所定期間において磁束予測部31が予測磁束Φestを算出し、磁束誤差評価部33が予測磁束Φestと目標磁束Φtgtとの評価差分値を算出すると、パターン修正部23は、評価差分値に基づき修正パターンを生成する。そして、その修正パターンは、以後の制御周期に反映される。例えば、ある所定期間T1における評価差分値に基づいてパターンT1が生成され、次の所定期間T2における評価差分値に基づいて次のパターンT2が生成される。 When the magnetic flux predicting unit 31 calculates the predicted magnetic flux Φest and the magnetic flux error evaluating unit 33 calculates the evaluation difference value between the predicted magnetic flux Φest and the target magnetic flux Φtgt in the predetermined period, the pattern correcting unit 23 corrects the correction pattern based on the evaluation difference value. Is generated. The correction pattern is reflected in the subsequent control cycle. For example, the pattern T1 is generated based on the evaluation difference value in a certain predetermined period T1, and the next pattern T2 is generated based on the evaluation difference value in the next predetermined period T2.
 この制御は回転数一定の条件で実施されることを前提とすると、位相軸の電気角区間は時間軸の期間に換算される。図5では、例えば電気角1周期に対応する期間を時間軸での所定期間として図示している。 Suppose that this control is performed under the condition that the rotational speed is constant, the electrical angle section of the phase axis is converted to the period of the time axis. In FIG. 5, for example, a period corresponding to one period of electrical angle is illustrated as a predetermined period on the time axis.
 ここで、図3(b)に示すように、三相モータの評価差分値は、電気角60[deg]を一単位として周期的に変動する。そのため、予測磁束Φestと目標磁束Φtgtとの磁束誤差を評価する所定期間は、モータ5の電気角60[deg]以上に対応する期間とすることが好ましい。電気角60[deg]以上の期間で磁束誤差を評価することにより、安定した評価が可能となる。また、所定期間を制御周期の整数倍の期間に設定すれば、評価結果を次の制御周期でのパルスパターン演算に効率的に反映させることができる。 Here, as shown in FIG. 3 (b), the evaluation difference value of the three-phase motor periodically fluctuates with an electrical angle of 60 [deg] as one unit. Therefore, it is preferable that the predetermined period for evaluating the magnetic flux error between the predicted magnetic flux Φest and the target magnetic flux Φtgt is a period corresponding to the electrical angle 60 [deg] or more of the motor 5. Stable evaluation is possible by evaluating the magnetic flux error over a period of 60 electrical degrees or more. If the predetermined period is set to a period that is an integral multiple of the control period, the evaluation result can be efficiently reflected in the pulse pattern calculation in the next control period.
 次に、パルスパターンの定義及び設定手順について、図6を参照して説明する。 Next, the definition and setting procedure of the pulse pattern will be described with reference to FIG.
 図6(a)に示すように、三相のうち一相(例えばU相)のパルスパターンは、電気角90[deg]の区間を一単位とするモデルで設定される。まず、図6(a)の横軸について上段(b)の電気角を参照すると、図6(a)の例では、電気角0~90[deg]の区間で2回のオフ期間と2回のオン期間が設定される。電気角0[deg]から1回目のオフ期間のパルス幅をδ1とする。また、2回目のオフ期間の中心位置をθc1とし、2回目のオフ期間の幅の2分の1をパルス幅δ2とする。これらの中心位置θc1及びパルス幅δ1、δ2が決まれば、電気角0~90[deg]の区間でのパルスパターンが決定する。 As shown in FIG. 6A, the pulse pattern of one phase (for example, U phase) among the three phases is set by a model having a section of an electrical angle of 90 [deg] as one unit. First, referring to the electrical angle in the upper stage (b) with respect to the horizontal axis of FIG. 6 (a), in the example of FIG. 6 (a), two off periods and two times in the section of electrical angle 0 to 90 [deg]. Is set to the ON period. The pulse width in the first off period from the electrical angle 0 [deg] is δ1. In addition, the center position of the second off period is θc1, and half the width of the second off period is the pulse width δ2. If these center position θc1 and pulse widths δ1 and δ2 are determined, the pulse pattern in the section of electrical angle 0 to 90 [deg] is determined.
 そして、電気角90[deg]を中心として電気角0~90[deg]のパルスパターンを線対称に反転して、破線で示すような電気角90~180[deg]のパルスパターンが設定される。また、電気角180[deg]を中心として電気角0~180[deg]のパルスパターンを点対称に反転して、電気角180~360[deg]のパルスパターンが設定される。「点対称」とは、線対称に反転し、さらに、パルスのオン側とオフ側とを反転させることをいう。 Then, the pulse pattern of electrical angles 90 to 180 [deg] as shown by the broken line is set by inverting the pulse pattern of electrical angles 0 to 90 [deg] around the electrical angle 90 [deg] as a line symmetry. . Also, the pulse pattern of electrical angles 180 to 360 [deg] is set by inverting the pulse pattern of electrical angles 0 to 180 [deg] around the electrical angle 180 [deg] as a point symmetry. “Point symmetry” means to invert line symmetry and to invert the on and off sides of the pulse.
 以上により、一相(例えばU相)についての電気1周期のパルスパターンが確定する。他の二相(V相、W相)については、一相のパルスパターンを電気角±120[deg]ずらすことによって設定する。例えば、U相及びV相の電気角360[deg]区間でのパルスパターンは、図6(b)のように表される。このパルスパターンは、各相上アームのスイッチング素子41、42、43のON/OFFを意味する。各相下アームのスイッチング素子44、45、46のパルスパターンは、デッドタイムを無視すれば、同相の上アームのスイッチング素子41、42、43のパルスパターンを相補する形、すなわち上下反転した形となる。 By the above, a pulse pattern of one electrical cycle for one phase (for example, U phase) is determined. The other two phases (V phase and W phase) are set by shifting the pulse pattern of one phase by an electrical angle of ± 120 [deg]. For example, the pulse pattern in the section of the electrical angle 360 [deg] of the U phase and the V phase is expressed as shown in FIG. This pulse pattern means ON / OFF of the switching elements 41, 42, and 43 of the upper arms of each phase. If the dead time is ignored, the pulse pattern of the switching elements 44, 45, and 46 in the lower arm of each phase is complementary to the pulse pattern of the switching elements 41, 42, and 43 in the same phase, that is, a vertically inverted form. Become.
 各相パルスパターンに基づくスイッチング信号に従って各相スイッチング素子41~46が動作することにより、インバータ4は電圧を出力する。図6(b)に、U相及びV相のパルスパターンに基づくU-V相の線間電圧パルスパターンを示す。線間電圧パルスパターンは、電気角330~150[deg]区間の電圧と、電気角150~330[deg]区間の電圧とが符号を反転した「半波対称」の関係となる。 The inverter 4 outputs a voltage when each phase switching element 41 to 46 operates according to the switching signal based on each phase pulse pattern. FIG. 6B shows a line voltage pulse pattern of the U-V phase based on the U-phase and V-phase pulse patterns. The line voltage pulse pattern has a “half-wave symmetry” relationship in which the voltage in the electrical angle range of 330 to 150 [deg] and the voltage in the electrical angle range of 150 to 330 [deg] are inverted.
 ところで、パルスパターンを定義するにあたり、電気角の基準は適宜変更してよい。例えば図6(a)の横軸について、下段(c)の括弧内に示した電気角を用い、図6(a)の実線区間を270~360[deg]の区間として規定してもよい。その場合には、電気角360[deg](=0[deg])を中心として電気角270~360[deg]のパルスパターンを線対称に反転して、電気角0~90[deg]のパルスパターンを設定する。また、電気角90[deg]を中心として電気角270~360、0~90[deg]のパルスパターンを点対称に反転して、電気角90~270[deg]のパルスパターンを設定する。 By the way, in defining the pulse pattern, the electrical angle reference may be changed as appropriate. For example, with respect to the horizontal axis in FIG. 6A, the electrical angle shown in parentheses in the lower row (c) may be used to define the solid line section in FIG. 6A as a section of 270 to 360 [deg]. In that case, the pulse pattern of electrical angles 270 to 360 [deg] is inverted symmetrically about the electrical angle 360 [deg] (= 0 [deg]), and the pulse of electrical angle 0 to 90 [deg] is inverted. Set the pattern. In addition, the pulse pattern of electrical angles 90 to 270 [deg] is set by inverting the pulse pattern of electrical angles 270 to 360 and 0 to 90 [deg] around the electrical angle 90 [deg] as a point symmetry.
 すると、電気角360[deg]区間でのパルスパターンは、図6(c)で表される。このパルスパターンは、破線で示す正弦波の基本波電圧に対応する。以下の図7~図12では、この電気角区間で表示したパルスパターンを記載する。 Then, the pulse pattern in the electrical angle 360 [deg] section is represented by FIG. This pulse pattern corresponds to a sinusoidal fundamental voltage indicated by a broken line. In the following FIG. 7 to FIG. 12, the pulse pattern displayed in this electrical angle section is described.
 また、「パルスパターンのパルス数n」とは、電気角360[deg]間の各相パルスパターンのパルスの数、又は、電気角180[deg]間の線間電圧パルスパターンのパルスの数をいう。図6の例では、「n=7」となる。以下、特に言及しない限り、「パルスパターン」は「各相パルスパターン」を意味する。 The “pulse number n of pulse pattern” means the number of pulses of each phase pulse pattern between electrical angles 360 [deg] or the number of pulses of the line voltage pulse pattern between electrical angles 180 [deg]. Say. In the example of FIG. 6, “n = 7”. Hereinafter, unless otherwise specified, “pulse pattern” means “each phase pulse pattern”.
 次に、具体的なパルスパターンの例、及び、それらのパルスパターンによる予測磁束Φestと目標磁束Φtgtとの磁束軌跡を図7~図12に示す。詳しくは各図(a)、(b)に、90[deg]及び360[deg]範囲でのパルスパターンを示す。また、各図(c)に、予測磁束Φest及び目標磁束Φtgtの磁束軌跡を図3(b)に準じたαβ座標で示す。 Next, examples of specific pulse patterns and magnetic flux trajectories between the predicted magnetic flux Φest and the target magnetic flux Φtgt based on the pulse patterns are shown in FIGS. Specifically, each of FIGS. (A) and (b) shows a pulse pattern in the range of 90 [deg] and 360 [deg]. Also, in each figure (c), the magnetic flux trajectories of the predicted magnetic flux Φest and the target magnetic flux Φtgt are shown by αβ coordinates according to FIG. 3 (b).
 最初に、関連技術のPWM制御でパルス数を7としたときのパターンを図7に示す。αβ座標の予測磁束Φestの軌跡において、電気角60[deg]毎にジグザグ状波形が現れる。ジグザグ状波形の山谷の部分では予測磁束Φestと目標磁束Φtgtとの振幅が乖離している。PWMパターンでは、磁束振幅の乖離が比較的大きい。 First, Fig. 7 shows the pattern when the number of pulses is 7 in the related art PWM control. In the locus of the predicted magnetic flux Φest in the αβ coordinate, a zigzag waveform appears every electrical angle 60 [deg]. In the peaks and valleys of the zigzag waveform, the amplitudes of the predicted magnetic flux Φest and the target magnetic flux Φtgt are different. In the PWM pattern, the deviation of the magnetic flux amplitude is relatively large.
 続いて本実施形態の基本パターンを図8に示す。この基本パターンは、PWMパターンに対し、パルス数7を同じとし、実効値を同等とするように設定されている。また、基本パターンは、電気角90[deg]、270[deg]付近のパルス間隔が均等となるように設定されている。すなわち、1回目のオフ期間のパルス幅をδ1とすると、1回目のオン期間のパルス幅もδ1であり、2回目のオフ期間のパルス幅の2分の1であるδ2は、δ1の0.5倍に相当する。したがって、式(4)が成立する。
  θc1=2×δ1+δ2=2.5×δ2 ・・・(4)
Next, the basic pattern of this embodiment is shown in FIG. This basic pattern is set so that the number of pulses is the same as that of the PWM pattern, and the effective values are equal. The basic pattern is set so that the pulse intervals near the electrical angles 90 [deg] and 270 [deg] are uniform. That is, if the pulse width of the first off period is δ1, the pulse width of the first on period is also δ1, and δ2, which is a half of the pulse width of the second off period, is 0. It corresponds to 5 times. Therefore, Formula (4) is materialized.
θc1 = 2 × δ1 + δ2 = 2.5 × δ2 (4)
 基本パターンは、PWMパターンに比べ、予測磁束Φestの軌跡におけるジグザグ状波形の目標磁束Φtgtとの振幅の乖離が小さくなっている。 The basic pattern has a smaller amplitude divergence from the zigzag waveform target magnetic flux Φtgt in the trajectory of the predicted magnetic flux Φest compared to the PWM pattern.
 さらに、基本パターンの一部を変更した4通りの修正パターンを図9~図12に示す。そのうち第1~第3修正パターンのパルス数は、基本パターンと同じく7である。図9に示す第1修正パターンは、基本パターンに対しパルス幅をδ2からδ2*に変更したものである。図10に示す第2修正パターンは、基本パターンに対しパルス位置、すなわち中心位置θc1をθc1*に変更したものである。図11に示す第3修正パターンは、基本パターンに対し実効値が等しくなるようにパルス幅及びパルス位置の両方を、δ2**及びθc1**に変更したものである。 Furthermore, Fig. 9 to Fig. 12 show four types of correction patterns that are part of the basic pattern. Among them, the number of pulses of the first to third correction patterns is 7 as in the basic pattern. The first correction pattern shown in FIG. 9 is obtained by changing the pulse width from δ2 to δ2 * with respect to the basic pattern. The second correction pattern shown in FIG. 10 is obtained by changing the pulse position, that is, the center position θc1 to θc1 * with respect to the basic pattern. The third correction pattern shown in FIG. 11 is obtained by changing both the pulse width and the pulse position to δ2 ** and θc1 ** so that the effective values are equal to those of the basic pattern.
 これらの第1~第3修正パターンでは、予測磁束Φestの軌跡におけるジグザグ状波形の曲折数は基本パターンと同じであり、ジグザグ状波形の形状や大きさが基本パターンに対し微妙に異なっている。 In these first to third correction patterns, the number of bending of the zigzag waveform in the locus of the predicted magnetic flux Φest is the same as that of the basic pattern, and the shape and size of the zigzag waveform is slightly different from the basic pattern.
 図12に示す第4修正パターンは、基本パターンに対しパルス数を7から11に増加させたものである。予測磁束Φestの軌跡におけるジグザグ状波形の曲折数が基本パターンに対し7から11に増加しており、各ジグザグの大きさは基本パターンよりも全体に小さくなっている。 The fourth correction pattern shown in FIG. 12 is obtained by increasing the number of pulses from 7 to 11 with respect to the basic pattern. The number of bends of the zigzag waveform in the locus of the predicted magnetic flux Φest increases from 7 to 11 with respect to the basic pattern, and the size of each zigzag is smaller than the basic pattern as a whole.
 次に、上記パルスパターンによる予測磁束Φestと目標磁束Φtgtとの差の評価について、図13~図18を参照する。各図の横軸は電気角を示し、縦軸は、4通りの評価差分値として、(a)磁束位相差、(b)磁束振幅差、(c)磁束位相変化の差、(d)磁束振幅変化の差を示す。各評価差分値には具体的な単位を示さず、縦軸の目盛[div]を指標として相対評価する。 Next, the evaluation of the difference between the predicted magnetic flux Φest and the target magnetic flux Φtgt based on the pulse pattern will be described with reference to FIGS. In each figure, the horizontal axis represents an electrical angle, and the vertical axis represents four evaluation difference values: (a) magnetic flux phase difference, (b) magnetic flux amplitude difference, (c) magnetic flux phase change difference, (d) magnetic flux Indicates the difference in amplitude change. A specific unit is not shown in each evaluation difference value, and relative evaluation is performed using the scale [div] on the vertical axis as an index.
 各評価差分値の次元について、(a)磁束位相差は、[deg]又は[rad]等の角度次元であり、(b)磁束振幅差は、[Wb]等の磁束次元である。また、(c)磁束位相変化の差は、[deg/s]又は[rad/s]の角速度次元であり、(d)磁束振幅変化の差は、[Wb/s]=[V]の電圧次元である。 Regarding the dimensions of each evaluation difference value, (a) the magnetic flux phase difference is an angular dimension such as [deg] or [rad], and (b) the magnetic flux amplitude difference is a magnetic flux dimension such as [Wb]. Further, (c) the difference in magnetic flux phase change is the angular velocity dimension of [deg / s] or [rad / s], and (d) the difference in magnetic flux amplitude change is a voltage of [Wb / s] = [V]. Dimension.
 図13に示す関連技術のPWMパターンでは、(b)磁束振幅差の最大ピークから最小ピークまでの幅(以下、「ピーク間の幅」)は約3.0[div]である。また、(c)磁束位相変化の差の最大ピークは約1.5[div]、(d)磁束振幅変化の差の最大ピークは約3.0[div]であって比較的大きい。 In the related art PWM pattern shown in FIG. 13, (b) the width from the maximum peak to the minimum peak of the magnetic flux amplitude difference (hereinafter, “width between peaks”) is about 3.0 [div]. Further, (c) the maximum peak of the difference in magnetic flux phase change is about 1.5 [div], and (d) the maximum peak of the difference in magnetic flux amplitude change is about 3.0 [div], which is relatively large.
 ここで、PWM制御における電流リップルについて、図19を参照する。一般にPWM制御では、PWM周波数が高いとスイッチング損失が大きくなる。一方、スイッチング損失を低減させようとしてPWM周波数を下げると、モータの電流リップル、特に電気抵抗値の小さいd軸電流リップルが増大する。そして、コイル鉄心における鉄損が増大する。 Here, refer to FIG. 19 for current ripple in PWM control. In general, in PWM control, switching loss increases when the PWM frequency is high. On the other hand, when the PWM frequency is lowered in order to reduce the switching loss, the motor current ripple, particularly the d-axis current ripple having a small electric resistance value, increases. And the iron loss in a coil iron core increases.
 また、PWM制御に対し、特許文献1(特開2013-162660号公報)等に開示されたパルスパターンを用いてスイッチングを制御すると、電気1周期のスイッチング回数を減らし、スイッチング損失を低減することができる。ただし、モータ鉄損は、永久磁石の磁束歪、又は、コイルのインダクタンス歪等のモータ歪成分や、個体ばらつき、経年劣化等による磁気特性歪に依存する。したがって、モータ歪を考慮しないでパルスパターンを設定しても、モータ鉄損を有効に低減することはできない。 In addition, when switching is controlled using a pulse pattern disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2013-162660) or the like for PWM control, the number of times of switching in one electrical cycle can be reduced and switching loss can be reduced. it can. However, the motor iron loss depends on a motor distortion component such as a magnetic flux distortion of a permanent magnet or an inductance distortion of a coil, a magnetic characteristic distortion due to individual variation, aging deterioration, and the like. Therefore, even if the pulse pattern is set without considering the motor distortion, the motor iron loss cannot be effectively reduced.
 図13に示すように、予測磁束Φestと目標磁束Φtgtとの評価差分値が比較的大きいということは、モータ鉄損が増大しやすい状態であることを意味する。そこで、本実施形態では、評価差分値をゼロに近づけるようにパルスパターンを生成し、そのパルスパターンに基づいてインバータ4のスイッチングを制御することにより、モータ鉄損の低減を図ることを目的とする。 As shown in FIG. 13, that the evaluation difference value between the predicted magnetic flux Φest and the target magnetic flux Φtgt is relatively large means that the motor iron loss is likely to increase. Therefore, the present embodiment aims to reduce the motor iron loss by generating a pulse pattern so that the evaluation difference value approaches zero and controlling the switching of the inverter 4 based on the pulse pattern. .
 ここで、評価差分値をゼロに近づける方法として、所定期間における評価差分値のピーク値をゼロに近づけるようにしてもよい。或いは、所定期間における評価差分値の積分値又は平均値をゼロに近づけるようにしてもよい。ピーク値を用いるよりも積分値や平均値を用いる方がノイズの影響を受けにくくなる。また、平均値については、例えば最近の値ほど重みを付けるように加重平均を算出してもよい。 Here, as a method of bringing the evaluation difference value close to zero, the peak value of the evaluation difference value in a predetermined period may be close to zero. Or you may make it the integral value or average value of the evaluation difference value in a predetermined period approach zero. The use of an integral value or an average value is less susceptible to noise than the use of a peak value. For the average value, for example, the weighted average may be calculated so that the more recent values are weighted.
 図14に示すように、本実施形態の基本パターンでは、(b)磁束振幅差のピーク間の幅は約2.4[div]であり、PWMパターンの幅よりも小さい。また、(c)磁束位相変化の差の最大ピークは約1.2[div]、(d)磁束振幅変化の差の最大ピークは約2.5[div]であり、いずれもPWMパターンに比べて小さい。すなわち、評価差分値のピーク値がゼロに近づいている。よって、本実施形態の基本パターンに基づきインバータ4のスイッチングを制御することにより、PWMパターンを用いる関連技術に比べ、モータ鉄損を低減することができる。 As shown in FIG. 14, in the basic pattern of this embodiment, (b) the width between the peaks of the magnetic flux amplitude difference is about 2.4 [div], which is smaller than the width of the PWM pattern. Further, (c) the maximum peak of the difference in magnetic flux phase change is about 1.2 [div], and (d) the maximum peak of the difference in magnetic flux amplitude change is about 2.5 [div], both of which are compared with the PWM pattern. Small. That is, the peak value of the evaluation difference value approaches zero. Therefore, by controlling the switching of the inverter 4 based on the basic pattern of the present embodiment, the motor iron loss can be reduced as compared with the related technology using the PWM pattern.
 また、図15、図16、図17に示すように、第1、第2、第3修正パターンのいずれもPWMパターンに比べ、(b)磁束振幅差のピーク間の幅、(c)磁束位相変化の差の最大ピーク、(d)磁束振幅変化の差の最大ピークが小さくなっている。特に(b)磁束振幅差のピーク間の幅について比較すると、第1修正パターンでは約2.0[div]、第2修正パターンでは約2.0[div]、第3修正パターンでは約1.8[div]である。つまり、基本パターンの約2.4[div]よりも小さくなっている。なお、第1、第2、第3修正パターンの(c)磁束位相変化の差の最大ピーク、(d)磁束振幅変化の差の最大ピークは、基本パターンと同程度である。 As shown in FIGS. 15, 16, and 17, all of the first, second, and third correction patterns are compared with the PWM pattern, (b) the width between peaks of the magnetic flux amplitude difference, and (c) the magnetic flux phase. The maximum peak of the difference in change and (d) the maximum peak of the difference in magnetic flux amplitude change are small. In particular, when comparing the width between the peaks of the magnetic flux amplitude difference (b), the first correction pattern is about 2.0 [div], the second correction pattern is about 2.0 [div], and the third correction pattern is about 1. 8 [div]. That is, it is smaller than about 2.4 [div] of the basic pattern. Note that (c) the maximum peak of the difference in magnetic flux phase change and (d) the maximum peak of the difference in magnetic flux amplitude change of the first, second, and third correction patterns are similar to the basic pattern.
 このように、基本パターンに対しパルス幅又はパルス位置を変更した第1、第2修正パターン、及び、基本パターンに対し実効値が等しくなるようにパルス幅及びパルス位置を変更した第3修正パターンでは、評価差分値のピーク値をより小さくすることができる。よって、第1~第3修正パターンに基づいてインバータ4のスイッチングを制御することにより、基本パターンを用いる場合に比べ、モータ鉄損をさらに低減することができる。 As described above, in the first and second correction patterns in which the pulse width or the pulse position is changed with respect to the basic pattern, and in the third correction pattern in which the pulse width and the pulse position are changed so that the effective values are equal to the basic pattern. The peak value of the evaluation difference value can be further reduced. Therefore, by controlling the switching of the inverter 4 based on the first to third correction patterns, the motor iron loss can be further reduced as compared with the case where the basic pattern is used.
 加えて、図18に示すように、基本パターンに対しパルス数を増加させた第4修正パターンでも、PWMパターンに比べ、(b)磁束振幅差のピーク間の幅、(c)磁束位相変化の差の最大ピーク、(d)磁束振幅変化の差の最大ピークが小さくなっている。また、第4修正パターンの(b)磁束振幅差のピーク間の幅は約1.8[div]であり、第3修正パターンと並んで最小レベルとなっている。ただし、第4修正パターンは、基本パターンに対しパルス数を増加させており、スイッチング損失が増加する傾向にある。したがって、第4修正パターンの採用の適否は、スイッチング損失とモータ鉄損とを総合的に検討した上で判断することが好ましい。 In addition, as shown in FIG. 18, even in the fourth correction pattern in which the number of pulses is increased with respect to the basic pattern, compared with the PWM pattern, (b) the width between peaks of the magnetic flux amplitude difference, and (c) the change in magnetic flux phase. The maximum peak of the difference and (d) the maximum peak of the difference in magnetic flux amplitude change are small. The width between the peaks of the (b) magnetic flux amplitude difference of the fourth correction pattern is about 1.8 [div], which is the minimum level along with the third correction pattern. However, in the fourth correction pattern, the number of pulses is increased with respect to the basic pattern, and the switching loss tends to increase. Therefore, it is preferable to determine whether or not the fourth correction pattern is appropriate after comprehensively considering the switching loss and the motor iron loss.
 (効果)
 本実施形態のモータ制御装置10の効果について説明する。
(effect)
The effect of the motor control device 10 of the present embodiment will be described.
 (1)本実施形態では、予測磁束Φestと目標磁束Φtgtとの評価差分値をゼロに近づけるようにパルスパターンを生成し、そのパルスパターンに基づくスイッチング信号によりインバータ4のスイッチングを制御する。ここで、目標磁束Φtgtは、モータ5の現実の磁気特性歪に基づいて設定される。 (1) In this embodiment, a pulse pattern is generated so that the evaluation difference value between the predicted magnetic flux Φest and the target magnetic flux Φtgt is close to zero, and switching of the inverter 4 is controlled by a switching signal based on the pulse pattern. Here, the target magnetic flux Φtgt is set based on the actual magnetic characteristic distortion of the motor 5.
 これにより、現実の磁石歪等の磁気特性歪を考慮しつつ、モータ鉄損を適切に低減することができる。よって、パルスパターン制御によるスイッチング損失低減効果と合わせ、モータ鉄損の低減とスイッチング損失の低減とを両立することができる。また、目標磁束設定部32は、モータ5の回転位置に応じて目標磁束Φtgtを変化させることで、現実の磁気特性歪を目標磁束Φtgtに正確に反映させることができる。 This makes it possible to appropriately reduce the motor iron loss while taking into account magnetic characteristic distortion such as actual magnet distortion. Therefore, the reduction of the motor iron loss and the reduction of the switching loss can be achieved together with the effect of reducing the switching loss by the pulse pattern control. Further, the target magnetic flux setting unit 32 can accurately reflect the actual magnetic characteristic distortion on the target magnetic flux Φtgt by changing the target magnetic flux Φtgt according to the rotational position of the motor 5.
 (2)本実施形態では、図6に示す方法により、一相について電気角90[deg]の区間を一単位とし、線対称及び点対称に反転して電気角360[deg]区間でのパルスパターンを生成する。このようなパターン生成方法により、パターンの記憶量を低減し、また、新たなパターンを生成する演算負荷を低減することができる。 (2) In the present embodiment, by the method shown in FIG. 6, the section of the electrical angle of 90 [deg] is set as one unit for one phase, and the pulse in the section of electrical angle of 360 [deg] is inverted by line symmetry and point symmetry. Generate a pattern. With such a pattern generation method, the amount of pattern storage can be reduced, and the calculation load for generating a new pattern can be reduced.
 (3)本実施形態のパルスパターン生成部20は、予め基本パターン設定部21で設定された基本パターンを元に、磁束誤差評価部33で算出された評価差分値をゼロに近づけるように、パターン修正部23にて修正パターンを生成する。また、基本パターン及び修正パターンは、パターンの算出に用いられた各パラメータと共に、記憶部22、24に記憶される。 (3) The pulse pattern generation unit 20 of the present embodiment is configured so that the evaluation difference value calculated by the magnetic flux error evaluation unit 33 approaches zero based on the basic pattern previously set by the basic pattern setting unit 21. The correction unit 23 generates a correction pattern. In addition, the basic pattern and the correction pattern are stored in the storage units 22 and 24 together with the parameters used for calculating the pattern.
 このように、予め記憶部22に記憶された基本パターンを選択し、その基本パターンを元に修正演算をして修正パターンを生成することにより、演算負荷を低減し、演算時間を短縮することができる。さらに、修正パターンを新たに記憶部24に記憶しておくことで効率的に学習することができる。 In this way, by selecting a basic pattern stored in advance in the storage unit 22 and performing a correction calculation based on the basic pattern to generate a correction pattern, the calculation load can be reduced and the calculation time can be shortened. it can. Furthermore, it is possible to learn efficiently by storing the correction pattern in the storage unit 24 anew.
 (その他の実施形態)
 (ア)上記実施形態において、一相のパルスパターンに対し他の二相のパルスパターンを電気角±120[deg]ずらす点、及び、磁束誤差を評価する所定期間として電気角60[deg]以上に対応する期間を設定する点は、モータの相の数が三相であることに起因する。これに対し、本開示が適用される多相回転機の相の数は、四相以上であってもよく、その場合、上記の電気角は、相の数に応じて適宜設定される。
(Other embodiments)
(A) In the above-described embodiment, the electrical angle ± 120 [deg] is shifted from the other two-phase pulse pattern with respect to the single-phase pulse pattern, and the electrical angle is 60 [deg] or more as a predetermined period for evaluating the magnetic flux error. The period corresponding to is set because the number of phases of the motor is three phases. On the other hand, the number of phases of the multiphase rotating machine to which the present disclosure is applied may be four or more, and in this case, the electrical angle is appropriately set according to the number of phases.
 (イ)基本パターン設定部21及びパターン修正部23を備える上記実施形態のパルスパターン生成部20に対し、他の実施形態のパルスパターン生成部は、基本パターン設定部を備えなくてもよい。すなわち、基本パターンを一旦設定することなく、評価差分値をゼロに近づけるためのパルスパターンを直接演算してもよい。また、パルスパターン生成部は記憶部を備えず、都度、最適なパルスパターンを最初から演算してもよい。また、パターン修正部23の記憶部24が無く、パターン修正部23が基本パターン設定部21の記憶部22を修正してもよい。要するに、本開示のパルスパターン生成部は、評価差分値をゼロに近づけるように生成されたパルスパターンに基づくスイッチング信号をインバータに出力すればよい。 (A) In contrast to the pulse pattern generation unit 20 of the above embodiment including the basic pattern setting unit 21 and the pattern correction unit 23, the pulse pattern generation unit of the other embodiments may not include the basic pattern setting unit. That is, the pulse pattern for making the evaluation difference value close to zero may be directly calculated without setting the basic pattern once. In addition, the pulse pattern generation unit does not include a storage unit, and an optimal pulse pattern may be calculated from the beginning each time. Further, the storage unit 24 of the pattern correction unit 23 may not be provided, and the pattern correction unit 23 may correct the storage unit 22 of the basic pattern setting unit 21. In short, the pulse pattern generation unit of the present disclosure may output a switching signal based on the pulse pattern generated so that the evaluation difference value approaches zero to the inverter.
 (ウ)本開示の制御対象となる回転機は、IPMSM、SPMSM等の永久磁石式同期電動機に限らず、誘導電動機、スイッチトリラクタンスモータ等、コイルを有し鉄損が生じ得る回転機は全て含まれる。さらに、回転機は、車両の動力源として用いられるモータジェネレータ等に限らず、車両の補機用や、車両以外の電車、昇降機、一般機械等の用途に用いられるものであってもよい。 (C) The rotating machine to be controlled in the present disclosure is not limited to a permanent magnet synchronous motor such as IPMSM and SPMSM, but all rotating machines that have a coil and can cause iron loss, such as an induction motor and a switched reluctance motor. included. Furthermore, the rotating machine is not limited to a motor generator or the like used as a power source for a vehicle, but may be used for auxiliary equipment of a vehicle, a train other than the vehicle, an elevator, a general machine, or the like.
 (エ)本開示においてモータの通電を制御する方式は、図1に示すような電流フィードバック制御に限らず、トルクフィードバック制御でもよい。また、電流フィードバックをせずに、トルク指令や回転数指令から直接電圧指令値を生成する電圧オープン制御であってもよい。 (D) In the present disclosure, the method for controlling the energization of the motor is not limited to the current feedback control as shown in FIG. 1, but may be torque feedback control. Further, voltage open control that directly generates a voltage command value from a torque command or a rotation speed command without performing current feedback may be used.
 以上、本開示は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。 As described above, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the gist of the invention.
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらの一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described according to the embodiment, it is understood that the present disclosure is not limited to the embodiment or the structure. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (16)

  1.  変調器(15)が出力するスイッチング信号によりインバータ(4)のスイッチングを制御し、三相以上の多相の回転機(5)の通電を制御する回転機の制御装置であって、
     前記変調器は、
     前記インバータが出力する電圧を所定期間で積分し、前記インバータのスイッチング動作により前記回転機に生じる予測磁束を算出する磁束予測部(31)と、
     前記回転機の現実の磁気特性歪に基づいて目標磁束を設定する目標磁束設定部(32)と、
     前記所定期間において、前記予測磁束と前記目標磁束との差の評価に用いる評価差分値を算出する磁束誤差評価部(33)と、
     電圧指令値に基づいて、且つ、前記評価差分値をゼロに近づけるように、前記回転機の電気角に同期したパルスパターンを生成し、生成したパルスパターンに基づく前記スイッチング信号を出力するパルスパターン生成部(20)と、
     を備える、回転機の制御装置。
    A control device for a rotating machine that controls switching of an inverter (4) by a switching signal output from a modulator (15) and controls energization of a multi-phase rotating machine (5) of three or more phases,
    The modulator is
    A magnetic flux predicting unit (31) that integrates a voltage output from the inverter over a predetermined period, and calculates a predicted magnetic flux generated in the rotating machine by the switching operation of the inverter;
    A target magnetic flux setting unit (32) for setting a target magnetic flux based on the actual magnetic characteristic distortion of the rotating machine;
    A magnetic flux error evaluation unit (33) for calculating an evaluation difference value used for evaluating a difference between the predicted magnetic flux and the target magnetic flux in the predetermined period;
    Pulse pattern generation based on a voltage command value and generating a pulse pattern synchronized with the electrical angle of the rotating machine so that the evaluation difference value approaches zero and outputting the switching signal based on the generated pulse pattern Part (20);
    A control device for a rotating machine.
  2.  前記目標磁束には、前記回転機の現実の磁気特性歪として、前記回転機を構成する永久磁石の磁束歪、又は、コイルのインダクタンス歪の成分が含まれる、請求項1に記載の回転機の制御装置。 2. The rotating machine according to claim 1, wherein the target magnetic flux includes a component of a magnetic flux distortion of a permanent magnet constituting the rotating machine or an inductance distortion of a coil as an actual magnetic characteristic distortion of the rotating machine. Control device.
  3.  前記目標磁束設定部は、前記インバータの停止時における前記回転機の誘起電圧から検出した磁石磁束波形に基づいて前記目標磁束を設定する、請求項2に記載の回転機の制御装置。 The control device for a rotating machine according to claim 2, wherein the target magnetic flux setting unit sets the target magnetic flux based on a magnet magnetic flux waveform detected from an induced voltage of the rotating machine when the inverter is stopped.
  4.  前記目標磁束設定部は、前記回転機の回転位置に応じて前記目標磁束を変化させる、請求項2または3に記載の回転機の制御装置。 The control device for a rotating machine according to claim 2 or 3, wherein the target magnetic flux setting unit changes the target magnetic flux according to a rotational position of the rotating machine.
  5.  前記磁束誤差評価部は、前記評価差分値として、前記予測磁束と前記目標磁束との位相差、振幅差、位相変化の差、又は、振幅変化の差を算出する、請求項1~4のいずれか一項に記載の回転機の制御装置。 5. The magnetic flux error evaluation unit calculates a phase difference, an amplitude difference, a phase change difference, or an amplitude change difference between the predicted magnetic flux and the target magnetic flux as the evaluation difference value. A control device for a rotating machine according to claim 1.
  6.  前記パルスパターン生成部は、前記所定期間における前記評価差分値のピーク値をゼロに近づけるようにパルスパターンを生成する、請求項5に記載の回転機の制御装置。 6. The rotating machine control device according to claim 5, wherein the pulse pattern generation unit generates a pulse pattern so that a peak value of the evaluation difference value in the predetermined period approaches zero.
  7.  前記パルスパターン生成部は、前記所定期間における前記評価差分値の積分値又は平均値をゼロに近づけるようにパルスパターンを生成する、請求項5に記載の回転機の制御装置。 The control device for a rotating machine according to claim 5, wherein the pulse pattern generation unit generates a pulse pattern so that an integral value or an average value of the evaluation difference values in the predetermined period approaches zero.
  8.  前記多相の回転機は三相回転機であり、
     前記所定期間は、前記回転機の電気角60[deg]以上に対応する期間である、請求項1~7のいずれか一項に記載の回転機の制御装置。
    The multi-phase rotating machine is a three-phase rotating machine,
    The control device for a rotating machine according to any one of claims 1 to 7, wherein the predetermined period is a period corresponding to an electrical angle of 60 [deg] or more of the rotating machine.
  9.  前記所定期間は、制御周期の整数倍の期間である、請求項1~8のいずれか一項に記載の回転機の制御装置。 The control apparatus for a rotating machine according to any one of claims 1 to 8, wherein the predetermined period is a period that is an integral multiple of a control cycle.
  10.  前記多相の回転機は三相回転機であり、
     前記パルスパターン生成部は、
     三相のうち一相のパルスパターンについて、
     電気角0~90[deg]の区間を一単位として設定し、
     電気角90[deg]を中心として電気角0~90[deg]のパルスパターンを線対称に反転して電気角90~180[deg]のパルスパターンを設定し、
     電気角180[deg]を中心として電気角0~180[deg]のパルスパターンを点対称に反転して電気角180~360[deg]のパルスパターンを設定し、
     前記一相のパルスパターンを電気角±120[deg]ずらして他の二相のパルスパターンを設定する、請求項1~9のいずれか一項に記載の回転機の制御装置。
    The multi-phase rotating machine is a three-phase rotating machine,
    The pulse pattern generation unit
    About one-phase pulse pattern among the three phases,
    Set the section of electrical angle 0-90 [deg] as one unit,
    A pulse pattern with an electrical angle of 90 to 180 [deg] is set by inverting the pulse pattern with an electrical angle of 0 to 90 [deg] around the electrical angle of 90 [deg] in line symmetry,
    A pulse pattern of electrical angles 180 to 360 [deg] is set by inverting the pulse pattern of electrical angles 0 to 180 [deg] around the electrical angle 180 [deg] as a point symmetry,
    The control device for a rotating machine according to any one of claims 1 to 9, wherein the two-phase pulse pattern is set by shifting the one-phase pulse pattern by an electrical angle of ± 120 [deg].
  11.  前記パルスパターン生成部は、
     基本のパルスパターンである基本パターンを設定する基本パターン設定部(21)と、
     前記基本パターンに対し前記評価差分値をゼロに近づけるように修正した修正パターンを生成するパターン修正部(23)と、
     を有する、請求項1~10のいずれか一項に記載の回転機の制御装置。
    The pulse pattern generation unit
    A basic pattern setting unit (21) for setting a basic pattern which is a basic pulse pattern;
    A pattern correction unit (23) that generates a correction pattern in which the evaluation difference value is corrected to approach zero with respect to the basic pattern;
    The control device for a rotating machine according to any one of claims 1 to 10, wherein:
  12.  前記パターン修正部は、前記基本パターンのパルス幅を変更し、前記修正パターンを生成する、請求項11に記載の回転機の制御装置。 The control device for a rotating machine according to claim 11, wherein the pattern correction unit changes the pulse width of the basic pattern to generate the correction pattern.
  13.  前記パターン修正部は、前記基本パターンのパルス位置を変更し、前記修正パターンを生成する、請求項11に記載の回転機の制御装置。 The control device for a rotating machine according to claim 11, wherein the pattern correction unit changes the pulse position of the basic pattern to generate the correction pattern.
  14.  前記パターン修正部は、前記基本パターンと実効値が同等となるように、前記修正パターンを生成する、請求項11に記載の回転機の制御装置。 The control device for a rotating machine according to claim 11, wherein the pattern correction unit generates the correction pattern so that an effective value is equal to the basic pattern.
  15.  前記パターン修正部は、前記基本パターンのパルス数を変更し、前記修正パターンを生成する、請求項11に記載の回転機の制御装置。 The control device for a rotating machine according to claim 11, wherein the pattern correction unit generates the correction pattern by changing the number of pulses of the basic pattern.
  16.  変調器(15)が出力するスイッチング信号によりインバータ(4)のスイッチングを制御し、三相以上の多相の回転機(5)の通電を制御する回転機の制御方法であって、
     前記変調器が、
     前記インバータが出力する電圧を所定期間で積分し、前記インバータのスイッチング動作により前記回転機に生じる予測磁束を算出し、
     前記回転機の現実の磁気特性歪に基づいて目標磁束を設定し、
     前記所定期間において、前記予測磁束と前記目標磁束との差の評価に用いる評価差分値を算出し、
     電圧指令値に基づいて、且つ、前記評価差分値をゼロに近づけるように、前記回転機の電気角に同期したパルスパターンを生成し、生成したパルスパターンに基づく前記スイッチング信号を出力する、
     回転機の制御方法。
    A control method for a rotating machine that controls switching of an inverter (4) by a switching signal output from a modulator (15) and controls energization of a multi-phase rotating machine (5) of three or more phases,
    The modulator comprises:
    Integrating the voltage output by the inverter over a predetermined period, calculating the predicted magnetic flux generated in the rotating machine by the switching operation of the inverter,
    Set the target magnetic flux based on the actual magnetic characteristic distortion of the rotating machine,
    In the predetermined period, an evaluation difference value used for evaluating a difference between the predicted magnetic flux and the target magnetic flux is calculated,
    Based on the voltage command value and generating a pulse pattern synchronized with the electrical angle of the rotating machine so that the evaluation difference value approaches zero, and outputting the switching signal based on the generated pulse pattern,
    Control method of rotating machine.
PCT/JP2016/073484 2015-08-19 2016-08-09 Device and method for controlling rotary machine WO2017030055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015161961A JP6372448B2 (en) 2015-08-19 2015-08-19 Rotating machine control device
JP2015-161961 2015-08-19

Publications (1)

Publication Number Publication Date
WO2017030055A1 true WO2017030055A1 (en) 2017-02-23

Family

ID=58051833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073484 WO2017030055A1 (en) 2015-08-19 2016-08-09 Device and method for controlling rotary machine

Country Status (2)

Country Link
JP (1) JP6372448B2 (en)
WO (1) WO2017030055A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112042101A (en) * 2018-04-27 2020-12-04 株式会社丰田自动织机 Pulse pattern generating device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110447062B (en) 2017-03-06 2022-08-26 索尼半导体解决方案公司 Driving device and display apparatus
CN107482982B (en) * 2017-09-25 2020-06-05 合肥工业大学 Asynchronous motor vector control method based on iron loss model

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956195A (en) * 1995-06-08 1997-02-25 Denso Corp Inverter control unit
CN103326639A (en) * 2013-06-15 2013-09-25 曲阜师范大学 Variable frequency inverter for low-speed and high-power magnetic suspension disk type synchronous motor
JP2015035877A (en) * 2013-08-08 2015-02-19 日立オートモティブシステムズ株式会社 Rotary electric machine and rotary electric machine drive apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956195A (en) * 1995-06-08 1997-02-25 Denso Corp Inverter control unit
CN103326639A (en) * 2013-06-15 2013-09-25 曲阜师范大学 Variable frequency inverter for low-speed and high-power magnetic suspension disk type synchronous motor
JP2015035877A (en) * 2013-08-08 2015-02-19 日立オートモティブシステムズ株式会社 Rotary electric machine and rotary electric machine drive apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112042101A (en) * 2018-04-27 2020-12-04 株式会社丰田自动织机 Pulse pattern generating device
CN112042101B (en) * 2018-04-27 2023-09-08 株式会社丰田自动织机 Pulse pattern generating device

Also Published As

Publication number Publication date
JP2017041965A (en) 2017-02-23
JP6372448B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
US8232753B2 (en) Control device for electric motor drive apparatus
JP4582168B2 (en) Rotating machine control device and rotating machine control system
JP6617500B2 (en) Electric power steering control method, electric power steering control device, electric power steering device and vehicle
EP2770627B1 (en) Motor control device and motor control method
JP4631672B2 (en) Magnetic pole position estimation method, motor speed estimation method, and motor control apparatus
US9112436B2 (en) System for controlling controlled variable of rotary machine
WO2013124991A1 (en) Magnetic-pole position estimation device for motor, and control apparatus using same
JP2011142791A (en) Control device for polyphase rotating machine
JP3809783B2 (en) Motor control device
JP2009095144A (en) Device and method for controlling ac motor
JP2015223023A (en) Controller of synchronous motor
US20130063057A1 (en) Control system for a rotary machine
JP2010200430A (en) Drive controller for motors
JP5391698B2 (en) Rotating machine control device and control system
WO2017030055A1 (en) Device and method for controlling rotary machine
JP4675573B2 (en) AC motor control device
JP2020167820A (en) Control device for ac rotary electric machine
JP3939481B2 (en) AC motor control device
JP2008228431A (en) Drive controller for alternating-current motor
JP2012147540A (en) Controller for rotary machine
JP5678837B2 (en) Rotating machine control device
JP7147296B2 (en) motor controller
JP6493135B2 (en) In-vehicle electric compressor
JP2020141553A (en) Torque vibration control system using embedded magnet synchronous motor and torque vibration control method
JP6447373B2 (en) Rotating machine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837045

Country of ref document: EP

Kind code of ref document: A1