JP7032018B2 - 積層造形部品をトポグラフィに基づいて検査し、プロセス制御するための方法およびシステム - Google Patents

積層造形部品をトポグラフィに基づいて検査し、プロセス制御するための方法およびシステム Download PDF

Info

Publication number
JP7032018B2
JP7032018B2 JP2017193925A JP2017193925A JP7032018B2 JP 7032018 B2 JP7032018 B2 JP 7032018B2 JP 2017193925 A JP2017193925 A JP 2017193925A JP 2017193925 A JP2017193925 A JP 2017193925A JP 7032018 B2 JP7032018 B2 JP 7032018B2
Authority
JP
Japan
Prior art keywords
powder
scan
depth
inspection
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017193925A
Other languages
English (en)
Other versions
JP2018075831A (ja
Inventor
イーサン・デーガニリ
クリストファー・ジョセフ・ロッホナー
ケビン・ルオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2018075831A publication Critical patent/JP2018075831A/ja
Application granted granted Critical
Publication of JP7032018B2 publication Critical patent/JP7032018B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、積層造形部品をトポグラフィに基づいて検査し、プロセス制御するための方法およびシステムに関する。
積層造形法は、構造のデジタルモデルに基づいて、通常は一連の層に3次元構造が構築されるプロセスである。このプロセスは、3次元(3D)印刷または3Dラピッドプロトタイピングと呼ばれることもあり、この技術のいくつかの例は、構造体を形成するのにエネルギー源による焼結または溶融/融着に依存しているにもかかわらず、「印刷」という用語がしばしば用いられるが、伝統的な意味での「印刷」ではなく、選択された場所に材料が堆積される技術である。積層造形技術の例としては、粉体ベッド溶融、溶融堆積モデリング、電子ビーム溶融(EBM)、積層対象物製造、選択的レーザ焼結(SLS)、直接金属レーザ焼結(DMLS)、直接金属レーザ溶融(DMLM)、選択的レーザ溶融(SLM)、ステレオリソグラフィなどが挙げられる。3D印刷技術は継続的に開発されているが、層ごとに構造を構築するプロセスは比較的遅く、いくつかの構築は完了するまでに数日間かかる。
現在の積層造形プロセスの欠点の1つは、品質保証に関する。通常、製造された部品が製造しきい値および設計基準を満たすかどうかを判定するためのいくらかの量の解析がある。いくつかの例において、特定のロットの製品またはサンプリングが設計限界を満たしているかどうかを検査するために、部品を解体しなければならない場合がある。これは、例えば、後に製造ロットが機械加工または設計上の問題により欠陥があると判定された場合には、かなり非効率的になることがある。
米国特許第9327537号明細書
一態様によれば、3D造形された部品または構造体の検査のため、または3D造形装置のプロセス制御のための方法が提供される。本方法は、少なくとも1つの構造体が3D造形装置によって構築される3D造形の構築プロセス中に、少なくとも1つの構造体が構築される、構築プラットフォームの領域のトポグラフィ走査をリアルタイムで取得するステップを含む。評価するステップでは、粉体再分配後の粉体深さおよび/または層深さを判定するために、プロセッサによってトポグラフィ走査を評価する。判定するステップでは、評価に基づいて、粉体深さまたは層深さが所定の範囲内にあるか、それとも範囲外にあるかを判定する。変更するステップでは、判定するステップに基づいて、3D造形装置の動作特性を変更する。トポグラフィ走査は、レーザ走査、青色光走査、共焦点走査、または多焦点面顕微鏡走査によって取得され得る。
別の態様によれば、3D造形された構造体の検査、または3D造形装置のプロセス制御のためのシステムは、メモリ、およびメモリと通信するプロセッサを有する。本システムは、少なくとも1つの構造体が3D造形装置によって構築される3D造形の構築プロセス中に、少なくとも1つの構造体が構築される、構築プラットフォームの領域のトポグラフィ走査を、トポグラフィスキャナでリアルタイムに取得する、取得するステップを実行するように構成される。評価するステップでは、粉体再分配後の粉体深さおよび/または層深さを判定するために、プロセッサによってトポグラフィ走査を評価する。判定するステップでは、評価に基づいて、粉体深さおよび/または層深さが所定の範囲内にあるか、それとも範囲外にあるかを判定する。変更するステップでは、判定するステップに基づいて、3D造形装置の動作特性を変更する。
別の態様によれば、3D造形された構造体の検査用、または3D造形装置のプロセス制御用のコンピュータプログラム製品は、プロセッサによって読み取り可能であって、方法を行うためにプロセッサによって実行される命令を格納する非一時的コンピュータ可読記憶媒体を含む。本方法は、少なくとも1つの構造体が3D造形装置によって構築される3D造形の構築プロセス中に、少なくとも1つの構造体が構築される、構築プラットフォームの領域のトポグラフィ走査をリアルタイムで取得する、取得するステップを含む。評価するステップでは、粉体再分配後の粉体深さまたは層深さを判定するために、プロセッサによってトポグラフィ走査を評価する。判定するステップでは、評価に基づいて、粉体深さまたは層深さが所定の範囲内にあるか、それとも範囲外にあるかを判定する。変更するステップでは、判定するステップに基づいて、3D造形装置の動作特性を変更する。
さらなる特徴および利点は、本発明の態様の概念によって実現される。本発明の他の実施形態および態様は、本明細書に詳細に記載され、請求項に係る発明の一部とみなされる。
本発明の1つまたは複数の態様は、明細書の末尾の特許請求の範囲において特に指摘され明確に実施例として請求される。本発明の前述その他の目的、特徴、ならびに利点は、添付の図面と併せて、以下の詳細な説明から明らかである。
本明細書に記載の態様による、積層造形装置の断面図を示す。 本明細書に記載の態様による、既知のトポグラフィ的な特徴、およびサイズが異なる半球等の欠陥を有する、較正ブロックの簡易図を示す。 本明細書に記載の態様による、粉体再分配が完了した後の積層造形装置の断面図を示す。 構築される構造体/部品、および粉体再分配後の粉体層の、部分的な断面かつ拡大図を示す。 本明細書に記載の態様による、構築プロセス中に部品/構造体をトポグラフィ走査する方法のフローチャートを示す。 本明細書に記載の態様による、相関データベース、ならびに物理モデルおよび統計モデルを生成する方法のフローチャートを示す。 本明細書に記載の態様による、相関データベース、物理モデル、および統計モデルのデータに基づいて構築プロセスを制御し、構築が完了した後でデータベースおよびモデルを更新する方法のフローチャートを示す。 本明細書に記載の態様による、制御システムおよび3D印刷装置の模式図である。 本明細書に記載の1つまたは複数の態様を組み込んで使用するデータ処理システムの一例を示す。 本明細書に記載の1つまたは複数の態様を組み込むためのコンピュータプログラム製品の一例を示す図である。
「積層造形装置」という語句は、本明細書では「印刷装置」および「プリンタ」という用語と交換可能に使用され、「印刷する」という用語は、本明細書では「構築する」という語と交換可能に使用され、構造体を形成するために使用される特定の積層造形技術にかかわらず、積層造形装置によって構造体を構築する動作を指す。本明細書で使用する印刷および印刷することは、様々な形態の積層造形法を指し、3次元(3D)印刷または3Dラピッドプロトタイピング、ならびに焼結または溶融/融着技術を含む。積層造形技術または印刷技術の例としては、粉体ベッド溶融、溶融堆積モデリング、電子ビーム溶融(EBM)、積層対象物製造、選択的レーザ焼結(SLS)、直接金属レーザ焼結(DMLS)、直接金属レーザ溶融(DMLM)、選択的レーザ溶融(SLM)、ステレオリソグラフィなどが挙げられる。
計画通りに構築プロセスが進行していることの保証は、コストと品質上の理由から重要である。1つまたは複数の3次元構造を構築するための構築サイクルの終わりに、積層造形装置のオペレータは、構築サイクル中の積層造形装置の不具合のために、その部品が欠陥または使用不能であることを見つける場合がある。これは、複雑な形状を有する鋳造構造体の金型などの高価な部品を製造する場合に特に問題となり得る。
トポグラフィ走査システムおよび方法が本明細書に開示され、それは積層造形装置によって構築される1つまたは複数の対象物の層の構築を監視するために使用することができ、一実施形態では、それらが発生したとき、すなわち、後ではなく構築プロセス中に、動作上の欠陥を検出する。さらなる実施形態では、以前の部品の構築プロセス中に取得された走査の評価/分析は、(走査されたデータのリアルタイム取得の一部ではなく)後処理の一部として実行される。本明細書で使用されるリアルタイム取得とは、構造体が構築(「印刷」)されているときの構造体の個々の層の走査を指す。リアルタイム解析は、様々な層の取得された走査の評価を指す。
動作上の欠陥としては、例えば、構造体、構築プロセス、望ましい範囲外の粉体深さについてのエラー、または積層造形装置のエラー、あるいは1つまたは複数のエラーが構造体、構築プロセス、または積層造形装置で発生する可能性があるというインジケータ、あるいは融着不足、空隙、またはミクロ/マクロ亀裂を挙げることができる。いくつかの実施形態では、動作上の欠陥が発生したことを観察することに応答して動作を行うことができる。例えば、欠陥が修正され、構築プロセスが停止され、問題が修正され、新しい構築が開始されるなどの修復措置をとることができる。
積層造形装置の潜在的な動作上の欠陥および/または1つもしくは複数の印刷された層のエラーを検出して反応するために、完了まで数時間または数日かかる構築プロセスをトポグラフィ的に観察する能力が提供される。失敗した構築が完了する前に停止するように、構築プロセスの早期に、または動作上の欠陥が生じる前に、動作上の欠陥をオペレータに通知する能力も提供される。そうでない場合(すなわち、失敗した構築プロセスが完了した後にのみ障害が発見された場合)よりも、新しい構築をより早く開始することができる。製造資源の観点から、無駄な材料の使用と無駄な構築時間が削減される。さらに、以下で説明するように、構築プロセス全体を停止するのではなく、欠陥または望ましくない特徴を示す個々の部品の印刷を停止して、構築中のすべての構造体でエラーが発生するおそれのある欠陥/特徴によって構築が失敗しないようにすることができる。問題となっている個々の部品の構築を停止することにより、製造歩留まりと機械稼働時間を最大化することができる。
本明細書に記載の構築プロセスの監視中に観察され得るいくつかの問題には、粉体深さ、寸法誤差、歪み、融着不足、空隙、印刷構造体内のミクロ亀裂またはマクロ亀裂、印刷装置のローラー/平坦化器または他の部品の誤動作、劣悪な層の表面仕上げ、構造体の層間剥離、誤配置、構築材料の過剰または不在、あるいは任意の他の積層造形法のエラーが含まれるがこれらに限定されない。一般に、監視は、例えば、構築される部品の障害を引き起こす可能性があるか、または積層造形装置が故障したか、故障する寸前であるか、保守が必要であるかを示すことができる何かを監視することができる。
本明細書に記載の態様による例示的な積層造形装置および関連するプロセスは、図1~図3を参照して、印刷される部品の文脈で提示される。この実施例における部品は、印刷された金属材料、強磁性材料、または非金属(プラスチック)から構築されるが、他の材料も可能である。
一例では、印刷装置は、構造体を層状に印刷する。第1の層では、リコートブレードが構築プラットフォームを横切って移動し、粉体が構築プラットフォーム上に所望の厚さで押し出される。次いで、適切な波長を有する光源(またはレーザ)が、印刷される部分の上を通過し、それにより、それを所定位置に融着させる。この層が完成した後、構築プラットフォームは構築の層の厚さに等しい距離だけ下降し(これは通常システムのオペレータによって予め決定される)、新しい粉体ストックプラットフォームが所定量だけ上昇する。次に、リコートブレードが構築プラットフォームを横切って移動し、より多くの粉体が構築プラットフォーム上に押し出される。光源は選択された領域を通過して部品の次の層を融着し、このサイクルは部品が完成するまで続く。
上記プロセスにおける1つの潜在的な課題は、印刷された構造体における欠陥である。印刷にエラー、例えば、融着不足、空隙、亀裂などがある場合には、印刷された構造体が下流の用途で意図した通りに機能しない場合がある。いくつかの例を挙げると、融着不足または空隙は、不十分なレーザ出力、あまりにも速いレーザ速度、またはあまりにも厚い、もしくはあまりにも薄い再コーティング粉体層の結果であり得る。これらの欠陥は部品層の表面の下にある可能性があるので、融着不足または空隙を肉眼で見ることは困難であるかまたは不可能である。しかしながら、これらの欠陥によって、部品が設計仕様に合わなくなり、生産歩留まりおよび製造時間(クリーンアップ、再充填など)の著しい損失が生じるおそれがある。上記の問題および他の問題は、高価な部品に欠陥を引き起こすなど、製造コストが非常に高くなる可能性がある製造上の欠陥につながる可能性がある。
本明細書で説明される態様によれば、構造体を構築するための積層造形プロセス中の構築品質および機械の健全性を監視するため、ならびに機械の動作特性を変更するためにトポグラフィ走査システムが利用され、構築される構造の品質および積層造形装置の健全性を評価できるようになる。監視および解析の態様は、例えば構築プロセス中にリアルタイムで、かつ非リアルタイムで実行することができる。いくつかの実施形態では、監視は、構築プロセス中に構築のトポグラフィ走査を取得すること(構築プロセスの画像のリアルタイム収集)を含む。また、本方法およびシステムは、以前に作成された部品、および相関データベースからのデータを評価するステップを含む。相関データベースは、欠陥の位置を、部品の位置、および特定の粉体深さに関連付ける。トポグラフィ走査としては、例えば、層が構築されているときに構造体の個々の層を含む、構築プラットフォームの領域の走査、1つまたは複数の積層造形装置の部品の走査等、ならびに粉体再分配後の構築プラットフォームの走査が挙げられる。その後、走査データを評価することによって、部品の品質の評価を行うことができる。例えば、走査データを評価して、印刷されている構造体の特性(例えば、粉体深さ)を確認し、これらをその構造体のコンピュータ支援設計(CAD)仕様などの「黄金基準」と比較することができる。CAD仕様は、積層造形装置が構造体を構築する際に使用する仕様であってもよい。比較は、可能性のある歪み、偏差または他の欠陥を特定するために、構造体がCAD仕様と一貫して構築されているかどうかを評価することができる。走査データはまた、レーザ焼結前およびレーザ焼結後の両方において、欠陥の位置を粉体深さと相関させる、物理モデルまたは統計モデルと比較されてもよい。
構築品質は機械および材料の性能に依存するので、走査の評価は、粉体深さ、融着不足、空隙またはミクロ/マクロ亀裂または欠陥を示す他の項目などの、積層造形装置の問題を示唆するデータの特徴をさらに特定することができる。したがって、データは、構造体が印刷されるときに構築されている構造体におけるエラーを検出し、構造体に部品の「健全性」スコアを割り当てるだけでなく、積層造形装置の健全性を監視して、機械の保守、調整または変更が必要となる時期を示し、その保守、調整、または変更に必要なものを特定するために評価することができる。いくつかの例では、評価は構築プロセス中にリアルタイムで実行されるが、他の例では、評価は後で実行される。
走査データの評価が問題を明らかにすると、応答として1つまたは複数の措置をとることができ、措置の種類は異なってもよい。例えば、積層造形装置のオペレータにその問題を通知することができる。いくつかの実施形態では、欠陥が発生したことを示す、聴覚または視覚のアラームもしくはアラート、あるいは電子通信(すなわちテキストまたは電子メール)がオペレータに提供される。それに加えて、またはそれに代えて、積層造形プロセスを調整または変更することができる。プロセスは、例えば停止することができる。これに関して、いくつかのエラーを回復することができず、オペレータの介入を可能にするために機械の停止を必要とする場合がある。しかしながら、いくつかの場合、例えば、部品の特定の部分または行を構築するときにのみエラーが表示されるような場合には、プロセスは変更されるが、完全に停止されることはなく、代わりに、動作上の欠陥が示されている対象物の構築をスキップして、プロセスは任意選択的に次の段階に継続される。例えば、構築プラットフォームの部品の「不良行」または問題のある領域に留意して、残りの構築を完了することができる。不良行に留意することは、部品の不良行をオペレータに通知することを含むことができる。さらなる実施形態では、動作上の欠陥の発生を認識したにもかかわらず、構築プロセスを継続することができ、そして、構築プラットフォームのかなりの領域または部品のしきい値数でエラーが発生した場合に、残りの構築を停止することができる。
構築された構造体を検出し、それらをCADモデル、物理モデルまたは統計モデルと比較し、構築構造体内の歪み、偏差または欠陥を特定するために、取得した走査データを評価する際に検出アルゴリズムを使用することができる。動作上の欠陥を早期に検出することで、例えば、欠陥部品の構築に費やされる製造時間を短縮し、スクラップを削減し、原材料の使用量を削減し、事後の検査/品質評価を排除し、積層造形装置の時間を増加させることができる。
図1は、本明細書に記載の態様による積層造形装置の一例を示す。図1に見られるように、印刷装置100(または3D造形装置)は、レーザ102およびレンズ104を含む、粉体ベッド融着型3D印刷装置である。構築部110は、分配部120に隣接して配置される。構築部は、構築プラットフォーム112を含み、構築プラットフォーム112の上に構造体140(例えば、3D印刷された部品)が構築される。構築プラットフォームは、構造体140が構築されるにつれて構築プラットフォームを増分的に下降させるシャフトまたは支持体113に接続される。3D印刷の開始時に、構築プラットフォームは高い位置にあり、構造体140の各層が形成されるにつれて、それに応じて構築プラットフォームが下降する。構築プラットフォーム112または構築部110は、壁114、116によって側面で囲まれている(追加の壁が使用されてもよいが、図示していない)。リコートブレード150はX軸に沿って移動し、構築プラットフォーム112および分配プラットフォームはZ軸に沿って移動する。レーザ102は、X軸およびY軸の両方に沿って様々なパターンをトレースする。図1において、Y軸は図面の奥行き方向である。
分配部120は、分配プラットフォーム122によって支持され、かつ壁116、123によって収容される粉体130の供給源を含む。分配プラットフォーム122は、シャフトまたは支持体124によって持ち上げられる。構築部110に新しい層の粉体が必要になると、分配プラットフォーム122が所定量だけ上昇し、リコートブレード150が粉体130を分配部120から構築部110の上に押し出すことができる。このようにして、粉体の新しい層が部品/構造体140の上に拡がり、レーザ102が部品/構造体140の次の層を融着することができる。次に、リコートブレード150は壁123の上の位置に戻り、次の層の準備が整う。
3D造形装置100の動作性能を監視し評価するために、構造体/部品140を通過するたびに構造体/部品140をトポグラフィ走査し、粉体再分配が完了した後に構築プラットフォームをトポグラフィ走査する、トポグラフィスキャナ160が提供される。スキャナ160は、レーザスキャナ、青色光スキャナ、共焦点スキャナ、多焦点面顕微鏡スキャナ、その他任意の適切なトポグラフィスキャナのうちの1つまたは複数を備えてもよい。較正ブロック170は、走査動作の前にスキャナ160を較正するために、壁123および/または壁116、114(図示せず)上に配置することができる。較正ブロック170は、印刷/構築プロセスの間に起こり得る実際の欠陥を表す孔、ノッチ、層間剥離、および空隙などの種々の既知の人工欠陥を有することができる。図2を参照すると、様々な既知の欠陥を有する較正ブロック170が示されている。既知の人工欠陥は、ノッチ201、孔202、空隙203、204、層間剥離205の領域、包含物206、およびリッジ207を含むことができる。
図3は、粉体再分配が完了した後の積層造形装置を示す。スキャナ160は、構築プラットフォームの上方の別の位置に示されており、特定の用途で所望される通りに、任意の適切な位置に配置されてもよい。トポグラフィスキャナ160は、レーザ102が部品140の現在の(すなわち最上部の)層の溶接または融着を終了した後に、第1の走査を実行する。構築プラットフォーム112は下降し、分配プラットフォーム122は上昇する。リコートブレード150によって、粉体130が部品140の上に押し出される。(図示されているように)構造体/部品140の上方に、粉体130の薄い層ができる。粉体再分配が完了した後、第2のトポグラフィ走査がスキャナ160によって実行される。ここで粉体の深さは、(構築プラットフォームの高さの変化を計算に入れて)第2のトポグラフィスキャンから第1のトポグラフィスキャンを差し引くことで計算することができる。
図4は、構築される構造体/部品、および粉体再分配後の粉体層の、部分的な断面模式図を示す。最終(すなわち最新)溶接層401は、部品の最上部に位置し、下に進むにつれて、402、403、および404で示す、先に溶接された(構築された)層がある。例えば、層404は、上層より先にレーザで溶接されたものである。粉体130は、層401の最上部に位置し、これは、再分配後の粉体の一例である。高さ(h)(または粉体深さ)は、異なるX位置およびY位置にわたって変化するので、粉体深さ420は、h(x,y)で示される。例えば、X方向は、構築プラットフォームまたは部品の幅に沿っており、Y方向(X方向に直交し、かつX方向と同一平面にある)は、図4では奥行き方向になる。Z方向は、部品の上下方向の高さに変換されるか、またはZ方向の粉体深さとして見てもよい。Z軸/方向は、XおよびY軸/方向の両方に直交する。粉体深さを計算するために使用され得る式は、次の通りである。
Figure 0007032018000001
h(x,y)=zp(x,y)―zlast(x,y) (式1)
ここで、h(x,y)は特定のx、y位置における粉体深さであり、zp(x,y)は特定のx、y位置における粉体高さであり、zlast(x,y)は特定のx、y位置における最終溶接/融着層の高さである。
これらのh(x,y)の粉体深さの値は、構築プロセス中に各層について計算することができる。高品質な溶接/融着結果を得るために、粉体深さが厚い領域は、より大きいレーザ出力、またはより遅いレーザ速度が必要な場合があり、粉体深さが薄い領域は、より小さいレーザ出力、またはより速いレーザ速度が必要な場合がある。例えば、粉体レベルが深い領域では、標準的な構築プロセスでは粉体が融着されない領域が生じ、これに起因する欠陥が生じる場合がある。各層の粉体深さ、および2つの連続する層を区別することによって計算できる層深さは、データベースに記憶かつ追加することができる。各構造層について、それぞれのx位置およびy位置で2つの値が測定され、これらの値は粉体深さ、および層深さであってもよい。複数の層(例えば、完成部品の各層)のデータが組み合わされてデータベースに追加され、このデータベースは複数の部品のデータを含み得る。欠陥の位置を特定するために、部品のサンプリングの非破壊検査を実施してもよい。欠陥とは、未融着の領域、孔、亀裂、望ましくない空隙等であり得る。このような欠陥位置は、それぞれの部品の粉体深さおよび/または層深さのデータと相互参照され、その結果は相関データベースまたはモデルに入力される。相関データベースは、欠陥位置を粉体深さおよび/または層深さと相関させる。以下、2つの相関データベース、またはモデルについて説明する。
熱的分野、機械分野、および光学分野を含むがこれに限定されない物理モデルが生成され、これは、欠陥につながる粉体深さおよび/または層深さとの相関を示すことができる。例えば、粉体深さが一定量(例えば10mm)よりも大きい場合、物理モデルではより低い温度勾配を示す場合があり、これは欠陥が生じる可能性が高いことを意味し、粉体深さが一定量(例えば2mm)よりも小さい場合もまた、欠陥が生じる可能性が高い場合がある。物理現象のこの形而上学的な数値シミュレーションには、レーザ溶融プロセス、温度勾配、および構築プロセス中の溶融物の流体力学が含まれ、様々な測定ツールを用いてリアルタイムで更新することができる。また、構造体/部品の特定の領域は、部品形状に基づき、他の領域よりも欠陥を生じやすい場合がある。このような「問題のある」領域では、欠陥の発生を低減するために、3D造形装置の動作特性の変更が必要な場合がある。変更すべき動作特性には、レーザ出力、レーザ速度、粉体サイズ、粉体材料、チャンバ温度、レーザスポットサイズ、または粉体深さも含まれ得る。
また、粉体深さおよび/または層深さに基づいて、同一の部品/構造体、または異なる部品/構造体から、欠陥のない領域(または欠陥領域)がある確率を示す、統計モデルが生成されてもよい。粉体深さと欠陥のない領域とを対比したグラフは、釣鐘曲線(すなわち、ガウス分布)の形態を取り得る。釣鐘曲線の中央点(または最高点)は、欠陥がない確率(例えば、90%~100%)を示し、中程度または平均的な粉体深さを示す。釣鐘曲線の極値は、より小さい、またはより大きい粉体深さを示し、欠陥がない確率はかなり低い(例えば1%~10%)。部品の特定の位置が、このような中央から離れた領域(釣鐘曲線の極値)のうちの1つの粉体深さを有する場合は、欠陥が生じる可能性が非常に高く、(欠陥を修正するために)プロセス(すなわち、1つまたは複数の動作特性)を変更するか、または(欠陥が修正不能な場合は)その部品の構築プロセスを終了させる必要がある。また、構築中に粉体層が極値を超えて低下する場合は、粉体深さの異常を修正するために、粉体再分配を適用することができる。
図5は、構築プロセス中に部品/構造体をトポグラフィ走査する方法500のフローチャートを示す。取得するステップ510では、構造体または部品が構築される、構築プラットフォームの領域のトポグラフィ走査を取得する。これは、3D造形装置によって構造体または部品が構築される、3D造形の構築プロセス中にリアルタイムで生じる。第1のトポグラフィ走査は、部品の最終溶接/融着面で行われるので、トポグラフィ走査は2回生じてもよい。次に粉体再分配が行われ、粉体再分配が終了すると、粉体表面(または構築プラットフォーム)の第2のトポグラフィ走査が行われる。トポグラフィ走査は、レーザ走査、構造化青色光走査等の構造化された光による方法(structured light method)、共焦点走査、多焦点面顕微鏡走査その他任意の適切なトポグラフィ走査法で取得されてもよい。評価するステップ520では、第2の走査から第1の走査を差し引くことによって粉体深さを判定する。構築プラットフォームの高さも計算に入れる必要がある。両方の走査で構築プラットフォームの高さが同じであれば、上述のように粉体深さの計算が行われる。しかしながら、2回の走査の間にプラットフォームの高さが変化する場合は、その差を粉体深さの計算に入れる必要がある。単なる一例として、第1の走査の後に構築プラットフォームが50μm下がった場合は、第1の走査の値に50μmを加える必要がある(または第2の走査の値から50μmを差し引く必要がある)。評価するステップは、構築プラットフォームの複数の位置、または複数の部品の位置に対して繰り返してもよい。
判定するステップ530では、評価するステップに基づいて、粉体深さおよび/または層深さが、所定の範囲内にあるか、それとも範囲外にあるかを判定する。例えば、所望される粉体深さは約20μm~約100μmであってもよく、望ましくない粉体深さはこの範囲外である。相対的な用語(例えば、約)は、10%の許容誤差を有するものと定義される。この結果に基づいて判定が行われる。粉体深さが所定の範囲内にある場合(YES)は、プロセスはステップ540を省略する。しかしながら、粉体深さが所定の範囲外にある場合(NO)は、プロセスはステップ540に進む。変更するステップ540では、判定するステップ530の結果に基づいて、3D造形装置の動作特性を変更する。例として、粉体深さが所定の粉体深さの範囲よりも大きい場合は、レーザ出力を増加させたり、レーザ速度を低下させたり、レーザスポットサイズを変更したり、粉体を再分配したりしてもよい。逆に、粉体深さが所定の範囲よりも低い場合は、レーザ出力を減少させたり、レーザ速度を増加させたりしてもよい。このような動作特性の変更によって、粉体深さの異常を補正または修正する。粉体レベルが厚いと、粉体を適切に融着するために、より多くのレーザ出力、またはより長いレーザ滞留時間を必要とする場合がある。部品/構造体層が厚いと、以前に正常に構築されなかった層を修正するために、次の層の構築プロセスで、より高いレーザ出力を必要とする場合がある。したがって、粉体レベルが薄いと逆に、レーザ出力をより小さくするか、または滞留時間をより短くすることが必要になる場合がある。必要に応じて、1つまたは複数の動作特性を変更してもよい。このプロセスは、構築が完了するまで繰り返される。
図6は、相関データベース、ならびに物理モデルおよび統計モデルを生成する方法600のフローチャートを示す。方法600は、方法500と同時に、またはその後に行われてもよい。ステップ610では、各層のトポグラフィ走査データが記憶され、これは、複数のx、y位置の粉体深さを含む。単一の構築プラットフォームで複数の部品を同時に構築できるため、これは複数の部品データを含んでもよい。ステップ620では、1つの部品/構造体の複数の層のデータが組み合わされて、単一のファイルになる。複数の部品が同時に構築されている場合、これは各部品について繰り返されてもよい。ステップ630では、データ(例えば、粉体深さおよび/またはx、y位置)を欠陥と相関させる。特定するステップ632では、検査法を用いて部品/構造体の欠陥を特定する。この検査法は、コンピュータ断層撮影検査、超音波検査、磁粉探傷検査、放射線透過検査、または渦電流探傷検査その他任意の適切な非破壊検査法等の、非破壊検査法であることが好ましい。しかしながら、欠陥が存在するかどうかを検出するために、部品を物理的に切り離してもよい。この検査法によって、融着されていない領域、孔、亀裂、望ましくない空隙、その他の欠陥等の欠陥を探す。ステップ634では、欠陥を、粉体深さおよび/または層深さ、あるいは部品の特定の形状と相関させる。例として、粉体深さが所望されるよりも大きくなった領域に欠陥があるか、あるいは特定の部品形状(例えば曲線が急である、または通路が小さい)に欠陥がある場合がある。ステップ636では、この新しい相関データを反映するために、相関データベース、ならびに物理モデルおよび統計モデルが、生成または更新される。ステップ640では、必要に応じてプロセスを繰り返すか、または単に終了することができる。このプロセスは、3D造形装置によって構築された複数の構造体について繰り返すことができ、その結果、これらの部品からのデータもデータベース/モデルに追加される。
図7は、相関データベース701、物理モデル702、および統計モデル703のデータに基づいて構築プロセスを制御し、構築が完了した後でデータベースおよびモデルを更新する方法700のフローチャートを示す。相関データベース701、および/または物理モデル702からのデータは、1つまたは複数の部品/構造体の構築プロセスを直接制御するために用いられてもよく(ステップ710)、この制御については図5を参照して述べた。要約すると、3D造形装置の動作特性は、必要に応じて、特定の粉体深さの値、トポグラフィデータ、および/または特定の部品形状に基づいて変更される。統計モデル703もまた、構築プロセスを制御するために用いられてもよい。ステップ720では、各層および位置について、異常値が特定される。異常値は、先に説明したように、釣鐘曲線、またはパレート、ワイブル、ガンマ、対数正規、および指数関数等の他の分布関数の外側領域にあることによって特定される。異常値に対応する部品/構造体の位置は、必要に応じて構築プロセスを制御および変更するために、ステップ710で使用される。ステップ722では、現在の部品層が、所定の統計的しきい値に基づいて受容または拒絶される。例えば、一定の割合(例えば30%未満)の位置が釣鐘曲線の中央領域の外側にある場合は、その層(および/または部品)は拒絶されてもよい。ステップ710および722の後で、ステップ730は、構築の完了後にモデル702、703、およびデータベース701を更新する。ステップ740では、検査用にランダムな部品が選択され、図6のステップ630に記載された方法に供される。
図8は、本明細書に記載の態様による、制御システムおよび3D印刷装置の模式図である。印刷(または3D造形)装置100は、印刷装置100の一部またはすべての構成要素の機能を制御するためのハードウェアおよび/またはソフトウェアを含む、1つまたは複数のコントローラ800を含む制御システムを含むことができる。コントローラ800は、例えば、レーザ102の動作(レーザ出力、レーザ速度、レーザスポットサイズなどを含む)、リコートブレードの位置、速度もしくは高さ、ならびに分配プラットフォームおよび構築プラットフォームの動作(例えば、高さの量の増減など)を制御することができる。一般に、装置の多くの動作特性は、スキャナ160およびシステム900を介して得られたフィードバックにより制御することができ、例えば、レーザ出力、レーザ速度、粉体サイズ、粉体材料、チャンバ温度、レーザスポットサイズ、または粉体深さは、所望に応じて変更可能な特性のいくつかの例である。いくつかの実施形態では、コントローラ800は、印刷プロセスおよび印刷装置の他のハードウェアの動作を制御するための1つまたは複数の制御データ処理システムを含む。比例積分微分(PID)、線形2次レギュレータ(LQR)、ファジーロジックコントローラ(FLC)などの制御アルゴリズムおよび他の適切な制御アルゴリズムを使用して、入力データに対する複数の出力パラメータを算出することができる。
スキャナ160は、構築プロセス中にリアルタイムでデータを取り込むことができる。次いで、データは、一例では、データ処理システム上でソフトウェアとして実行される1つまたは複数のアルゴリズムを使用して、リアルタイムで評価することができる。データ処理システムは、一例では、装置100の一部として含まれてもよい。他の例では、データ処理システムは、走査データの取得を担当するスキャナ160と有線または無線で通信しており、スキャナは、1つまたは複数の有線または無線の通信経路を介してデータ処理システムにデータを通信する。別個のデータ処理システムは、上述したコントローラ800のデータ処理システムであってもよいし、取得した走査データの評価専用の異なるデータ処理システムであってもよい。
いずれにしても、走査データを取得するデータ処理システムは、構造体が正しく印刷されているかどうかを判定するために、1つまたは複数の3D CADモデル、相関データベース、物理モデルおよび/または統計モデルとの比較のために、別々に、あるいは1つまたは複数の様々な技法によって、データを評価することができる。典型的な構築セットアップでは、印刷される構造体の設計者は、ソフトウェアを利用して、構築プラットフォーム上に印刷されるすべての部品のための設計を構築することができる。次いで、積層造形装置を制御するためのソフトウェアは、各層がレーザの「パス」として印刷されるように、印刷される構造体の3Dモデルを層に「スライス」することができる。
本明細書に記載されているように、構築プロセスの層は走査することができ、印刷された材料の性質および特性は、構築の品質を評価し、動作上の欠陥が発生したかどうかを判定するために、CAD仕様と比較することができる。積層造形プロセス中のリアルタイムの1つまたは複数の層の走査、および構築プロセス中にリアルタイムであってもよいし、後で行われてもよい走査データの評価は、積層造形装置の動作上の健全性の評価を容易にするオンライン検査およびプロセス監視を提供する。
図9は、本明細書に記載の1つまたは複数の態様を組み込んで使用するデータ処理システムの一例を示す。データ処理システム900は、上述したプロセスを実行するためのプログラムコードなどのプログラムコードを記憶および/または実行するのに適しており、バス920を介してメモリ904に直接的または間接的に結合された少なくとも1つのプロセッサ902を含む。動作中、プロセッサ902は、メモリ904から、プロセッサによる実行のための1つまたは複数の命令を取得する。メモリ904は、プログラムコードの実際の実行中に使用されるローカルメモリ、バルク記憶装置、およびプログラムコード実行中にバルク記憶装置からコードを取り出さなければならない回数を減らすために少なくともいくつかのプログラムコードの一時的な記憶を提供するキャッシュメモリを含むことができる。メモリ904の例の非限定的なリストは、ハードディスク、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、消去可能プログラマブル読み出し専用メモリ(EPROMまたはフラッシュメモリ)、光ファイバ、携帯型コンパクトディスク読み出し専用メモリ(CD-ROM)、光記憶装置、磁気記憶装置、またはこれらの任意の適切な組み合わせを含むことができる。メモリ904は、オペレーティングシステム905と、スキャナ160から走査データを取得するための1つまたは複数のプログラムなどの1つまたは複数のコンピュータプログラム906と、本明細書に記載の態様により、積層造形装置で動作上の欠陥が発生したかどうかを判定するために、取得した走査データを評価するための1つまたは複数のプログラムと、を含む。
入力/出力(I/O)装置912、914(キーボード、ディスプレイ、ポインティングデバイスなどを含むが、これらに限らない)を直接またはI/Oコントローラ910を通してシステムに結合することができる。またネットワークアダプタ908も、介在する専用ネットワークまたは公衆ネットワークを介して、データ処理システムが他のデータ処理システムに結合できるように、システムに結合することができる。モデム、ケーブルモデム、およびイーサネット(登録商標)カードは、現在利用可能なタイプのネットワークアダプタ908のごく一部である。一例では、ネットワークアダプタ908および/または入力装置912は、3次元構造体が印刷された構築プロセスの走査データを取得することを容易にする。
データ処理システム900は、1つまたは複数のデータベースを有する記憶装置916(例えば、磁気ディスクドライブ、光ディスクドライブ、テープドライブ、クラウド記憶装置などの不揮発性記憶領域)に結合することができる。記憶装置916は、内部記憶装置、または取り付けられたもしくはネットワークアクセス可能な記憶装置を含むことができる。記憶装置916内のコンピュータプログラムは、メモリ904にロードされ、当技術分野で公知の方法でプロセッサ902によって実行される。
さらに、データ処理システム900は、データ処理システム900とスキャナとの間でデータを通信するために、ネットワーク通信経路、シリアル接続などの1つまたは複数の通信経路を介してスキャナ160に通信可能に接続することができる。通信は、スキャナ160によって取得されたデータの、データ処理システムによる取得を含むことができる。
データ処理システム900は、図示するものより少ない構成要素、本明細書に図示していない追加の構成要素、または図示した構成要素と追加の構成要素のいくつかの組み合わせを含むことができる。データ処理システム900は、メインフレーム、サーバ、パーソナルコンピュータ、ワークステーション、ラップトップ、ハンドヘルドコンピュータ、タブレット、スマートフォン、電話装置、ネットワーク機器、仮想化装置、記憶装置コントローラなどの、当技術分野で公知の任意のコンピューティング装置を含むことができる。さらに、上述のプロセスは、クラスタ化されたコンピューティング環境の一部として動作する、複数のデータ処理システム900によって実行されてもよい。データ処理システム900、メモリ904、および/または記憶装置916は、部品ごとに格納する必要がある大量のデータのために、3D印刷用に特別に設計されたデータ圧縮アルゴリズムを含むことができる。
いくつかの実施形態では、本発明の態様は、1つまたは複数のコンピュータ可読媒体に具現化されたコンピュータプログラム製品の形態を取ることができる。1つまたは複数のコンピュータ可読媒体は、コンピュータ可読プログラムコードを具現化してもよい。様々なコンピュータ可読媒体またはそれらの組み合わせを利用することができる。例えば、コンピュータ可読媒体は、コンピュータ可読記憶媒体を含むことができ、その例としては、1つまたは複数の電子的、磁気的、光学的、または半導体のシステム、装置、もしくはデバイス、あるいは上記の任意の適切な組み合わせを挙げることができる(ただしこれらに限定されない)。例示的なコンピュータ可読記憶媒体としては、例えば、1つもしくは複数の配線を有する電気的接続、携帯型コンピュータディスケット、ハードディスクもしくは大容量記憶装置、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、および/またはEPROMもしくはフラッシュメモリなどの消去可能プログラマブル読み出し専用メモリ、光ファイバ、携帯型コンパクトディスク読み出し専用メモリ(CD-ROM)、光記憶装置、磁気記憶装置(テープ装置を含む)、あるいは上記の任意の適切な組み合わせが挙げられる。コンピュータ可読記憶媒体は、プロセッサなどの命令実行システム、装置、またはデバイスによってまたはそれらと併せて使用されるプログラムコードを収容または記憶することができる有形の媒体を含むように定義される。したがって、コンピュータ可読媒体に記憶されたプログラムコードは、プログラムコードを含む製品(「コンピュータプログラム製品」など)を生成する。
ここで図10を参照すると、一例では、コンピュータプログラム製品1000は、例えば、本発明の1つまたは複数の態様を提供し促進するために、コンピュータ可読プログラムコード手段またはロジック1004を格納する1つまたは複数のコンピュータ可読媒体1002を含む。コンピュータ可読媒体1002に収容または記憶されたプログラムコードは、データ処理システム(その構成要素を含むコンピュータ、コンピュータシステムなど)および/または他の装置によって取得され実行されて、データ処理システム、その構成要素、および/または他の装置が特定の方法で動作する/機能することを可能にする。プログラムコードは、無線、有線、光ファイバ、および/または無線周波数(ただしこれらに限定されない)を含む任意の適切な媒体を使用して送信することができる。本発明の態様を実行、達成または促進するための動作を実行するためのプログラムコードは、1つまたは複数のプログラミング言語で記述することができる。いくつかの実施形態では、プログラミング言語は、C、C++、C#、Java(登録商標)などのオブジェクト指向プログラミング言語および/または手続き型プログラミング言語を含む。プログラムコードは、ユーザのコンピュータ上で完全に実行されてもよいし、ユーザのコンピュータから完全に遠隔で実行されてもよいし、あるいは、一部がユーザのコンピュータ上で、かつ一部がリモートコンピュータ上で実行されてもよい。いくつかの実施形態では、ユーザのコンピュータおよびリモートコンピュータは、ローカルエリアネットワーク(LAN)またはワイドエリアネットワーク(WAN)などのネットワークを介して、および/または外部コンピュータを介して(例えば、インターネットサービスプロバイダを用いたインターネットを通して)通信する。
一例では、プログラムコードは、1つまたは複数のプロセッサによる実行のために取得された1つまたは複数のプログラム命令を含む。コンピュータプログラム命令は、例えば、1つまたは複数のデータ処理システムの1つまたは複数のプロセッサに提供されて、機械を生成することができ、その結果、1つまたは複数のプロセッサによって実行されると、本明細書に記載されたフローチャートおよび/またはブロック図に記載された動作または機能などの本発明の態様を実行し、達成し、または促進する。したがって、本明細書で図示および説明されたフローチャートおよび/またはブロック図の各ブロックまたはブロックの組み合わせは、いくつかの実施形態では、コンピュータプログラム命令によって実現することができる。
図面を参照して図示および説明されたフローチャートおよびブロック図は、本発明の態様によるシステム、方法および/またはコンピュータプログラム製品の可能な実施形態のアーキテクチャ、機能、および動作を示す。したがって、これらのフローチャートおよび/またはブロック図は、本発明の態様による方法、装置(システム)、および/またはコンピュータプログラム製品であり得る。
いくつかの実施形態では、上述したように、フローチャートまたはブロック図の各ブロックは、ブロックの特定の動作および/または論理機能を実現するための1つまたは複数の実行可能命令を含む、モジュール、セグメント、またはコードの一部を表すことができる。当業者であれば理解するように、ブロックによって指定または実行される動作/機能は、図示および/または説明したものとは異なる順序で生じてもよいし、あるいは、1つまたは複数の他のブロックと同時に、または部分的に/完全に同時に生じてもよい。連続して示される2つのブロックは、実際には、実質的に同時に実行されてもよいし、あるいはそれらのブロックが逆の順序で実行されてもよい。さらに、ブロック図および/またはフローチャートの各ブロック、ならびにブロック図および/またはフローチャートのブロックの組み合わせは、専用のハードウェアベースのシステムによって、またはコンピュータ命令と組み合わせて、完全に実現することができ、ブロックまたはブロック図全体またはフローチャート全体で指定された動作/機能を実行する。
本明細書で用いる用語は、特定の実施形態を説明することだけを目的とし、本発明を限定することを目的とするものではない。本明細書で用いられるように、文脈で別途明確に指示しない限り、単数形「1つの(a)」、「1つの(an)」および「前記(the)」は複数形も含むものとする。「備える(comprise)」という用語(および「備える(comprises)」および「備える(comprising)」などの形態)、「有する(have)」という用語(および有する(has)および有する(having)などの形態)、「含む(include)」という用語(および「含む(includes)」および「含む(including)」などの形態)、ならびに「収容する(contain)」という用語(および収容する(contains)および収容する(containing)などの形態)は、制限のない連結動詞であることがさらに理解されるであろう。結果として、1つまたは複数のステップまたは要素を「備える(comprises)」、「有する(has)」、「含む(includes)」または「収容する(contains)」方法または装置は、それらの1つもしくは複数のステップまたは要素を有するが、それらの1つもしくは複数のステップまたは要素のみを有することに限定されない。同様に、1つまたは複数の特徴を「備える(comprises)」、「有する(has)」、「含む(includes)」または「収容する(contains)」方法のステップまたは装置の要素は、それらの1つまたは複数の特徴を有するが、それらの1つまたは複数の特徴のみを有することに限定されない。さらに、ある方法で構成された装置または構造体は、少なくともそのように構成されているが、列挙されていない方法で構成されてもよい。さらに、本明細書で使用する「判定する、決定する(determine)」または「判定する、決定する(determining)」という用語は、例えば、プロセッサが判定を実行し、1つもしくは複数の計算または数学的演算を実行して結果を得る状況を含むことができる。
本発明の記述は、例示および説明の目的で提示されたもので、網羅的であることも、または本発明を開示した形態に限定することも意図されていない。多くの変更および変形は、本発明の範囲および趣旨から逸脱することなく、当業者には明らかであろう。本発明の原理および実際の応用を最もよく説明し、想定される特定の使用に適するように様々な変更を伴う様々な実施形態について本発明を他の当業者が理解できるようにするために、実施形態を選択し説明した。
上記の説明が制限ではなく例示を意図していることを理解されたい。例えば、上記の実施形態(および/またはその態様)は、互いに組み合わせて用いることができる。さらに、本発明の範囲を逸脱せずに特定の状況または材料を様々な実施形態の教示に適応させるために、多くの修正を行うことができる。本明細書に記載した材料の寸法および種類は、様々な実施形態のパラメータを規定するためのものであるが、それらは決して限定的なものではなく、単に例示的なものにすぎない。多くの他の実施形態は、上記の説明を検討することにより当業者には明らかであろう。したがって、様々な実施形態の範囲は、添付した特許請求の範囲に与えられる均等物の完全な範囲と共に、添付した特許請求の範囲によって決定されなければならない。添付の請求項において、用語「含む(including)」および「それには(in which)」を用語「備える(comprising)」および「そこでは(wherein)」それぞれの平易な英語の同義語として用いている。さらに、以下の請求項において、「第1」、「第2」および「第3」などの用語は単に符号として使用され、それらの対象物に数値的な要件を課すことを意図しない。さらに、以下の請求項の限定事項は、ミーンズプラスファンクション形式で書かれておらず、そのような請求項の限定事項が、さらなる構造を欠いた機能の文言が続く、「~する手段(means for)」というフレーズを明示的に用いない限りおよび用いるまでは、米国特許法第112条第6パラグラフに基づいて解釈されることを意図してはいない。任意の特定の実施形態に基づいて、上述したすべてのこのような対象物または利点が必ずしも達成できるわけではないことを理解すべきである。したがって、例えば、当業者には明らかなように、本明細書に記載されたシステムおよび技術は、本明細書で教示または示唆されるように他の目的または利点を必ずしも達成することなく、本明細書で教示される1つの利点もしくは1群の利点を達成または最適化する態様で具現化または実施してもよい。
本発明は、限られた数の実施形態に関して詳細に説明してきたが、本発明は、このような開示された実施形態に限定されないことは容易に理解されよう。むしろ、本発明は、これまでに説明していないが、本発明の精神および範囲に相応する、任意の数の変形、変更、置換または等価な構成を組み込むように修正されてもよい。さらに、本発明の様々な実施形態について記載しているが、本開示の態様は記載した実施形態のうちのいくつかのみを含んでもよいことを理解すべきである。したがって、本発明は、前述の説明によって限定されるとみなされるべきではなく、添付の特許請求の範囲によってのみ限定される。この明細書は、最良の形態を含んだ本発明の開示のために、また、任意のデバイスまたはシステムの製作および使用、ならびに任意の組み込まれた方法の実行を含んだ本発明の実施がいかなる当業者にも可能になるように、実施例を用いている。本発明の特許され得る範囲は、特許請求の範囲によって定義され、当業者が想到する他の実施例を含むことができる。このような他の例が特許請求の範囲の文字通りの言葉と異ならない構造要素を有する場合、または、それらが特許請求の範囲の文字通りの言葉と実質的な差異のない等価な構造要素を含む場合には、このような他の例は特許請求の範囲内であることを意図している。
[実施態様1]
3D造形された構造体(140)の検査のため、または3D造形装置(100)のプロセス制御のための方法(500)であって、
前記3D造形装置(100)によって少なくとも1つの構造体(140)が構築される、3D造形の構築プロセス中に、前記少なくとも1つの構造体(140)が構築される、構築プラットフォーム(112)の領域のトポグラフィ走査をリアルタイムに取得するステップ(510)と、
粉体(130)の再分配後に、粉体深さまたは層深さを判定するために、前記トポグラフィ走査をプロセッサ(902)によって評価するステップ(520)と、
前記評価するステップ(520)に基づいて、前記粉体深さまたは前記層深さが、所定の範囲内にあるか、それとも範囲外にあるかを判定するステップ(530)と、
前記判定するステップ(530)に基づいて、前記3D造形装置(100)の動作特性を変更するステップ(540)とを含む、方法(500)。
[実施態様2]
前記取得するステップ(510)が、
レーザ走査、青色光走査、共焦点走査、または多焦点面顕微鏡走査のうちの1つによって、前記トポグラフィ走査を取得することをさらに含む、実施態様1に記載の方法(500)。
[実施態様3]
前記取得するステップ(510)が、
前記少なくとも1つの構造体(140)の表面の第1のトポグラフィ走査を取得することと、
粉体再分配が完了するまで待機することと、
前記構築プラットフォーム(112)の第2のトポグラフィ走査を取得することとをさらに含む、実施態様2に記載の方法(500)。
[実施態様4]
前記判定するステップ(530)が、
前記第2のトポグラフィ走査の値から前記第1のトポグラフィ走査の値を差し引くことによって、前記粉体深さを判定することと、
前記構築プラットフォーム(112)の複数の位置に対して、前記粉体深さまたは前記層深さを判定する前記ステップ(530)を繰り返すこととを含む、実施態様3に記載の方法(500)。
[実施態様5]
単一の層の、前記構築プラットフォーム(112)の複数のX-Y位置に対する、複数の粉体深さまたは層深さの値を記憶するステップ(610)をさらに含む、
実施態様4に記載の方法(600)。
[実施態様6]
前記記憶するステップ(610)が、複数の層に対して繰り返される、実施態様5に記載の方法(600)。
[実施態様7]
複数の層の、複数のX-Y位置における複数の粉体深さの値に対応するデータが、組み合わされてデータベース(701)に記憶される、実施態様6に記載の方法(700)。
[実施態様8]
前記3D造形装置(100)によって構築された複数の構造体(140)からのデータが、前記データベース(701)に追加される、実施態様7に記載の方法(700)。
[実施態様9]
前記少なくとも1つの構造体(140)の欠陥を検査するステップと、
見つかった欠陥の位置を特定するステップ(632)と、
欠陥の位置を粉体深さの値と相関させるステップ(634)、および相関結果を相関データベースに記憶するステップとをさらに含む、
実施態様1に記載の方法(600)。
[実施態様10]
前記検査するステップ、前記特定するステップ(632)、および前記相関させるステップ(634)が、複数の構造体(140)について実行され、前記相関結果が、前記相関データベースに追加される、実施態様9に記載の方法(600)。
[実施態様11]
前記検査が、非破壊検査法によって実施され、前記非破壊検査法が、
超音波検査、磁粉探傷検査、コンピュータ断層撮影検査、放射線透過検査、または渦電流探傷検査のうちの1つを含む、実施態様9に記載の方法(600)。
[実施態様12]
前記動作特性が、
レーザ出力、レーザ速度、粉体サイズ、粉体材料、チャンバ温度、レーザスポットサイズ、または粉体深さのうちの少なくとも1つを含む、実施態様1に記載の方法(500)。
[実施態様13]
3D造形された構造体(140)を検査するため、または3D造形装置(100)のプロセスを制御するためのシステム(900)であって、
メモリ(904)と、
前記メモリ(904)と通信するプロセッサ(902)とを備え、
前記3D造形装置(100)によって少なくとも1つの構造体(140)が構築される、3D造形の構築プロセス中に、前記少なくとも1つの構造体(140)が構築される、構築プラットフォーム(112)の領域のトポグラフィ走査を、リアルタイムにトポグラフィスキャナ(160)で取得するステップ(510)と、
粉体(130)の再分配後に、粉体深さまたは層深さを判定するために、前記トポグラフィ走査を前記プロセッサによって評価するステップ(520)と、
前記評価するステップ(520)に基づいて、前記粉体深さまたは前記層深さが、所定の範囲内にあるか、それとも範囲外にあるかを判定するステップ(530)と、
前記判定するステップ(530)に基づいて、前記3D造形装置(100)の動作特性を変更するステップ(540)とを実行するように構成される、システム(900)。
[実施態様14]
前記トポグラフィスキャナ(160)が、前記3D造形装置(100)のリコートブレード(150)に取り付けられている、実施態様13に記載のシステム(900)。
[実施態様15]
前記トポグラフィスキャナ(160)が、
レーザスキャナ、青色光スキャナ、共焦点スキャナ、または多焦点面顕微鏡スキャナを含む、実施態様12に記載のシステム(900)。
[実施態様16]
前記動作特性が、
レーザ出力、レーザ速度、粉体サイズ、粉体材料、チャンバ温度、レーザスポットサイズ、または粉体深さのうちの少なくとも1つを含む、実施態様12に記載のシステム(900)。
[実施態様17]
構造体(140)の位置と相関する、粉体深さの値を記憶するように構成された、相関データベース(701)をさらに含む、実施態様12に記載のシステム(900)。
[実施態様18]
構造体(140)の位置と相関する、粉体深さの値、または構造体(140)の形状を記憶するように構成された、物理モデル(702)をさらに含む、実施態様12に記載のシステム(900)。
[実施態様19]
構造体(140)の位置と相関する、粉体深さの値の統計分布を記憶するように構成された、統計モデル(703)をさらに含む、実施態様12に記載のシステム(900)。
[実施態様20]
3D造形された構造体(140)を検査するため、または3D造形装置(100)のプロセスを制御するためのコンピュータプログラム製品(1000)であって、
プロセッサ(902)によって読み取り可能であり、方法(500)を行う前記プロセスによって実行するための命令を記憶する、非一時的コンピュータ可読記憶媒体(1002)を備え、前記方法(500)は、
前記3D造形装置(100)によって少なくとも1つの構造体(140)が構築される3D造形の構築プロセス中に、前記少なくとも1つの構造体(140)が構築される、構築プラットフォーム(112)の領域のトポグラフィ走査をリアルタイムに取得するステップ(510)と、
粉体(130)の再分配後に、粉体深さまたは層深さを判定するために、前記トポグラフィ走査をプロセッサ(902)によって評価するステップ(520)と、
前記評価するステップ(520)に基づいて、前記粉体深さまたは前記層深さが、所定の範囲内にあるか、それとも範囲外にあるかを判定するステップ(530)と、
前記判定するステップ(530)に基づいて、前記3D造形装置(100)の動作特性を変更するステップ(540)とを含む、コンピュータプログラム製品(1000)。
100 印刷装置/3D造形装置
102 レーザ
104 レンズ
110 構築部
112 構築プラットフォーム
113 支持体
114 壁
116 壁
120 分配部
122 分配プラットフォーム
123 壁
124 支持体
130 粉体
140 構造体/部品
150 リコートブレード
160 トポグラフィスキャナ
170 較正ブロック
201 ノッチ
202 孔
203 空隙
204 空隙
205 層間剥離
206 包含物
207 リッジ
401 最終溶接層
402 層
403 層
404 層
420 粉体深さ
500 方法
510 取得するステップ
520 評価するステップ
530 判定するステップ
540 変更するステップ
600 方法
610 記憶するステップ
620 組み合わせるステップ
630 相関させるステップ
632 特定するステップ
634 相関させるステップ
636 モデルを生成/更新するステップ
640 繰り返すステップ
700 方法
701 相関データベース
702 物理モデル
703 統計モデル
710 制御するステップ
720 異常値を特定するステップ
722 受容/拒絶するステップ
730 モデル/データベースを更新するステップ
740 検査するステップ
800 コントローラ
900 データ処理システム
902 プロセッサ
904 メモリ
905 オペレーティングシステム
906 コンピュータプログラム
908 ネットワークアダプタ
910 I/Oコントローラ
912 入力装置
914 入力装置
916 記憶装置
920 バス
1000 コンピュータプログラム製品
1002 コンピュータ可読媒体
1004 ロジック

Claims (12)

  1. 3D造形された構造体(140)の検査又は3D造形装置(100)のプロセス制御のための方法(500)であって、当該方法が、
    前記3D造形装置(100)によって少なくとも1つの構造体(140)構築する3D造形の構築プロセス中に、前記少なくとも1つの構造体(140)が構築される構築プラットフォーム(112)の領域のトポグラフィ走査をリアルタイムに取得する取得ステップ(510)と、
    粉体(130)の再分配後粉体深さを判定するために、前記トポグラフィ走査をプロセッサ(902)によって評価する評価ステップ(520)と、
    前記評価ステップ(520)に基づいて、前記粉体深さ、所定の範囲内にあるか否かを判定する判定ステップ(530)と、
    前記判定ステップ(530)に基づいて、前記3D造形装置(100)の動作特性を変更する変更ステップ(540)と
    を含んでおり、前記所定の範囲が、
    前記少なくとも1つの構造体(140)の欠陥を検査する検査ステップと、
    見つかった欠陥の位置を特定する特定ステップと、
    欠陥の位置を粉体深さの値と相関させて相関結果を相関データベースに記憶する相関ステップと、
    前記相関結果に基づいて、統計モデルを生成するステップと、
    前記統計モデルから前記所定の範囲を生成するステップと
    によって得られる、方法(600)。
  2. 前記取得ステップ(510)が、レーザ走査、青色光走査、共焦点走査又は多焦点面顕微鏡走査のうちの1つによって、前記トポグラフィ走査を取得することをさらに含む、請求項1に記載の方法(500)。
  3. 前記取得ステップ(510)が、
    前記少なくとも1つの構造体(140)の表面の第1のトポグラフィ走査を取得することと、
    粉体再分配が完了するまで待機することと、
    前記構築プラットフォーム(112)の第2のトポグラフィ走査を取得することと
    をさらに含む、請求項2に記載の方法(500)。
  4. 前記判定ステップ(530)が、
    2のトポグラフィ走査の値から1のトポグラフィ走査の値を差し引くことによって、前記粉体深さを判定することと、
    前記構築プラットフォーム(112)の複数の位置に対して、前記粉体深さ判定する前記ステップ(530)を繰り返すことと
    を含む、請求項3に記載の方法(500)。
  5. 単一の層に対して前記構築プラットフォーム(112)の複数のX-Y位置に関する複数の粉体深さ値を記憶する記憶ステップ(610)をさらに含む、請求項4に記載の方法(600)。
  6. 前記記憶ステップ(610)複数の層に対して繰り返、請求項5に記載の方法(600)。
  7. 複数の層に対する複数のX-Y位置における複数の粉体深さの値に対応するデータ組み合わてデータベース(701)に記憶する、請求項6に記載の方法(700)。
  8. 前記3D造形装置(100)によって構築された複数の構造体(140)からのデータ、前記データベース(701)に追加る、請求項7に記載の方法(700)。
  9. 前記検査ステップ、前記特定ステップ及び前記相関ステップが、複数の構造体(140)に対して実行され、前記統計モデルを更新するために前記相関結果が前記相関データベースに追加される、請求項1乃至請求項8のいずれか1項に記載の方法(600)。
  10. 前記検査が、非破壊検査法によって実施され、前記非破壊検査法が、超音波検査、磁粉探傷検査、コンピュータ断層撮影検査、放射線透過検査又は渦電流探傷検査のうちの1つを含む、請求項1乃至請求項9のいずれか1項に記載の方法(600)。
  11. 前記動作特性が、レーザ出力、レーザ速度、粉体サイズ、粉体材料、チャンバ温度、レーザスポットサイズ又は粉体深さのうちの少なくとも1つを含む、請求項1乃至請求項10のいずれか1項に記載の方法(500)。
  12. 3D造形された構造体(140)を検査又は3D造形装置(100)のプロセスを制御するためのシステム(900)であって、当該システム(900)が、
    メモリ(904)と、
    前記メモリ(904)と通信するプロセッサ(902)と
    を備えており、請求項1乃至請求項11のいずれか1項に記載の方法を実行するように構成される、システム(900)。
JP2017193925A 2016-10-11 2017-10-04 積層造形部品をトポグラフィに基づいて検査し、プロセス制御するための方法およびシステム Active JP7032018B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/290,067 2016-10-11
US15/290,067 US20180099333A1 (en) 2016-10-11 2016-10-11 Method and system for topographical based inspection and process control for additive manufactured parts

Publications (2)

Publication Number Publication Date
JP2018075831A JP2018075831A (ja) 2018-05-17
JP7032018B2 true JP7032018B2 (ja) 2022-03-08

Family

ID=60190555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017193925A Active JP7032018B2 (ja) 2016-10-11 2017-10-04 積層造形部品をトポグラフィに基づいて検査し、プロセス制御するための方法およびシステム

Country Status (3)

Country Link
US (1) US20180099333A1 (ja)
EP (1) EP3308945B1 (ja)
JP (1) JP7032018B2 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3411233A4 (en) * 2016-02-01 2019-11-27 Seurat Technologies, Inc. SYSTEM AND METHOD FOR ADDITIVE MANUFACTURING
DE102016211313A1 (de) * 2016-06-23 2017-12-28 Eos Gmbh Electro Optical Systems Automatische Justierung einer Heizungsregelung in einer generativen Schichtbauvorrichtung
US20180229302A1 (en) * 2017-01-27 2018-08-16 United Technologies Corporation Adaptive control for powder fusion
CN110268098A (zh) 2017-01-30 2019-09-20 西门子股份公司 与覆盖层兼容的热障涂层系统
US20180297115A1 (en) * 2017-04-14 2018-10-18 General Electric Company Real Time Detection of Defects during Formation of an Additively Manufactured Component
US20190152158A1 (en) * 2017-11-21 2019-05-23 Youngstown State University Projection-assisted excavation of powder based 3d printing
US11433480B2 (en) * 2018-03-23 2022-09-06 Lawrence Livermore National Security, Llc Additive manufacturing power map to mitigate overhang structure
WO2019245520A1 (en) * 2018-06-18 2019-12-26 Hewlett-Packard Development Company, L.P. Controlling energy source in three-dimensional printing
JP6667972B2 (ja) * 2018-07-20 2020-03-18 株式会社ソディック 造形物の造形方法
EP3762218B1 (en) 2018-07-23 2023-07-12 Hewlett-Packard Development Company, L.P. Adapting printing parameters during additive manufacturing processes
EP3843977A4 (en) * 2018-08-30 2022-05-25 Nanyang Technological University METHOD AND SYSTEM FOR MONITORING A POWDER BED PROCESS IN ADDITIONAL MANUFACTURING
WO2020142131A2 (en) 2018-10-19 2020-07-09 Inkbit, LLC High-speed metrology
US11354466B1 (en) 2018-11-02 2022-06-07 Inkbit, LLC Machine learning for additive manufacturing
WO2020093030A1 (en) 2018-11-02 2020-05-07 Inkbit, LLC Intelligent additive manufacturing
EP3856481A2 (en) 2018-11-16 2021-08-04 Inkbit, LLC Inkjet 3d printing of multi-component resins
US20220042797A1 (en) * 2018-12-20 2022-02-10 Arcam Ab A method for estimating a powder layer thickness
US10974460B2 (en) * 2019-01-08 2021-04-13 Inkbit, LLC Reconstruction of surfaces for additive manufacturing
JP2022523453A (ja) 2019-01-08 2022-04-25 インクビット, エルエルシー 積層造形における深度再構築
JP2020124828A (ja) * 2019-02-04 2020-08-20 株式会社ミマキエンジニアリング 立体物製造システムおよび立体物製造管理プログラム
US11407179B2 (en) 2019-03-20 2022-08-09 General Electric Company Recoater automated monitoring systems and methods for additive manufacturing machines
US20220074738A1 (en) * 2019-04-11 2022-03-10 Hewlett-Packard Development Company, L.P. Three dimensional imaging
EP3747571B1 (en) * 2019-06-07 2023-11-29 RTX Corporation Powder bed fusion monitoring
US11987006B2 (en) 2019-07-19 2024-05-21 Hewlett-Packard Development Company, L.P. Adjustments to forming data for forming a build layer
US10994477B1 (en) 2019-11-01 2021-05-04 Inkbit, LLC Optical scanning for industrial metrology
US11712837B2 (en) 2019-11-01 2023-08-01 Inkbit, LLC Optical scanning for industrial metrology
DE102019007972A1 (de) * 2019-11-17 2021-05-20 DP Polar GmbH Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Formgegenstandes
KR102194694B1 (ko) * 2019-12-31 2020-12-24 한국과학기술원 3d 프린팅 공정의 열 화상 및 레이저 초음파 통합 검사 시스템 및 이를 구비한 3d 프린팅 시스템
US10994490B1 (en) 2020-07-31 2021-05-04 Inkbit, LLC Calibration for additive manufacturing by compensating for geometric misalignments and distortions between components of a 3D printer
WO2022037899A1 (de) * 2020-08-19 2022-02-24 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und vorrichtung zur additiven herstellung eines werkstücks
CN113020623B (zh) * 2021-05-27 2022-04-08 西安赛隆金属材料有限责任公司 一种3d打印成形表面自调节的方法及其装置
US20230088537A1 (en) * 2021-08-27 2023-03-23 Autodesk, Inc. Generative design shape optimization based on a target part reliability for computer aided design and manufacturing
EP4217136A1 (en) 2021-10-07 2023-08-02 Additive Monitoring Systems, LLC Structured light part quality monitoring for additive manufacturing and methods of use
CN114393832B (zh) * 2022-01-19 2023-08-08 南京铖联激光科技有限公司 一种3d打印用单向刮刀
WO2024019944A1 (en) * 2022-07-22 2024-01-25 Powder Motion Labs, LLC Powder bed recoaters including non-contact powder redistibutors
CN115922064A (zh) * 2023-02-15 2023-04-07 清华大学 机械密封端面波度激光加工方法及装置
CN117308790B (zh) * 2023-12-01 2024-03-12 泊头市兴达汽车模具制造有限公司 提升精度减少整改轮次的检测方法、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104669618A (zh) 2013-11-30 2015-06-03 西安中科麦特电子技术设备有限公司 一种3d打印快速成型装置用控制系统
US20150174658A1 (en) 2013-12-19 2015-06-25 Arcam Ab Method for additive manufacturing
EP2918395A1 (en) 2014-03-12 2015-09-16 Rolls-Royce Corporation Additive manufacturing including layer-by-layer imaging
JP2016135579A (ja) 2015-01-24 2016-07-28 株式会社リコー 立体造形装置、立体造形物の生産方法、プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3235781B2 (ja) * 1997-02-06 2001-12-04 トヨタ自動車株式会社 積層造形における散布方法及びその装置
US9446556B2 (en) * 2014-06-06 2016-09-20 Xerox Corporation System for compensating for drop volume variation during three-dimensional printing of an object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104669618A (zh) 2013-11-30 2015-06-03 西安中科麦特电子技术设备有限公司 一种3d打印快速成型装置用控制系统
US20150174658A1 (en) 2013-12-19 2015-06-25 Arcam Ab Method for additive manufacturing
EP2918395A1 (en) 2014-03-12 2015-09-16 Rolls-Royce Corporation Additive manufacturing including layer-by-layer imaging
JP2016135579A (ja) 2015-01-24 2016-07-28 株式会社リコー 立体造形装置、立体造形物の生産方法、プログラム

Also Published As

Publication number Publication date
EP3308945A1 (en) 2018-04-18
JP2018075831A (ja) 2018-05-17
US20180099333A1 (en) 2018-04-12
EP3308945B1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
JP7032018B2 (ja) 積層造形部品をトポグラフィに基づいて検査し、プロセス制御するための方法およびシステム
JP7175600B2 (ja) 積層造形された部品のx線後方散乱検査のための方法およびシステム
JP2018024242A (ja) 積層造形法により製造された部品の検査のための方法およびシステム
EP3912801A1 (en) Monitoring of additive manufacturing using acoustic emission methods
JP6826201B2 (ja) 三次元積層造形装置の施工異常検出システム、三次元積層造形装置、三次元積層造形装置の施工異常検出方法、三次元積層造形物の製造方法、及び、三次元積層造形物
JP2018100954A (ja) 付加製造部品のサーモグラフィ検査のための方法およびシステム
EP3710187B1 (en) Methods and systems for repairing powder containment structures
EP3309544A1 (en) Method and system for in-process monitoring and quality control of additive manufactured parts
CN111024736B (zh) 一种激光增材制造的缺陷在线监测方法
JP2018536092A (ja) 付加製造方法および装置
CN110573977B (zh) 提供用于增材制造的数据集的方法及对应的质量控制方法
Fang et al. Process monitoring, diagnosis and control of additive manufacturing
CN113840675B (zh) 用于增材制造的原位监测系统辅助材料和参数开发
AU2014204284A1 (en) Object production using an additive manufacturing process and quality assessment of the object
Nath et al. Probabilistic digital twin for additive manufacturing process design and control
JP2018158457A (ja) 積層造形検査装置と積層造形装置及び積層造形方法
Guerra et al. Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process
JP7264069B2 (ja) 強度予測方法及びプログラム
du Rand Development of A Quality Management Framework for Powder-Based Additive Manufacturing Systems
King Prediction of Meltpool Depth in Laser Powder Bed Fusion Using In-Process Sensor Data, Part-Level Thermal Simulations, and Machine Learning
CARRARO Spatio-temporal analysis and monitoring of temperature in extrusion-based AM processes
GB2511409A (en) Object production and assessment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220223

R150 Certificate of patent or registration of utility model

Ref document number: 7032018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350