WO2023090027A1 - Combustion efficiency improvement device - Google Patents

Combustion efficiency improvement device Download PDF

Info

Publication number
WO2023090027A1
WO2023090027A1 PCT/JP2022/038696 JP2022038696W WO2023090027A1 WO 2023090027 A1 WO2023090027 A1 WO 2023090027A1 JP 2022038696 W JP2022038696 W JP 2022038696W WO 2023090027 A1 WO2023090027 A1 WO 2023090027A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
flow path
combustion efficiency
combustion
nozzle
Prior art date
Application number
PCT/JP2022/038696
Other languages
French (fr)
Japanese (ja)
Inventor
満 末松
則昭 中桐
Original Assignee
株式会社アプライド・エナジー・ラボラトリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アプライド・エナジー・ラボラトリー filed Critical 株式会社アプライド・エナジー・ラボラトリー
Publication of WO2023090027A1 publication Critical patent/WO2023090027A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/08Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by sonic or ultrasonic waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a combustion efficiency improving device for improving combustion efficiency when burning liquid fuel in a combustion device.
  • Engines, boilers, burners, etc. are widely used as combustion devices that generate power and heat by burning liquid fuels such as light oil, heavy oil, and kerosene.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2007-24012).
  • the present invention has been made in view of the above circumstances, and when burning liquid fuel in a combustion device, it is possible to prevent damage to the combustion device and poor combustion.
  • An object of the present invention is to provide a combustion efficiency improving device capable of improving combustion efficiency without stopping the operation of the device.
  • a combustion efficiency improvement device is a combustion efficiency improvement device for improving combustion efficiency when liquid fuel is burned in an external combustion device, wherein the fuel is supplied from an external fuel supply source to the combustion device.
  • a branched flow path that branches upstream from the main flow path that feeds the fuel and that is incorporated to merge on the downstream side; a nozzle that is incorporated in the branched flow path to generate bubbles; a pressurizing pump that applies pressure and sends the fuel toward the nozzle, the nozzle having no gas suction port from the outside and cavitation when the fuel of the predetermined pressure flows.
  • the predetermined pressure of the pressurizing pump is set so as not to change the pressure on the upstream side and the pressure on the downstream side from the confluence position, and the branch position is relative to the position of the fuel pump provided in the fuel supply source. provided at a downstream position in the main flow path.
  • the disclosed combustion efficiency improvement device it is possible to improve combustion efficiency in a combustion device that generates power and heat by burning liquid fuel such as light oil, heavy oil, and kerosene.
  • liquid fuel such as light oil, heavy oil, and kerosene.
  • FIG. 1 is a configuration diagram showing an example of an entire combustion system in which a combustion efficiency improving device according to this embodiment is incorporated.
  • FIG. 2 is a schematic diagram showing an example of a combustion efficiency improving device according to this embodiment.
  • FIG. 3 is a schematic diagram showing an example of a nozzle of the combustion efficiency improving device according to this embodiment.
  • FIG. 1 is a configuration diagram showing an example of an entire combustion system in which a combustion efficiency improving device 1 according to this embodiment is installed.
  • FIG. 2 is a schematic diagram showing an example of the combustion efficiency improving device 1 according to this embodiment.
  • members having the same functions are denoted by the same reference numerals, and repeated description thereof may be omitted.
  • the combustion efficiency improving device 1 is a device that improves the combustion efficiency when liquid fuel is burned in an external combustion device.
  • liquid fuel examples include light oil, heavy oil (preferably heavy oil A), and kerosene.
  • combustion device examples include an engine, a boiler, a burner, and the like.
  • the combustion efficiency improving device 1 is first positioned upstream (second 1 position) 11 and joins at a downstream position (second position) 12 to form an annular flow path. Further, as a configuration incorporated in the branch flow path 20, a nozzle 30 for generating a bubble B and a pressure pump 22 for applying a predetermined pressure to the fuel F and feeding it toward the nozzle 30 are provided.
  • the external fuel supply source 100 includes, for example, a tank 101 that stores the liquid fuel F and a fuel pump (feed pump) 102 that feeds the fuel F from the tank 101 to the main flow path 10. .
  • a fuel pump feed pump
  • the present invention is not limited to this configuration, and a configuration in which the fuel F is fed by an injection pump (supply pump) provided in the combustion device 200 without the fuel pump (feed pump) may be employed (not shown). ).
  • the nozzle 30 does not have a gas suction port from the outside, and fuel F at a predetermined pressure flows through it.
  • a cavitation generator 31 is provided for generating bubbles B, which will be described later, in the fuel F by actually causing a cavitation phenomenon.
  • the nozzle 30 does not have a gas suction port seen in the technique of sucking gas from the outside to the inside to generate bubbles as exemplified in Patent Document 1, and the fuel F flowing through the inside does not have a gas suction port.
  • the dissolved gas in this case, air
  • the liquid (constituent components) of fuel F itself evaporates to form bubble B. It is configured to generate
  • the nozzle 30 also includes a stirring portion 32 that generates a stirring flow in the fuel F when the fuel F at a predetermined pressure flows.
  • the cavitation generating section 31 described above also serves as the stirring section 32 .
  • it is not limited to this configuration, and may be provided separately (not shown).
  • the branch channel 20 constitutes a loop-shaped channel with respect to the main channel 10 . Furthermore, the pressure of the pressure pump 22 is adjusted so as not to change the pressure upstream from the branch position (first position) 11 in the main flow path 10 and the pressure downstream from the junction position (second position) 12 in the main flow path 10. A predetermined pressure is set.
  • the branch flow path 20 provides the main flow path 10 Since there is no (substantially no) pressure fluctuation, there is no effect on the delivery action and control of the fuel pump 102 and the fuel injection device 201 .
  • the "predetermined pressure” applied to the fuel F when the pressurizing pump 22 described above feeds the fuel F toward the nozzle 30 is in the range of about 2 atmospheres to 10 atmospheres, and the combustion The pressure is set to be lower than the set injection pressure of the fuel injection device 201 provided in the device 200 .
  • the set injection pressure if the fuel injection device 201 is an injection pump for a diesel engine, the set injection pressure is about 200 atmospheres, or if it is a common rail for a diesel engine, the set injection pressure is 2000 atmospheres. It is about atmospheric pressure.
  • a power source for driving the pressurizing pump 22 for example, if the combustion device 200 is a diesel engine, an in-vehicle DC 24V battery or the like can be used, or if it is a boiler or the like, an external power source can be used. A 200 V three-phase AC power supply or the like can be used.
  • the nozzle 30 is configured to generate ultra-fine bubbles having a particle size of less than 1 ⁇ m as the bubbles B when the fuel F pressure-fed by the pressure pump 22 passes through the nozzle 30 .
  • "less than 1 ⁇ m in diameter” does not mean that bubbles with a diameter of 1 ⁇ m or more are completely excluded.
  • the fuel F (droplets) can be made finer (described later), and the finer droplets increase the specific surface area and shorten the combustion time. More specifically, assuming that the droplet of the fuel F is a sphere whose diameter is reduced by 20%, the total surface area of the same volume of fuel F is increased by 25%. At this time, the volume of one droplet is approximately 1/2. As a result, the fuel F is efficiently combined with oxygen, and the effect of approaching complete combustion is obtained.
  • the flame is less likely to spread, and the generated thermal energy is concentrated, so that the effect of improving the combustion efficiency can be obtained.
  • the flame is less likely to spread, and the generated thermal energy is concentrated, so that the effect of improving the combustion efficiency can be obtained.
  • less heat is transferred to the cylinder, and more energy obtained by combustion can be used as power.
  • the combustion efficiency improvement effect of the present invention is even higher in a configuration including a conventional fuel injection device (injection pump) than in a configuration including a common rail fuel injection device.
  • the mechanism for improving combustion efficiency is slightly different from the above. Specifically, the combustion of the fuel F passed through the nozzle 30 approaches complete combustion and no soot is generated. This eliminates the large amount of soot adhering to the heat exchanger, which occurs in conventional combustion devices, and improves the heat exchange efficiency (that is, maintains the initial state of the device), improving combustion efficiency. effect can be obtained. Therefore, the combustion efficiency improvement effect of the present invention is even higher in the configuration with the spray burner than in the configuration with the gun type burner.
  • the inventors of the present application found that the ultra-fine bubbles generated in the fuel F floated, polymerized and disappeared in a short period of time (about 30 seconds to 1 minute), and that the viscosity of the fuel F It was found that the decrease lasts only for a short period of time (about 30 seconds to 1 minute) and returns to the original state when left standing. Since these are problems in realizing the combustion efficiency improvement device, a configuration that enables the solution was devised.
  • the nozzle 30 according to the present embodiment is located at a position where the flow time for the fuel F to reach the fuel injection device 201 of the combustion device 200 from the outflow port 34 of the nozzle 30 is a flow distance that does not exceed one minute. It was possible to solve the above problems by the configuration arranged in.
  • the fuel injection device 201 would be required to feed the fuel F over a long distance.
  • the viscosity of the fuel F will return to the original viscosity by the time it reaches , and is consumed in combustion.
  • the fuel injection device can Since it reaches 201 and is consumed for combustion, the aforementioned effect of improving combustion efficiency can be obtained.
  • the combustion device 200 is a diesel engine and a pipe having an inner diameter cross-sectional area of 1.7 square centimeters that is generally used as a fuel pipe serving as the main flow path 10 is used, up to the fuel injection device 201
  • the combustion efficiency improving device As described above, according to the combustion efficiency improving device according to the present invention, it is possible to improve the fuel combustion efficiency in a configuration in which liquid fuel is burned in a combustion device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Accessories For Mixers (AREA)

Abstract

Provided is a combustion efficiency improvement device with which it is possible to improve combustion efficiency of a combustion device that burns liquid fuel. The combustion efficiency improvement device (1) according to the present invention is for improving combustion efficiency when liquid fuel (F) is burned in an external combustion device (200), and comprises: branch channels (20) which are incorporated such that the upstream sides thereof are separated from and the downstream sides thereof are merged with a main channel (10) for delivering the fuel (F) from an external fuel supply source (100) to the combustion device (200); nozzles (30) that are for generating bubbles (B) and are incorporated in the branching channels (20); and a pressure pump (22) for applying a prescribed pressure on the fuel (F) to be delivered toward the nozzles (30). The nozzles (30) each include a cavitation generation unit (31) which does not have a port for taking in gas from outside but is configured to cause a cavitation phenomenon while the fuel (F) under the prescribed pressure is being delivered, to thereby generate bubbles (B) in the fuel (F).

Description

燃焼効率改善装置Combustion efficiency improvement device
 本発明は、燃焼装置において液体の燃料を燃焼させる際の燃焼効率を改善する燃焼効率改善装置に関する。 The present invention relates to a combustion efficiency improving device for improving combustion efficiency when burning liquid fuel in a combustion device.
 軽油、重油、灯油等に例示される液体の燃料を燃焼させることにより動力や熱を発生させる燃焼装置として、エンジン、ボイラー、バーナー等が広く普及している。 Engines, boilers, burners, etc. are widely used as combustion devices that generate power and heat by burning liquid fuels such as light oil, heavy oil, and kerosene.
 上記の燃焼装置に関しては、従来から様々な手法によって燃焼効率を改善するための研究開発が行われている。その一つとして、外部から気体を導入して直径100μm未満の微細な気泡(マイクロバブル)を発生させて燃料に混入し、これを燃焼装置に供給して燃焼効率を改善する技術が開示されている(特許文献1:特開2007-24012号公報参照)。 Regarding the above combustion equipment, research and development have been conducted to improve combustion efficiency by various methods. As one of them, a technique is disclosed in which gas is introduced from the outside to generate fine bubbles (microbubbles) with a diameter of less than 100 μm, which are mixed with fuel and supplied to a combustion device to improve combustion efficiency. (Patent Document 1: Japanese Unexamined Patent Application Publication No. 2007-24012).
特開2007-24012号公報Japanese Patent Application Laid-Open No. 2007-24012
 上記の文献等に例示されるように、液体の燃料にマイクロバブルを混入させて燃焼効率を改善する装置においては、例えば、燃料の流路に直列で組み込まれる構成の場合、改善装置本体の故障時に燃焼装置の運転を停止させてしまう問題が生じ得る。また、外部から空気を取り入れて燃料中に混入させる構成の場合、制御不良や調整不足により流路(配管)中に空気溜まりが発生して燃焼装置の破損や燃焼不良を生じさせてしまう課題が生じ得る。 As exemplified in the above literature, in the device that improves the combustion efficiency by mixing microbubbles into the liquid fuel, for example, in the case of a configuration that is incorporated in series in the fuel flow path, the failure of the improvement device main body Problems can sometimes arise that can bring the combustion system out of operation. In addition, in the case of a configuration in which air is taken in from the outside and mixed into the fuel, there is a problem that due to poor control or insufficient adjustment, air can accumulate in the flow path (piping), resulting in damage to the combustion device and poor combustion. can occur.
 本発明は、上記事情に鑑みてなされ、燃焼装置において液体の燃料を燃焼させる際に、燃焼装置の破損や燃焼不良の発生を防ぐことができ、万一、本体の故障が発生しても燃焼装置の運転を停止させることがなく、燃焼効率を改善することができる燃焼効率改善装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and when burning liquid fuel in a combustion device, it is possible to prevent damage to the combustion device and poor combustion. An object of the present invention is to provide a combustion efficiency improving device capable of improving combustion efficiency without stopping the operation of the device.
 一実施形態として、以下に記載するような解決手段により、前記課題を解決する。 As one embodiment, the above problems are solved by the following solution means.
 一実施形態に係る燃焼効率改善装置は、外部の燃焼装置において液体の燃料を燃焼させる際の燃焼効率を改善する燃焼効率改善装置であって、外部の燃料供給源から前記燃焼装置へ前記燃料を送流する主流路に対して上流側で分岐し、下流側で合流するように組み込まれる分岐流路と、いずれも前記分岐流路に組み込まれて、バブルを発生させるノズルと、前記燃料に所定圧力を印加して該ノズルに向けて送流する加圧ポンプと、を備え、前記ノズルは、外部からの気体吸引口を有さずに、前記所定圧力の前記燃料が通流する際にキャビテーション現象を起こすことによって前記燃料中に前記バブルを生じさせるキャビテーション発生部を有し、前記分岐流路は、前記主流路に対してループ状流路を構成し、且つ、前記主流路における分岐位置より上流側の圧力と合流位置より下流側の圧力とを変化させないように前記加圧ポンプの前記所定圧力が設定されており、前記分岐位置は、前記燃料供給源に設けられる燃料ポンプの位置に対して前記主流路における下流側の位置に設けられていることを要件とする。 A combustion efficiency improvement device according to one embodiment is a combustion efficiency improvement device for improving combustion efficiency when liquid fuel is burned in an external combustion device, wherein the fuel is supplied from an external fuel supply source to the combustion device. a branched flow path that branches upstream from the main flow path that feeds the fuel and that is incorporated to merge on the downstream side; a nozzle that is incorporated in the branched flow path to generate bubbles; a pressurizing pump that applies pressure and sends the fuel toward the nozzle, the nozzle having no gas suction port from the outside and cavitation when the fuel of the predetermined pressure flows. a cavitation generating portion that generates the bubbles in the fuel by causing a phenomenon, wherein the branch flow path forms a loop-shaped flow path with respect to the main flow path, The predetermined pressure of the pressurizing pump is set so as not to change the pressure on the upstream side and the pressure on the downstream side from the confluence position, and the branch position is relative to the position of the fuel pump provided in the fuel supply source. provided at a downstream position in the main flow path.
 開示の燃焼効率改善装置によれば、軽油、重油、灯油等に例示される液体の燃料を燃焼させることにより動力や熱を発生させる燃焼装置において、燃焼効率を改善することができる。また、当該燃焼効率改善装置自体の故障時に燃焼装置の運転を停止させてしまうことを防止でき、当該燃焼効率改善装置の制御不良や調整不足等により燃料の流路(配管)中に空気溜まりが発生して燃焼装置の破損や燃焼不良を生じさせてしまうことも防止できる。 According to the disclosed combustion efficiency improvement device, it is possible to improve combustion efficiency in a combustion device that generates power and heat by burning liquid fuel such as light oil, heavy oil, and kerosene. In addition, it is possible to prevent the operation of the combustion device from being stopped when the combustion efficiency improvement device itself fails, and prevent air pockets in the fuel flow path (pipe) due to poor control or insufficient adjustment of the combustion efficiency improvement device. It is also possible to prevent damage to the combustion device and poor combustion from occurring.
図1は、本実施形態に係る燃焼効率改善装置が組み込まれる燃焼システム全体の例を示す構成図。FIG. 1 is a configuration diagram showing an example of an entire combustion system in which a combustion efficiency improving device according to this embodiment is incorporated. 図2は、本実施形態に係る燃焼効率改善装置の例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a combustion efficiency improving device according to this embodiment. 図3は、本実施形態に係る燃焼効率改善装置のノズルの例を示す概略図である。FIG. 3 is a schematic diagram showing an example of a nozzle of the combustion efficiency improving device according to this embodiment.
 以下、図面を参照して、本発明の実施形態について詳しく説明する。図1は、本実施形態に係る燃焼効率改善装置1が組み込まれる燃焼システム全体の例を示す構成図である。また、図2は、本実施形態に係る燃焼効率改善装置1の例を示す概略図である。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing an example of an entire combustion system in which a combustion efficiency improving device 1 according to this embodiment is installed. FIG. 2 is a schematic diagram showing an example of the combustion efficiency improving device 1 according to this embodiment. In addition, in all drawings for describing the embodiments, members having the same functions are denoted by the same reference numerals, and repeated description thereof may be omitted.
 本実施形態に係る燃焼効率改善装置1は、外部の燃焼装置において液体の燃料を燃焼させる際の燃焼効率を改善する装置である。ここで、「液体の燃料」の例として、軽油、重油(好適には、A重油)、灯油等が挙げられる。また、「燃焼装置」の例として、エンジン、ボイラー、バーナー等が挙げられる。 The combustion efficiency improving device 1 according to this embodiment is a device that improves the combustion efficiency when liquid fuel is burned in an external combustion device. Examples of the "liquid fuel" include light oil, heavy oil (preferably heavy oil A), and kerosene. Examples of "combustion device" include an engine, a boiler, a burner, and the like.
 図1、図2に示すように、燃焼効率改善装置1は、先ず、外部の燃料供給源100から外部の燃焼装置200へ燃料Fを送流する主流路10に対して上流側の位置(第1位置)11で分岐し、下流側の位置(第2位置)12で合流して環状の流路を形成するように組み込まれる分岐流路20を備えている。さらに、この分岐流路20に組み込まれる構成として、バブルBを発生させるノズル30と、燃料Fに所定圧力を印加して当該ノズル30に向けて送流する加圧ポンプ22とを備えている。 As shown in FIGS. 1 and 2, the combustion efficiency improving device 1 is first positioned upstream (second 1 position) 11 and joins at a downstream position (second position) 12 to form an annular flow path. Further, as a configuration incorporated in the branch flow path 20, a nozzle 30 for generating a bubble B and a pressure pump 22 for applying a predetermined pressure to the fuel F and feeding it toward the nozzle 30 are provided.
 なお、外部の燃料供給源100は、一例として、液体の燃料Fを貯留するタンク101と、当該タンク101から主流路10へ燃料Fを送流する燃料ポンプ(フィードポンプ)102とを備えている。ただし、この構成に限定されるものではなく、燃料ポンプ(フィードポンプ)を備えず、燃焼装置200に設けられる噴射ポンプ(サプライポンプ)によって燃料Fの送流を行う構成等としてもよい(不図示)。 The external fuel supply source 100 includes, for example, a tank 101 that stores the liquid fuel F and a fuel pump (feed pump) 102 that feeds the fuel F from the tank 101 to the main flow path 10. . However, the present invention is not limited to this configuration, and a configuration in which the fuel F is fed by an injection pump (supply pump) provided in the combustion device 200 without the fuel pump (feed pump) may be employed (not shown). ).
 次に、本実施形態に係るノズル30は、図3(図2におけるIII部拡大断面図)に示すように、外部からの気体吸引口を有さずに、所定圧力の燃料Fが通流する際にキャビテーション現象を起こすことによって当該燃料F中に後述のバブルBを生じさせるキャビテーション発生部31を備えている。 Next, as shown in FIG. 3 (an enlarged cross-sectional view of part III in FIG. 2), the nozzle 30 according to the present embodiment does not have a gas suction port from the outside, and fuel F at a predetermined pressure flows through it. A cavitation generator 31 is provided for generating bubbles B, which will be described later, in the fuel F by actually causing a cavitation phenomenon.
 すなわち、ノズル30は、特許文献1に例示されるような外部から気体を内部へ吸引してバブルを発生させる技術に見られる気体吸引口を有しておらず、内部を通流する燃料Fに圧力変化(減圧)によるキャビテーションを生じさせることによって、溶存気体(この場合は、空気)および燃料F(前述の、軽油、重油、灯油等)の液体(構成成分)そのものが気化してバブルBを発生させる構成となっている。 That is, the nozzle 30 does not have a gas suction port seen in the technique of sucking gas from the outside to the inside to generate bubbles as exemplified in Patent Document 1, and the fuel F flowing through the inside does not have a gas suction port. By causing cavitation due to pressure change (decompression), the dissolved gas (in this case, air) and the liquid (constituent components) of fuel F (light oil, heavy oil, kerosene, etc.) itself evaporates to form bubble B. It is configured to generate
 また、ノズル30は、所定圧力の燃料Fが通流する際に燃料F中に撹拌流を生じさせる撹拌部32を備えている。本実施形態においては、上記のキャビテーション発生部31が、当該撹拌部32を兼用する構成となっている。ただし、この構成に限定されるものではなく、それぞれを別に設ける構成としてもよい(不図示)。 The nozzle 30 also includes a stirring portion 32 that generates a stirring flow in the fuel F when the fuel F at a predetermined pressure flows. In the present embodiment, the cavitation generating section 31 described above also serves as the stirring section 32 . However, it is not limited to this configuration, and may be provided separately (not shown).
 ここで、分岐流路20は、主流路10に対してループ状流路を構成している。さらに、主流路10における分岐位置(第1位置)11より上流側の圧力と、主流路10における合流位置(第2位置)12より下流側の圧力と、を変化させないように加圧ポンプ22の所定圧力が設定されている。この構成により、例えば、主流路に直接、加圧ポンプ、ノズル、もしくは、それらを設けるためのタンク等を組み込む従来の装置(不図示)と比較して、分岐流路20によって主流路10に与える圧力変動が無い(ほぼ無い)状態とすることができるため、燃料ポンプ102、燃料噴射装置201における送出作用やその制御に影響を与えることがない。 Here, the branch channel 20 constitutes a loop-shaped channel with respect to the main channel 10 . Furthermore, the pressure of the pressure pump 22 is adjusted so as not to change the pressure upstream from the branch position (first position) 11 in the main flow path 10 and the pressure downstream from the junction position (second position) 12 in the main flow path 10. A predetermined pressure is set. With this configuration, for example, compared to conventional devices (not shown) that incorporate pressure pumps, nozzles, or tanks for providing them directly in the main flow path, the branch flow path 20 provides the main flow path 10 Since there is no (substantially no) pressure fluctuation, there is no effect on the delivery action and control of the fuel pump 102 and the fuel injection device 201 .
 具体的に、前述の加圧ポンプ22が、燃料Fをノズル30に向けて送流する際に当該燃料Fに印加する「所定圧力」は、2気圧~10気圧程度の範囲で、且つ、燃焼装置200に設けられる燃料噴射装置201の設定噴射圧よりも低い圧力に設定されている。「設定噴射圧」の例として、燃料噴射装置201が、ディーゼルエンジンの噴射ポンプの場合には設定噴射圧は200気圧程度であり、あるいは、ディーゼルエンジンのコモンレールの場合には、設定噴射圧は2000気圧程度である。 Specifically, the "predetermined pressure" applied to the fuel F when the pressurizing pump 22 described above feeds the fuel F toward the nozzle 30 is in the range of about 2 atmospheres to 10 atmospheres, and the combustion The pressure is set to be lower than the set injection pressure of the fuel injection device 201 provided in the device 200 . As an example of the "set injection pressure", if the fuel injection device 201 is an injection pump for a diesel engine, the set injection pressure is about 200 atmospheres, or if it is a common rail for a diesel engine, the set injection pressure is 2000 atmospheres. It is about atmospheric pressure.
 なお、上記の加圧ポンプ22を駆動する電源として、例えば、燃焼装置200が、ディーゼルエンジン等の場合には車載の直流24Vバッテリー等を用いることができ、あるいは、ボイラー等の場合には外部電源である200V三相交流電源等を用いることができる。 As a power source for driving the pressurizing pump 22, for example, if the combustion device 200 is a diesel engine, an in-vehicle DC 24V battery or the like can be used, or if it is a boiler or the like, an external power source can be used. A 200 V three-phase AC power supply or the like can be used.
 また、ノズル30は、上記の加圧ポンプ22によって圧送される燃料Fが当該ノズル30の内部を通過する際に、バブルBとして粒径1μm未満のウルトラファインバブルを発生させる構成となっている。ただし、「粒径1μm未満」とは、粒径1μm以上のバブルが完全に含まれない趣旨ではない。 Further, the nozzle 30 is configured to generate ultra-fine bubbles having a particle size of less than 1 μm as the bubbles B when the fuel F pressure-fed by the pressure pump 22 passes through the nozzle 30 . However, "less than 1 μm in diameter" does not mean that bubbles with a diameter of 1 μm or more are completely excluded.
 以上の構成によれば、ノズル30を通過させた燃料F中にウルトラファインバブルを発生させ(後述の所定時間程度、消滅せずに存在する)、且つ、燃料Fを撹拌することができる。これにより、燃料F(液滴)の微細化(後述)を図ることができ、この液滴の微細化によって比表面積が増加すると共に燃焼時間が短縮される効果が得られる。より具体的には、燃料Fの液滴を球体と仮定して、その直径が20%小さくなるとすれば、同じ体積の燃料Fを液滴化した場合の表面積の合計は25%大きくなる。このとき、一つの液滴の体積は、ほぼ1/2となる。その結果、燃料Fは効率的に酸素と結びつき、完全燃焼に近づく作用が得られる。すなわち、火炎が広がり難くなり、発生する熱エネルギーが集中するため、燃焼効率が改善する効果を得ることができる。例えば、シリンダ内で燃料Fを燃焼させるディーゼルエンジンの場合であれば、シリンダへの熱の伝播が小さくなり、燃焼で得られるエネルギーをより多く動力として利用できることとなる。 According to the above configuration, it is possible to generate ultra-fine bubbles in the fuel F that has passed through the nozzle 30 (they exist without disappearing for about a predetermined time, which will be described later), and to stir the fuel F. As a result, the fuel F (droplets) can be made finer (described later), and the finer droplets increase the specific surface area and shorten the combustion time. More specifically, assuming that the droplet of the fuel F is a sphere whose diameter is reduced by 20%, the total surface area of the same volume of fuel F is increased by 25%. At this time, the volume of one droplet is approximately 1/2. As a result, the fuel F is efficiently combined with oxygen, and the effect of approaching complete combustion is obtained. That is, the flame is less likely to spread, and the generated thermal energy is concentrated, so that the effect of improving the combustion efficiency can be obtained. For example, in the case of a diesel engine that burns fuel F in a cylinder, less heat is transferred to the cylinder, and more energy obtained by combustion can be used as power.
 本願発明者らが研究したところ、上記の作用効果は次のように考察される。先ず、軽油や重油に例示される液体に関して、燃料噴射装置により噴射される時の液滴径が粘度と線形の関係にあること、および、粘度が温度上昇により下がることが一般に知られている。また、粘度の高い液体には多くの場合チクソトロピー性(撹拌等の剪断力を受けることによって粘度が低下する物性)が観察される。これらの現象を踏まえ、本装置の場合で考えると、燃料Fがノズル30を通過する際に、キャビテーション発生部31および撹拌部32(本実施形態においては、兼用の構成としている)によって、燃料F中にウルトラファインバブルを発生させて、燃料Fを撹拌させる作用が生じる。このとき、燃料Fを構成する分子において、ファンデルワールス結合が一部解除されて粘度の低下をもたらし、液滴径が小さくなる効果が得られると考察される。 As a result of research conducted by the inventors of the present application, the above effects are considered as follows. First, regarding liquids such as light oil and heavy oil, it is generally known that the droplet size when injected by a fuel injection device has a linear relationship with the viscosity, and that the viscosity decreases as the temperature rises. In addition, thixotropy (physical property in which the viscosity decreases due to shear force such as stirring) is often observed in highly viscous liquids. Considering these phenomena in the case of this device, when the fuel F passes through the nozzle 30, the fuel F Ultra-fine bubbles are generated inside to stir the fuel F. At this time, it is considered that van der Waals bonds are partially released in the molecules constituting the fuel F, resulting in a decrease in viscosity and an effect of reducing the diameter of droplets.
 ここで、燃焼装置200として、ディーゼルエンジンを想定した場合、燃料噴射装置201となる噴射ポンプにおいて200気圧程度の圧力が燃料Fに印加されることとなるため、内部気圧が30気圧程度と言われているウルトラファインバブルは噴射前に消滅してしまうはずである。そうなると、燃料F中にバブルBを発生させる処理の過程で、燃料Fの構成粒子(分子)にエネルギーが与えられることが燃焼効率を改善するうえで最も重要な要素であると考察される。したがって、コモンレール式の燃料噴射装置を備える構成よりも、従来式の燃料噴射装置(噴射ポンプ)を備える構成の方が、本発明による燃焼効率改善効果がより一層高くなる。 Here, when a diesel engine is assumed as the combustion device 200, a pressure of about 200 atmospheres is applied to the fuel F at the injection pump serving as the fuel injection device 201, so the internal pressure is said to be about 30 atmospheres. The ultra-fine bubbles should disappear before injection. In that case, it is considered that the most important factor for improving the combustion efficiency is to give energy to the constituent particles (molecules) of the fuel F in the process of generating the bubbles B in the fuel F. Therefore, the combustion efficiency improvement effect of the present invention is even higher in a configuration including a conventional fuel injection device (injection pump) than in a configuration including a common rail fuel injection device.
 一方、燃焼装置200として、ボイラーを想定した場合、燃焼効率を改善する仕組みとして、上記とはやや異なる面がある。具体的に、ノズル30を通過させた燃料Fの燃焼は、完全燃焼に近づき、煤が発生しなくなる。これにより、従来の燃焼装置において発生していた熱交換器への煤の大量付着がなくなり、熱交換効率を高める(すなわち、装置における初期状態を維持する)ことができ、燃焼効率を良好にする効果を得ることができる。したがって、ガンタイプ式のバーナーを備える構成よりも、スプレー式のバーナーを備える構成の方が、本発明による燃焼効率改善効果がより一層高くなる。 On the other hand, if a boiler is assumed as the combustion device 200, the mechanism for improving combustion efficiency is slightly different from the above. Specifically, the combustion of the fuel F passed through the nozzle 30 approaches complete combustion and no soot is generated. This eliminates the large amount of soot adhering to the heat exchanger, which occurs in conventional combustion devices, and improves the heat exchange efficiency (that is, maintains the initial state of the device), improving combustion efficiency. effect can be obtained. Therefore, the combustion efficiency improvement effect of the present invention is even higher in the configuration with the spray burner than in the configuration with the gun type burner.
 本願発明者らは、さらに実験を行うことによって、燃料F中に発生させたウルトラファインバブルは短時間(30秒~1分間程度)で浮上・重合して消滅すること、および、燃料Fの粘度低下は短時間(30秒~1分間程度)しか持続せず、静置状態で元に戻ってしまうことを究明した。これらは、燃焼効率改善装置の実現にあたって課題となることから、その解決を可能とする構成を案出した。 Through further experiments, the inventors of the present application found that the ultra-fine bubbles generated in the fuel F floated, polymerized and disappeared in a short period of time (about 30 seconds to 1 minute), and that the viscosity of the fuel F It was found that the decrease lasts only for a short period of time (about 30 seconds to 1 minute) and returns to the original state when left standing. Since these are problems in realizing the combustion efficiency improvement device, a configuration that enables the solution was devised.
 具体的に、本実施形態に係るノズル30は、燃料Fが当該ノズル30の流出口34から燃焼装置200の燃料噴射装置201へ到達する送流時間が1分を超えない送流距離となる位置に配設される構成によって、上記課題の解決を可能とした。 Specifically, the nozzle 30 according to the present embodiment is located at a position where the flow time for the fuel F to reach the fuel injection device 201 of the combustion device 200 from the outflow port 34 of the nozzle 30 is a flow distance that does not exceed one minute. It was possible to solve the above problems by the configuration arranged in.
 仮に、タンク101内に貯留されている燃料Fに対して前述のノズル30を通過させるのと同じ処理が実施される構成とした場合、燃料Fの送流距離が長過ぎるため、燃料噴射装置201へ到達して燃焼に消費されるまでに燃料Fの粘度は元の粘度に戻ってしまうこととなる。これに対して、本実施形態に係る上記構成によれば、ノズル30を通過させて燃料Fに前述の処理が行われてから、1分以内(より好ましくは、30秒以内)に燃料噴射装置201へ到達して燃焼に消費されるため、前述の燃焼効率改善効果を得ることができる。 If the configuration is such that the fuel F stored in the tank 101 is subjected to the same processing as that in which the fuel F is passed through the nozzle 30 described above, then the fuel injection device 201 would be required to feed the fuel F over a long distance. The viscosity of the fuel F will return to the original viscosity by the time it reaches , and is consumed in combustion. On the other hand, according to the above configuration of the present embodiment, the fuel injection device can Since it reaches 201 and is consumed for combustion, the aforementioned effect of improving combustion efficiency can be obtained.
 例えば、燃焼装置200がディーゼルエンジンであって、主流路10となる燃料配管として一般的に使用される内径断面積が1.7平方センチメートルのパイプを用いる場合を例に挙げて、燃料噴射装置201まで燃料Fが30秒で到達する距離Xについて計算すると、以下のような結果となる。具体的に、燃料消費量が6リットル/時の場合、X=約30センチメートルとなる。また、燃料消費量が24リットル/時の場合、X=約117センチメートルとなる。また、燃料消費量が60リットル/時の場合、X=約294センチメートルとなる。このように、本燃焼効率改善装置1(特にノズル30)の設置位置は、出来る限り燃焼装置200(特に燃料噴射装置201)に近い位置とすることが有効となる。別の観点では、燃料消費量が大きい燃焼装置200である程、本発明による燃焼効率改善効果がより一層高くなると言うこともできる。 For example, in the case where the combustion device 200 is a diesel engine and a pipe having an inner diameter cross-sectional area of 1.7 square centimeters that is generally used as a fuel pipe serving as the main flow path 10 is used, up to the fuel injection device 201 A calculation of the distance X that the fuel F reaches in 30 seconds yields the following results. Specifically, for a fuel consumption of 6 liters/hour, X=approximately 30 centimeters. Also, when the fuel consumption is 24 liters/hour, X=approximately 117 centimeters. Also, when the fuel consumption is 60 liters/hour, X=approximately 294 centimeters. Thus, it is effective to set the installation position of the combustion efficiency improving device 1 (especially the nozzle 30) as close to the combustion device 200 (especially the fuel injection device 201) as possible. From another point of view, it can be said that the greater the fuel consumption of the combustion device 200, the higher the effect of improving the combustion efficiency according to the present invention.
 以上、説明した通り、本発明に係る燃焼効率改善装置によれば、燃焼装置において液体の燃料を燃焼させる構成において、燃料の燃焼効率を改善することが可能となる。 As described above, according to the combustion efficiency improving device according to the present invention, it is possible to improve the fuel combustion efficiency in a configuration in which liquid fuel is burned in a combustion device.
 また、従来装置のように、外部から気体を内部へ吸引してバブルを発生させる構成の場合には、制御不良や調整不足により流路(配管)中に空気溜まりが発生して燃焼装置の破損や燃焼不良を生じさせてしまうリスクがあるが、本発明に係る燃焼効率改善装置によれば、外部からの気体吸引口を有さない構成によって、そのようなリスクをなくす(もしくは、低減する)ことが可能となる。 In addition, in the case of a conventional device that sucks gas from the outside into the interior to generate bubbles, poor control or insufficient adjustment can cause air pockets in the flow path (piping), resulting in damage to the combustion device. However, according to the combustion efficiency improvement device according to the present invention, such a risk is eliminated (or reduced) by a configuration that does not have a gas suction port from the outside. becomes possible.
 さらに、従来装置のように、燃料の流路に直列で組み込まれる構成の場合には、改善装置本体の故障時に燃焼装置の運転を停止させてしまうリスクがあるが、本発明に係る燃焼効率改善装置によれば、主流路に対して環状の流路を形成するように組み込まれる分岐流路を備える構成によって、そのようなリスクをなくす(もしくは、低減する)ことが可能となる。 Furthermore, in the case of a structure that is incorporated in series with the fuel flow path like the conventional device, there is a risk that the operation of the combustion device will be stopped when the main body of the improvement device fails, but the combustion efficiency improvement according to the present invention According to the device, such a risk can be eliminated (or reduced) by a configuration comprising branch channels that are incorporated to form annular channels with respect to the main channel.
 なお、本発明は、以上説明した実施例に限定されることなく、本発明を逸脱しない範囲において種々変更可能である。本発明の変形例として、燃料消費量のより大きい燃焼装置に適用する場合、燃料が通流する主流路に対して本発明に係る燃焼効率改善装置を2台並列に連結することによって対応することが可能となる。

 
It should be noted that the present invention is not limited to the embodiments described above, and can be modified in various ways without departing from the scope of the present invention. As a modification of the present invention, when applied to a combustion device with a larger fuel consumption, two combustion efficiency improving devices according to the present invention may be connected in parallel to the main flow path through which fuel flows. becomes possible.

Claims (6)

  1.  外部の燃焼装置において液体の燃料を燃焼させる際の燃焼効率を改善する燃焼効率改善装置であって、
     外部の燃料供給源から前記燃焼装置へ前記燃料を送流する主流路に対して上流側で分岐し、下流側で合流するように組み込まれる分岐流路と、
     いずれも前記分岐流路に組み込まれて、バブルを発生させるノズルと、前記燃料に所定圧力を印加して該ノズルに向けて送流する加圧ポンプと、を備え、
     前記ノズルは、外部からの気体吸引口を有さずに、前記所定圧力の前記燃料が通流する際にキャビテーション現象を起こすことによって前記燃料中に前記バブルを生じさせるキャビテーション発生部を有し、
     前記分岐流路は、前記主流路に対してループ状流路を構成し、且つ、前記主流路における分岐位置より上流側の圧力と合流位置より下流側の圧力とを変化させないように前記加圧ポンプの前記所定圧力が設定されており、
     前記分岐位置は、前記燃料供給源に設けられる燃料ポンプの位置に対して前記主流路における下流側の位置に設けられていること
    を特徴とする燃焼効率改善装置。
    A combustion efficiency improving device for improving combustion efficiency when burning liquid fuel in an external combustion device,
    a branched flow path that branches upstream from a main flow path that feeds the fuel from an external fuel supply source to the combustion device and joins the main flow path on the downstream side;
    Both of them are incorporated in the branch flow path and comprise a nozzle that generates bubbles, and a pressure pump that applies a predetermined pressure to the fuel and sends it toward the nozzle,
    The nozzle does not have a gas suction port from the outside, and has a cavitation generating part that generates the bubbles in the fuel by causing a cavitation phenomenon when the fuel at the predetermined pressure flows,
    The branch flow path constitutes a loop-shaped flow path with respect to the main flow path, and the pressure is applied so as not to change the pressure upstream from the branch position and the pressure downstream from the confluence position in the main flow path. The predetermined pressure of the pump is set,
    The combustion efficiency improving device, wherein the branch position is provided at a position downstream in the main flow path with respect to a position of a fuel pump provided in the fuel supply source.
  2.  前記分岐流路は、途中分岐の無いループ状流路に構成されていること
    を特徴とする請求項1記載の燃焼効率改善装置。
    2. The combustion efficiency improving device according to claim 1, wherein said branched flow path is configured as a loop-shaped flow path without branching on the way.
  3.  前記所定圧力は、2気圧~10気圧であり、且つ、前記燃焼装置に設けられる燃料噴射装置の設定噴射圧よりも低い圧力であること
    を特徴とする請求項1または請求項2記載の燃焼効率改善装置。
    3. Combustion efficiency according to claim 1 or claim 2, wherein said predetermined pressure is between 2 atmospheres and 10 atmospheres and is lower than a set injection pressure of a fuel injection device provided in said combustion device. improvement device.
  4.  前記ノズルは、前記所定圧力の前記燃料が通流する際に前記燃料中に撹拌流を生じさせる撹拌部を有すること
    を特徴とする請求項1~3のいずれか一項に記載の燃焼効率改善装置。
    4. The combustion efficiency improvement according to any one of claims 1 to 3, wherein the nozzle has a stirring portion that generates a stirring flow in the fuel when the fuel at the predetermined pressure flows. Device.
  5.  前記バブルは、粒径1μm未満のウルトラファインバブルであること
    を特徴とする請求項1~4のいずれか一項に記載の燃焼効率改善装置。
    The combustion efficiency improving device according to any one of claims 1 to 4, wherein the bubbles are ultra-fine bubbles having a particle size of less than 1 µm.
  6.  前記ノズルは、前記燃料が該ノズルの流出口から前記燃料噴射装置へ到達する送流時間が1分を超えない送流距離となる位置に配設されていること
    を特徴とする請求項3記載の燃焼効率改善装置。

     
    4. The nozzle according to claim 3, wherein the nozzle is arranged at a position such that the fuel travels a distance of no more than one minute for the fuel to reach the fuel injection device from the outlet of the nozzle. combustion efficiency improvement device.

PCT/JP2022/038696 2021-11-16 2022-10-18 Combustion efficiency improvement device WO2023090027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-186059 2021-11-16
JP2021186059A JP7042540B1 (en) 2021-11-16 2021-11-16 Combustion efficiency improvement device

Publications (1)

Publication Number Publication Date
WO2023090027A1 true WO2023090027A1 (en) 2023-05-25

Family

ID=81214538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038696 WO2023090027A1 (en) 2021-11-16 2022-10-18 Combustion efficiency improvement device

Country Status (2)

Country Link
JP (1) JP7042540B1 (en)
WO (1) WO2023090027A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143540B1 (en) 2022-02-03 2022-09-28 日本タングステン株式会社 fine bubble generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028305A (en) * 2003-07-07 2005-02-03 Institute Of Computational Fluid Dynamics Gas-liquid mixture production device, sewage purifying device and fuel injection equipment
US20110265737A1 (en) * 2008-08-04 2011-11-03 Robert Ryon Methods and devices for fuel reformation
WO2012011851A2 (en) * 2010-07-08 2012-01-26 Potapkov Dmitry Vadimovich Fuel cavitator
JP2014147901A (en) * 2013-02-01 2014-08-21 Micro-Bub Kk Microbubble generator and microbubble generating tube structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028305A (en) * 2003-07-07 2005-02-03 Institute Of Computational Fluid Dynamics Gas-liquid mixture production device, sewage purifying device and fuel injection equipment
US20110265737A1 (en) * 2008-08-04 2011-11-03 Robert Ryon Methods and devices for fuel reformation
WO2012011851A2 (en) * 2010-07-08 2012-01-26 Potapkov Dmitry Vadimovich Fuel cavitator
JP2014147901A (en) * 2013-02-01 2014-08-21 Micro-Bub Kk Microbubble generator and microbubble generating tube structure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NAKATAKE YASUHITO, WATANABE TAKASHI, EGUCHI TOSHIHIKO: "Combustion Improvement for Diesel Engines with Ejector-Type Micro-Bubble Mixed Fuel", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS SERIES B, vol. 73, no. 735, 1 January 2007 (2007-01-01), pages 196 - 202, XP093068817 *
NAKATAKE YASUHITO: "Environmental Load Reduction of Diesel Engine with Nano Bubble Mixed Diesel Oil", MARINE ENGINEERING, vol. 46, no. 6, 1 January 2011 (2011-01-01), pages 75 - 80, XP093068812 *
TSUGE HIDEKI: "Fundamentals of Microbubbles and Nanobubbles", BULLETIN OF THE SOCIETY OF SEA WATER SCIENCE, JAPAN, vol. 64, no. 1, 1 January 2010 (2010-01-01), pages 4 - 10, XP093068837 *

Also Published As

Publication number Publication date
JP2023073538A (en) 2023-05-26
JP7042540B1 (en) 2022-03-28

Similar Documents

Publication Publication Date Title
JP6023697B2 (en) Real-time inline water-fuel emulsion equipment, processes and systems
WO2023090027A1 (en) Combustion efficiency improvement device
JP2011503442A (en) Liquid fuel adjustment method and system
JP2008169250A (en) Apparatus for producing liquid fuel mixed with micro fluid
US10113746B2 (en) Atomizer and combustion device using the same
US20140041288A1 (en) Real time in-line water-in-fuel emulsion apparatus, process and system
JP2001139964A (en) Preparation and treatment of emulsified fuel oil by adding water content to various fuel oil and emulsified by ultrasonic wave, and its unit
KR101864517B1 (en) Water-mixture-fuel generation device
WO2014030242A1 (en) Combustion system
KR100443429B1 (en) Oil mixing of supply system
KR20140062245A (en) High efficiency manufacturing apparatus for emulsion fuel
JP5030038B2 (en) Emulsion fuel production apparatus not containing emulsifier and operation method thereof
US8459037B2 (en) Method and system for feeding a gas-turbine engine with liquid fuel
KR20010042943A (en) Fuel recirculation arrangement and method for direct fuel injection systems
US5466064A (en) Fuel homogenization system with dual compensating homogenization valves
JP2014051901A (en) Fuel supply system
JP2010025382A (en) Emulsified fuel manufacturing device
JPH05280712A (en) Fuel injection device
WO2022054271A1 (en) Fuel reforming device
KR101233045B1 (en) Ultrafine Oxygen Bubble Mixed Fuel Oil Processing Apparatus and Method
JP3141750U (en) Water-mixed emulsion combustion equipment
JPWO2019180796A1 (en) HHO gas mixed liquid fuel supply device and HHO gas mixed liquid fuel manufacturing method
KR20120113321A (en) Emulsified fuel production and supply system of marine engine using chocked and swirl flow
KR20100078820A (en) Apparatus for producing water-in-oil emulsified fuel and supplying the same having partially emulsifying system
JP2002161811A (en) Fuel system for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895313

Country of ref document: EP

Kind code of ref document: A1