JP2018158457A - 積層造形検査装置と積層造形装置及び積層造形方法 - Google Patents

積層造形検査装置と積層造形装置及び積層造形方法 Download PDF

Info

Publication number
JP2018158457A
JP2018158457A JP2017055690A JP2017055690A JP2018158457A JP 2018158457 A JP2018158457 A JP 2018158457A JP 2017055690 A JP2017055690 A JP 2017055690A JP 2017055690 A JP2017055690 A JP 2017055690A JP 2018158457 A JP2018158457 A JP 2018158457A
Authority
JP
Japan
Prior art keywords
inspection
additive manufacturing
unit
data
modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017055690A
Other languages
English (en)
Other versions
JP6961968B2 (ja
Inventor
明 大内
Akira Ouchi
明 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2017055690A priority Critical patent/JP6961968B2/ja
Publication of JP2018158457A publication Critical patent/JP2018158457A/ja
Application granted granted Critical
Publication of JP6961968B2 publication Critical patent/JP6961968B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】層を積層して3次元造形物を造形する際に、欠陥検査の時間を短縮できる積層造形装置を提供する。【解決手段】本発明の積層造形検査装置は、所定の材料の層を積層し硬化して3次元造形物を造形する過程で得られる造形プロセスデータを収集する収集部と、前記造形プロセスデータに基づいて欠陥が存在する可能性のある検査領域を特定する特定部と、特定された前記検査領域を検査する検査部と、を有する。【選択図】 図1

Description

本発明は、層を積層して3次元造形物を造形する積層造形技術に関する。
3次元CAD(Computer Aided Design)データを層分割し、分割した層ごとに層の上に層を積むようにして材料を付加して3次元の造形物を製造する方法は、国際規格でAdditive Manufacturingと定義されている。1980年代に発明されたこの製造方法は、一般的には3Dプリンタ(スリー ディー プリンタ)と呼ばれる。3Dプリンタは、3次元CADデータがあれば、金型を使わずに複雑な形状を容易に製造できることから、近年、新たなものづくり手法として注目されている。
3Dプリンタでは、切削による除去的な加工や、型に材料を流し込んで固める成形加工とは異なり、メッシュ形状やポーラス形状をはじめとする、かつては製造が難しかった形状を容易に正確に製造できる。更には、複数の種類の材料を単一部品内に自由に配置させた造形を可能とすることも期待されている。複数の材料を用いた造形により、それぞれの材料の特性を活かした新たな機能を付与した造形物が実現できるからである。
例えば、導電材料と絶縁材料とを複合させることで、電子回路の機能を有する造形物が実現する。また、硬質な材料と柔軟な材料とを複合させることで、強度と柔軟性の両立した機能を有する造形物が実現する。そして、これらの機能は新規材料の開発をせずとも実現することができる。
ところで、3Dプリンタで造形された3次元造形物の層には、空洞や凹凸などの欠陥が生じる場合がある。このため、この欠陥を検出し、欠陥の部分を除去して再造形する方法が特許文献1、2に開示されている。特許文献1では、層を積層するごとに、レーザ光の照射による衝撃で造形物内部を伝播する弾性波を検出することによって、層の内部の空洞などの欠陥を検出する。また、特許文献2では、3次元形状測定器とX線検査装置とを用いて、層の表面形状に関するデータや層の内部構造に関するデータを取得して欠陥を検出する。また、特許文献1、2ともに、層内に検出した欠陥の部分を除去して再造形することによって、欠陥のない3次元造形物を実現するとしている。
特開2016−60063号公報 国際公開第2016/143137号
しかしながら、特許文献1、2の方法は、以下の課題を有している。すなわち、特許文献1、2では、層を積層するごとに層全体の欠陥検査を行う必要がある。欠陥の種類は空洞や凹凸や硬化不良などの多種にわたり、また、層の表面に露出している場合があれば、層の内部に隠れている場合もある。よって、欠陥を検出するためには、欠陥の種類や欠陥の場所に応じた複数の検査が詳細に行われなければならない。このため、一層あたりの検査の時間が長くなり、さらに、層の大面積化や層数の増大によって検査の時間はさらに長くなっている。これにより、生産コストが増大している。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、層を積層して3次元造形物を造形する際に、欠陥検査の時間を短縮できる積層造形装置を提供することにある。
本発明の積層造形検査装置は、所定の材料の層を積層し硬化して3次元造形物を造形する過程で得られる造形プロセスデータを収集する収集部と、前記造形プロセスデータに基づいて欠陥が存在する可能性のある検査領域を特定する特定部と、特定された前記検査領域を検査する検査部と、を有する。
本発明の積層造形装置は、所定の材料の層を積層し硬化して3次元造形物を造形する過程で得られる造形プロセスデータを収集する収集部と、前記造形プロセスデータに基づいて欠陥が存在する可能性のある検査領域を特定する特定部と、特定された前記検査領域を検査する検査部と、を有する積層造形検査装置と、前記所定の材料を供給する供給部と、前記3次元造形物を造形する造形部と、を有する。
本発明の積層造形方法は、所定の材料の層を積層し硬化して3次元造形物を造形する過程で得られる造形プロセスデータを収集し、前記造形プロセスデータに基づいて欠陥が存在する可能性のある検査領域を特定し、特定された前記検査領域を検査する。
本発明によれば、層を積層して3次元造形物を造形する際に、欠陥検査の時間を短縮できる積層造形装置を提供することができる。
本発明の第1の実施形態の積層造形検査装置及び積層造形装置の構成を示すブロック図である。 本発明の第2の実施形態の積層造形検査装置及び積層造形装置の構成を示す図である。 本発明の第2の実施形態の積層造形検査装置の動作を説明するための図である。 本発明の第2の実施形態の積層造形検査装置の動作を説明するための図である。 本発明の第2の実施形態の積層造形検査装置及び積層造形装置の動作を示すフローチャートである。 本発明の第2の実施形態の積層造形検査装置の検査領域を特定する動作を示すフローチャートである。 本発明の第2の実施形態の積層造形検査装置の欠陥部分を補修する動作を示すフローチャートである。 本発明の第2の実施形態の積層造形検査装置の検査領域を特定する動作を造形物の部分を限定して行う場合について説明するための図である。 本発明の第2の実施形態の積層造形検査装置の補修方法を説明するための図である。 本発明の第2の実施形態の積層造形検査装置の補修方法を説明するための図である。
以下、図を参照しながら、本発明の実施形態を詳細に説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
(第1の実施形態)
図1は、本発明の第1の実施形態の積層造形検査装置及び積層造形装置の構成を示すブロック図である。
本実施形態の積層造形検査装置1は、所定の材料の層を積層し硬化して3次元造形物を造形する過程で得られる造形プロセスデータを収集する収集部13を有する。さらに、前記造形プロセスデータに基づいて欠陥が存在する可能性のある検査領域を特定する特定部14と、特定された前記検査領域を検査する検査部15と、を有する。また、本実施形態の積層造形装置10は、積層造形検査装置1と、前記所定の材料を供給する供給部11と、前記3次元造形物を造形する造形部12と、を有する。
本実施形態の積層造形検査装置1及び積層造形装置10によれば、欠陥検査は層内の特定された検査領域に限って行われるため、欠陥検査のための時間が短縮される。
以上のように、本実施形態によれば、層を積層して3次元造形物を造形する際に、欠陥検査の時間を短縮できる積層造形装置を提供することができる。
(第2の実施形態)
図2は、本発明の第2の実施形態の積層造形検査装置及び積層造形装置の構成を示す図である。本実施形態の積層造形装置20は、所定の材料を供給する供給部21と、供給された材料を材料層として積層し各材料層の所定の位置を硬化して3次元造形物を造形する造形部22と、硬化した層(硬化層)を欠陥検査し欠陥部分を補修する積層造形検査装置2とを有する。さらに、供給部21と造形部22と積層造形検査装置2を制御し連携させる制御部27を有する。
供給部21は、チャンバ211と供給筒212とを有する。チャンバ211は、材料を保管する。供給筒212は、チャンバ211に保管された材料を、造形部22の後述するステージ221の所定の位置に所定の量を供給する。ここで所定の量とは、ステージ221上に材料を所定の厚さの材料層として敷き詰めるために必要な量である。供給筒212はまた、供給した材料の重量や体積などの量の実績値をモニタリングすることができる。
材料は粉体とすることができ、粉体の形状は球形とすることができる。球形状の生成方法としてはアトマイズ法を用いることができるが、これには限定されない。粉体の粒径は10μm〜100μm程度とすることができ、平均粒径では20μm〜50μm程度とすることができるが、これには限定されない。粉体の形状は、また、鱗片状の平板形状(円板形状)とすることができる。平板形状は、アトマイズ法等で製造した球形の粉体を、さらにスタンピング等の方法で鱗片状に平板化することで得られるが、これには限定されない。さらに、材料の形状は球形や平板には限定されず、任意の多面体や楕円体などでもよい。
材料の材質は、プラスチック材料とすることができ、例えば、ナイロン、ポリ乳酸、ポリエチレン、ポリスチレン、ポリフェニレンサルファイド、ポリエーテルエーテルケトンなどとすることができる。また、これらの材料にガラスやカーボン等を所定量添加していても良い。また、金属材料とすることもでき、例えば、銅、ステンレス、アルミ、チタンとすることができる。また、セラミックやカーボンとすることもできる。
造形部22は、ステージ221とスキージ222と硬化部223とを有する。
ステージ221は、供給部21から供給された材料を積層して3次元造形物を造形する造形面を備えている。さらに、ステージ221は昇降機構を有し、材料の積層に合わせて造形面を昇降することができる。
スキージ222は、ステージ221上に供給された材料を、造形面上に平坦に引き延ばして均一の厚さに敷き詰めた材料層とする。スキージ222の形状は、平スキージ、角スキージ、剣スキージ等、目的に合わせた形状とすることができる。また、スキージ222をローラとし、ローラを転がすことによって材料を平坦化し均一な厚さに敷き詰めても良い。スキージ222の材質は、ゴム、プラスチック、金属等から、目的に合わせて選択することができる。
硬化部223は、スキージ222により平坦化され均一な所定の厚さに敷き詰められた材料層の所定の領域、すなわち造形物を形成する領域にエネルギーを供給して加熱し、所定の厚さの硬化層を形成する。硬化層の形成方法としては、ASTM(American Society for Testing and Materials)がAdditive Manufacturingの方式として分類している粉末床溶融結合方式(Powder bed fusion)を用いることができる。
この方式の場合、硬化部223は、材料層を加熱するレーザ光を照射するレーザ照射機構、または電子線を照射する電子線照射機構とすることができる。硬化部223は、ステージ221上の材料層の所定の領域を所定の時間、所定の出力のレーザ光または電子線を照射することにより加熱して硬化層を形成する。レーザとしては、Additive Manufacturingで使用されるファイバーレーザ等を用いることができる。硬化部223はまた、レーザ光や電子線の出力の実績値をモニタリングすることができる。
なお、硬化層を除いた材料層の残りの部分は、未硬化な材料であり、回収されたり廃棄されたりすることができる。
積層造形検査装置2は、収集部23と、特定部24と、検査部25と、補修部26とを有する。
収集部23は、造形プロセスデータを収集する。造形プロセスデータとは、供給部21や造形部22が造形物を造形するプロセス(過程)の途中で、モニタリングなどの方法により取得される造形条件や造形途中の形状などに関する実データである。造形プロセスデータには、供給部21の材料の供給データや、造形部22の硬化時のエネルギーの供給データや、硬化時の材料層の温度データなどが含まれる。これらの造形プロセスデータは、後述の特定部24が、欠陥検査を行う検査領域を特定するために、造形に関する設定データや造形物が正常に形成された場合の形状データと比較して、造形物内に欠陥が存在する可能性があることを予想できるデータである。
造形プロセスデータが材料供給データの場合、収集部23は、供給筒212が1層ごとにモニタリングしている1層ごとに供給した材料の重量や体積の値を取得する。また、収集部23は、スキージ222により敷き詰められた1層ごとの材料層の表面の画像もしくは材料層の表面の凹凸のデータを、ステージ221上の位置情報とともに取得する。このために、収集部23は、カメラ等の画像撮影の手段もしくはレーザや触針などを用いた3次元形状測定器などを有することができる。
造形プロセスデータがエネルギー供給データの場合、収集部23は、硬化部223がモニタリングしているレーザ照射機構または電子線照射機構が硬化の際に供給したレーザ光や電子線の出力値を、レーザ光や電子線を照射した1層ごとの位置情報とともに取得する。後述するように、硬化部223は、制御部27からレーザ光や電子線の出力値と照射位置と照射時間を指定され、これに基づいて照射を行う。よって、収集部23は、制御部27から照射の位置情報と、硬化部223から位置情報に対応したレーザ光や電子線の出力値とを取得することができる。
造形プロセスデータが硬化した材料層の温度データの場合、収集部23は、赤外線を利用した熱画像カメラを備えて、硬化した材料層の温度データを取得することができる。レーザ光や電子線の照射の瞬間や直後の温度データは、必要に応じて1秒間に複数コマ撮影を行う高速度撮影により取得することができる。
特定部24は、収集部23が取得した造形プロセスデータに基づいて、硬化層の検査領域を特定する。
造形プロセスデータが材料供給データの場合、特定部24は、特定部24が予め制御部27から取得した制御部27が設定した材料の重量や体積の値と、収集部23が取得した供給筒212が供給した材料の重量や体積の値を比較する。両者の差が予め設定された範囲を超えた場合、特定部24は、当該範囲を超えた重量値や体積値の材料層で形成された硬化層には欠陥が生じている可能性があるとして、硬化層の全体を検査領域に特定する。例えば、供給した重量値が設定値の±10%の範囲を超えた場合に、この範囲を超えた層を検査領域に特定する、などである。一方、当該範囲を超えていない場合は、当該の硬化層を検査領域に特定しない。
また、特定部24は、予め取得された欠陥のない正常な造形がされた時の材料層の表面の凹凸のデータもしくは画像と、収集部23が取得した材料層の表面の凹凸のデータもしくは画像とを比較する。両者の凹凸のデータの差が予め設定された範囲を超えたり、両者の画像に差異が認められたりした場合、特定部24は、当該範囲を超えた部分や画像の差異の部分には欠陥が生じている可能性があるとして、これらの部分を検査領域に特定する。
例えば、材料層の表面の凹凸のデータが所定の面積の部分ごとの平均粗さの場合、収集部23が取得した平均粗さと正常な場合の平均粗さとを比較し、両者の差が予め設定された範囲を超えた場合に、範囲を超えた当該の部分を検査領域に特定する。また、材料層の表面の凹凸のデータが段差の場合、収集部23が取得した段差と当該段差の位置に対応した正常な場合の段差とを比較し、両者の差が予め設定された範囲を超えた場合に、当該の部分を検査領域に特定する。また、材料層の表面の画像の場合、収集部23が取得した画像と正常な場合の画像を比較して差異を検出し、当該差異の部分を検査領域に特定する。
造形プロセスデータがエネルギー供給データの場合、特定部24は、特定部24が予め制御部27から取得した制御部27が設定した位置情報に対応したレーザ光や電子線の出力値と、収集部23が取得した位置情報に対応したレーザ光や電子線の出力値とを比較する。両者の差が予め設定された範囲を超えた場合、特定部24は、当該範囲を超えたレーザ光や電子線が照射した部分は欠陥が生じている可能性があるとして、当該部分を検査領域に特定する。例えば、レーザ光を照射して硬化する場合、レーザ光の出力値が設定値の±5%の範囲を超えた場合に、この範囲を超えた部分を検査領域に特定する、などである。
造形プロセスデータが硬化した材料層の温度データの場合、特定部24は、予め取得された欠陥のない正常な造形がされた時の温度データと、収集部23が取得した温度データとを比較する。両者の差が予め設定された温度範囲を超えた場合、特定部24は、当該範囲を超えた部分は欠陥が生じている可能性があるとして、当該部分を検査領域に特定する。
なお、供給部21や造形部22が実際に3次元造形物を造形した際の造形プロセスデータは、以上の材料供給データや、硬化時のエネルギー供給データや、硬化時の材料層の温度データには限定されない。造形物を造形した際の造形プロセスデータは、制御部27が設定したデータや正常な造形がなされた時の情報と比較することができるものであればよい。
以上の特定部24での検査領域の特定は、収集部23が取得した造形プロセスデータに何らかの異常の可能性がある部分を特定できればよく、詳細で厳密な分析を必要としない。よって、欠陥検査のように欠陥の種類や欠陥の場所に応じた複数の検査を詳細に行う場合に比べて、短時間で行うことができる。
また、特定部24は、材料供給データや、硬化時のエネルギー供給データや、硬化時の材料層の温度データなどの造形プロセスデータの全てについて検査領域を特定する作業をする必要はない。特定部24は、検査領域を特定する上での有効性の実績などに基づいて、領域特定に有効なひとつ以上のデータを選択して、検査領域の特定を行えばよい。以上のようにすることにより、特定部24での検査領域の特定のための時間を短縮することができる。
検査部25は、特定部24が特定した検査領域を検査し欠陥部分を検出する。検査部25は、特定された検査領域での欠陥検査を行うために、硬化層の表面に現れた凹凸などの欠陥を検出する手段として、レーザ光や触針などを用いた3次元形状測定器やカメラなどを備えることができる。また、硬化層の内部の空洞などの欠陥を検出する手段として、超音波や弾性波やX線などを用いた検査装置を備えることができる。検査部25は、硬化層の表面や内部の欠陥を検出することができるものであれば、以上の方法には限定されない。
検査部25は、3次元形状測定器の場合、特定された検査領域の凹凸を検出する。検査部25は、検出された検査領域の凹凸と、検査領域に対応する位置での予め取得された欠陥のない正常な造形がされた時の硬化層の表面の凹凸とを比較し、両者の差が予め設定された範囲を超えている場合、当該凹凸を欠陥と特定する。このとき検査部25は、欠陥の位置情報を特定する。
検査部25は、カメラの場合、特定された検査領域の表面画像を取得する。検査部25は、取得された検査領域の表面画像と、検査領域に対応する位置での予め取得された欠陥のない正常な造形がされた時の硬化層の表面画像とを比較し、両者の画像の間で異なると判定した部分を欠陥と特定する。このとき検査部25は、欠陥の位置情報を特定する。
検査部25は、超音波や弾性波やX線などを用いた層の内部の検査装置の場合、特定された検査領域から超音波や弾性波やX線などによる信号を検出し解析する。この時、予め取得された正常な状態での信号との比較を行い、比較の結果から内部の空洞などの欠陥を特定してもよい。このとき検査部25は、欠陥の位置情報を特定する。
硬化層の欠陥検査では、欠陥の種類や、欠陥が層の表面にあるか内部にあるかに応じた、複数の検査を詳細に行う必要がある。このため、1層あたりの検査の時間が長くなり、さらに、層の大面積化や層数の増大によって検査の時間はさらに長くなる。しかしながら、積層造形検査装置2では、予め特定部24が欠陥の生じている可能性のある検査領域を特定し、検査部25は特定された検査領域を検査するため、欠陥検査の時間を短縮することができる。
補修部26は、検査部25が検出した欠陥部分を補修する。補修部26は、欠陥部分の再造形を行うために、欠陥部分を除去する機能と、除去した部分に新たに材料を供給する機能と、新たに供給された材料を硬化する機能とを有する。さらに、硬化した部分の不要部分を除去するなどの整形をする機能と、以上のようにして再造形した部分を検査する機能とを有する。
補修部26は、欠陥部分を除去する機能として、部分的な切削加工を可能とするマシニングセンタのような切削機構や、レーザポリッシュによる除去加工機構を備えることができる。切削加工に用いる刃物の種類や切削加工条件や、レーザポリッシュの加工条件は、造形物の材料に合わせて選択することができる。補修部26は、硬化層の欠陥部分とその周辺を硬化層の厚さの分除去することができる。
補修部26は、除去した部分に新たに材料を供給する機能として、微小領域に選択的に材料を供給できるように先端部をノズル形状とした材料供給機構を備えることができる。補修部26は、除去された欠陥部分の体積に基づいて材料供給量を算出し、所定の量の材料を所定の位置に供給することができる。補修部26はまた、供給部21を用いて、除去した部分に新たに材料を供給するようにしてもよい。補修部26はまた、材料を供給した後に材料を加圧し、隅々にまで材料が行き渡るようにしてもよい。また、材料を供給すると同時に加熱して硬化するようにしてもよい。
補修部26は、新たに供給された材料を硬化する機能として、硬化部223を用いてレーザ光や電子線を照射し、材料の硬化を行うことができる。補修部26はまた、微細な領域での硬化に適するように、専用な硬化部を備えるようにしてもよい。
補修部26は、硬化した部分の不要部分を除去するなどの整形をする機能として、刃物ややすりを用いた整形機構を備えることができる。整形機構は、硬化した部分の不要部分を削ったり研磨したりすることで、再造形した部分を所定の状態に加工することができる。
補修部26は、再造形した部分を検査する機能として、検査部25を用いて、再造形部分の表面と内部の欠陥検査を行うことができる。補修部26は、この欠陥検査の結果、再造形部分に欠陥が検出された場合、再度、欠陥部分を除去して再造形を行う。一方、再造形部分に欠陥が検出されない場合、次の層の造形に移行することができる。
なお、以上の説明では、収集部23が造形プロセスデータを1層ごとに収集し、これに基づいて特定部24の検査領域の特定や、検査部25の欠陥検査や、補修部26の再造形が1層ごとに行われるとしたが、これには限定されない。以上の一連の処理は、2層以上の複数の層をまとめて行うようにしてもよい。これにより、特定部24の検査領域の特定が複数層ごとになる場合は、検査部25の欠陥位置を特定する精度は低下する一方で、欠陥検出や再造形の時間を短縮することができる。すなわち、造形物に要求される強度や精度などの特性やコストなどに応じて、1層ごとに処理するのか、複数層をまとめて処理するのか、選択することができる。
制御部27は、供給部21や造形部22や積層造形検査装置2に接続し、これらを制御し連携させる機能を有する。すなわち、材料の供給量や供給位置や供給タイミング、ステージ221の昇降の量、スキージの動作、レーザ光の出力値や照射位置や照射時間、積層造形検査装置2における欠陥検査や欠陥部分の再造形などの、造形物の積層造形に関わる制御を行なう。
制御部27は、サーバなどの情報処理装置をプログラムにより動作させて実現することができる。このプログラムによる動作の内で、積層造形に関わる動作は、造形物の3次元CADデータに基づいて設定される。すなわち、制御部27は、3次元CADデータに基づいて3次元造形物の造形を制御することができる。
図3A及び図3Bは、本実施形態の積層造形検査装置2の動作を説明するための図である。図3Aは欠陥部分が硬化層の表面に現れている場合、図3Bは欠陥部分が硬化層の内部に存在している場合をそれぞれ示す。
図3Aにおいて、(a)では、特定部24が、収集部23が取得した造形プロセスデータに基づいて検査領域を特定する。(b)では、検査部25が、特定部24が特定した検査領域を検査して欠陥を検出し、その位置を特定する。(c)では、補修部26が、特定された欠陥の位置に基づいて欠陥部分を除去する。(d)では、欠陥部分が除去された領域に選択的に材料が供給される。ここでは供給部21が材料を供給している場合を示しているが、微小領域に選択的に材料を供給する専用の供給機構を設けて供給してもよい。
(e)では、供給された材料を硬化する。ここでは硬化部223が硬化している場合を示しているが、微細な領域での硬化に適するように、専用な硬化部を設けて硬化してもよい。(f)では、硬化後の不要部分を除去するなどの整形をする。ここでは、再造形した部分の表面をその周辺の硬化部の表面に一致させる場合を示しているが、これには限定されない。整形は再造形した部分の設計条件に従って行うことができる。
(g)では、検査部25が再造形した部分の欠陥検査を行う。(h)では、欠陥検査の結果、欠陥が検出されない場合は補修を終了とし、次の層の造形に移行する。欠陥が検出された場合は、(c)の欠陥部分の除去からの工程を繰り返す。
図3Bの場合は、欠陥部分が硬化層の内部に存在しているため、欠陥を検出する方法は図3Aの場合と異なるが、一連の(a)から(h)の動作は図3Aの場合と同様とすることができる。
図4は、本実施形態の積層造形装置20の動作を示すフローチャートである。図4のフローチャートは、制御部27が造形を行う動作を開始することによって開始となる。
ステップS01では、供給部21がステージ221の造形面上に、所定の積層厚さとなる体積の材料を供給する。ステップS02では、スキージ222が、供給された材料を、ステージ221の造形面上に均一の所定の厚さで平坦に敷き詰めた材料層として積層する。この工程をスキージングと呼ぶ。ステップS03では、硬化部223が材料層の所定の位置に所定の時間だけ所定の出力のレーザ光もしくは電子線を照射して加熱し、材料層を硬化する。
ステップS04では、収集部23が、層の造形プロセスデータである、材料の供給データや、硬化時のエネルギーの供給データや、硬化時の材料層の温度データなどを収集する。ステップS05では、特定部24が、収集部23が取得した造形プロセスデータに基づいて、硬化層の検査領域を特定する。なお、ステップS05の詳細は後述する。
ステップS06では、検査部25が、特定部24が特定した検査領域の硬化層の表面と内部の欠陥検査をし、欠陥が検出された場合は、欠陥の位置を特定する。なお、特定部24により特定された検査領域がない場合、検査部25は、特に何もしないで次のステップS07に移行する。
検査部25によって欠陥が検出された場合(ステップS07のYES)、補修部26が欠陥部分を補修する(ステップS08)。なお、ステップS08の詳細は後述する。欠陥が検出されない場合(ステップS07のNO)もしくは欠陥部分が補修されると、積層造形における所定の層数が積層された場合(ステップS09のYES)、終了する。一方、所定の層数が積層されていない場合(ステップS09のNO)、次の層を造形するためにステージ221を次の層の厚さの分だけ降下し(ステップS10)、ステップS01を繰り返す。
図5は、積層造形検査装置2の検査領域を特定する動作(図4のステップS05)を示すフローチャートである。図5のフローチャートは、収集部23が造形プロセスデータを収集したことによって開始となる。
ステップS11では、特定部24は、収集部23が取得した造形プロセスデータと、予め取得しておいた制御部27が設定したデータ(設定データ)や正常な造形がなされた時のデータ(正常データ)と、を比較する。
ステップS12では、特定部24は、ステップS11での比較の結果、両者の差が予め設定された範囲を超えているか否かなどによって、造形プロセスデータと設定データや正常データとの差異の有無を確認する。これにより特定部24は、造形プロセスデータの中から、設定データや正常データとの差異が有るとされた異常データを検出する。
異常データが検出されない場合(ステップS12のNO)、終了する。異常データが検出された場合(ステップS12のYES)、ステップS13に移行する。ステップS13では、特定部24は、異常データの位置を欠陥検査領域として特定し、終了する。
図6は、積層造形検査装置2の欠陥部分を補修する動作(図4のステップS08)を示すフローチャートである。図6のフローチャートは、検査部25によって欠陥が検出されたことによって開始となる。
ステップS21では、補修部26は、検査部25が特定した欠陥を含む部分を硬化層から除去する。ステップS22では、補修部26は、除去した部分に新たに材料を供給し、新たに供給した材料を硬化し、硬化後の不要部分を除去するなどの整形を行うことによって、再造形を行う。ステップS23では、補修部26は、再造形した部分の表面と内部の欠陥検査を行う。再造形した部分に欠陥が検出された場合(ステップS24のYES)、ステップS21を繰り返す。再造形した部分に欠陥が検出されない場合(ステップS24のNO)、終了する。
図7は、積層造形検査装置2の検査領域を特定する動作を造形物の部分を限定して行う場合について説明するための平面図である。例えば、図7のように造形物がA部とB部とC部とからなり、造形物の強度や精度がB部では求められ、A部やC部では求められない場合、積層造形検査装置2はB部だけで欠陥検査および補修を行い、A部やC部では行わないようにすることができる。
すなわち、積層造形検査装置2は、B部について、造形プロセスデータを収集し、造形プロセスデータに基づいて異常データの部分を検査領域と特定し、検査領域を検査して欠陥部分を検出し、欠陥部分を補修する。図7では、ひとつの材料層からA部とB部とC部が形成される場合を示しているが、収集部23が造形プロセスデータとして一層分の材料を供給したときの重量値を取得した場合、当該の重量値が異常値であればB部を検査領域に指定する。また、A部とB部とC部が各々別々の材料で形成される場合は、B部を形成する材料の重量値を取得し、当該の重量値が異常値であればB部を検査領域に指定すればよい。
造形プロセスデータが、材料の供給データ以外の材料層の表面の画像や凹凸のデータや、硬化時のレーザ光や電子線の出力値や、硬化時の材料層の表面温度などの場合も、前述の材料の供給データの場合と同様である。すなわち、B部について、造形プロセスデータを収集し、造形プロセスデータに基づいて異常データの部分を検査領域と特定し、検査領域を検査して欠陥部分を検出し、欠陥部分を補修することができる。
また、積層造形検査装置2は、B部では全層について欠陥検査および補修を行い、A部やC部では例えば1層おきに間引いて欠陥検査および補修を行う、などとしてもよい。また、造形物が複数の材料から構成される場合、特定の材料を用いた層について欠陥検査および補修を行うようにしてもよい。以上のようにすることで、欠陥検査の時間を短縮することができる。
図8A及び図8Bは、積層造形検査装置2の補修の方法を説明するための断面図である。図8A及び図8Bは、欠陥部分を除去するときの除去形状を示す。図8Aは半球形状、図8Bはすり鉢形状である。何れの場合も除去後の形状は、除去部分の中央部分、すなわち除去部分の平面視での中心部が、最も深くなる形状である。
このように加工することで、除去部分に材料を供給して硬化させる際に、レーザ光や電子線を除去部分の平面視で中心部に照射することで、材料が同心円状に隅々まで加熱されて均質な硬化が可能となる。その結果、再造形部に欠陥が生じにくくなり、補修のための時間が短縮される。なお、欠陥部分の除去形状は、再造形部の隅々まで加熱されやすい形状であれば、半球形状やすり鉢形状には限定されない。また、レーザ光や電子線の照射は、中心部への照射には限定されず、走査するように照射してもよい。
以上のように、本実施形態の積層造形検査装置2及び積層造形装置20によれば、欠陥検査は層内の特定された検査領域に限って行われるため、欠陥検査の時間が短縮される。
以上のように、本実施形態によれば、層を積層して3次元造形物を造形する際に、欠陥検査の時間を短縮できる積層造形装置を提供することができる。
本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれるものである。
また、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
所定の材料の層を積層し硬化して3次元造形物を造形する過程で得られる造形プロセスデータを収集する収集部と、
前記造形プロセスデータに基づいて欠陥が存在する可能性のある検査領域を特定する特定部と、
特定された前記検査領域を検査する検査部と、を有する積層造形検査装置。
(付記2)
前記特定部は、前記造形プロセスデータの内の異常データを特定し、前記異常データの前記材料の層における領域を前記検査領域に特定する、付記1記載の積層造形検査装置。
(付記3)
前記特定部は、前記造形プロセスデータと、前記造形の設定データもしくは予め取得された正常な造形がされた時の造形プロセスデータとの比較に基づいて、前記異常データを特定する、付記2記載の積層造形検査装置。
(付記4)
前記造形プロセスデータは、前記材料の供給データと、前記硬化時のエネルギーの供給データと、前記硬化時の前記材料層の温度データの内の少なくとも1つを含む、付記1から3の内の1項記載の積層造形検査装置。
(付記5)
前記収集部は、前記材料の層ごとに前記造形プロセスデータを収集する、付記1から4の内の1項記載の積層造形検査装置。
(付記6)
前記収集部は、前記材料の層の特定の部分、もしくは特定の材料を有する前記材料の層から、前記造形プロセスデータを収集する、付記1から5の内の1項記載の積層造形検査装置。
(付記7)
前記検査部が前記検査領域に欠陥部分を検出すると前記欠陥部分を再造形する補修部を有する、付記1から6の内の1項記載の積層造形検査装置。
(付記8)
前記補修部は、前記欠陥部分を除去し、前記除去した部分の平面視で中心部が表面から最も深くなるように除去する、付記7記載の積層造形検査装置。
(付記9)
前記検査部は、前記再造形した部分を検査する、付記7または8記載の積層造形検査装置。
(付記10)
付記1から9の内の1項記載の積層造形検査装置と、前記所定の材料を供給する供給部と、前記3次元造形物を造形する造形部と、を有する積層造形装置。
(付記11)
所定の材料の層を積層し硬化して3次元造形物を造形する過程で得られる造形プロセスデータを収集し、
前記造形プロセスデータに基づいて欠陥が存在する可能性のある検査領域を特定し、
特定された前記検査領域を検査する、積層造形方法。
(付記12)
前記造形プロセスデータの内の異常データを特定し、前記異常データの前記材料の層における領域を前記検査領域に特定する、付記11記載の積層造形方法。
(付記13)
前記造形プロセスデータと、前記造形の設定データもしくは予め取得された正常な造形がされた時の造形プロセスデータとの比較に基づいて、前記異常データを特定する、付記12記載の積層造形方法。
(付記14)
前記造形プロセスデータは、前記材料の供給データと、前記硬化時のエネルギーの供給データと、前記硬化時の前記材料層の温度データの内の少なくとも1つを含む、付記11から13の内の1項記載の積層造形方法。
(付記15)
前記材料の層ごとに前記造形プロセスデータを収集する、付記11から14の内の1項記載の積層造形方法。
(付記16)
前記材料の層の特定の部分、もしくは特定の材料を有する前記材料の層から、前記造形プロセスデータを収集する、付記11から15の内の1項記載の積層造形方法。
(付記17)
前記検査領域に欠陥部分が検出されると前記欠陥部分を再造形する、付記11から16の内の1項記載の積層造形方法。
(付記18)
前記欠陥部分を除去し、前記除去した部分の平面視で中心部が表面から最も深くなるように除去する、付記17記載の積層造形方法。
(付記19)
前記再造形した部分を検査する、付記17または18記載の積層造形方法。
1、2 積層造形検査装置
10、20 積層造形装置
11 供給部
12 造形部
13 収集部
14 特定部
15 検査部
21 供給部
211 チャンバ
212 供給筒
22 造形部
221 ステージ
222 スキージ
223 硬化部
23 収集部
24 特定部
25 検査部
26 補修部
27 制御部

Claims (10)

  1. 所定の材料の層を積層し硬化して3次元造形物を造形する過程で得られる造形プロセスデータを収集する収集部と、
    前記造形プロセスデータに基づいて欠陥が存在する可能性のある検査領域を特定する特定部と、
    特定された前記検査領域を検査する検査部と、を有する積層造形検査装置。
  2. 前記特定部は、前記造形プロセスデータの内の異常データを特定し、前記異常データの前記材料の層における領域を前記検査領域に特定する、請求項1記載の積層造形検査装置。
  3. 前記特定部は、前記造形プロセスデータと、前記造形の設定データもしくは予め取得された正常な造形がされた時の造形プロセスデータとの比較に基づいて、前記異常データを特定する、請求項2記載の積層造形検査装置。
  4. 前記造形プロセスデータは、前記材料の供給データと、前記硬化時のエネルギーの供給データと、前記硬化時の前記材料層の温度データの内の少なくとも1つを含む、請求項1から3の内の1項記載の積層造形検査装置。
  5. 前記収集部は、前記材料の層の特定の部分、もしくは特定の材料を有する前記材料の層から、前記造形プロセスデータを収集する、請求項1から4の内の1項記載の積層造形検査装置。
  6. 前記検査部が前記検査領域に欠陥部分を検出すると前記欠陥部分を再造形する補修部を有する、請求項1から5の内の1項記載の積層造形検査装置。
  7. 前記補修部は、前記欠陥部分を除去し、前記除去した部分の平面視で中心部が表面から最も深くなるように除去する、請求項6記載の積層造形検査装置。
  8. 請求項1から7の内の1項記載の積層造形検査装置と、前記所定の材料を供給する供給部と、前記3次元造形物を造形する造形部と、を有する積層造形装置。
  9. 所定の材料の層を積層し硬化して3次元造形物を造形する過程で得られる造形プロセスデータを収集し、
    前記造形プロセスデータに基づいて欠陥が存在する可能性のある検査領域を特定し、
    特定された前記検査領域を検査する、積層造形方法。
  10. 前記造形プロセスデータの内の異常データを特定し、前記異常データの前記材料の層における領域を前記検査領域に特定する、請求項9記載の積層造形方法。
JP2017055690A 2017-03-22 2017-03-22 積層造形検査装置と積層造形装置及び積層造形方法 Active JP6961968B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017055690A JP6961968B2 (ja) 2017-03-22 2017-03-22 積層造形検査装置と積層造形装置及び積層造形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017055690A JP6961968B2 (ja) 2017-03-22 2017-03-22 積層造形検査装置と積層造形装置及び積層造形方法

Publications (2)

Publication Number Publication Date
JP2018158457A true JP2018158457A (ja) 2018-10-11
JP6961968B2 JP6961968B2 (ja) 2021-11-05

Family

ID=63794878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017055690A Active JP6961968B2 (ja) 2017-03-22 2017-03-22 積層造形検査装置と積層造形装置及び積層造形方法

Country Status (1)

Country Link
JP (1) JP6961968B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082136A (ja) * 2018-11-27 2020-06-04 オークマ株式会社 工作機械
JP2021031704A (ja) * 2019-08-20 2021-03-01 国立大学法人京都大学 付加加工装置、付加加工装置の制御方法、および、付加加工装置の制御プログラム
CN114450584A (zh) * 2019-09-20 2022-05-06 芝浦机械株式会社 层叠造形系统
JP7388212B2 (ja) 2020-01-31 2023-11-29 セイコーエプソン株式会社 三次元造形物の製造方法および三次元造形装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254542A (ja) * 1998-03-11 1999-09-21 Sanyo Electric Co Ltd 光造形装置のモニタリングシステム
JP2004009574A (ja) * 2002-06-07 2004-01-15 Jsr Corp 光硬化造形装置、光硬化造形方法及び光硬化造形システム
US20150273914A1 (en) * 2014-03-31 2015-10-01 Xerox Corporation System For Detecting Inoperative Inkjets In Printheads Ejecting Clear Ink Using Three Dimensional Imaging
JP2016060063A (ja) * 2014-09-16 2016-04-25 株式会社東芝 積層造形装置および積層造形方法
WO2016201390A1 (en) * 2015-06-12 2016-12-15 Materialise N.V. System and method for ensuring consistency in additive manufacturing using thermal imaging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254542A (ja) * 1998-03-11 1999-09-21 Sanyo Electric Co Ltd 光造形装置のモニタリングシステム
JP2004009574A (ja) * 2002-06-07 2004-01-15 Jsr Corp 光硬化造形装置、光硬化造形方法及び光硬化造形システム
US20150273914A1 (en) * 2014-03-31 2015-10-01 Xerox Corporation System For Detecting Inoperative Inkjets In Printheads Ejecting Clear Ink Using Three Dimensional Imaging
JP2016060063A (ja) * 2014-09-16 2016-04-25 株式会社東芝 積層造形装置および積層造形方法
WO2016201390A1 (en) * 2015-06-12 2016-12-15 Materialise N.V. System and method for ensuring consistency in additive manufacturing using thermal imaging
JP2018518394A (ja) * 2015-06-12 2018-07-12 マテリアライズ・ナムローゼ・フエンノートシャップMaterialise Nv 付加製造における一貫性を熱画像化手段により確かめるためのシステムと方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082136A (ja) * 2018-11-27 2020-06-04 オークマ株式会社 工作機械
JP7211777B2 (ja) 2018-11-27 2023-01-24 オークマ株式会社 工作機械
JP2021031704A (ja) * 2019-08-20 2021-03-01 国立大学法人京都大学 付加加工装置、付加加工装置の制御方法、および、付加加工装置の制御プログラム
JP7319627B2 (ja) 2019-08-20 2023-08-02 国立大学法人京都大学 付加加工装置、付加加工装置の制御方法、および、付加加工装置の制御プログラム
CN114450584A (zh) * 2019-09-20 2022-05-06 芝浦机械株式会社 层叠造形系统
JP7388212B2 (ja) 2020-01-31 2023-11-29 セイコーエプソン株式会社 三次元造形物の製造方法および三次元造形装置

Also Published As

Publication number Publication date
JP6961968B2 (ja) 2021-11-05

Similar Documents

Publication Publication Date Title
JP7032018B2 (ja) 積層造形部品をトポグラフィに基づいて検査し、プロセス制御するための方法およびシステム
CN110799286B (zh) 用于增材制造的方法和设备
JP6961968B2 (ja) 積層造形検査装置と積層造形装置及び積層造形方法
KR20180082492A (ko) 적층 가공 프로세스에서의 에러 검출
US20160098825A1 (en) Feature extraction method and system for additive manufacturing
US20230043416A1 (en) Online monitoring of additive manufacturing using acoustic emission methods
EP3312009A1 (en) Method and system for thermographic inspection of additive manufactured parts
JP6826201B2 (ja) 三次元積層造形装置の施工異常検出システム、三次元積層造形装置、三次元積層造形装置の施工異常検出方法、三次元積層造形物の製造方法、及び、三次元積層造形物
US9764517B2 (en) Object production using an additive manufacturing process and quality assessment of the object
US20150024233A1 (en) Quality control of additive manufactured parts
CN110650811B (zh) 内部缺陷检测系统和方法、以及三维层叠造形装置
Liu et al. Microstructural defects induced by stereolithography and related compressive behaviour of polymers
CN109187755B (zh) 一种基于3d打印的在线超声无损检测方法
JP2004009574A (ja) 光硬化造形装置、光硬化造形方法及び光硬化造形システム
US20230330941A1 (en) Method and Device for the Additive Manufacturing of a Workpiece
Witvrouw et al. Precision additive metal manufacturing
Lough et al. In-situ local part qualification of SLM 304L stainless steel through voxel based processing of SWIR imaging data
Bowoto et al. Enhancing dimensional accuracy in 3D printing: a novel software algorithm for real-time quality assessment
Roy Data-Driven Modeling of Processes and Properties in Additive Manufacturing
Yousaf Binder Jetting Additive Manufacturing Technology: The Effects of Build Orientation on The Printing Quality
JP2024057297A (ja) 画像処理装置、付加製造装置、および付加製造方法
JP2022553138A (ja) パターン認識及び構造認識による鋳造部材の同定を通じて、自動機械をベースにした鋳造法において品質を向上させるための装置及び方法
JP2024031337A (ja) 積層造形物の疲労寿命推定方法、積層造形物の検査方法、積層造形物の製造方法、積層造形物の検査装置、およびプログラム
JP2020059897A (ja) 欠損検査方法
Du Rand et al. DEVELOPMENT OF AN INTEGRATED POWDER BED FUSION ADDITIVE MANUFACTURING MONITORING SYSTEM: A CONCEPT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R150 Certificate of patent or registration of utility model

Ref document number: 6961968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150