JP7042540B1 - Combustion efficiency improvement device - Google Patents

Combustion efficiency improvement device Download PDF

Info

Publication number
JP7042540B1
JP7042540B1 JP2021186059A JP2021186059A JP7042540B1 JP 7042540 B1 JP7042540 B1 JP 7042540B1 JP 2021186059 A JP2021186059 A JP 2021186059A JP 2021186059 A JP2021186059 A JP 2021186059A JP 7042540 B1 JP7042540 B1 JP 7042540B1
Authority
JP
Japan
Prior art keywords
fuel
flow path
combustion efficiency
combustion
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021186059A
Other languages
Japanese (ja)
Other versions
JP2023073538A (en
Inventor
満 末松
則昭 中桐
Original Assignee
株式会社アプライド・エナジー・ラボラトリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アプライド・エナジー・ラボラトリー filed Critical 株式会社アプライド・エナジー・ラボラトリー
Priority to JP2021186059A priority Critical patent/JP7042540B1/en
Application granted granted Critical
Publication of JP7042540B1 publication Critical patent/JP7042540B1/en
Priority to PCT/JP2022/038696 priority patent/WO2023090027A1/en
Publication of JP2023073538A publication Critical patent/JP2023073538A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/08Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by sonic or ultrasonic waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Accessories For Mixers (AREA)

Abstract

【課題】液体の燃料を燃焼させる燃焼装置において、燃焼効率を改善することができる燃焼効率改善装置を提供する。【解決手段】本発明に係る燃焼効率改善装置1は、外部の燃焼装置200において液体の燃料Fを燃焼させる際の燃焼効率を改善する燃焼効率改善装置であって、外部の燃料供給源100から燃焼装置200へ燃料Fを送流する主流路10に対して上流側で分岐し、下流側で合流するように組み込まれる分岐流路20と、いずれも分岐流路20に組み込まれて、バブルBを発生させるノズル30と、燃料Fに所定圧力を印加してノズル30に向けて送流する加圧ポンプ22とを備え、ノズル30は、外部からの気体吸引口を有さずに、所定圧力の燃料Fが通流する際にキャビテーション現象を起こすことによって燃料F中にバブルBを生じさせるキャビテーション発生部31を有する。【選択図】図1PROBLEM TO BE SOLVED: To provide a combustion efficiency improving device capable of improving combustion efficiency in a combustion device for burning liquid fuel. SOLUTION: The combustion efficiency improving device 1 according to the present invention is a combustion efficiency improving device for improving the combustion efficiency when burning a liquid fuel F in an external combustion device 200, and is from an external fuel supply source 100. The branch flow path 20 is incorporated so as to branch on the upstream side and merge on the downstream side with respect to the main flow path 10 for sending the fuel F to the combustion device 200, and both are incorporated in the branch flow path 20 and the bubble B is incorporated. The nozzle 30 is provided with a pressurizing pump 22 that applies a predetermined pressure to the fuel F and sends the fuel F toward the nozzle 30, and the nozzle 30 does not have a gas suction port from the outside and has a predetermined pressure. It has a cavitation generation unit 31 that causes a bubble B in the fuel F by causing a cavitation phenomenon when the fuel F of the above is flowing. [Selection diagram] Fig. 1

Description

本発明は、燃焼装置において液体の燃料を燃焼させる際の燃焼効率を改善する燃焼効率改善装置に関する。 The present invention relates to a combustion efficiency improving device for improving combustion efficiency when burning liquid fuel in a combustion device.

軽油、重油、灯油等に例示される液体の燃料を燃焼させることにより動力や熱を発生させる燃焼装置として、エンジン、ボイラー、バーナー等が広く普及している。 Engines, boilers, burners, and the like are widely used as combustion devices that generate power and heat by burning liquid fuels such as light oil, heavy oil, and kerosene.

上記の燃焼装置に関しては、従来から様々な手法によって燃焼効率を改善するための研究開発が行われている。その一つとして、外部から気体を導入して直径100μm未満の微細な気泡(マイクロバブル)を発生させて燃料に混入し、これを燃焼装置に供給して燃焼効率を改善する技術が開示されている(特許文献1:特開2007-24012号公報参照)。 Regarding the above-mentioned combustion device, research and development for improving combustion efficiency have been carried out by various methods. As one of them, a technique is disclosed in which a gas is introduced from the outside to generate fine bubbles (microbubbles) having a diameter of less than 100 μm, which are mixed in the fuel and supplied to a combustion device to improve combustion efficiency. (Patent Document 1: Japanese Patent Application Laid-Open No. 2007-24012).

特開2007-24012号公報JP-A-2007-24012

上記の文献等に例示されるように、液体の燃料にマイクロバブルを混入させて燃焼効率を改善する装置においては、例えば、燃料の流路に直列で組み込まれる構成の場合、改善装置本体の故障時に燃焼装置の運転を停止させてしまう問題が生じ得る。また、外部から空気を取り入れて燃料中に混入させる構成の場合、制御不良や調整不足により流路(配管)中に空気溜まりが発生して燃焼装置の破損や燃焼不良を生じさせてしまう課題が生じ得る。 As exemplified in the above documents, in a device for improving combustion efficiency by mixing microbubbles in a liquid fuel, for example, in the case of a configuration in which the combustion efficiency is improved in series with the fuel flow path, a failure of the improvement device main body. Occasionally, the problem of stopping the operation of the combustion device can occur. In addition, in the case of a configuration in which air is taken in from the outside and mixed into the fuel, there is a problem that air pools are generated in the flow path (piping) due to poor control or insufficient adjustment, resulting in damage to the combustion device or poor combustion. Can occur.

本発明は、上記事情に鑑みてなされ、燃焼装置において液体の燃料を燃焼させる際に、燃焼装置の破損や燃焼不良の発生を防ぐことができ、万一、本体の故障が発生しても燃焼装置の運転を停止させることがなく、燃焼効率を改善することができる燃焼効率改善装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and when burning liquid fuel in a combustion device, it is possible to prevent damage to the combustion device and occurrence of combustion defects, and even if a failure of the main body should occur, combustion can be performed. It is an object of the present invention to provide a combustion efficiency improving device capable of improving the combustion efficiency without stopping the operation of the device.

一実施形態として、以下に記載するような解決手段により、前記課題を解決する。 As an embodiment, the above-mentioned problem is solved by a solution means as described below.

一実施形態に係る燃焼効率改善装置は、外部の燃焼装置において液体の燃料を燃焼させる際の燃焼効率を改善する燃焼効率改善装置であって、外部の燃料供給源から前記燃焼装置へ前記燃料を送流する主流路に対して上流側で分岐し、下流側で合流するように組み込まれる分岐流路と、いずれも前記分岐流路に組み込まれて、バブルを発生させるノズルと、前記燃料に所定圧力を印加して該ノズルに向けて送流する加圧ポンプと、を備え、前記ノズルは、外部からの気体吸引口を有さずに、前記所定圧力の前記燃料が通流する際にキャビテーション現象を起こすことによって前記燃料中に前記バブルを生じさせるキャビテーション発生部を有し、前記分岐流路は、前記主流路に対してループ状流路を構成し、且つ、前記主流路における分岐位置より上流側の圧力と合流位置より下流側の圧力とを変化させないように前記加圧ポンプの前記所定圧力が設定されており、前記分岐位置は、前記燃料供給源に設けられる燃料ポンプの位置に対して前記主流路における下流側の位置に設けられていることを要件とする。 The combustion efficiency improving device according to one embodiment is a combustion efficiency improving device for improving the burning efficiency when burning liquid fuel in an external burning device, and transfers the fuel from an external fuel supply source to the burning device. A branch flow path that branches on the upstream side with respect to the main flow path to be sent and is incorporated so as to merge on the downstream side, a nozzle that is incorporated in the branch flow path to generate a bubble, and a predetermined fuel. It is equipped with a pressurizing pump that applies pressure and flows toward the nozzle, and the nozzle does not have a gas suction port from the outside and cavitation when the fuel of the predetermined pressure flows through. It has a cavitation generating part that causes the bubble to be generated in the fuel by causing a phenomenon, the branch flow path forms a loop-shaped flow path with respect to the main flow path, and is from the branch position in the main flow path. The predetermined pressure of the pressurizing pump is set so as not to change the pressure on the upstream side and the pressure on the downstream side from the confluence position, and the branch position is relative to the position of the fuel pump provided in the fuel supply source. It is a requirement that the fuel is provided at a position on the downstream side in the main flow path .

開示の燃焼効率改善装置によれば、軽油、重油、灯油等に例示される液体の燃料を燃焼させることにより動力や熱を発生させる燃焼装置において、燃焼効率を改善することができる。また、当該燃焼効率改善装置自体の故障時に燃焼装置の運転を停止させてしまうことを防止でき、当該燃焼効率改善装置の制御不良や調整不足等により燃料の流路(配管)中に空気溜まりが発生して燃焼装置の破損や燃焼不良を生じさせてしまうことも防止できる。 According to the disclosed combustion efficiency improving device, it is possible to improve the combustion efficiency in a combustion device that generates power or heat by burning a liquid fuel exemplified by light oil, heavy oil, kerosene or the like. In addition, it is possible to prevent the operation of the combustion device from being stopped when the combustion efficiency improvement device itself fails, and an air pool is formed in the fuel flow path (pipe) due to poor control or insufficient adjustment of the combustion efficiency improvement device. It is also possible to prevent it from being generated and causing damage to the combustion device or combustion failure.

本実施形態に係る燃焼効率改善装置が組み込まれる燃焼システム全体の例を示す構成図。The block diagram which shows the example of the whole combustion system which incorporates the combustion efficiency improvement apparatus which concerns on this embodiment. 本実施形態に係る燃焼効率改善装置の例を示す概略図である。It is a schematic diagram which shows the example of the combustion efficiency improvement apparatus which concerns on this embodiment. 本実施形態に係る燃焼効率改善装置のノズルの例を示す概略図である。It is a schematic diagram which shows the example of the nozzle of the combustion efficiency improvement apparatus which concerns on this embodiment.

以下、図面を参照して、本発明の実施形態について詳しく説明する。図1は、本実施形態に係る燃焼効率改善装置1が組み込まれる燃焼システム全体の例を示す構成図である。また、図2は、本実施形態に係る燃焼効率改善装置1の例を示す概略図である。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing an example of an entire combustion system in which the combustion efficiency improving device 1 according to the present embodiment is incorporated. Further, FIG. 2 is a schematic view showing an example of the combustion efficiency improving device 1 according to the present embodiment. In all the drawings for explaining the embodiment, the members having the same function may be designated by the same reference numerals, and the repeated description thereof may be omitted.

本実施形態に係る燃焼効率改善装置1は、外部の燃焼装置において液体の燃料を燃焼させる際の燃焼効率を改善する装置である。ここで、「液体の燃料」の例として、軽油、重油(好適には、A重油)、灯油等が挙げられる。また、「燃焼装置」の例として、エンジン、ボイラー、バーナー等が挙げられる。 The combustion efficiency improving device 1 according to the present embodiment is a device for improving the combustion efficiency when burning liquid fuel in an external combustion device. Here, examples of the "liquid fuel" include light oil, heavy oil (preferably A heavy oil), kerosene and the like. Further, examples of the "combustion device" include an engine, a boiler, a burner, and the like.

図1、図2に示すように、燃焼効率改善装置1は、先ず、外部の燃料供給源100から外部の燃焼装置200へ燃料Fを送流する主流路10に対して上流側の位置(第1位置)11で分岐し、下流側の位置(第2位置)12で合流して環状の流路を形成するように組み込まれる分岐流路20を備えている。さらに、この分岐流路20に組み込まれる構成として、バブルBを発生させるノズル30と、燃料Fに所定圧力を印加して当該ノズル30に向けて送流する加圧ポンプ22とを備えている。 As shown in FIGS. 1 and 2, the combustion efficiency improving device 1 is first located upstream of the main flow path 10 for sending the fuel F from the external fuel supply source 100 to the external combustion device 200 (the first position). It is provided with a branch flow path 20 that branches at a position (1 position) 11 and merges at a position (second position) 12 on the downstream side to form an annular flow path. Further, as a configuration incorporated in the branch flow path 20, a nozzle 30 for generating a bubble B and a pressurizing pump 22 for applying a predetermined pressure to the fuel F and flowing the fuel F toward the nozzle 30 are provided.

なお、外部の燃料供給源100は、一例として、液体の燃料Fを貯留するタンク101と、当該タンク101から主流路10へ燃料Fを送流する燃料ポンプ(フィードポンプ)102とを備えている。ただし、この構成に限定されるものではなく、燃料ポンプ(フィードポンプ)を備えず、燃焼装置200に設けられる噴射ポンプ(サプライポンプ)によって燃料Fの送流を行う構成等としてもよい(不図示)。 The external fuel supply source 100 includes, for example, a tank 101 for storing the liquid fuel F and a fuel pump (feed pump) 102 for sending the fuel F from the tank 101 to the main flow path 10. .. However, the present invention is not limited to this configuration, and the fuel F may be sent by an injection pump (supply pump) provided in the combustion device 200 without a fuel pump (feed pump) (not shown). ).

次に、本実施形態に係るノズル30は、図3(図2におけるIII部拡大断面図)に示すように、外部からの気体吸引口を有さずに、所定圧力の燃料Fが通流する際にキャビテーション現象を起こすことによって当該燃料F中に後述のバブルBを生じさせるキャビテーション発生部31を備えている。 Next, as shown in FIG. 3 (enlarged cross-sectional view of part III in FIG. 2), the nozzle 30 according to the present embodiment does not have a gas suction port from the outside, and the fuel F at a predetermined pressure flows through the nozzle 30. It is provided with a cavitation generation unit 31 that causes a bubble B, which will be described later, to be generated in the fuel F by causing a cavitation phenomenon.

すなわち、ノズル30は、特許文献1に例示されるような外部から気体を内部へ吸引してバブルを発生させる技術に見られる気体吸引口を有しておらず、内部を通流する燃料Fに圧力変化(減圧)によるキャビテーションを生じさせることによって、溶存気体(この場合は、空気)および燃料F(前述の、軽油、重油、灯油等)の液体(構成成分)そのものが気化してバブルBを発生させる構成となっている。 That is, the nozzle 30 does not have a gas suction port as seen in the technique of sucking gas from the outside to the inside to generate a bubble as exemplified in Patent Document 1, and the fuel F passing through the inside does not have. By causing cavitation due to pressure change (decompression), the liquid (components) of the dissolved gas (in this case, air) and fuel F (light oil, heavy oil, kerosene, etc., as described above) are vaporized to form bubble B. It is configured to generate.

また、ノズル30は、所定圧力の燃料Fが通流する際に燃料F中に撹拌流を生じさせる撹拌部32を備えている。本実施形態においては、上記のキャビテーション発生部31が、当該撹拌部32を兼用する構成となっている。ただし、この構成に限定されるものではなく、それぞれを別に設ける構成としてもよい(不図示)。 Further, the nozzle 30 includes a stirring unit 32 that creates a stirring flow in the fuel F when the fuel F having a predetermined pressure flows through the fuel F. In the present embodiment, the cavitation generation unit 31 is also configured to also serve as the stirring unit 32. However, the configuration is not limited to this, and each may be provided separately (not shown).

ここで、分岐流路20は、主流路10に対してループ状流路を構成している。さらに、主流路10における分岐位置(第1位置)11より上流側の圧力と、主流路10における合流位置(第2位置)12より下流側の圧力と、を変化させないように加圧ポンプ22の所定圧力が設定されている。この構成により、例えば、主流路に直接、加圧ポンプ、ノズル、もしくは、それらを設けるためのタンク等を組み込む従来の装置(不図示)と比較して、分岐流路20によって主流路10に与える圧力変動が無い(ほぼ無い)状態とすることができるため、燃料ポンプ102、燃料噴射装置201における送出作用やその制御に影響を与えることがない。 Here, the branch flow path 20 constitutes a loop-shaped flow path with respect to the main flow path 10. Further, the pressure pump 22 does not change the pressure on the upstream side of the branch position (first position) 11 in the main flow path 10 and the pressure on the downstream side of the confluence position (second position) 12 in the main flow path 10. A predetermined pressure is set. With this configuration, for example, as compared with a conventional device (not shown) that incorporates a pressurizing pump, a nozzle, or a tank for providing them directly in the main flow path, the branch flow path 20 provides the main flow path 10. Since it is possible to make the pressure fluctuation free (almost no), it does not affect the delivery action and its control in the fuel pump 102 and the fuel injection device 201.

具体的に、前述の加圧ポンプ22が、燃料Fをノズル30に向けて送流する際に当該燃料Fに印加する「所定圧力」は、2気圧~10気圧程度の範囲で、且つ、燃焼装置200に設けられる燃料噴射装置201の設定噴射圧よりも低い圧力に設定されている。「設定噴射圧」の例として、燃料噴射装置201が、ディーゼルエンジンの噴射ポンプの場合には設定噴射圧は200気圧程度であり、あるいは、ディーゼルエンジンのコモンレールの場合には、設定噴射圧は2000気圧程度である。 Specifically, when the above-mentioned pressurizing pump 22 sends the fuel F toward the nozzle 30, the "predetermined pressure" applied to the fuel F is in the range of about 2 atm to 10 atm and is burned. The pressure is set lower than the set injection pressure of the fuel injection device 201 provided in the device 200. As an example of the "set injection pressure", when the fuel injection device 201 is a diesel engine injection pump, the set injection pressure is about 200 atm, or when the fuel injection device 201 is a diesel engine common rail, the set injection pressure is 2000. It is about atmospheric pressure.

なお、上記の加圧ポンプ22を駆動する電源として、例えば、燃焼装置200が、ディーゼルエンジン等の場合には車載の直流24Vバッテリー等を用いることができ、あるいは、ボイラー等の場合には外部電源である200V三相交流電源等を用いることができる。 As the power source for driving the pressurizing pump 22, for example, when the combustion device 200 is a diesel engine or the like, an in-vehicle DC 24V battery or the like can be used, or when the combustion device 200 is a boiler or the like, an external power source can be used. A 200V three-phase AC power supply or the like can be used.

また、ノズル30は、上記の加圧ポンプ22によって圧送される燃料Fが当該ノズル30の内部を通過する際に、バブルBとして粒径1μm未満のウルトラファインバブルを発生させる構成となっている。ただし、「粒径1μm未満」とは、粒径1μm以上のバブルが完全に含まれない趣旨ではない。 Further, the nozzle 30 is configured to generate an ultrafine bubble having a particle size of less than 1 μm as a bubble B when the fuel F pressure-fed by the pressurizing pump 22 passes through the inside of the nozzle 30. However, "less than 1 μm particle size" does not mean that bubbles having a particle size of 1 μm or more are not completely included.

以上の構成によれば、ノズル30を通過させた燃料F中にウルトラファインバブルを発生させ(後述の所定時間程度、消滅せずに存在する)、且つ、燃料Fを撹拌することができる。これにより、燃料F(液滴)の微細化(後述)を図ることができ、この液滴の微細化によって比表面積が増加すると共に燃焼時間が短縮される効果が得られる。より具体的には、燃料Fの液滴を球体と仮定して、その直径が20%小さくなるとすれば、同じ体積の燃料Fを液滴化した場合の表面積の合計は25%大きくなる。このとき、一つの液滴の体積は、ほぼ1/2となる。その結果、燃料Fは効率的に酸素と結びつき、完全燃焼に近づく作用が得られる。すなわち、火炎が広がり難くなり、発生する熱エネルギーが集中するため、燃焼効率が改善する効果を得ることができる。例えば、シリンダ内で燃料Fを燃焼させるディーゼルエンジンの場合であれば、シリンダへの熱の伝播が小さくなり、燃焼で得られるエネルギーをより多く動力として利用できることとなる。 According to the above configuration, an ultrafine bubble can be generated in the fuel F that has passed through the nozzle 30 (exists without disappearing for about a predetermined time described later), and the fuel F can be agitated. As a result, the fuel F (droplets) can be miniaturized (described later), and the miniaturization of the droplets has the effect of increasing the specific surface area and shortening the combustion time. More specifically, assuming that the droplet of the fuel F is a sphere and its diameter is reduced by 20%, the total surface area of the same volume of the fuel F as a droplet is increased by 25%. At this time, the volume of one droplet is almost halved. As a result, the fuel F efficiently combines with oxygen, and an action approaching complete combustion can be obtained. That is, since the flame is difficult to spread and the generated heat energy is concentrated, the effect of improving the combustion efficiency can be obtained. For example, in the case of a diesel engine in which the fuel F is burned in the cylinder, the heat propagation to the cylinder becomes small, and more energy obtained by the combustion can be used as power.

本願発明者らが研究したところ、上記の作用効果は次のように考察される。先ず、軽油や重油に例示される液体に関して、燃料噴射装置により噴射される時の液滴径が粘度と線形の関係にあること、および、粘度が温度上昇により下がることが一般に知られている。また、粘度の高い液体には多くの場合チクソトロピー性(撹拌等の剪断力を受けることによって粘度が低下する物性)が観察される。これらの現象を踏まえ、本装置の場合で考えると、燃料Fがノズル30を通過する際に、キャビテーション発生部31および撹拌部32(本実施形態においては、兼用の構成としている)によって、燃料F中にウルトラファインバブルを発生させて、燃料Fを撹拌させる作用が生じる。このとき、燃料Fを構成する分子において、ファンデルワールス結合が一部解除されて粘度の低下をもたらし、液滴径が小さくなる効果が得られると考察される。 As a result of research by the inventors of the present application, the above-mentioned action and effect are considered as follows. First, with respect to liquids exemplified as light oil and heavy oil, it is generally known that the droplet diameter at the time of injection by a fuel injection device has a linear relationship with the viscosity, and that the viscosity decreases due to an increase in temperature. In addition, thixotropic properties (physical properties whose viscosity decreases due to shearing force such as stirring) are often observed in highly viscous liquids. Considering the case of this apparatus based on these phenomena, when the fuel F passes through the nozzle 30, the cavitation generation unit 31 and the stirring unit 32 (in the present embodiment, the configuration is also used) cause the fuel F. An ultrafine bubble is generated inside, and the action of stirring the fuel F occurs. At this time, it is considered that in the molecules constituting the fuel F, the van der Waals bond is partially released to bring about a decrease in viscosity, and an effect of reducing the droplet diameter can be obtained.

ここで、燃焼装置200として、ディーゼルエンジンを想定した場合、燃料噴射装置201となる噴射ポンプにおいて200気圧程度の圧力が燃料Fに印加されることとなるため、内部気圧が30気圧程度と言われているウルトラファインバブルは噴射前に消滅してしまうはずである。そうなると、燃料F中にバブルBを発生させる処理の過程で、燃料Fの構成粒子(分子)にエネルギーが与えられることが燃焼効率を改善するうえで最も重要な要素であると考察される。したがって、コモンレール式の燃料噴射装置を備える構成よりも、従来式の燃料噴射装置(噴射ポンプ)を備える構成の方が、本発明による燃焼効率改善効果がより一層高くなる。 Here, assuming a diesel engine as the combustion device 200, a pressure of about 200 atm is applied to the fuel F in the injection pump serving as the fuel injection device 201, so that the internal pressure is said to be about 30 atm. The ultra-fine bubble should disappear before the injection. In that case, it is considered that the supply of energy to the constituent particles (molecules) of the fuel F is the most important factor for improving the combustion efficiency in the process of generating the bubble B in the fuel F. Therefore, the combustion efficiency improving effect according to the present invention is further higher in the configuration provided with the conventional fuel injection device (injection pump) than in the configuration provided with the common rail type fuel injection device.

一方、燃焼装置200として、ボイラーを想定した場合、燃焼効率を改善する仕組みとして、上記とはやや異なる面がある。具体的に、ノズル30を通過させた燃料Fの燃焼は、完全燃焼に近づき、煤が発生しなくなる。これにより、従来の燃焼装置において発生していた熱交換器への煤の大量付着がなくなり、熱交換効率を高める(すなわち、装置における初期状態を維持する)ことができ、燃焼効率を良好にする効果を得ることができる。したがって、ガンタイプ式のバーナーを備える構成よりも、スプレー式のバーナーを備える構成の方が、本発明による燃焼効率改善効果がより一層高くなる。 On the other hand, when a boiler is assumed as the combustion device 200, there is a slightly different aspect from the above as a mechanism for improving the combustion efficiency. Specifically, the combustion of the fuel F that has passed through the nozzle 30 approaches complete combustion, and soot is not generated. This eliminates the large amount of soot adhering to the heat exchanger, which was generated in the conventional combustion device, and can improve the heat exchange efficiency (that is, maintain the initial state in the device) and improve the combustion efficiency. The effect can be obtained. Therefore, the effect of improving the combustion efficiency according to the present invention is further higher in the configuration provided with the spray type burner than in the configuration provided with the gun type burner.

本願発明者らは、さらに実験を行うことによって、燃料F中に発生させたウルトラファインバブルは短時間(30秒~1分間程度)で浮上・重合して消滅すること、および、燃料Fの粘度低下は短時間(30秒~1分間程度)しか持続せず、静置状態で元に戻ってしまうことを究明した。これらは、燃焼効率改善装置の実現にあたって課題となることから、その解決を可能とする構成を案出した。 By conducting further experiments, the inventors of the present application float and polymerize the ultrafine bubbles generated in the fuel F in a short time (about 30 seconds to 1 minute) and disappear, and the viscosity of the fuel F. It was clarified that the decrease lasted only for a short time (about 30 seconds to 1 minute) and returned to the original state in a stationary state. Since these are issues in realizing a combustion efficiency improving device, we have devised a configuration that can solve them.

具体的に、本実施形態に係るノズル30は、燃料Fが当該ノズル30の流出口34から燃焼装置200の燃料噴射装置201へ到達する送流時間が1分を超えない送流距離となる位置に配設される構成によって、上記課題の解決を可能とした。 Specifically, the nozzle 30 according to the present embodiment has a position where the fuel F reaches the fuel injection device 201 of the combustion device 200 from the outlet 34 of the nozzle 30 so that the feed time does not exceed 1 minute. The above-mentioned problems can be solved by the configuration arranged in.

仮に、タンク101内に貯留されている燃料Fに対して前述のノズル30を通過させるのと同じ処理が実施される構成とした場合、燃料Fの送流距離が長過ぎるため、燃料噴射装置201へ到達して燃焼に消費されるまでに燃料Fの粘度は元の粘度に戻ってしまうこととなる。これに対して、本実施形態に係る上記構成によれば、ノズル30を通過させて燃料Fに前述の処理が行われてから、1分以内(より好ましくは、30秒以内)に燃料噴射装置201へ到達して燃焼に消費されるため、前述の燃焼効率改善効果を得ることができる。 If the same process as passing the nozzle 30 described above is performed on the fuel F stored in the tank 101, the flow distance of the fuel F is too long, so that the fuel injection device 201 The viscosity of the fuel F will return to the original viscosity by the time it reaches and is consumed for combustion. On the other hand, according to the above configuration according to the present embodiment, the fuel injection device is within 1 minute (more preferably, within 30 seconds) after the above-mentioned treatment is performed on the fuel F by passing through the nozzle 30. Since it reaches 201 and is consumed for combustion, the above-mentioned combustion efficiency improving effect can be obtained.

例えば、燃焼装置200がディーゼルエンジンであって、主流路10となる燃料配管として一般的に使用される内径断面積が1.7平方センチメートルのパイプを用いる場合を例に挙げて、燃料噴射装置201まで燃料Fが30秒で到達する距離Xについて計算すると、以下のような結果となる。具体的に、燃料消費量が6リットル/時の場合、X=約30センチメートルとなる。また、燃料消費量が24リットル/時の場合、X=約117センチメートルとなる。また、燃料消費量が60リットル/時の場合、X=約294センチメートルとなる。このように、本燃焼効率改善装置1(特にノズル30)の設置位置は、出来る限り燃焼装置200(特に燃料噴射装置201)に近い位置とすることが有効となる。別の観点では、燃料消費量が大きい燃焼装置200である程、本発明による燃焼効率改善効果がより一層高くなると言うこともできる。 For example, when the combustion device 200 is a diesel engine and a pipe having an inner diameter cross-sectional area of 1.7 square centimeters, which is generally used as a fuel pipe serving as a main flow path 10, is used as an example, up to the fuel injection device 201. When calculating the distance X that the fuel F reaches in 30 seconds, the following result is obtained. Specifically, when the fuel consumption is 6 liters / hour, X = about 30 centimeters. When the fuel consumption is 24 liters / hour, X = about 117 centimeters. Further, when the fuel consumption is 60 liters / hour, X = about 294 centimeters. As described above, it is effective that the installation position of the combustion efficiency improving device 1 (particularly the nozzle 30) is as close as possible to the combustion device 200 (particularly the fuel injection device 201). From another point of view, it can be said that the larger the fuel consumption of the combustion device 200, the higher the effect of improving the combustion efficiency by the present invention.

以上、説明した通り、本発明に係る燃焼効率改善装置によれば、燃焼装置において液体の燃料を燃焼させる構成において、燃料の燃焼効率を改善することが可能となる。 As described above, according to the combustion efficiency improving device according to the present invention, it is possible to improve the combustion efficiency of the fuel in the configuration in which the liquid fuel is burned in the combustion device.

また、従来装置のように、外部から気体を内部へ吸引してバブルを発生させる構成の場合には、制御不良や調整不足により流路(配管)中に空気溜まりが発生して燃焼装置の破損や燃焼不良を生じさせてしまうリスクがあるが、本発明に係る燃焼効率改善装置によれば、外部からの気体吸引口を有さない構成によって、そのようなリスクをなくす(もしくは、低減する)ことが可能となる。 Further, in the case of a configuration in which gas is sucked from the outside to the inside to generate a bubble as in the conventional device, an air pool is generated in the flow path (pipe) due to poor control or insufficient adjustment, and the combustion device is damaged. However, according to the combustion efficiency improving device according to the present invention, such a risk is eliminated (or reduced) by a configuration having no external gas suction port. It becomes possible.

さらに、従来装置のように、燃料の流路に直列で組み込まれる構成の場合には、改善装置本体の故障時に燃焼装置の運転を停止させてしまうリスクがあるが、本発明に係る燃焼効率改善装置によれば、主流路に対して環状の流路を形成するように組み込まれる分岐流路を備える構成によって、そのようなリスクをなくす(もしくは、低減する)ことが可能となる。 Further, in the case of a configuration in which the combustion device is incorporated in series in the fuel flow path as in the conventional device, there is a risk that the operation of the combustion device is stopped when the improvement device main body fails, but the combustion efficiency improvement according to the present invention is made. According to the apparatus, such a risk can be eliminated (or reduced) by a configuration including a branch flow path incorporated so as to form an annular flow path with respect to the main flow path.

なお、本発明は、以上説明した実施例に限定されることなく、本発明を逸脱しない範囲において種々変更可能である。本発明の変形例として、燃料消費量のより大きい燃焼装置に適用する場合、燃料が通流する主流路に対して本発明に係る燃焼効率改善装置を2台並列に連結することによって対応することが可能となる。 The present invention is not limited to the embodiments described above, and can be variously modified without departing from the present invention. As a modification of the present invention, when applied to a combustion device having a larger fuel consumption, two combustion efficiency improving devices according to the present invention are connected in parallel to the main flow path through which fuel flows. Is possible.

1 燃焼効率改善装置
10 主流路
11 第1位置
12 第2位置
20 分岐流路
22 加圧ポンプ
30 ノズル
31 キャビテーション発生部
32 撹拌部
34 流出口
100 燃料供給源
101 タンク
102 燃料ポンプ
200 燃焼装置
201 燃料噴射装置
B バブル
F 燃料
1 Combustion efficiency improvement device 10 Main flow path 11 1st position 12 2nd position 20 Branch flow path 22 Pressurizing pump 30 Nozzle 31 Cavitation generator 32 Stirring section 34 Outlet 100 Fuel supply source 101 Tank 102 Fuel pump 200 Combustion device 201 Fuel Injection device B Bubble F Fuel

Claims (6)

外部の燃焼装置において液体の燃料を燃焼させる際の燃焼効率を改善する燃焼効率改善装置であって、
外部の燃料供給源から前記燃焼装置へ前記燃料を送流する主流路に対して上流側で分岐し、下流側で合流するように組み込まれる分岐流路と、
いずれも前記分岐流路に組み込まれて、バブルを発生させるノズルと、前記燃料に所定圧力を印加して該ノズルに向けて送流する加圧ポンプと、を備え、
前記ノズルは、外部からの気体吸引口を有さずに、前記所定圧力の前記燃料が通流する際にキャビテーション現象を起こすことによって前記燃料中に前記バブルを生じさせるキャビテーション発生部を有し、
前記分岐流路は、前記主流路に対してループ状流路を構成し、且つ、前記主流路における分岐位置より上流側の圧力と合流位置より下流側の圧力とを変化させないように前記加圧ポンプの前記所定圧力が設定されており、
前記分岐位置は、前記燃料供給源に設けられる燃料ポンプの位置に対して前記主流路における下流側の位置に設けられていること
を特徴とする燃焼効率改善装置。
It is a combustion efficiency improving device that improves the combustion efficiency when burning liquid fuel in an external combustion device.
A branch flow path that branches on the upstream side with respect to the main flow path that sends the fuel from an external fuel supply source to the combustion device and is incorporated so as to merge on the downstream side.
Both are equipped with a nozzle incorporated in the branch flow path to generate a bubble and a pressurizing pump that applies a predetermined pressure to the fuel and sends the fuel toward the nozzle.
The nozzle has a cavitation generating portion that causes the bubble to be generated in the fuel by causing a cavitation phenomenon when the fuel of the predetermined pressure flows without having a gas suction port from the outside .
The branch flow path forms a loop-shaped flow path with respect to the main flow path, and is pressurized so as not to change the pressure on the upstream side of the branch position and the pressure on the downstream side of the confluence position in the main flow path. The predetermined pressure of the pump is set,
The branch position shall be provided at a position on the downstream side of the main flow path with respect to the position of the fuel pump provided at the fuel supply source.
Combustion efficiency improvement device featuring.
前記分岐流路は、途中分岐の無いループ状流路成されていること
を特徴とする請求項1記載の燃焼効率改善装置。
The combustion efficiency improving device according to claim 1, wherein the branch flow path is configured as a loop-shaped flow path having no intermediate branch .
前記所定圧力は、2気圧~10気圧であり、且つ、前記燃焼装置に設けられる燃料噴射装置の設定噴射圧よりも低い圧力であること
を特徴とする請求項1または請求項2記載の燃焼効率改善装置。
The combustion efficiency according to claim 1 or 2, wherein the predetermined pressure is 2 to 10 atm and is lower than the set injection pressure of the fuel injection device provided in the combustion device. Improvement device.
前記ノズルは、前記所定圧力の前記燃料が通流する際に前記燃料中に撹拌流を生じさせる撹拌部を有すること
を特徴とする請求項1~3のいずれか一項に記載の燃焼効率改善装置。
The combustion efficiency improvement according to any one of claims 1 to 3, wherein the nozzle has a stirring portion that causes a stirring flow in the fuel when the fuel of the predetermined pressure flows through the fuel. Device.
前記バブルは、粒径1μm未満のウルトラファインバブルであること
を特徴とする請求項1~4のいずれか一項に記載の燃焼効率改善装置。
The combustion efficiency improving device according to any one of claims 1 to 4, wherein the bubble is an ultrafine bubble having a particle size of less than 1 μm.
前記ノズルは、前記燃料が該ノズルの流出口から前記燃料噴射装置へ到達する送流時間が1分を超えない送流距離となる位置に配設されていること
を特徴とする請求項3記載の燃焼効率改善装置。
3. The third aspect of the present invention is characterized in that the nozzle is arranged at a position where the flow time at which the fuel reaches the fuel injection device from the outlet of the nozzle is a flow distance that does not exceed 1 minute. Combustion efficiency improvement device.
JP2021186059A 2021-11-16 2021-11-16 Combustion efficiency improvement device Active JP7042540B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021186059A JP7042540B1 (en) 2021-11-16 2021-11-16 Combustion efficiency improvement device
PCT/JP2022/038696 WO2023090027A1 (en) 2021-11-16 2022-10-18 Combustion efficiency improvement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021186059A JP7042540B1 (en) 2021-11-16 2021-11-16 Combustion efficiency improvement device

Publications (2)

Publication Number Publication Date
JP7042540B1 true JP7042540B1 (en) 2022-03-28
JP2023073538A JP2023073538A (en) 2023-05-26

Family

ID=81214538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021186059A Active JP7042540B1 (en) 2021-11-16 2021-11-16 Combustion efficiency improvement device

Country Status (2)

Country Link
JP (1) JP7042540B1 (en)
WO (1) WO2023090027A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143540B1 (en) 2022-02-03 2022-09-28 日本タングステン株式会社 fine bubble generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028305A (en) 2003-07-07 2005-02-03 Institute Of Computational Fluid Dynamics Gas-liquid mixture production device, sewage purifying device and fuel injection equipment
US20110265737A1 (en) 2008-08-04 2011-11-03 Robert Ryon Methods and devices for fuel reformation
WO2012011851A2 (en) 2010-07-08 2012-01-26 Potapkov Dmitry Vadimovich Fuel cavitator
JP2014147901A (en) 2013-02-01 2014-08-21 Micro-Bub Kk Microbubble generator and microbubble generating tube structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028305A (en) 2003-07-07 2005-02-03 Institute Of Computational Fluid Dynamics Gas-liquid mixture production device, sewage purifying device and fuel injection equipment
US20110265737A1 (en) 2008-08-04 2011-11-03 Robert Ryon Methods and devices for fuel reformation
WO2012011851A2 (en) 2010-07-08 2012-01-26 Potapkov Dmitry Vadimovich Fuel cavitator
JP2014147901A (en) 2013-02-01 2014-08-21 Micro-Bub Kk Microbubble generator and microbubble generating tube structure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
中武靖仁,"超微細気泡混入軽油によるディーゼル機関の環境負荷低減",日本マリンエンジニアリング学会誌,2011年,第46巻,第6号,p.75-80,https://www.jstage.jst.go.jp/article/jime/46/6/46_880/_pdf/-char/ja
中武靖仁,外2名,"エジェクタ式マイクロバブル混入燃料によるディーゼル機関の燃焼改善",日本機械学会論文集(B編),2007年,第73巻,第735号,p.196-202,https://www.jstage.jst.go.jp/article/kikaib1979/73/735/73_735_2368/_pdf/-char/ja
柘植秀樹,"マイクロバブル・ナノバブルの基礎",日本海水学会誌,2010年,第64巻,第1号,p.4-10,https://www.jstage.jst.go.jp/article/swsj/64/1/64_1_4/_pdf/-char/ja

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143540B1 (en) 2022-02-03 2022-09-28 日本タングステン株式会社 fine bubble generator
JP2023113278A (en) * 2022-02-03 2023-08-16 日本タングステン株式会社 fine bubble generator

Also Published As

Publication number Publication date
JP2023073538A (en) 2023-05-26
WO2023090027A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
JP6023697B2 (en) Real-time inline water-fuel emulsion equipment, processes and systems
JP4790066B2 (en) Water emulsion production equipment
EP2426335A1 (en) Multi-fuel co-injection system and method for internal combustion and turbine engines
US7934474B2 (en) Real time in-line hydrosonic water-in-fuel emulsion apparatus, process and system
JP7042540B1 (en) Combustion efficiency improvement device
US20140041288A1 (en) Real time in-line water-in-fuel emulsion apparatus, process and system
JP2001139964A (en) Preparation and treatment of emulsified fuel oil by adding water content to various fuel oil and emulsified by ultrasonic wave, and its unit
JP5941224B2 (en) Water-mixed fuel generator
WO2014030242A1 (en) Combustion system
JP5030038B2 (en) Emulsion fuel production apparatus not containing emulsifier and operation method thereof
US8459037B2 (en) Method and system for feeding a gas-turbine engine with liquid fuel
JP2010025382A (en) Emulsified fuel manufacturing device
JP2015075097A (en) Gas-liquid mixture fuel manufacturing device
JPWO2019180796A1 (en) HHO gas mixed liquid fuel supply device and HHO gas mixed liquid fuel manufacturing method
JP2014051901A (en) Fuel supply system
JP7465985B2 (en) Fuel Reformer
JP2012057927A (en) Method of burning mixed fuel of liquid fuel and water, and mixed fuel injection device
JP3141750U (en) Water-mixed emulsion combustion equipment
JPWO2007069298A1 (en) Emulsifying device and method for purifying emulsion using such emulsifying device
JPH05280712A (en) Fuel injection device
JP2014531307A (en) Emulsion-generating hydraulic circuit and method for re-emulsifying separated liquid
KR20060027924A (en) Manufacturing method and combustion system of emulsion-type fuel
JP2012220178A (en) Method and device for combusting emulsion fuel of gases and water
JP2011038064A (en) Method for synthesizing emulsion fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220308

R150 Certificate of patent or registration of utility model

Ref document number: 7042540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150