JP7029556B2 - Plating equipment and plating method - Google Patents

Plating equipment and plating method Download PDF

Info

Publication number
JP7029556B2
JP7029556B2 JP2021014472A JP2021014472A JP7029556B2 JP 7029556 B2 JP7029556 B2 JP 7029556B2 JP 2021014472 A JP2021014472 A JP 2021014472A JP 2021014472 A JP2021014472 A JP 2021014472A JP 7029556 B2 JP7029556 B2 JP 7029556B2
Authority
JP
Japan
Prior art keywords
substrate
edge portion
plating
plasma
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021014472A
Other languages
Japanese (ja)
Other versions
JP2021063306A (en
Inventor
瑞樹 長井
正 下山
貴士 岸
文敏 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of JP2021063306A publication Critical patent/JP2021063306A/en
Application granted granted Critical
Publication of JP7029556B2 publication Critical patent/JP7029556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/08Rinsing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、めっき装置及びめっき方法に関する。 The present invention relates to a plating apparatus and a plating method.

従来、半導体ウェハ等の表面に設けられた微細な配線用溝、ホール、又はレジスト開口部に配線を形成したり、半導体ウェハ等の表面にパッケージの電極等と電気的に接続するバンプ(突起状電極)を形成したりすることが行われている。この配線及びバンプを形成する方法として、例えば、電解めっき法、蒸着法、印刷法、ボールバンプ法等が知られているが、半導体チップのI/O数の増加、細ピッチ化に伴い、微細化が可能で性能が比較的安定している電解めっき法が多く用いられるようになってきている。 Conventionally, bumps (protrusions) that form wiring in fine wiring grooves, holes, or resist openings provided on the surface of a semiconductor wafer or the like, or electrically connect to a package electrode or the like on the surface of a semiconductor wafer or the like. Electrodes) are formed. As a method for forming the wiring and bumps, for example, an electrolytic plating method, a vapor deposition method, a printing method, a ball bump method, etc. are known. Electroplating methods, which can be used and have relatively stable performance, are often used.

電解めっき法で基板にめっきをするには、予め、シード層が形成された半導体ウェハ等の基板にレジストパターンを形成しておく。続いて、レジストパターンが形成された基板に紫外光(以下、UV又はUltra Violetという)の照射等を行い、基板表面上のレジスト残渣を除去し(アッシング処理)且つレジスト表面の親水化処理(ディスカム処理)を行う。 In order to plate a substrate by the electrolytic plating method, a resist pattern is formed in advance on a substrate such as a semiconductor wafer on which a seed layer is formed. Subsequently, the substrate on which the resist pattern is formed is irradiated with ultraviolet light (hereinafter referred to as UV or Ultra Violet) to remove the resist residue on the substrate surface (ashing treatment) and hydrophilize the resist surface (discum). Processing).

アッシング処理及びディスカム処理が行われた基板は、めっき装置に搬送され、基板ホルダに保持される。基板ホルダは、基板に給電するための電気接点を有する。基板ホルダの電気接点は、基板ホルダに基板が保持されたときにレジストが塗布されていない基板のエッジ部上のシード層に接触するように構成される。このような基板ホルダは、例えば特許文献1に開示されている。基板ホルダに保持された基板はめっき液に浸漬され、アノードと基板との間に電圧が印加されることにより、基板表面にめっき膜が形成される。 The substrate subjected to the ashing treatment and the discum treatment is transported to the plating apparatus and held in the substrate holder. The board holder has electrical contacts for supplying power to the board. The electrical contacts of the substrate holder are configured to come into contact with the seed layer on the edge of the substrate to which the resist has not been applied when the substrate is held in the substrate holder. Such a substrate holder is disclosed in, for example, Patent Document 1. The substrate held in the substrate holder is immersed in the plating solution, and a voltage is applied between the anode and the substrate to form a plating film on the substrate surface.

特開2002-363794号公報Japanese Unexamined Patent Publication No. 2002-363794

従来のめっき方法においては、アッシング処理及びディスカム処理が行われた後、直ちにめっき処理が行われるわけではない。即ち、アッシング処理及びディスカム処理が行われてから所定の時間が経過した後に、基板が基板ホルダに保持される。このとき、アッシング処理及びディスカム処理からの時間経過によって、基板のエッジ部上のシード層に酸化膜が形成されたり、レジストから揮発した有機物が付着したりすることがある。基板の電気接点が接触することになる基板のエッジ部上のシード層に酸化膜が形成されたり、有機物が付着したりすると、基板ホルダの電気接点の接触抵抗にバラつきが生じ、めっき膜厚の均一性が悪化するという問題がある。 In the conventional plating method, the plating treatment is not performed immediately after the ashing treatment and the discum treatment are performed. That is, the substrate is held in the substrate holder after a predetermined time has elapsed from the ashing process and the discum process. At this time, depending on the passage of time from the ashing treatment and the discum treatment, an oxide film may be formed on the seed layer on the edge portion of the substrate, or organic substances volatilized from the resist may adhere to the seed layer. If an oxide film is formed on the seed layer on the edge of the substrate that the electrical contacts of the substrate come into contact with, or if organic substances adhere to the seed layer, the contact resistance of the electrical contacts of the substrate holder varies, and the plating film thickness increases. There is a problem that the uniformity deteriorates.

本発明は上記問題に鑑みてなされたものであり、その目的の一つは、基板のエッジ部に形成される酸化膜及び基板のエッジ部に付着する有機物の少なくともいずれか1つを原因とするめっき膜厚の均一性の悪化を防止することである。 The present invention has been made in view of the above problems, and one of the objects thereof is caused by at least one of an oxide film formed on the edge portion of the substrate and an organic substance adhering to the edge portion of the substrate. This is to prevent deterioration of the uniformity of the plating film thickness.

本発明の一形態によれば、基板にめっきを行うめっき装置が提供される。このめっき装置は、前記基板のエッジ部に存在する有機物及び酸化膜の少なくともいずれか1つを局所的に除去するエッジ部洗浄装置と、めっき液を収容し、基板とアノードとを該めっき液に
浸漬させた状態で該基板と該アノード間に電圧を印加してめっきを行うためのめっき槽と、を有する。
According to one embodiment of the present invention, there is provided a plating apparatus for plating a substrate. This plating apparatus contains an edge cleaning device for locally removing at least one of an organic substance and an oxide film existing at the edge of the substrate, and a plating solution, and the substrate and the anode are combined into the plating solution. It has a plating tank for applying a voltage between the substrate and the anode in an immersed state to perform plating.

この一形態によれば、基板ホルダにセットされる前に、基板のエッジ部に存在する有機物及び酸化膜の少なくともいずれか1つを局所的に除去することができる。したがって、基板のエッジ部以外の表面に形成されたレジストパターンに悪影響を与えることなく、基板のエッジ部に存在する有機物及び酸化膜の少なくともいずれか1つによる基板ホルダの電気接点の接触抵抗のバラつきを抑制し、めっき膜厚の均一性の悪化を防止することができる。 According to this embodiment, at least one of the organic substance and the oxide film present at the edge portion of the substrate can be locally removed before being set in the substrate holder. Therefore, the contact resistance of the electric contact of the substrate holder varies depending on at least one of the organic substance and the oxide film existing on the edge of the substrate without adversely affecting the resist pattern formed on the surface other than the edge of the substrate. It is possible to suppress the deterioration of the uniformity of the plating film thickness.

本発明の一形態において、前記エッジ部洗浄装置は、前記基板のエッジ部に存在する有機物を局所的に脱離する有機物脱離装置を含み、前記有機物脱離装置は、回転する前記基板のエッジ部にUVを照射するUV照射装置又は回転する前記基板のエッジ部にプラズマを放射するプラズマ放射装置を含む。 In one embodiment of the present invention, the edge cleaning device includes an organic desorption device that locally desorbs organic substances existing at the edge portion of the substrate, and the organic desorption device is a rotating edge of the substrate. A UV irradiating device that irradiates a portion with UV or a plasma radiating device that radiates plasma to an edge portion of the rotating substrate is included.

一般的に、めっきされる基板上にはレジストが塗布されており、このレジストにUV又はプラズマを放射すると、レジストが変性し、ダメージを受ける恐れがある。この一形態によれば、基板のエッジ部に局所的にUV又はプラズマを放射することができる。これにより、基板のエッジ部以外の表面、即ち基板上のレジストが塗布されている部分にはUV又はプラズマを放射することがないので、基板上のレジストにダメージを与えることなく、基板のエッジ部の有機物を脱離させることができる。 Generally, a resist is coated on the substrate to be plated, and if UV or plasma is radiated to the resist, the resist may be denatured and damaged. According to this embodiment, UV or plasma can be locally emitted to the edge portion of the substrate. As a result, UV or plasma is not radiated to the surface other than the edge portion of the substrate, that is, the portion of the substrate to which the resist is applied, so that the edge portion of the substrate is not damaged. Organic matter can be desorbed.

本発明の一形態において、めっき装置は、前記基板を回転させて前記基板の向きを整列するアライナを有し、前記有機物脱離装置は、前記アライナに設けられる。 In one embodiment of the present invention, the plating apparatus has an aligner that rotates the substrate to align the orientation of the substrate, and the organic matter desorption device is provided in the aligner.

この一形態によれば、有機物脱離装置がアライナに設けられるので、アライナにより基板を回転させつつ、UV照射装置又はプラズマ照射装置で基板のエッジ部を処理することができる。したがって、有機物脱離装置に基板を回転させる機構を設ける必要がないので、コストを低減することができる。また、有機物脱離装置をアライナに設けることで、めっき装置全体のフットプリントを低減することもできる。 According to this embodiment, since the organic substance desorption device is provided in the aligner, the edge portion of the substrate can be treated by the UV irradiation device or the plasma irradiation device while rotating the substrate by the aligner. Therefore, it is not necessary to provide a mechanism for rotating the substrate in the organic matter desorption device, so that the cost can be reduced. Further, by providing the organic matter desorption device in the aligner, the footprint of the entire plating device can be reduced.

本発明の一形態において、前記UV照射装置又は前記プラズマ放射装置は、前記基板の上方から該基板のエッジ部に局所的にUV又はプラズマを適用できる位置に配置される。 In one embodiment of the present invention, the UV irradiation device or the plasma radiating device is arranged at a position where UV or plasma can be locally applied to the edge portion of the substrate from above the substrate.

本発明の一形態において、前記エッジ部洗浄装置は、前記基板のエッジ部に存在する酸化膜を局所的に除去する酸化膜除去装置を含み、前記酸化膜除去装置は、回転する前記基板のエッジ部に薬液を供給する薬液ノズルを備えた薬液洗浄装置を含む。 In one embodiment of the present invention, the edge cleaning device includes an oxide film removing device that locally removes an oxide film existing at an edge portion of the substrate, and the oxide film removing device is a rotating edge of the substrate. It includes a chemical solution cleaning device equipped with a chemical solution nozzle that supplies the chemical solution to the part.

一般的に、めっきされる基板上にはシード層が形成されており、このシード層に薬液が付着したまま放置すると、シード層が溶ける虞がある。このため、めっきされる基板のエッジ以外の部分、即ち、レジストパターンの開口から露出されるシード層に薬液が付着した場合、薬液が残らないように十分な洗浄が必要になる。この一形態によれば、基板のエッジ部に局所的に薬液を供給することができる。これにより、レジストパターンの開口から露出されるシード層に薬液を付着させることなく、基板のエッジ部に形成された酸化膜を除去することができる。したがって、基板の全面に薬液を付着させた場合に比べて、基板の洗浄時間を大幅に短縮することができる。 Generally, a seed layer is formed on the substrate to be plated, and if the seed layer is left with the chemical solution attached, the seed layer may dissolve. Therefore, when the chemical solution adheres to a portion other than the edge of the substrate to be plated, that is, the seed layer exposed from the opening of the resist pattern, sufficient cleaning is required so that the chemical solution does not remain. According to this embodiment, the chemical solution can be locally supplied to the edge portion of the substrate. This makes it possible to remove the oxide film formed on the edge portion of the substrate without adhering the chemical solution to the seed layer exposed from the opening of the resist pattern. Therefore, the cleaning time of the substrate can be significantly shortened as compared with the case where the chemical solution is adhered to the entire surface of the substrate.

本発明の一形態において、前記薬液は、3wt%以上15wt%以下の希硫酸又は2wt%以上20wt%以下のクエン酸を含む。 In one embodiment of the present invention, the chemical solution contains dilute sulfuric acid of 3 wt% or more and 15 wt% or less or citric acid of 2 wt% or more and 20 wt% or less.

薬液で基板のエッジ部の酸化膜を除去する際に、基板のエッジ部上のシード層が溶けないようにする必要がある。この一形態によれば、基板のエッジ部上のシード層を溶かすことなく、酸化膜を除去することができる。なお、希硫酸が3wt%未満又はクエン酸が2wt%未満であると、酸濃度が低すぎて、酸化膜を適切に除去することができない虞がある。また、希硫酸が15wt%超又はクエン酸が20wt%超であると、酸濃度が高すぎて、基板のエッジ部上のシード層を溶かしてしまう虞がある。 When removing the oxide film on the edge of the substrate with a chemical solution, it is necessary to prevent the seed layer on the edge of the substrate from melting. According to this embodiment, the oxide film can be removed without melting the seed layer on the edge portion of the substrate. If the dilute sulfuric acid is less than 3 wt% or the citric acid is less than 2 wt%, the acid concentration may be too low to properly remove the oxide film. Further, if the dilute sulfuric acid is more than 15 wt% or the citric acid is more than 20 wt%, the acid concentration may be too high and the seed layer on the edge portion of the substrate may be melted.

本発明の一形態において、めっき装置は、前記基板を回転させて、乾燥させるように構成されるスピンリンスドライヤを有し、前記酸化膜除去装置は、前記スピンリンスドライヤに設けられる。 In one embodiment of the present invention, the plating apparatus has a spin rinse dryer configured to rotate and dry the substrate, and the oxide film removing apparatus is provided on the spin rinse dryer.

この一形態によれば、酸化膜除去装置がスピンリンスドライヤに設けられるので、スピンリンスドライヤにより基板を回転させつつ、薬液洗浄装置で基板のエッジ部を処理することができる。また、スピンリンスドライヤは、一般的に、基板上の液体が飛散することを防止するカバーを有しているので、薬液洗浄装置が供給する薬液がスピンリンスドライヤの外部に飛散することも防止することができる。したがって、酸化膜除去装置に基板を回転させる機構及び薬液の飛散を防止するカバーを設ける必要がないので、コストを低減することができる。また、酸化膜除去装置をスピンリンスドライヤに設けることで、めっき装置全体のフットプリントを低減することもできる。 According to this embodiment, since the oxide film removing device is provided in the spin rinse dryer, the edge portion of the substrate can be treated by the chemical solution cleaning device while rotating the substrate by the spin rinse dryer. Further, since the spin rinse dryer generally has a cover for preventing the liquid on the substrate from scattering, it also prevents the chemical liquid supplied by the chemical liquid cleaning device from scattering to the outside of the spin rinse dryer. be able to. Therefore, it is not necessary to provide the oxide film removing device with a mechanism for rotating the substrate and a cover for preventing the chemical solution from scattering, so that the cost can be reduced. Further, by providing the oxide film removing device in the spin rinse dryer, the footprint of the entire plating device can be reduced.

本発明の一形態において、前記薬液洗浄装置は、前記基板の上方から該基板のエッジ部に局所的に薬液を供給できる位置に配置される。 In one embodiment of the present invention, the chemical solution cleaning device is arranged at a position where the chemical solution can be locally supplied to the edge portion of the substrate from above the substrate.

本発明の一形態において、めっき装置は、前記基板のエッジ部に存在するパーティクルを除去するスポンジ洗浄装置を有する。 In one embodiment of the present invention, the plating apparatus has a sponge cleaning apparatus that removes particles existing at the edge portion of the substrate.

この一形態によれば、基板ホルダの電気接点と基板のエッジ部上のシード層との間にパーティクルが挟み込まれることを防止することができ、パーティクルに起因する接触抵抗の悪化を抑制することができる。 According to this embodiment, it is possible to prevent particles from being sandwiched between the electrical contacts of the substrate holder and the seed layer on the edge portion of the substrate, and it is possible to suppress deterioration of contact resistance due to the particles. can.

本発明の一形態において、めっき装置は、前記エッジ部に存在した有機物及び酸化膜の少なくともいずれか1つが局所的に除去された基板の前記エッジ部に光を照射するとともに、反射する光の強度又は吸光度を測定するように構成されたセンサを備える。 In one embodiment of the present invention, the plating apparatus irradiates the edge portion of the substrate from which at least one of the organic substance and the oxide film present on the edge portion is locally removed with light, and the intensity of the reflected light. Alternatively, it comprises a sensor configured to measure the absorbance.

この一形態によれば、反射する光の強度又は吸光度を測定することで、エッジ部に存在する有機物及び酸化膜の少なくともいずれか1つを局所的に除去した基板に対して、エッジ部の汚染物質が十分に除去されているか否かを判定することができる。これにより、基板のエッジ部に汚染物質が存在しているかいないかをめっき処理前に判定し、その後、エッジ部に汚染物質が残存していない基板についてめっき処理を行うようにすることができるので、基板ホルダが有する電気接点の接触抵抗のばらつきに起因する基板Wのめっき膜厚の面内均一性の悪化等を、より確実に防止できる。 According to this embodiment, by measuring the intensity or absorbance of the reflected light, the edge portion is contaminated with respect to the substrate in which at least one of the organic substance and the oxide film existing in the edge portion is locally removed. It can be determined whether or not the substance has been sufficiently removed. As a result, it is possible to determine whether or not a contaminant is present on the edge portion of the substrate before the plating treatment, and then perform the plating treatment on the substrate in which no contaminant remains on the edge portion. It is possible to more reliably prevent deterioration of the in-plane uniformity of the plating film thickness of the substrate W due to variations in the contact resistance of the electrical contacts of the substrate holder.

本発明の一形態によれば、基板にめっきを行うめっき方法が提供される。このめっき方法は、前記基板のエッジ部に存在する有機物及び酸化膜の少なくともいずれか1つを局所的に除去する除去工程と、前記基板を基板ホルダに保持する工程と、前記基板ホルダに保持された前記基板にめっき処理を行う工程と、を有する。 According to one embodiment of the present invention, there is provided a plating method for plating a substrate. This plating method includes a removal step of locally removing at least one of an organic substance and an oxide film existing at an edge portion of the substrate, a step of holding the substrate in the substrate holder, and a step of holding the substrate in the substrate holder. It also has a step of plating the substrate.

この一形態によれば、基板ホルダにセットされる前に、基板のエッジ部に存在する有機物及び酸化膜の少なくともいずれか1つを局所的に除去することができる。したがって、基板のエッジ部以外の表面に形成されたレジストパターンに悪影響を与えることなく、基
板のエッジ部に存在する有機物及び酸化膜の少なくともいずれか1つによる基板ホルダの電気接点の接触抵抗のバラつきを抑制し、めっき膜厚の均一性の悪化を防止することができる。
According to this embodiment, at least one of the organic substance and the oxide film present at the edge portion of the substrate can be locally removed before being set in the substrate holder. Therefore, the contact resistance of the electric contact of the substrate holder varies depending on at least one of the organic substance and the oxide film existing on the edge of the substrate without adversely affecting the resist pattern formed on the surface other than the edge of the substrate. It is possible to suppress the deterioration of the uniformity of the plating film thickness.

本発明の一形態において、めっき方法は、レジストパターンを前記基板に形成する工程と、前記レジストパターンをアッシングするアッシング工程と、を有し、前記除去工程は、前記アッシング工程の後に実行される。 In one embodiment of the present invention, the plating method comprises a step of forming a resist pattern on the substrate and an ashing step of ashing the resist pattern, and the removing step is executed after the ashing step.

この一形態によれば、アッシング工程の後に除去工程が行われるので、アッシング工程の後に所定時間が経過して、基板のエッジ部への有機物付着、及び酸化膜の形成の少なくともいずれか1つが生じたとしても、除去工程により基板のエッジ部に存在する有機物及び酸化膜の少なくともいずれか1つを局所的に除去することができる。 According to this embodiment, since the removal step is performed after the ashing step, a predetermined time elapses after the ashing step, and at least one of organic matter adhesion to the edge portion of the substrate and formation of an oxide film occurs. Even if it is, at least one of the organic substance and the oxide film existing at the edge portion of the substrate can be locally removed by the removal step.

本発明の一形態において、前記除去工程は、前記基板のエッジ部に局所的にUV又はプラズマを放射する工程を含む。 In one embodiment of the invention, the removal step comprises the step of locally radiating UV or plasma to the edge of the substrate.

一般的に、めっきされる基板上にはレジストが塗布されており、このレジストにUV又はプラズマを放射すると、レジストが変性し、ダメージを受ける恐れがある。この一形態によれば、基板のエッジ部に局所的にUV又はプラズマを放射することができる。これにより、基板のエッジ部以外の表面、即ち基板上のレジストが塗布されている部分にはUV又はプラズマを放射することがないので、基板上のレジストにダメージを与えることなく、基板のエッジ部の有機物を脱離させることができる。 Generally, a resist is coated on the substrate to be plated, and if UV or plasma is radiated to the resist, the resist may be denatured and damaged. According to this embodiment, UV or plasma can be locally emitted to the edge portion of the substrate. As a result, UV or plasma is not radiated to the surface other than the edge portion of the substrate, that is, the portion of the substrate to which the resist is applied, so that the edge portion of the substrate is not damaged. Organic matter can be desorbed.

本発明の一形態において、前記除去工程は、前記基板のエッジ部に局所的に薬液を供給する工程を含む。 In one embodiment of the present invention, the removal step includes a step of locally supplying a chemical solution to the edge portion of the substrate.

一般的に、めっきされる基板上にはシード層が形成されており、このシード層に薬液が付着したまま放置すると、シード層が溶ける虞がある。このため、めっきされる基板のエッジ以外の部分、即ち、レジストパターンの開口から露出されるシード層に薬液が付着した場合、薬液が残らないように十分な洗浄が必要になる。この一形態によれば、基板のエッジ部に局所的に薬液を供給することができる。これにより、レジストパターンの開口から露出されるシード層に薬液を付着させることなく、基板のエッジ部に形成された酸化膜を除去することができる。したがって、基板の全面に薬液を付着させた場合に比べて、基板の洗浄時間を大幅に短縮することができる。 Generally, a seed layer is formed on the substrate to be plated, and if the seed layer is left with the chemical solution attached, the seed layer may dissolve. Therefore, when the chemical solution adheres to a portion other than the edge of the substrate to be plated, that is, the seed layer exposed from the opening of the resist pattern, sufficient cleaning is required so that the chemical solution does not remain. According to this embodiment, the chemical solution can be locally supplied to the edge portion of the substrate. This makes it possible to remove the oxide film formed on the edge portion of the substrate without adhering the chemical solution to the seed layer exposed from the opening of the resist pattern. Therefore, the cleaning time of the substrate can be significantly shortened as compared with the case where the chemical solution is adhered to the entire surface of the substrate.

本発明の一形態において、前記薬液は、3wt%以上15wt%以下の希硫酸又は2wt%以上20wt%以下のクエン酸を含む。 In one embodiment of the present invention, the chemical solution contains dilute sulfuric acid of 3 wt% or more and 15 wt% or less or citric acid of 2 wt% or more and 20 wt% or less.

薬液で基板のエッジ部の酸化膜を除去する際に、基板のエッジ部上のシード層が溶けないようにする必要がある。この一形態によれば、基板のエッジ部上のシード層を溶かすことなく、酸化膜を除去することができる。なお、希硫酸が3wt%未満又はクエン酸が2wt%未満であると、酸濃度が低すぎて、酸化膜を適切に除去することができない虞がある。また、希硫酸が15wt%超又はクエン酸が20wt%超であると、酸濃度が高すぎて、基板のエッジ部上のシード層を溶かしてしまう虞がある。 When removing the oxide film on the edge of the substrate with a chemical solution, it is necessary to prevent the seed layer on the edge of the substrate from melting. According to this embodiment, the oxide film can be removed without melting the seed layer on the edge portion of the substrate. If the dilute sulfuric acid is less than 3 wt% or the citric acid is less than 2 wt%, the acid concentration may be too low to properly remove the oxide film. Further, if the dilute sulfuric acid is more than 15 wt% or the citric acid is more than 20 wt%, the acid concentration may be too high and the seed layer on the edge portion of the substrate may be melted.

本発明の一形態において、めっき方法は、回転する前記基板のエッジ部にスポンジヘッドを接触させて、パーティクルを除去する工程を有する。 In one embodiment of the present invention, the plating method includes a step of bringing the sponge head into contact with the rotating edge portion of the substrate to remove particles.

この一形態によれば、基板ホルダの電気接点と基板のエッジ部上のシード層との間にパーティクルが挟み込まれることを防止することができ、パーティクルに起因する接触抵抗の悪化を抑制することができる。 According to this embodiment, it is possible to prevent particles from being sandwiched between the electrical contacts of the substrate holder and the seed layer on the edge portion of the substrate, and it is possible to suppress deterioration of contact resistance due to the particles. can.

本発明の一形態において、前記除去工程は、前記基板のエッジ部に存在する有機物を局所的に脱離した後、前記酸化膜を局所的に除去する工程を含む。 In one embodiment of the present invention, the removing step includes a step of locally removing the oxide film after locally removing the organic substance existing at the edge portion of the substrate.

基板のエッジ部においては、酸化膜上に有機物が付着し得る。したがって、有機物を脱離する前に酸化膜を除去した場合、有機物が付着した部分の酸化膜が除去され難い。この一形態によれば、有機物を脱離した後に酸化膜を除去するので、効果的に有機物及び酸化膜を除去することができる。 At the edge of the substrate, organic matter may adhere to the oxide film. Therefore, if the oxide film is removed before the organic substance is desorbed, it is difficult to remove the oxide film on the portion to which the organic substance is attached. According to this aspect, since the oxide film is removed after the organic substance is desorbed, the organic substance and the oxide film can be effectively removed.

本発明の一形態において、前記除去工程は、前記基板の周縁部から基板中心に向かって2mmの範囲内に存在する有機物及び酸化膜の少なくともいずれか1つを局所的に除去する工程を含む。 In one embodiment of the present invention, the removing step includes a step of locally removing at least one of an organic substance and an oxide film existing within a range of 2 mm from the peripheral edge portion of the substrate toward the center of the substrate.

一般的に、基板ホルダの電気接点は、基板の周縁部から2mmの範囲内のエッジ部と接触する。したがって、この一形態によれば、基板ホルダの電気接点が接触する基板上の部分に存在する有機物及び酸化膜の少なくともいずれか1つを局所的に除去することができる。 Generally, the electrical contacts of the substrate holder come into contact with the edges within a range of 2 mm from the peripheral edge of the substrate. Therefore, according to this embodiment, at least one of the organic substance and the oxide film existing in the portion on the substrate with which the electric contact of the substrate holder is in contact can be locally removed.

本発明の一形態において、前記除去工程は、前記基板が基板ホルダにより保持される際にシール部材でシールされる領域に隣接する、基板周縁部までの領域に存在する有機物及び酸化膜の少なくともいずれか1つを局所的に除去する工程を含む。 In one embodiment of the invention, the removal step is at least one of an organic substance and an oxide film present in the region up to the peripheral edge of the substrate, which is adjacent to the region sealed by the sealing member when the substrate is held by the substrate holder. Includes the step of locally removing one or the other.

本発明の一形態において、めっき方法は、前記エッジ部に存在した有機物又は酸化膜の少なくともいずれか1つを局所的に除去した基板の前記エッジ部に光を照射して、反射する光の強度又は吸光度を測定する工程を有する。 In one embodiment of the present invention, the plating method irradiates the edge portion of a substrate with locally removed at least one of an organic substance or an oxide film present on the edge portion with light, and the intensity of the reflected light. Alternatively, it has a step of measuring the absorbance.

この一形態によれば、反射する光の強度又は吸光度を測定することで、エッジ部に存在する有機物及び酸化膜の少なくともいずれか1つを局所的に除去した基板に対して、エッジ部の汚染物質が十分に除去されているか否かを判定することができる。これにより、基板のエッジ部に汚染物質が存在しているかいないかをめっき処理前に判定し、その後、エッジ部に汚染物質が残存していない基板についてめっき処理を行うようにすることができるので、基板ホルダが有する電気接点の接触抵抗のばらつきに起因する基板Wのめっき膜厚の面内均一性の悪化等を、より確実に防止できる。 According to this embodiment, by measuring the intensity or absorbance of the reflected light, the edge portion is contaminated with respect to the substrate in which at least one of the organic substance and the oxide film existing in the edge portion is locally removed. It can be determined whether or not the substance has been sufficiently removed. As a result, it is possible to determine whether or not a contaminant is present on the edge portion of the substrate before the plating treatment, and then perform the plating treatment on the substrate in which no contaminant remains on the edge portion. It is possible to more reliably prevent deterioration of the in-plane uniformity of the plating film thickness of the substrate W due to variations in the contact resistance of the electrical contacts of the substrate holder.

本発明の一形態によれば、基板にめっきを行うめっき装置が提供される。このめっき装置は、基板ホルダに保持された前記基板に電圧を印加してめっきを行うためのめっき槽と、前記基板のエッジ部に存在する有機物、酸化膜及びパーティクルの少なくともいずれか1つを局所的に除去するエッジ部洗浄装置と、を有する。 According to one embodiment of the present invention, there is provided a plating apparatus for plating a substrate. In this plating apparatus, a plating tank for applying a voltage to the substrate held in the substrate holder to perform plating, and at least one of an organic substance, an oxide film, and particles existing at an edge portion of the substrate are locally localized. It has an edge cleaning device for removing the plating.

この一形態によれば、基板ホルダにセットされる前に、基板のエッジ部に存在する有機物、酸化膜、及びパーティクルの少なくともいずれか1つを局所的に除去することができる。したがって、基板のエッジ部以外の表面に形成されたレジストパターンに悪影響を与えることなく、基板のエッジ部に存在する有機物、酸化膜、及びパーティクルの少なくともいずれか1つによる基板ホルダの電気接点の接触抵抗のバラつきを抑制し、めっき膜厚の均一性の悪化を防止することができる。 According to this embodiment, at least one of the organic matter, the oxide film, and the particles present at the edge portion of the substrate can be locally removed before being set in the substrate holder. Therefore, contact of the electrical contacts of the substrate holder with at least one of the organic matter, the oxide film, and the particles present at the edge portion of the substrate without adversely affecting the resist pattern formed on the surface other than the edge portion of the substrate. It is possible to suppress variations in resistance and prevent deterioration of the uniformity of the plating film thickness.

本発明の一形態によれば、基板にめっきを行うめっき方法が提供される。このめっき方法は、基板ホルダに保持される前の前記基板のエッジ部に存在する有機物、酸化膜及びパーティクルの少なくともいずれか1つを局所的に除去する除去工程と、前記基板を基板ホルダに保持する工程と、前記基板ホルダに保持された前記基板にめっき処理を行う工程と、を有する。 According to one embodiment of the present invention, there is provided a plating method for plating a substrate. This plating method includes a removal step of locally removing at least one of an organic substance, an oxide film and particles existing at an edge portion of the substrate before being held in the substrate holder, and holding the substrate in the substrate holder. It has a step of performing a plating process and a step of plating the substrate held by the substrate holder.

この一形態によれば、基板ホルダにセットされる前に、基板のエッジ部に存在する有機物、酸化膜、及びパーティクルの少なくともいずれか1つを局所的に除去することができる。したがって、基板のエッジ部以外の表面に形成されたレジストパターンに悪影響を与えることなく、基板のエッジ部に存在する有機物、酸化膜、及びパーティクルの少なくともいずれか1つによる基板ホルダの電気接点の接触抵抗のバラつきを抑制し、めっき膜厚の均一性の悪化を防止することができる。 According to this embodiment, at least one of the organic matter, the oxide film, and the particles present at the edge portion of the substrate can be locally removed before being set in the substrate holder. Therefore, contact of the electrical contacts of the substrate holder with at least one of the organic matter, the oxide film, and the particles present at the edge portion of the substrate without adversely affecting the resist pattern formed on the surface other than the edge portion of the substrate. It is possible to suppress variations in resistance and prevent deterioration of the uniformity of the plating film thickness.

本発明の一形態のめっき装置によれば、前記エッジ部洗浄装置は、前記基板のエッジ部に存在する有機物を局所的に脱離する有機物脱離装置を含み、前記有機物脱離装置は、前記基板のエッジ部にUVを照射するUV照射装置又は前記基板のエッジ部にプラズマを放射するプラズマ放射装置を含む。 According to the plating apparatus of one embodiment of the present invention, the edge cleaning device includes an organic substance removing device for locally removing organic substances existing at the edge portion of the substrate, and the organic substance removing device is the above-mentioned organic substance removing device. A UV irradiating device that irradiates the edge portion of the substrate with UV or a plasma radiating device that radiates plasma to the edge portion of the substrate is included.

一般的に、めっきされる基板上にはレジストが塗布されており、このレジストにUV又はプラズマを放射すると、レジストが変性し、ダメージを受ける恐れがある。この一形態によれば、基板のエッジ部に局所的にUV又はプラズマを放射することができる。これにより、基板のエッジ部以外の表面、即ち基板上のレジストが塗布されている部分にはUV又はプラズマを放射することがないので、基板上のレジストにダメージを与えることなく、基板のエッジ部の有機物を脱離させることができる。 Generally, a resist is coated on the substrate to be plated, and if UV or plasma is radiated to the resist, the resist may be denatured and damaged. According to this embodiment, UV or plasma can be locally emitted to the edge portion of the substrate. As a result, UV or plasma is not radiated to the surface other than the edge portion of the substrate, that is, the portion of the substrate to which the resist is applied, so that the edge portion of the substrate is not damaged. Organic matter can be desorbed.

本発明の一形態のめっき装置によれば、前記エッジ部洗浄装置は、前記基板のエッジ部に局所的にUV又はプラズマを適用するように構成されたヘッド部と、前記ヘッド部を水平方向に移動させるアクチュエータを有する。 According to the plating apparatus of one embodiment of the present invention, the edge portion cleaning apparatus has a head portion configured to locally apply UV or plasma to the edge portion of the substrate, and the head portion in the horizontal direction. It has an actuator to move.

この一形態によれば、ヘッド部が水平方向に移動可能であるので、例えば矩形状の基板であっても、エッジ部に沿ってヘッド部を移動させることで、エッジ部の洗浄を行うことができる。 According to this aspect, since the head portion can be moved in the horizontal direction, for example, even if the substrate is rectangular, the edge portion can be cleaned by moving the head portion along the edge portion. can.

本発明の一形態のめっき装置によれば、前記アクチュエータは、第1方向に前記ヘッド部を移動させる第1アクチュエータと、前記第1方向と直交する第2方向に前記ヘッド部を移動させる第2アクチュエータと、を有する。 According to the plating apparatus of one embodiment of the present invention, the actuator has a first actuator that moves the head portion in the first direction and a second actuator that moves the head portion in a second direction orthogonal to the first direction. It has an actuator.

この一形態によれば、ヘッド部を第1方向と第2方向とに移動させることができる。このため、エッジ部に沿ってヘッド部を移動させるだけでなく、エッジ部の延びる方向と直交する方向にヘッド部を位置合わせすることができる。したがって、例えば基板が長辺と短辺を有する矩形基板である場合でも、長辺のエッジ部と、短辺のエッジ部との両方にヘッド部を位置合わせすることができる。 According to this embodiment, the head portion can be moved in the first direction and the second direction. Therefore, not only the head portion can be moved along the edge portion, but also the head portion can be aligned in the direction orthogonal to the extending direction of the edge portion. Therefore, for example, even when the substrate is a rectangular substrate having a long side and a short side, the head portion can be aligned with both the edge portion of the long side and the edge portion of the short side.

本発明の一形態のめっき装置によれば、前記エッジ部洗浄装置は、前記ヘッド部及び前記アクチュエータを制御する制御部を有し、前記アクチュエータは、前記基板のエッジ部に沿って前記ヘッド部を移動させるように構成され、前記制御部は、前記ヘッド部によるUV又はプラズマの放射と前記アクチュエータによる前記基板のエッジ部に沿った前記ヘッド部の移動とを同時に行うように、前記ヘッド部及び前記アクチュエータを制御する。 According to the plating apparatus of one embodiment of the present invention, the edge portion cleaning device has a head portion and a control unit for controlling the actuator, and the actuator has the head portion along the edge portion of the substrate. The control unit is configured to move the head unit and the head unit so that the head unit emits UV or plasma and the actuator simultaneously moves the head unit along the edge portion of the substrate. Control the actuator.

この一形態によれば、矩形基板のエッジ部に沿ってヘッド部を移動させつつUV又はプラズマを放射することができる。 According to this embodiment, UV or plasma can be radiated while moving the head portion along the edge portion of the rectangular substrate.

本発明の一形態のめっき装置によれば、前記エッジ部洗浄装置は、前記ヘッド部を旋回
させる旋回機構を有し、前記制御部は、前記旋回機構による前記ヘッド部の旋回時には前記ヘッド部によるUV又はプラズマの放射を停止させるように、前記ヘッド部及び前記旋回機構を制御する。
According to the plating apparatus of one embodiment of the present invention, the edge cleaning device has a swivel mechanism for swiveling the head portion, and the control unit is based on the head portion when the head portion is swiveled by the swivel mechanism. The head portion and the swivel mechanism are controlled so as to stop the radiation of UV or plasma.

この一形態によれば、ヘッド部が旋回できるので、矩形基板の4辺のエッジ部上にヘッド部を容易に移動させることができる。また、ヘッド部が旋回している間はヘッド部によるUV又はプラズマの放射を行わないので、矩形基板上の意図しない領域にUV又はプラズマが放射されることを防止することができる。 According to this embodiment, since the head portion can be swiveled, the head portion can be easily moved on the edge portions of the four sides of the rectangular substrate. Further, since the head portion does not radiate UV or plasma while the head portion is rotating, it is possible to prevent the UV or plasma from being radiated to an unintended region on the rectangular substrate.

本発明の一形態のめっき装置によれば、前記エッジ部洗浄装置は、前記基板を回転させる回転機構と、前記ヘッド部、前記回転機構、及び前記アクチュエータを制御する制御部と、を有し、前記制御部は、前記回転機構による前記基板の回転時には前記ヘッド部によるUV又はプラズマの放射を停止させるように、前記ヘッド部及び前記回転機構を制御する。 According to the plating apparatus of one embodiment of the present invention, the edge portion cleaning apparatus has a rotation mechanism for rotating the substrate, the head portion, the rotation mechanism, and a control unit for controlling the actuator. The control unit controls the head unit and the rotation mechanism so as to stop the radiation of UV or plasma by the head unit when the substrate is rotated by the rotation mechanism.

この一形態によれば、基板を回転させることができるので、ヘッド部の下方に矩形基板の4辺のエッジ部を容易に移動させることができる。また、基板が回転している間はヘッド部によるUV又はプラズマの放射を行わないので、矩形基板上の意図しない領域にUV又はプラズマが放射されることを防止することができる。 According to this embodiment, since the substrate can be rotated, the edge portions of the four sides of the rectangular substrate can be easily moved below the head portion. Further, since the head portion does not radiate UV or plasma while the substrate is rotating, it is possible to prevent UV or plasma from being radiated to an unintended region on the rectangular substrate.

本発明の一形態のめっき方法によれば、前記除去工程は、UV又はプラズマを放射するヘッド部を矩形の前記基板のエッジ部に沿って移動させながらUV又はプラズマを放射する工程を有する。 According to the plating method of one embodiment of the present invention, the removing step includes a step of radiating UV or plasma while moving the head portion that radiates UV or plasma along the edge portion of the rectangular substrate.

この一形態によれば、矩形基板のエッジ部に沿ってヘッド部を移動させつつUV又はプラズマを放射することができる。 According to this embodiment, UV or plasma can be radiated while moving the head portion along the edge portion of the rectangular substrate.

本発明の一形態のめっき方法によれば、前記除去工程は、前記ヘッド部を水平方向に移動させて、前記矩形の基板のエッジ部に前記ヘッド部を位置合わせする工程を有する。 According to the plating method of one embodiment of the present invention, the removing step includes a step of moving the head portion in the horizontal direction to align the head portion with the edge portion of the rectangular substrate.

この一形態によれば、例えば基板が長辺と短辺を有する矩形基板である場合でも、長辺のエッジ部と、短辺のエッジ部との両方にヘッド部を位置合わせすることができる。 According to this embodiment, for example, even when the substrate is a rectangular substrate having a long side and a short side, the head portion can be aligned with both the edge portion of the long side and the edge portion of the short side.

本発明の一形態のめっき方法によれば、前記除去工程は、前記矩形の基板のエッジ部の一つにUV又はプラズマを放射した後、UV又はプラズマの放射を停止させながら前記ヘッド部を旋回させる工程を有する。 According to the plating method of one embodiment of the present invention, in the removing step, after radiating UV or plasma to one of the edge portions of the rectangular substrate, the head portion is swiveled while stopping the radiation of UV or plasma. It has a step to make it.

この一形態によれば、ヘッド部が旋回できるので、矩形基板の4辺のエッジ部上にヘッド部を容易に移動させることができる。また、ヘッド部が旋回している間はヘッド部によるUV又はプラズマの放射を行わないので、矩形基板上の意図しない領域にUV又はプラズマが放射されることを防止することができる。 According to this embodiment, since the head portion can be swiveled, the head portion can be easily moved on the edge portions of the four sides of the rectangular substrate. Further, since the head portion does not radiate UV or plasma while the head portion is rotating, it is possible to prevent the UV or plasma from being radiated to an unintended region on the rectangular substrate.

本発明の一形態のめっき方法によれば、前記除去工程は、前記矩形の基板のエッジ部の一つにUV又はプラズマを放射した後、UV又はプラズマの放射を停止させながら前記矩形の基板を回転させる工程を有する。 According to the plating method of one embodiment of the present invention, in the removing step, after radiating UV or plasma to one of the edges of the rectangular substrate, the rectangular substrate is radiated while stopping the radiation of UV or plasma. It has a step of rotating.

この一形態によれば、基板を回転させることができるので、ヘッド部の下方に矩形基板の4辺のエッジ部を容易に移動させることができる。また、基板が回転している間はヘッド部によるUV又はプラズマの放射を行わないので、矩形基板上の意図しない領域にUV又はプラズマが放射されることを防止することができる。 According to this embodiment, since the substrate can be rotated, the edge portions of the four sides of the rectangular substrate can be easily moved below the head portion. Further, since the head portion does not radiate UV or plasma while the substrate is rotating, it is possible to prevent UV or plasma from being radiated to an unintended region on the rectangular substrate.

本発明によれば、基板のエッジ部に形成される酸化膜及び基板のエッジ部に付着する有機物の少なくともいずれかを原因とするめっき膜厚の均一性の悪化を防止することができる。 According to the present invention, it is possible to prevent deterioration of the uniformity of the plating film thickness due to at least one of the oxide film formed on the edge portion of the substrate and the organic substance adhering to the edge portion of the substrate.

第1実施形態にかかるめっき装置の全体配置図である。It is an overall layout drawing of the plating apparatus which concerns on 1st Embodiment. 図1に示しためっき装置で使用される基板ホルダの斜視図である。It is a perspective view of the substrate holder used in the plating apparatus shown in FIG. 図2に示した基板ホルダの電気接点を示す断面図である。It is sectional drawing which shows the electric contact of the substrate holder shown in FIG. 図1に示したアライナの概略上面図である。It is a schematic top view of the aligner shown in FIG. 図4に示す矢視5-5におけるアライナの概略断面図である。It is a schematic cross-sectional view of the aligner in the arrow view 5-5 shown in FIG. 図4に示す矢視6-6におけるアライナの概略断面図である。It is a schematic cross-sectional view of the aligner in the arrow view 6-6 shown in FIG. 第1実施形態に係るめっき方法を示すフロー図である。It is a flow figure which shows the plating method which concerns on 1st Embodiment. 第1実施形態に係る他の例のめっき装置の全体配置図である。It is an overall layout drawing of the plating apparatus of another example which concerns on 1st Embodiment. 第2実施形態に係るめっき装置の全体配置図である。It is an overall layout drawing of the plating apparatus which concerns on 2nd Embodiment. 酸化膜除去装置を備えたスピンリンスドライヤを示す概略図である。It is a schematic diagram which shows the spin rinse dryer equipped with the oxide film removing apparatus. 第2実施形態に係るめっき方法を示すフロー図である。It is a flow figure which shows the plating method which concerns on 2nd Embodiment. 第3実施形態にかかるめっき装置の全体配置図である。It is an overall layout drawing of the plating apparatus which concerns on 3rd Embodiment. 第3実施形態に係るめっき方法を示すフロー図である。It is a flow figure which shows the plating method which concerns on 3rd Embodiment. 第4実施形態にかかるめっき装置の全体配置図である。It is an overall layout drawing of the plating apparatus which concerns on 4th Embodiment. スポンジ洗浄装置の概略側面図である。It is a schematic side view of a sponge cleaning device. 第4実施形態に係るめっき方法を示すフロー図である。It is a flow figure which shows the plating method which concerns on 4th Embodiment. 第5実施形態にかかるめっき装置の全体配置図である。It is an overall layout drawing of the plating apparatus which concerns on 5th Embodiment. スポンジ薬液洗浄装置の概略側面図である。It is a schematic side view of the sponge chemical liquid cleaning apparatus. 第5実施形態に係るめっき方法を示すフロー図である。It is a flow figure which shows the plating method which concerns on 5th Embodiment. 第6実施形態にかかるめっき装置の全体配置図である。It is an overall layout drawing of the plating apparatus which concerns on 6th Embodiment. 第6実施形態に係るめっき方法を示すフロー図である。It is a flow figure which shows the plating method which concerns on 6th Embodiment. フィキシングユニットに設けられる有機物脱離装置の一例の概略側面図である。It is a schematic side view of an example of an organic matter desorption device provided in a fixing unit. 図22に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 22. 図22に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 22. 図22に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 22. 図22に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 22. 図22に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 22. フィキシングユニットに設けられる有機物脱離装置の他の一例の概略側面図である。It is a schematic side view of another example of the organic matter desorption apparatus provided in a fixing unit. 図24に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 24. 図24に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 24. 図24に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 24. 図24に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 24. 図24に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 24. フィキシングユニットに設けられる有機物脱離装置の他の一例の概略側面図である。It is a schematic side view of another example of the organic matter desorption apparatus provided in a fixing unit. 図26に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 図26に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 図26に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. フィキシングユニットに設けられる有機物脱離装置の他の一例の概略側面図である。It is a schematic side view of another example of the organic matter desorption apparatus provided in a fixing unit. 図28に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 28. 図28に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 28. 図28に示した有機物脱離装置で矩形基板のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置の平面図である。It is a top view of the organic matter desorption apparatus which shows the process of desorbing the organic matter of the edge portion of a rectangular substrate by the organic matter desorption apparatus shown in FIG. 28.

<第1実施形態>
以下、本発明の実施形態について図面を参照して説明する。以下で説明する図面において、同一の又は相当する構成要素には、同一の符号を付して重複した説明を省略する。
<First Embodiment>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings described below, the same or corresponding components are designated by the same reference numerals and duplicated description will be omitted.

図1は、第1実施形態にかかるめっき装置の全体配置図である。図1に示すように、このめっき装置は、基板ホルダ60に基板をロードし、又は基板ホルダ60から基板をアンロードするロード/アンロード部170Aと、基板を処理する処理部170Bとに大きく分けられる。 FIG. 1 is an overall layout of the plating apparatus according to the first embodiment. As shown in FIG. 1, this plating apparatus is roughly divided into a load / unload unit 170A for loading a substrate into the substrate holder 60 or unloading the substrate from the substrate holder 60, and a processing unit 170B for processing the substrate. Be done.

ロード/アンロード部170Aには、3台のフープ(Front-Opening Unified Pod:FOUP)102と、基板のオリフラ(オリエンテーションフラット)やノッチなどの位置を所定の方向に合わせるアライナ40と、めっき処理後の基板を高速回転させて乾燥させるスピンリンスドライヤ20とが設けられる。フープ102は、半導体ウェハ等の複数の基板を多段に収納する。スピンリンスドライヤ20の近くには、基板ホルダ60を載置して基板の着脱を行うフィキシングユニット120が設けられている。これらのユニット102,40,20,120の中央には、これらのユニット間で基板を搬送する搬送用ロボットからなる基板搬送装置122が配置されている。後述するように、第1実施形態に係るアライナ40は、基板ホルダ60にセットされる前の基板のエッジ部に存在する有機物を局所的に脱離する有機物脱離装置(図4及び図6等参照)を有する。 The load / unload section 170A includes three hoops (Front-Opening Unified Pod: FOUP) 102, an aligner 40 for aligning the positions of the orientation flats and notches of the substrate in predetermined directions, and after plating. A spin rinse dryer 20 is provided to rotate and dry the substrate of the above. The hoop 102 accommodates a plurality of substrates such as semiconductor wafers in multiple stages. Near the spin rinse dryer 20, a fixing unit 120 is provided on which a substrate holder 60 is placed to attach / detach the substrate. At the center of these units 102, 40, 20, and 120, a substrate transfer device 122 including a transfer robot that transfers a substrate between these units is arranged. As will be described later, the aligner 40 according to the first embodiment is an organic substance desorption device (FIGS. 4 and 6 and the like) for locally desorbing organic substances existing at the edge portion of the substrate before being set in the substrate holder 60. See).

フィキシングユニット120は、2個の基板ホルダ60を載置可能に構成される。フィキシングユニット120においては、一方の基板ホルダ60と基板搬送装置122との間で基板の受渡しが行われた後、他方の基板ホルダ60と基板搬送装置122との間で基板の受渡しが行われる。 The fixing unit 120 is configured so that two board holders 60 can be mounted. In the fixing unit 120, the substrate is delivered between one of the board holders 60 and the board transfer device 122, and then the substrate is delivered between the other board holder 60 and the board transfer device 122.

めっき装置の処理部170Bは、ストッカ124と、プリウェット槽126と、プリソーク槽128と、第1洗浄槽130aと、ブロー槽132と、第2洗浄槽130bと、めっき槽10と、を有する。ストッカ124では、基板ホルダ60の保管及び一時仮置きが行われる。プリウェット槽126では、基板が純水に浸漬される。プリソーク槽128では、基板の表面に形成したシード層等の導電層の表面にある酸化膜がエッチング除去される。第1洗浄槽130aでは、プリソーク後の基板が基板ホルダ60と共に洗浄液(純水等)で洗浄される。ブロー槽132では、洗浄後の基板の液切りが行われる。第2洗浄槽130bでは、めっき後の基板が基板ホルダ60と共に洗浄液で洗浄される。ストッカ124、プリウェット槽126、プリソーク槽128、第1洗浄槽130a、ブロー槽132、第2洗浄槽130b、及びめっき槽10は、この順に配置されている。 The processing unit 170B of the plating apparatus includes a stocker 124, a pre-wet tank 126, a pre-soak tank 128, a first washing tank 130a, a blow tank 132, a second washing tank 130b, and a plating tank 10. In the stocker 124, the substrate holder 60 is stored and temporarily placed. In the pre-wet tank 126, the substrate is immersed in pure water. In the pre-soak tank 128, the oxide film on the surface of the conductive layer such as the seed layer formed on the surface of the substrate is removed by etching. In the first cleaning tank 130a, the substrate after pre-soaking is cleaned together with the substrate holder 60 with a cleaning liquid (pure water or the like). In the blow tank 132, the substrate is drained after cleaning. In the second cleaning tank 130b, the plated substrate is cleaned together with the substrate holder 60 with a cleaning liquid. The stocker 124, the pre-wet tank 126, the pre-soak tank 128, the first cleaning tank 130a, the blow tank 132, the second cleaning tank 130b, and the plating tank 10 are arranged in this order.

めっき槽10は、例えば、オーバーフロー槽を備えた複数のめっきセル134を有する。各めっきセル134は、内部に一つの基板を収納し、内部に保持しためっき液中に基板を浸漬させる。めっきセル134において基板とアノードとの間に電圧を印加することにより、基板表面に銅めっき等のめっきが行われる。 The plating tank 10 has, for example, a plurality of plating cells 134 provided with an overflow tank. Each plating cell 134 houses one substrate inside, and the substrate is immersed in the plating solution held inside. By applying a voltage between the substrate and the anode in the plating cell 134, the surface of the substrate is plated with copper or the like.

めっき装置は、これらの各機器の側方に位置して、これらの各機器の間で基板ホルダ60を基板とともに搬送する、例えばリニアモータ方式を採用した基板ホルダ搬送装置140を有する。この基板ホルダ搬送装置140は、第1トランスポータ142と、第2トランスポータ144を有している。第1トランスポータ142は、フィキシングユニット120、ストッカ124、プリウェット槽126、プリソーク槽128、第1洗浄槽130a、及びブロー槽132との間で基板を搬送するように構成される。第2トランスポータ144は、第1洗浄槽130a、第2洗浄槽130b、ブロー槽132、及びめっき槽10との間で基板を搬送するように構成される。他の実施形態では、めっき装置は、第1トランスポータ142及び第2トランスポータ144のいずれか一方のみを備えるようにし、いずれかのトランスポータが、フィキシングユニット120、ストッカ124、プリウェット槽126、プリソーク槽128、第1洗浄槽130a、第2洗浄槽130b、ブロー槽132、及びめっき槽10の間で基板を搬送するようにしてもよい。 The plating apparatus has a substrate holder transfer device 140 that is located on the side of each of these devices and conveys the substrate holder 60 together with the substrate between these devices, for example, by adopting a linear motor method. The substrate holder transfer device 140 has a first transporter 142 and a second transporter 144. The first transporter 142 is configured to transport the substrate between the fixing unit 120, the stocker 124, the pre-wet tank 126, the pre-soak tank 128, the first cleaning tank 130a, and the blow tank 132. The second transporter 144 is configured to transport the substrate between the first cleaning tank 130a, the second cleaning tank 130b, the blow tank 132, and the plating tank 10. In another embodiment, the plating apparatus is provided with only one of the first transporter 142 and the second transporter 144, and one of the transporters is a fixing unit 120, a stocker 124, a pre-wet tank 126, and the like. The substrate may be transported between the pre-soak tank 128, the first cleaning tank 130a, the second cleaning tank 130b, the blow tank 132, and the plating tank 10.

図2は図1に示しためっき装置で使用される基板ホルダ60の斜視図である。基板ホルダ60は、図2に示すように、例えば塩化ビニル製で矩形平板状の第1保持部材65と、この第1保持部材65にヒンジ63を介して開閉自在に取付けられた第2保持部材66とを有している。基板ホルダ60の第1保持部材65の略中央部には、基板を保持するための保持面68が設けられている。また、第1保持部材65の保持面68の外側には、保持面68の円周に沿って、内方に突出する突出部を有する逆L字状のクランパ67が等間隔に設けられている。 FIG. 2 is a perspective view of the substrate holder 60 used in the plating apparatus shown in FIG. As shown in FIG. 2, the substrate holder 60 includes, for example, a first holding member 65 made of vinyl chloride and having a rectangular flat plate shape, and a second holding member 65 that is openably and closably attached to the first holding member 65 via a hinge 63. It has 66 and. A holding surface 68 for holding the board is provided at substantially the center of the first holding member 65 of the board holder 60. Further, on the outside of the holding surface 68 of the first holding member 65, inverted L-shaped clampers 67 having inwardly protruding portions along the circumference of the holding surface 68 are provided at equal intervals. ..

基板ホルダ60の第1保持部材65の端部には、基板ホルダ60を搬送したり吊下げ支持したりする際の支持部となる一対の略T字状のハンド69が連結されている。図1に示したストッカ124内において、ストッカ124の周壁上面にハンド69を引っ掛けることで、基板ホルダ60が垂直に吊下げ支持される。また、この吊下げ支持された基板ホルダ60のハンド69を第1トランスポータ142又は第2トランスポータ144で把持して基板ホルダ60が搬送される。なお、プリウェット槽126、プリソーク槽128、洗浄槽130a,130b、ブロー槽132及びめっき槽10内においても、基板ホルダ60は、ハンド69を介してそれらの周壁に吊下げ支持される。 A pair of substantially T-shaped hands 69, which serve as support portions for transporting or suspending and supporting the substrate holder 60, are connected to the end portion of the first holding member 65 of the substrate holder 60. In the stocker 124 shown in FIG. 1, the substrate holder 60 is vertically suspended and supported by hooking the hand 69 on the upper surface of the peripheral wall of the stocker 124. Further, the hand 69 of the board holder 60 suspended and supported is gripped by the first transporter 142 or the second transporter 144, and the board holder 60 is conveyed. Also in the pre-wet tank 126, the pre-soak tank 128, the cleaning tanks 130a and 130b, the blow tank 132 and the plating tank 10, the substrate holder 60 is suspended and supported on the peripheral wall thereof via the hand 69.

また、ハンド69には、外部の電力供給部に接続するための図示しない外部接点が設けられている。この外部接点は、複数の配線を介して保持面68の外周に設けられた複数の導電体73(図3参照)と電気的に接続されている。 Further, the hand 69 is provided with an external contact (not shown) for connecting to an external power supply unit. The external contact is electrically connected to a plurality of conductors 73 (see FIG. 3) provided on the outer periphery of the holding surface 68 via a plurality of wirings.

第2保持部材66は、ヒンジ63に固定された基部61と、基部61に固定されたリング状のシールホルダ62とを備えている。第2保持部材66のシールホルダ62には、シールホルダ62を第1保持部材65に押し付けて固定するための押えリング64が回転自在に装着されている。押えリング64は、その外周部において外方に突出する複数の突条部64aを有している。突条部64aの上面とクランパ67の内方突出部の下面は、回転方向に沿って互いに逆方向に傾斜するテーパ面を有する。 The second holding member 66 includes a base portion 61 fixed to the hinge 63 and a ring-shaped seal holder 62 fixed to the base portion 61. A presser ring 64 for pressing and fixing the seal holder 62 against the first holding member 65 is rotatably mounted on the seal holder 62 of the second holding member 66. The presser ring 64 has a plurality of ridges 64a protruding outward on the outer peripheral portion thereof. The upper surface of the ridge portion 64a and the lower surface of the inwardly projecting portion of the clamper 67 have tapered surfaces that are inclined in opposite directions along the rotation direction.

基板を保持するときは、まず、第2保持部材66を開いた状態で、第1保持部材65の保持面68に基板を載置し、第2保持部材66を閉じる。続いて、押えリング64を時計回りに回転させて、押えリング64の突条部64aをクランパ67の内方突出部の内部(下側)に滑り込ませる。これにより、押えリング64とクランパ67にそれぞれ設けられたテーパ面を介して、第1保持部材65と第2保持部材66とが互いに締付けられてロックされ、基板が保持される。基板の保持を解除するときは、第1保持部材65と第2保持部材66とがロックされた状態において、押えリング64を反時計回りに回転させる。これにより、押えリング64の突条部64aが逆L字状のクランパ67から外されて、基板の保持が解除される。 When holding the substrate, first, the substrate is placed on the holding surface 68 of the first holding member 65 with the second holding member 66 open, and the second holding member 66 is closed. Subsequently, the presser ring 64 is rotated clockwise so that the ridge portion 64a of the presser ring 64 is slid into the inside (lower side) of the inwardly protruding portion of the clamper 67. As a result, the first holding member 65 and the second holding member 66 are fastened to each other and locked via the tapered surfaces provided on the holding ring 64 and the clamper 67, respectively, and the substrate is held. When releasing the holding of the substrate, the holding ring 64 is rotated counterclockwise with the first holding member 65 and the second holding member 66 locked. As a result, the ridge portion 64a of the presser ring 64 is removed from the inverted L-shaped clamper 67, and the holding of the substrate is released.

図3は、図2に示した基板ホルダ60の電気接点を示す断面図である。図3に示すように、第1保持部材65の保持面68には基板Wが載置されている。保持面68と第1保持部材65との間には、図2に示したハンド69に設けられた外部接点から延びる複数の配線に接続された複数の(図示では1つの)導電体73が配置されている。導電体73は、第1保持部材65の保持面68上に基板Wを載置した際、この導電体73の端部が基板Wの側方で第1保持部材65の表面にばね特性を有した状態で露出するように基板Wの円周外側に複数配置されている。 FIG. 3 is a cross-sectional view showing an electrical contact of the substrate holder 60 shown in FIG. As shown in FIG. 3, the substrate W is placed on the holding surface 68 of the first holding member 65. Between the holding surface 68 and the first holding member 65, a plurality of conductors 73 (one in the figure) connected to a plurality of wires extending from an external contact provided on the hand 69 shown in FIG. 2 are arranged. Has been done. When the substrate W is placed on the holding surface 68 of the first holding member 65, the conductor 73 has a spring characteristic on the surface of the first holding member 65 with the end portion of the conductor 73 on the side of the substrate W. A plurality of the substrates W are arranged on the outer circumference of the substrate W so as to be exposed in this state.

シールホルダ62の、第1保持部材65と対向する面(図中下面)には、基板ホルダ60で基板Wを保持したときに基板Wの表面外周部及び第1保持部材65に圧接されるシール部材70が取付けられている。シール部材70は、基板Wの表面をシールするリップ部70aと、第1保持部材65の表面をシールするリップ部70bとを有する。 The surface of the seal holder 62 facing the first holding member 65 (lower surface in the drawing) is a seal that is pressed against the outer peripheral portion of the surface of the substrate W and the first holding member 65 when the substrate W is held by the substrate holder 60. The member 70 is attached. The sealing member 70 has a lip portion 70a that seals the surface of the substrate W and a lip portion 70b that seals the surface of the first holding member 65.

シール部材70の一対のリップ部70a,70bで挟まれた内部には、支持体71が取付けられる。支持体71には導電体73から給電可能に構成された電気接点72が、例えばねじ等で固定され、基板Wの円周に沿って複数配置されている。電気接点72は、保持面68の内側へ向かって延びる電気接点端部72aと、導電体73から給電可能に構成された脚部72bとを有している。 A support 71 is attached to the inside of the sealing member 70 sandwiched between the pair of lip portions 70a and 70b. A plurality of electric contacts 72 configured to be able to supply power from the conductor 73 are fixed to the support 71 with screws or the like, and are arranged along the circumference of the substrate W. The electric contact 72 has an electric contact end portion 72a extending inward of the holding surface 68, and a leg portion 72b configured to be able to supply power from the conductor 73.

図2に示した第1保持部材65と第2保持部材66とがロックされると、図3に示すように、シール部材70の内周面側の短いリップ部70aが基板Wの表面に、外周面側の長いリップ部70bが第1保持部材65の表面にそれぞれ押圧される。これにより、リップ部70a及びリップ部70b間が確実にシールされるとともに、基板Wが保持される。 When the first holding member 65 and the second holding member 66 shown in FIG. 2 are locked, as shown in FIG. 3, a short lip portion 70a on the inner peripheral surface side of the sealing member 70 is formed on the surface of the substrate W. The long lip portion 70b on the outer peripheral surface side is pressed against the surface of the first holding member 65, respectively. As a result, the space between the lip portion 70a and the lip portion 70b is reliably sealed, and the substrate W is held.

シール部材70でシールされた領域、即ちシール部材70の一対のリップ部70a,70bで挟まれた領域において、導電体73が電気接点72の脚部72bに電気的に接続され、且つ電気接点端部72aが基板Wのエッジ部上のシード層に接触する。これにより、基板Wをシール部材70でシールしつつ基板ホルダ60で保持した状態で、電気接点72を介して基板Wに給電することができる。 In the region sealed by the seal member 70, that is, the region sandwiched between the pair of lip portions 70a and 70b of the seal member 70, the conductor 73 is electrically connected to the leg portion 72b of the electric contact 72 and the electric contact end is end. The portion 72a contacts the seed layer on the edge portion of the substrate W. As a result, power can be supplied to the substrate W via the electric contact 72 while the substrate W is sealed by the sealing member 70 and held by the substrate holder 60.

上述したように、シード層が形成された基板Wには、予めレジストパターンが形成される。基板Wは、図1に示しためっき装置に搬送される前に、UVの照射等が行われて、基板表面上のレジスト残渣が除去され(アッシング処理)且つレジスト表面の親水化処理(ディスカム処理)が行われる。アッシング処理及びディスカム処理が行われた基板Wは、その後めっき装置に搬送され、基板ホルダ60に保持される。ここで、基板Wのレジストが塗布されていないエッジ部上のシード層には、アッシング処理及びディスカム処理からの時間経過によって、酸化膜が形成されたり、レジストから揮発した有機物が付着したりすることがある。図3に示すように電気接点72は基板Wのエッジ部上に接触するので、基板Wのエッジ部上のシード層に酸化膜が形成されたり、有機物が付着したりすると、基板ホルダ60の電気接点72の接触抵抗にバラつきが生じ、めっき膜厚の均一性が悪化するという問題がある。 As described above, a resist pattern is formed in advance on the substrate W on which the seed layer is formed. Before being conveyed to the plating apparatus shown in FIG. 1, the substrate W is irradiated with UV to remove the resist residue on the substrate surface (ashing treatment) and the resist surface is hydrophilized (discum treatment). ) Is performed. The substrate W subjected to the ashing treatment and the discum treatment is then conveyed to the plating apparatus and held in the substrate holder 60. Here, an oxide film is formed or organic substances volatilized from the resist adhere to the seed layer on the edge portion of the substrate W to which the resist is not applied, due to the passage of time from the ashing treatment and the discard treatment. There is. As shown in FIG. 3, since the electric contact 72 contacts the edge portion of the substrate W, if an oxide film is formed on the seed layer on the edge portion of the substrate W or an organic substance adheres to the seed layer, the electricity of the substrate holder 60 is obtained. There is a problem that the contact resistance of the contact 72 varies and the uniformity of the plating film thickness deteriorates.

そこで、本実施形態では、図1に示したアライナ40に有機物脱離装置を設け、基板Wのエッジ部上のシード層に形成される有機物を脱離(除去)する。なお、本明細書において、基板Wのエッジ部とは、電気接点72が接触し得る領域、又は基板ホルダ60により基板Wが保持される際、シール部材70が接触する部分よりも基板Wの周縁部側となる領域をいう。例えば、本実施形態においては、図3に示したシール部材70のリップ部70aが当接する部分よりも外周側の領域をいい、基板Wの外周縁部から基板中心に向かって約5mmの範囲内、より好ましくは、約2mmの範囲内をいう。 Therefore, in the present embodiment, the aligner 40 shown in FIG. 1 is provided with an organic matter desorbing device to desorb (remove) the organic matter formed in the seed layer on the edge portion of the substrate W. In the present specification, the edge portion of the substrate W is a region where the electric contact 72 can contact, or a peripheral edge of the substrate W rather than a portion where the seal member 70 contacts when the substrate W is held by the substrate holder 60. The area on the part side. For example, in the present embodiment, it refers to a region on the outer peripheral side of the portion of the seal member 70 shown in FIG. 3 where the lip portion 70a abuts, and is within a range of about 5 mm from the outer peripheral edge portion of the substrate W toward the center of the substrate. , More preferably, it means within a range of about 2 mm.

図4は、図1に示したアライナ40の概略上面図である。図5は、図4に示す矢視5-5におけるアライナ40の概略断面図であり、図6は、図4に示す矢視6-6におけるアライナ40の概略断面図である。図4ないし6に示すように、アライナ40は、ベース41と、回転ステージ42と、アライナ光源43と、光検出器44と、有機物脱離装置45(エッジ部洗浄装置の一例に相当する)と、を有する。 FIG. 4 is a schematic top view of the aligner 40 shown in FIG. FIG. 5 is a schematic cross-sectional view of the liner 40 in arrow view 5-5 shown in FIG. 4, and FIG. 6 is a schematic cross-sectional view of the liner 40 in arrow view 6-6 shown in FIG. As shown in FIGS. 4 to 6, the aligner 40 includes a base 41, a rotating stage 42, an aligner light source 43, a photodetector 44, and an organic matter desorption device 45 (corresponding to an example of an edge cleaning device). , Have.

回転ステージ42は、基板Wの裏面を吸着するように構成され、基板Wを周方向に回転させる。なお、回転ステージ42は、静電吸着式又は真空吸着式で基板Wを吸着する。アライナ光源43は、回転ステージ42によって回転される基板Wのエッジ部付近に光46を照射するように構成される。基板Wが回転することにより、基板Wのノッチがアライナ光源43からの光46が照射される位置に移動したとき、光46はノッチを通過して光検出器44に到達する。光検出器44が光46を検出したとき、アライナ40は、基板Wのノッチがアライナ光源43の直下に位置することを認識することができ、基板Wの向きを整列させることができる。 The rotation stage 42 is configured to attract the back surface of the substrate W, and rotates the substrate W in the circumferential direction. The rotary stage 42 adsorbs the substrate W by an electrostatic adsorption type or a vacuum adsorption type. The aligner light source 43 is configured to irradiate the light 46 near the edge portion of the substrate W rotated by the rotating stage 42. When the notch of the substrate W moves to the position where the light 46 from the aligner light source 43 is irradiated by the rotation of the substrate W, the light 46 passes through the notch and reaches the photodetector 44. When the photodetector 44 detects the light 46, the aligner 40 can recognize that the notch of the substrate W is located directly below the aligner light source 43, and can align the orientation of the substrate W.

有機物脱離装置45は、UV照射装置又はプラズマ放射装置である。本実施形態では、基板Wの上方から、基板Wのエッジ部に局所的にUV又はプラズマを適用できるように構成されている。有機物脱離装置45は、基板ホルダ60に保持される前の基板Wのエッジ部に局所的にUV又はプラズマを適用することができる。言い換えれば、基板Wのエッジ部以外の領域は、UV又はプラズマに曝されない。回転ステージ42によって基板Wを回転することにより、基板Wのエッジ部全周に亘ってUV又はプラズマを効率的に適用することができる。基板Wのエッジ部に付着した有機物にUV又はプラズマを照射すると、有機物が分解されて揮発性物質が生成され、揮発性物質となった有機物は揮発して除去される。UV照射装置のUV照射源又はプラズマ放射装置のプラズマ放射口と基板Wとの距離は、約1mm以上約10mm以下とすることが好ましい。この距離が1mm未満であると、基板とUV照射源又はプラズマ放射装置のプラズマ放射口とが物理的に接触する可能性がある。また、この距離を10mm超とすると、局所的にUV又はプラズマを照射できない可能性がある。基板とUV照射源又はプラズマ放射装置のプラズマ放射口とをより確実に物理的に接触させることなく、また、局所的に照射できるようにするためには、この距離を約2mm以上約5mm以下とすることがより好ましい。 The organic matter desorption device 45 is a UV irradiation device or a plasma radiation device. In the present embodiment, UV or plasma can be locally applied to the edge portion of the substrate W from above the substrate W. The organic substance desorption device 45 can locally apply UV or plasma to the edge portion of the substrate W before being held by the substrate holder 60. In other words, the region other than the edge portion of the substrate W is not exposed to UV or plasma. By rotating the substrate W by the rotation stage 42, UV or plasma can be efficiently applied over the entire circumference of the edge portion of the substrate W. When the organic substance adhering to the edge portion of the substrate W is irradiated with UV or plasma, the organic substance is decomposed to generate a volatile substance, and the organic substance that has become a volatile substance is volatilized and removed. The distance between the UV irradiation source of the UV irradiation device or the plasma emission port of the plasma radiation device and the substrate W is preferably about 1 mm or more and about 10 mm or less. If this distance is less than 1 mm, the substrate may come into physical contact with the UV irradiation source or the plasma emission port of the plasma emission device. Further, if this distance is more than 10 mm, it may not be possible to locally irradiate UV or plasma. In order to enable local irradiation without more reliable physical contact between the substrate and the UV irradiation source or the plasma emission port of the plasma emission device, this distance should be about 2 mm or more and about 5 mm or less. It is more preferable to do so.

有機物脱離装置45がUV照射装置である場合において、UV光源としては、例えば、高圧水銀ランプ、低圧水銀ランプ、ブラックライト、又はUV領域の光を放射可能なレーザー光源等を採用することができる。高圧水銀ランプ、低圧水銀ランプ、及びブラックライトは光が発散する傾向を有するので、これらの光源を採用する場合は、光源を基板Wの近傍に設置するか、光学系を用いてエッジ部のみにUVを照射するようにすることが好ましい。有機物脱離装置45がプラズマ放射装置である場合は、例えば大気リモートプラズ
マ装置等を採用することができる。
When the organic substance desorption device 45 is a UV irradiation device, for example, a high-pressure mercury lamp, a low-pressure mercury lamp, a black light, a laser light source capable of radiating light in the UV region, or the like can be adopted as the UV light source. .. High-pressure mercury lamps, low-pressure mercury lamps, and black lights tend to emit light. Therefore, when adopting these light sources, install the light source near the substrate W or use an optical system only at the edge. It is preferable to irradiate with UV. When the organic matter desorption device 45 is a plasma radiating device, for example, an atmospheric remote plasma device or the like can be adopted.

アライナ40は、さらに、基板Wのエッジ部に、エッジ部の上方から紫外領域(200nmから380nm)の光、例えば365nmの波長を有する光を励起光として基板Wのエッジ部に対して照射し、エッジ部からの反射光を見ることで、吸光度を測定するように構成されたセンサ(分光光度計)、又は蛍光領域の光を照射してその反射光の強度をモニタするためのセンサ(蛍光反射膜厚計)を備えてもよい。 The aligner 40 further irradiates the edge portion of the substrate W with light in the ultraviolet region (200 nm to 380 nm) from above the edge portion, for example, light having a wavelength of 365 nm as excitation light to the edge portion of the substrate W. A sensor (spectral photometric meter) configured to measure the absorbance by looking at the reflected light from the edge, or a sensor (fluorescence reflection) for irradiating light in the fluorescent region and monitoring the intensity of the reflected light. A film thickness meter) may be provided.

このセンサ(不図示)は、有機物脱離装置45に設けても良いし、アライナ40に別途設けても良い。本実施形態に係るめっき装置の制御部は、このセンサにより測定された吸光度又は蛍光強度の値が、予め設定した閾値よりも大きい値か否かによって、エッジ部の汚染物質(有機物及び酸化膜を含む)が十分に除去されているか否かを判定することができるように構成されている。例えば、エッジ部の汚染物質が十分に除去されていないと判定された場合は、有機物脱離装置45は、基板Wのエッジ部に局所的にUV又はプラズマを放射する工程を繰り返し実施してもよい。また、エッジ部の汚染物質が十分に除去されていると判定された場合には、有機物の脱離が完了したものとして、基板Wは、基板搬送装置122によってフィキシングユニット120に搬送されて、これに続く一連のめっき処理が実施される。このように、基板Wのエッジ部に汚染物質が存在しているかいないかをめっき処理前に判定し、その後、エッジ部に汚染物質が残存していない基板についてめっき処理を行うようにすることで、基板ホルダ60が有する電気接点の接触抵抗のばらつきに起因する基板Wのめっき膜厚の面内均一性の悪化等を、より確実に防止できる。 This sensor (not shown) may be provided in the organic matter desorption device 45 or may be separately provided in the aligner 40. The control unit of the plating apparatus according to the present embodiment removes contaminants (organic substances and oxide film) at the edge portion depending on whether or not the value of the absorbance or the fluorescence intensity measured by this sensor is larger than a preset threshold value. It is configured so that it can be determined whether or not (including) is sufficiently removed. For example, if it is determined that the contaminants on the edge portion have not been sufficiently removed, the organic matter desorption device 45 may repeatedly carry out the step of locally radiating UV or plasma to the edge portion of the substrate W. good. Further, when it is determined that the contaminants on the edge portion have been sufficiently removed, the substrate W is transported to the fixing unit 120 by the substrate transport device 122, assuming that the desorption of organic substances has been completed. A series of plating treatments following the above are carried out. In this way, it is determined whether or not a contaminant is present on the edge portion of the substrate W before the plating treatment, and then the plating treatment is performed on the substrate in which the contaminant does not remain on the edge portion. It is possible to more reliably prevent deterioration of the in-plane uniformity of the plating film thickness of the substrate W due to the variation in the contact resistance of the electric contacts of the substrate holder 60.

図7は、第1実施形態に係るめっき方法を示すフロー図である。本めっき方法では、まず、図1に示しためっき装置に基板Wを搬送する前に、基板Wにレジストパターンを形成する(ステップS601)。続いて、レジストパターンが形成された基板WにUVの照射を行い、基板W表面上のレジスト残渣を除去し(アッシング処理)且つレジスト表面の親水化処理(ディスカム処理)を行う(ステップS602)。ステップS601及びステップS602の処理は、図1に示しためっき装置以外の任意の装置において行われる。 FIG. 7 is a flow chart showing a plating method according to the first embodiment. In this plating method, first, a resist pattern is formed on the substrate W before the substrate W is conveyed to the plating apparatus shown in FIG. 1 (step S601). Subsequently, the substrate W on which the resist pattern is formed is irradiated with UV, the resist residue on the surface of the substrate W is removed (ashing treatment), and the resist surface is hydrophilized (discum treatment) (step S602). The processing of steps S601 and S602 is performed in any device other than the plating device shown in FIG.

続いて、基板Wを収容したフープ102から、基板搬送装置122によって、基板Wがアライナ40へ搬送される。アライナ40において、基板Wのエッジ部の洗浄が行われる(ステップS603)。具体的には、アライナ40において、有機物脱離装置45により基板Wのエッジ部に局所的にUV又はプラズマが適用され、有機物が脱離される。なお、この時基板Wの向きがアライナ40によって整列される。 Subsequently, the substrate W is conveyed to the aligner 40 by the substrate transfer device 122 from the hoop 102 accommodating the substrate W. In the aligner 40, the edge portion of the substrate W is cleaned (step S603). Specifically, in the aligner 40, UV or plasma is locally applied to the edge portion of the substrate W by the organic substance desorption device 45, and the organic substance is desorbed. At this time, the orientation of the substrate W is aligned by the aligner 40.

図7に示すフローには記載されていないが、アライナ40にセンサ(不図示)を設けた場合には、基板Wのエッジ部に存在した有機物及び酸化膜の少なくともいずれか1つにUV又はプラズマを適用して局所的に除去した後に、エッジ部の汚染物質(有機物及び酸化膜を含む)の有無を確認することができる。具体的には、まず、アライナ40に配置された基板Wの表面の上方にセンサ(分光光度計又は蛍光反射膜厚計)を位置させる。アライナ40により基板Wを回転又は静止させた状態で、センサを基板中心部からエッジ部へ(又はエッジ部から基板中心部へ)走査させながら、センサから基板Wの表面に向かって紫外領域(200nmから380nm)の光、例えば365nmの波長の光を励起光として照射し、吸光度または蛍光強度を測定する。 Although not shown in the flow shown in FIG. 7, when the aligner 40 is provided with a sensor (not shown), UV or plasma is applied to at least one of the organic substance and the oxide film existing at the edge portion of the substrate W. After local removal by applying, the presence or absence of contaminants (including organic matter and oxide film) on the edge can be confirmed. Specifically, first, a sensor (spectrophotometer or fluorescence reflection film thickness meter) is positioned above the surface of the substrate W arranged on the aligner 40. The ultraviolet region (200 nm) from the sensor toward the surface of the substrate W while scanning the sensor from the center of the substrate to the edge (or from the edge to the center of the substrate) while the substrate W is rotated or stationary by the aligner 40. Light of (380 nm) to, for example, light having a wavelength of 365 nm is irradiated as excitation light, and the absorbance or fluorescence intensity is measured.

基板表面には、UV又はプラズマ処理が行われたエッジ部と、UV又はプラズマ処理が行われていない被めっき面とが存在し、シード層は、基板表面の全域(被めっき面とエッジ部)に形成されている。そして、被めっき面とエッジ部にセンサを走査させることで、被めっき面とエッジ部の両方の吸光度又は蛍光強度を測定することができる。めっき装置の制御部は、例えば、この被めっき面とエッジ部の両方の吸光度を比較し、例えば被めっ
き面の吸光度に対するエッジ部の吸光度の比の値が予め設定した閾値(例えば50%以下)より大きいか否かにより、エッジ部の汚染物質(有機物および酸化膜を含む)が十分に除去されているか否かを判定することができる。上記比の値が閾値より大きい場合は、エッジ部の汚染物質(有機物および酸化膜を含む)は十分に除去されていないと判定できる。また、上記比の値が閾値より大きくない場合はエッジ部の汚染物質(有機物および酸化膜を含む)は十分に除去されていると判定できる。蛍光強度を測定する場合も、同様に所定の閾値と測定値とを比較することで、エッジ部の汚染物質が十分に除去されているか否かを判定することができる。
The surface of the substrate has an edge portion subjected to UV or plasma treatment and a surface to be plated not subjected to UV or plasma treatment, and the seed layer is the entire surface of the substrate surface (surface to be plated and edge portion). Is formed in. Then, by scanning the sensor on the surface to be plated and the edge portion, the absorbance or fluorescence intensity of both the surface to be plated and the edge portion can be measured. The control unit of the plating apparatus compares, for example, the absorbances of both the surface to be plated and the edge portion, and for example, the value of the ratio of the absorbance of the edge portion to the absorbance of the surface to be plated is a preset threshold value (for example, 50% or less). Whether or not it is larger can determine whether or not the contaminants (including organic substances and oxide film) at the edge portion are sufficiently removed. When the value of the above ratio is larger than the threshold value, it can be determined that the contaminants (including organic substances and oxide film) at the edge portion are not sufficiently removed. Further, when the value of the above ratio is not larger than the threshold value, it can be determined that the contaminants (including organic substances and oxide film) at the edge portion are sufficiently removed. Also in the case of measuring the fluorescence intensity, it is possible to determine whether or not the contaminants on the edge portion are sufficiently removed by similarly comparing the predetermined threshold value with the measured value.

この判定に基づき、エッジ部の汚染物質が十分に除去されていないと判定された場合は、基板Wのエッジ部に局所的にUV又はプラズマを放射する工程を繰り返し実施してもよい。また、エッジ部の汚染物質が十分に除去されていると判定された場合は、有機物の脱離が完了したものとして、基板搬送装置122によってフィキシングユニット120に搬送され、一連のめっき処理が実施される。このように、基板Wのエッジ部に汚染物質が存在しているかいないかをめっき処理前に判定し、その後、エッジ部に汚染物質が残存していない基板についてめっき処理を行うようにすることで、基板ホルダ60が有する電気接点の接触抵抗のばらつきに起因する基板Wのめっき膜厚の面内均一性の悪化等を、より確実に防止できる。 If it is determined based on this determination that the contaminants on the edge portion have not been sufficiently removed, the step of locally radiating UV or plasma to the edge portion of the substrate W may be repeated. Further, when it is determined that the contaminants on the edge portion have been sufficiently removed, it is assumed that the desorption of organic substances has been completed, and the contaminants are transported to the fixing unit 120 by the substrate transport device 122, and a series of plating treatments are performed. To. In this way, it is determined whether or not a contaminant is present on the edge portion of the substrate W before the plating treatment, and then the plating treatment is performed on the substrate in which the contaminant does not remain on the edge portion. It is possible to more reliably prevent deterioration of the in-plane uniformity of the plating film thickness of the substrate W due to the variation in the contact resistance of the electric contacts of the substrate holder 60.

エッジ部の洗浄が行われた基板Wは、基板搬送装置122によってフィキシングユニット120に搬送され、基板ホルダ60にセットされる(ステップS604)。このとき、基板Wのエッジ部の有機物は脱離されているので、基板ホルダ60の電気接点は、洗浄された基板Wのエッジ部と接触する。これにより、有機物の付着に起因する基板ホルダ60の電気接点の接触抵抗のバラつきを低減することができる。 The substrate W whose edge portion has been cleaned is transported to the fixing unit 120 by the substrate transport device 122 and set in the substrate holder 60 (step S604). At this time, since the organic matter at the edge portion of the substrate W is desorbed, the electric contact of the substrate holder 60 comes into contact with the edge portion of the cleaned substrate W. This makes it possible to reduce variations in the contact resistance of the electrical contacts of the substrate holder 60 due to the adhesion of organic substances.

基板ホルダ60に保持された基板Wは、基板ホルダ搬送装置140により、まずプリウェット槽126に搬送され、プリウェット槽126に収容された純水に基板Wが浸漬される(ステップS605)。続いて、基板Wは、プリソーク槽128に搬送され、基板Wの表面が酸洗浄される(ステップS606)。具体的には、プリソーク槽128に収容された硫酸や硝酸等の薬液に基板Wが浸漬され、基板の表面に形成されたシード層の表面の酸化膜がエッチング除去される。 The substrate W held in the substrate holder 60 is first conveyed to the pre-wet tank 126 by the substrate holder transfer device 140, and the substrate W is immersed in the pure water contained in the pre-wet tank 126 (step S605). Subsequently, the substrate W is conveyed to the pre-soak tank 128, and the surface of the substrate W is pickled (step S606). Specifically, the substrate W is immersed in a chemical solution such as sulfuric acid or nitric acid contained in the pre-soak tank 128, and the oxide film on the surface of the seed layer formed on the surface of the substrate is removed by etching.

図7に示すフローには記載されていないが、酸洗浄された基板Wは、その後第1洗浄槽130aに収容された純水に浸漬されて、基板W表面に付着した薬液が洗浄されてもよい。続いて、基板Wは、めっき槽10のいずれかのめっきセル134に浸漬されて、めっき処理が行われる(ステップS607)。表面にめっき膜が形成された基板Wには、QDR(Quick Damp Rinse)処理が行われる(ステップS608)。具体的には、基板Wは、第2洗浄槽130bに収容された純水に浸漬されて、基板W表面に付着しためっき液が洗浄される。 Although not shown in the flow shown in FIG. 7, the acid-cleaned substrate W is subsequently immersed in pure water contained in the first cleaning tank 130a to clean the chemical solution adhering to the surface of the substrate W. good. Subsequently, the substrate W is immersed in any of the plating cells 134 of the plating tank 10 to perform a plating process (step S607). A QDR (Quick Damp Rinse) treatment is performed on the substrate W on which the plating film is formed on the surface (step S608). Specifically, the substrate W is immersed in pure water contained in the second cleaning tank 130b to clean the plating solution adhering to the surface of the substrate W.

続いて、基板ホルダ60に保持された基板Wはフィキシングユニット120に搬送され、基板ホルダ60から基板Wが取り外される。基板搬送装置122は、フィキシングユニット120から基板Wを受け取り、スピンリンスドライヤ20に基板Wを搬送する。基板Wは、スピンリンスドライヤ20において、表面の洗浄及び乾燥が行われる(ステップS609)。 Subsequently, the substrate W held by the substrate holder 60 is conveyed to the fixing unit 120, and the substrate W is removed from the substrate holder 60. The substrate transfer device 122 receives the substrate W from the fixing unit 120 and conveys the substrate W to the spin rinse dryer 20. The surface of the substrate W is cleaned and dried in the spin rinse dryer 20 (step S609).

以上で説明したように、本実施形態によれば、基板ホルダ60にセットされる前に、基板Wのエッジ部に存在する有機物を局所的に除去することができる。したがって、基板Wの表面に形成されたレジストパターンに悪影響を与えることなく、基板Wのエッジ部に存在する有機物に起因する基板ホルダ60の電気接点72の接触抵抗のバラつきを抑制し、
めっき膜厚の均一性の悪化を防止することができる。
As described above, according to the present embodiment, the organic matter existing at the edge portion of the substrate W can be locally removed before being set in the substrate holder 60. Therefore, the variation in the contact resistance of the electric contact 72 of the substrate holder 60 due to the organic matter existing at the edge portion of the substrate W is suppressed without adversely affecting the resist pattern formed on the surface of the substrate W.
It is possible to prevent deterioration of the uniformity of the plating film thickness.

また、本実施形態によれば、基板Wのエッジ部に局所的にUV又はプラズマを放射することができる。これにより、基板Wのエッジ部以外の表面、即ち基板W上のレジストが塗布されている部分にはUV又はプラズマを放射することがないので、レジストにダメージを与えることなく、基板Wのエッジ部の有機物を脱離させることができる。 Further, according to the present embodiment, UV or plasma can be locally emitted to the edge portion of the substrate W. As a result, UV or plasma is not radiated to the surface other than the edge portion of the substrate W, that is, the portion of the substrate W on which the resist is applied, so that the edge portion of the substrate W is not damaged. Organic matter can be desorbed.

また、本実施形態によれば、有機物脱離装置45がアライナ40に設けられるので、アライナ40により基板を回転させつつ、UV照射装置又はプラズマ照射装置で基板Wのエッジ部を処理することができる。したがって、有機物脱離装置45に基板を回転させる機構を設ける必要がないので、コストを低減することができる。また、有機物脱離装置45をアライナ40に設けることで、めっき装置全体のフットプリントを低減することもできる。 Further, according to the present embodiment, since the organic substance desorption device 45 is provided in the aligner 40, the edge portion of the substrate W can be processed by the UV irradiation device or the plasma irradiation device while rotating the substrate by the aligner 40. .. Therefore, it is not necessary to provide the organic matter desorption device 45 with a mechanism for rotating the substrate, so that the cost can be reduced. Further, by providing the organic matter desorption device 45 in the aligner 40, the footprint of the entire plating device can be reduced.

なお、有機物脱離装置45をアライナ40とは別にめっき装置に設けてもよい。図8は、第1実施形態に係る他の例のめっき装置の全体配置図である。図8に示すように、有機物脱離装置45は、アライナ40とは別に、ロード/アンロード部170A内に設けられる。この場合、アライナ40は、図4ないし図6に示した構成から有機物脱離装置45を除いた構成を有する。一方、有機物脱離装置45は、基板Wを回転させるための図4ないし6に示した回転ステージ42と同様の機構を有する必要がある。図8に示すめっき装置によれば、有機物脱離装置45がアライナ40とは別に設けられるので、複数の基板Wに対して有機物脱離装置45の処理とアライナ40との処理をそれぞれ別々に行うことができる。そこで、有機物脱離処理に時間を要していることによって、処理全体のスループットが有機物脱離処理の処理時間で決められているような場合には、図1に示すめっき装置に比べてスループットを向上させることができる。なお、有機物脱離装置45は、スピンリンスドライヤ20に設けることもできる。この場合であっても、スピンリンスドライヤ20に、吸光度を測定するように構成されたセンサ(分光光度計)、又は蛍光領域の光を照射してその反射光の強度をモニタするためのセンサ(蛍光反射膜厚計)を設けてもよい(不図示)。その場合、エッジ部の洗浄中又は洗浄後の基板Wのエッジ部の上方にセンサを位置させる。そして、基板Wを回転させ、このセンサから基板Wのエッジ部に光を照射して、基板Wから反射する光をセンサの受光部にて受光し、この反射光の蛍光強度又は吸光度を測定する。これにより、基板Wのエッジ部における汚染物質(有機物及び酸化膜の少なくとも1つ)が十分に除去されたか否かを判定するようにしてもよい。このようにすることで、基板Wのエッジ部に汚染物質が存在しているかいないかをめっき処理を行う前に判定し、その後、エッジ部に汚染物質が残存していない基板についてめっき処理を行うようにすることができるので、基板ホルダ60が有する電気接点の接触抵抗のばらつきに起因する基板Wのめっき膜厚の面内均一性の悪化等を、より確実に防止できる。なお、基板Wのエッジ部の洗浄中に基板Wのエッジ部に汚染物質が存在しているか否かを判定するようにした場合には、洗浄の終点を、このセンサの判定結果に基づいて決定することもできる。 The organic matter desorption device 45 may be provided in the plating device separately from the aligner 40. FIG. 8 is an overall layout of the plating apparatus of another example according to the first embodiment. As shown in FIG. 8, the organic matter desorption device 45 is provided in the load / unload section 170A separately from the aligner 40. In this case, the aligner 40 has a configuration in which the organic matter desorption device 45 is removed from the configurations shown in FIGS. 4 to 6. On the other hand, the organic matter desorption device 45 needs to have the same mechanism as the rotation stage 42 shown in FIGS. 4 to 6 for rotating the substrate W. According to the plating apparatus shown in FIG. 8, since the organic matter desorption device 45 is provided separately from the aligner 40, the treatment of the organic matter desorption device 45 and the treatment of the aligner 40 are performed separately for the plurality of substrates W. be able to. Therefore, when the throughput of the entire treatment is determined by the treatment time of the organic matter desorption treatment due to the time required for the organic matter desorption treatment, the throughput is increased as compared with the plating apparatus shown in FIG. Can be improved. The organic substance desorption device 45 can also be provided in the spin rinse dryer 20. Even in this case, the spin rinse dryer 20 is irradiated with a sensor (spectrophotometer) configured to measure the absorbance, or a sensor for irradiating light in the fluorescent region and monitoring the intensity of the reflected light (a sensor for monitoring the intensity of the reflected light). A fluorescence reflection film meter) may be provided (not shown). In that case, the sensor is positioned above the edge portion of the substrate W during or after cleaning the edge portion. Then, the substrate W is rotated, the edge portion of the substrate W is irradiated with light from this sensor, the light reflected from the substrate W is received by the light receiving portion of the sensor, and the fluorescence intensity or absorbance of the reflected light is measured. .. Thereby, it may be determined whether or not the contaminant (at least one of the organic substance and the oxide film) at the edge portion of the substrate W is sufficiently removed. By doing so, it is determined whether or not a contaminant is present on the edge portion of the substrate W before the plating treatment is performed, and then the substrate on which no contaminant is left on the edge portion is subjected to the plating treatment. Therefore, deterioration of the in-plane uniformity of the plating film thickness of the substrate W due to the variation in the contact resistance of the electric contact of the substrate holder 60 can be more reliably prevented. If it is determined whether or not a contaminant is present on the edge of the substrate W during cleaning of the edge of the substrate W, the end point of cleaning is determined based on the determination result of this sensor. You can also do it.

<第2実施形態>
図9は、第2実施形態に係るめっき装置の全体配置図である。第2実施形態は、第1実施形態の図1に示しためっき装置と比べて、スピンリンスドライヤ20及びアライナ40の構成が異なる。その他の構成は第1実施形態と同様であるので、第1実施形態と同様の構成については同一の符号を付して説明を省略する。
<Second Embodiment>
FIG. 9 is an overall layout of the plating apparatus according to the second embodiment. In the second embodiment, the configurations of the spin rinse dryer 20 and the aligner 40 are different from those of the plating apparatus shown in FIG. 1 of the first embodiment. Since other configurations are the same as those of the first embodiment, the same reference numerals are given to the same configurations as those of the first embodiment, and the description thereof will be omitted.

第2実施形態においては、アライナ40は、第1実施形態で説明した有機物脱離装置45を備えていない。また、スピンリンスドライヤ20は、基板ホルダ60にセットされる前の基板のエッジ部に存在する酸化膜を局所的に除去する酸化膜除去装置を有する。 In the second embodiment, the aligner 40 does not include the organic matter desorption device 45 described in the first embodiment. Further, the spin rinse dryer 20 has an oxide film removing device for locally removing the oxide film existing at the edge portion of the substrate before being set in the substrate holder 60.

図10は、酸化膜除去装置を備えたスピンリンスドライヤ20を示す概略図である。図示のように、スピンリンスドライヤ20は、回転ステージ21と、基板チャック22と、DIWノズル23と、酸化膜除去装置24(エッジ部洗浄装置の一例に相当する)と、を有する。基板チャック22は、基板Wの外周部を把持するように構成される。回転ステージ21は、基板チャック22を回転するように構成され、基板チャック22が回転することにより、把持された基板Wを周方向に回転する。DIWノズル23は、基板Wの略中央部にDIW(De-ionized Water)を供給するように構成される。基板Wに供給されたDIWは、基板Wの回転により遠心力を受けて、基板Wの外周部に向かって流れる。スピンリンスドライヤ20は、図示されていないが、基板WのDIWが外部に飛散することを防止するために、基板Wの周囲を覆うカバーを有する。 FIG. 10 is a schematic view showing a spin rinse dryer 20 provided with an oxide film removing device. As shown in the figure, the spin rinse dryer 20 includes a rotary stage 21, a substrate chuck 22, a DIW nozzle 23, and an oxide film removing device 24 (corresponding to an example of an edge cleaning device). The substrate chuck 22 is configured to grip the outer peripheral portion of the substrate W. The rotation stage 21 is configured to rotate the substrate chuck 22, and by rotating the substrate chuck 22, the gripped substrate W is rotated in the circumferential direction. The DIW nozzle 23 is configured to supply DIW (De-ionized Water) to a substantially central portion of the substrate W. The DIW supplied to the substrate W receives centrifugal force due to the rotation of the substrate W and flows toward the outer peripheral portion of the substrate W. Although not shown, the spin rinse dryer 20 has a cover that covers the periphery of the substrate W in order to prevent the DIW of the substrate W from scattering to the outside.

酸化膜除去装置24は、基板に薬液28を供給する薬液供給装置であり、薬液28を供給するように構成された薬液ノズル25と、薬液ノズル25に接続されたアーム26と、アーム26を旋回するように構成された回転軸27とを有する。薬液ノズル25の先端と基板Wとの距離は、約1mm以上約10mm以下とすることが好ましい。この距離が1mm未満であると、基板と薬液ノズル25とが物理的に接触する可能性がある。また、この距離を10mm超とすると、局所的に薬液を供給できない可能性がある。基板と薬液ノズル25とをより確実に物理的に接触させることなく、また、局所的に薬液を供給できるようにするためには、薬液ノズル25の先端と基板との距離を約2mm以上約5mm以下とすることがより好ましい。 The oxide film removing device 24 is a chemical liquid supply device that supplies the chemical liquid 28 to the substrate, and the chemical liquid nozzle 25 configured to supply the chemical liquid 28, the arm 26 connected to the chemical liquid nozzle 25, and the arm 26 are swiveled. It has a rotating shaft 27 configured to do so. The distance between the tip of the chemical solution nozzle 25 and the substrate W is preferably about 1 mm or more and about 10 mm or less. If this distance is less than 1 mm, the substrate and the chemical solution nozzle 25 may come into physical contact with each other. Further, if this distance is more than 10 mm, there is a possibility that the chemical solution cannot be locally supplied. In order to ensure that the substrate and the chemical solution nozzle 25 are not in physical contact with each other and that the chemical solution can be locally supplied, the distance between the tip of the chemical solution nozzle 25 and the substrate is about 2 mm or more and about 5 mm. The following is more preferable.

酸化膜除去装置24で基板Wのエッジ部に存在する酸化膜を局所的に除去するためには、まず、酸化膜除去装置24は、基板Wの直径に応じてアーム26を旋回し、薬液ノズル25を基板Wのエッジ部の上方に位置させる。薬液ノズル25が基板Wのエッジ部の上方に位置した状態で、回転する基板Wの略中央部にDIWノズル23からDIWを供給するとともに、回転する基板Wのエッジ部に薬液28を噴出する。薬液28は基板Wのエッジ部に供給されるとともに、基板Wの回転により遠心力を受けて基板Wの外周部に向かって流れる。これにより、酸化膜除去装置24は、基板Wのエッジ部に局所的に薬液28を供給することができる。言い換えれば、実質的に基板Wのエッジ部以外の領域は、薬液28に曝されない。回転ステージ21が基板Wを回転することにより、基板Wのエッジ部全周に亘って薬液28を効率的に供給することができる。基板Wのエッジ部に形成された酸化膜に薬液28が供給されると、酸化膜は薬液28により溶解し、除去される。所定時間薬液28を供給した後、薬液28の供給は停止され、DIWの供給が継続される。これにより、基板Wのエッジ部に供給された薬液28が洗い流される。ここで、基板Wのエッジ部とは、前述したように電気接点72が接触しうる領域、又は基板ホルダ60により基板Wが保持される際、基板Wがシール部材70が接触する部分よりも基板Wの周縁部側となる領域である。ただし、薬液を基板に対してスポット的に供給する際に、一部の薬液が飛散し得ることをあらかじめ想定して、レジストパターンに悪影響を与えにくい薬液成分・濃度としたうえで、基板Wのエッジ部の周辺部にある酸化膜を薬液28により溶解し、除去するように構成することもできる。 In order to locally remove the oxide film existing at the edge of the substrate W by the oxide film removing device 24, first, the oxide film removing device 24 swirls the arm 26 according to the diameter of the substrate W, and the chemical solution nozzle is used. 25 is positioned above the edge portion of the substrate W. With the chemical solution nozzle 25 located above the edge portion of the substrate W, DIW is supplied from the DIW nozzle 23 to the substantially central portion of the rotating substrate W, and the chemical solution 28 is ejected to the edge portion of the rotating substrate W. The chemical liquid 28 is supplied to the edge portion of the substrate W and receives centrifugal force due to the rotation of the substrate W to flow toward the outer peripheral portion of the substrate W. As a result, the oxide film removing device 24 can locally supply the chemical solution 28 to the edge portion of the substrate W. In other words, the region other than the edge portion of the substrate W is not substantially exposed to the chemical solution 28. By rotating the substrate W by the rotation stage 21, the chemical liquid 28 can be efficiently supplied over the entire circumference of the edge portion of the substrate W. When the chemical solution 28 is supplied to the oxide film formed on the edge portion of the substrate W, the oxide film is dissolved and removed by the chemical solution 28. After supplying the chemical solution 28 for a predetermined time, the supply of the chemical solution 28 is stopped and the supply of the DIW is continued. As a result, the chemical solution 28 supplied to the edge portion of the substrate W is washed away. Here, the edge portion of the substrate W is a region where the electric contact 72 can contact as described above, or when the substrate W is held by the substrate holder 60, the substrate W is more than a portion where the seal member 70 contacts. This is a region on the peripheral side of W. However, when the chemical solution is supplied to the substrate in a spot manner, it is assumed in advance that a part of the chemical solution may be scattered, and the chemical solution component / concentration that does not adversely affect the resist pattern is set, and then the substrate W is used. It can also be configured to dissolve and remove the oxide film in the peripheral portion of the edge portion with the chemical solution 28.

薬液28としては、例えば希硫酸、クエン酸等の、基板W上のシード層にダメージを与え難い酸が採用され得る。本実施形態では、薬液28は、3wt%以上15wt%以下の希硫酸又は2wt%以上20wt%以下のクエン酸であることが好ましい。希硫酸が3wt%未満又はクエン酸が2wt%未満であると、酸濃度が低すぎて、酸化膜を適切に除去することができない虞がある。また、希硫酸が15wt%超又はクエン酸が20wt%超であると、酸濃度が高すぎて、基板のエッジ部上のシード層を溶かしてしまう虞がある。 As the chemical solution 28, an acid such as dilute sulfuric acid or citric acid that does not easily damage the seed layer on the substrate W can be adopted. In the present embodiment, the chemical solution 28 is preferably dilute sulfuric acid of 3 wt% or more and 15 wt% or less or citric acid of 2 wt% or more and 20 wt% or less. If the dilute sulfuric acid is less than 3 wt% or the citric acid is less than 2 wt%, the acid concentration may be too low to properly remove the oxide film. Further, if the dilute sulfuric acid is more than 15 wt% or the citric acid is more than 20 wt%, the acid concentration may be too high and the seed layer on the edge portion of the substrate may be melted.

図11は、第2実施形態に係るめっき方法を示すフロー図である。第2実施形態に係る
めっき方法は、一部を除いて図7に示しためっき方法と多くの点で一致する。したがって、図7のめっき方法と同一の部分の説明は一部省略する。
FIG. 11 is a flow chart showing the plating method according to the second embodiment. The plating method according to the second embodiment agrees with the plating method shown in FIG. 7 in many respects except for a part. Therefore, a part of the description of the same part as the plating method of FIG. 7 will be omitted.

ステップS602でアッシング処理及びディスカム処理が行われた基板Wは、図9に示しためっき装置に搬送される。続いて、基板Wを収容したフープ102から、基板搬送装置122によって、基板Wがスピンリンスドライヤ20へ搬送される。スピンリンスドライヤ20において、基板Wはエッジ部の洗浄が行われる(ステップS701)。具体的には、スピンリンスドライヤ20において、基板Wのエッジ部に存在する酸化膜が酸化膜除去装置24により除去される。 The substrate W subjected to the ashing treatment and the discum treatment in step S602 is conveyed to the plating apparatus shown in FIG. Subsequently, the substrate W is conveyed to the spin rinse dryer 20 by the substrate transfer device 122 from the hoop 102 accommodating the substrate W. In the spin rinse dryer 20, the edge portion of the substrate W is cleaned (step S701). Specifically, in the spin rinse dryer 20, the oxide film existing at the edge portion of the substrate W is removed by the oxide film removing device 24.

さらに、本実施形態においても、基板のエッジ部の状態を測定するために、基板Wのエッジ部に、エッジ部の上方から紫外領域(200nmから380nm)の光、例えば365nmを励起光として照射し、エッジ部の吸光度を測定するように構成されたセンサ(分光光度計)、又は蛍光領域の光を照射してその反射光の強度をモニタするためのセンサ(蛍光反射膜厚計)をスピンリンスドライヤ20に設けてもよい(不図示)。その場合、エッジ部の洗浄中又は洗浄後の基板Wのエッジ部の上方にセンサを位置させる。そして、基板Wを回転させ、このセンサから基板Wのエッジ部に光を照射して、基板Wから反射する光をセンサの受光部にて受光し、この反射光の蛍光強度又は吸光度を測定する。これにより基板Wのエッジ部における酸化膜が十分に除去されたか否かを判定し、エッジ部の状態を検査するようにしてもよい。このようにすることで、基板Wのエッジ部に汚染物質が存在しているかいないかをめっき処理を行う前に判定し、その後、エッジ部に汚染物質が残存していない基板についてめっき処理を行うようにすることができるので、基板ホルダ60が有する電気接点の接触抵抗のばらつきに起因する基板Wのめっき膜厚の面内均一性の悪化等を、より確実に防止できる。 Further, also in the present embodiment, in order to measure the state of the edge portion of the substrate, the edge portion of the substrate W is irradiated with light in the ultraviolet region (200 nm to 380 nm), for example, 365 nm as excitation light from above the edge portion. , Spin rinse a sensor (spectrophotometer) configured to measure the absorbance at the edge, or a sensor (fluorescence reflective film thickness meter) to irradiate light in the fluorescent region and monitor the intensity of the reflected light. It may be provided on the dryer 20 (not shown). In that case, the sensor is positioned above the edge portion of the substrate W during or after cleaning the edge portion. Then, the substrate W is rotated, the edge portion of the substrate W is irradiated with light from this sensor, the light reflected from the substrate W is received by the light receiving portion of the sensor, and the fluorescence intensity or absorbance of the reflected light is measured. .. As a result, it may be determined whether or not the oxide film at the edge portion of the substrate W has been sufficiently removed, and the state of the edge portion may be inspected. By doing so, it is determined whether or not a contaminant is present on the edge portion of the substrate W before the plating treatment is performed, and then the substrate on which no contaminant is left on the edge portion is subjected to the plating treatment. Therefore, deterioration of the in-plane uniformity of the plating film thickness of the substrate W due to the variation in the contact resistance of the electric contact of the substrate holder 60 can be more reliably prevented.

エッジ部の洗浄(場合によっては洗浄及び検査)が行われた基板Wは、基板搬送装置122によってフィキシングユニット120に搬送され、基板ホルダ60にセットされる(ステップS604)。このとき、基板Wのエッジ部の酸化膜は除去されているので、基板ホルダ60の電気接点は、洗浄された基板Wのエッジ部と接触する。これにより、酸化膜に起因する基板ホルダ60の電気接点の接触抵抗のバラつきを低減することができる。基板ホルダ60にセットされた基板Wは、後段のステップS605~ステップS609において、処理される。 The substrate W whose edge portion has been cleaned (cleaned and inspected in some cases) is transported to the fixing unit 120 by the substrate transport device 122 and set in the substrate holder 60 (step S604). At this time, since the oxide film at the edge portion of the substrate W is removed, the electric contact of the substrate holder 60 comes into contact with the edge portion of the cleaned substrate W. This makes it possible to reduce variations in the contact resistance of the electrical contacts of the substrate holder 60 due to the oxide film. The substrate W set in the substrate holder 60 is processed in the subsequent steps S605 to S609.

以上で説明したように、第2実施形態によれば、基板ホルダ60にセットされる前に、基板のエッジ部に存在する酸化膜を局所的に除去することができる。したがって、基板Wの表面に形成されたレジストパターンに悪影響を与えることなく、基板Wのエッジ部に存在する酸化膜に起因する基板ホルダ60の電気接点72の接触抵抗のバラつきを抑制し、めっき膜厚の均一性の悪化を防止することができる。 As described above, according to the second embodiment, the oxide film existing at the edge portion of the substrate can be locally removed before being set in the substrate holder 60. Therefore, the variation in the contact resistance of the electric contact 72 of the substrate holder 60 due to the oxide film existing at the edge portion of the substrate W is suppressed without adversely affecting the resist pattern formed on the surface of the substrate W, and the plating film is plated. It is possible to prevent deterioration of thickness uniformity.

また、第2実施形態によれば、酸化膜除去装置24がスピンリンスドライヤ20に設けられるので、スピンリンスドライヤ20により基板を回転させつつ、薬液28で基板Wのエッジ部を処理することができる。したがって、酸化膜除去装置24に基板を回転させる機構及び薬液28の飛散を防止する機構を設ける必要がないので、コストを低減することができる。また、スピンリンスドライヤ20は、基板W上の液体が飛散することを防止するカバーを有しているので、薬液ノズル25が供給する薬液28がスピンリンスドライヤ20の外部に飛散することも防止することができる。さらに、酸化膜除去装置24をスピンリンスドライヤ20に設けることで、めっき装置全体のフットプリントを低減することもできる。 Further, according to the second embodiment, since the oxide film removing device 24 is provided in the spin rinse dryer 20, the edge portion of the substrate W can be treated with the chemical solution 28 while rotating the substrate by the spin rinse dryer 20. .. Therefore, it is not necessary to provide the oxide film removing device 24 with a mechanism for rotating the substrate and a mechanism for preventing the chemical solution 28 from scattering, so that the cost can be reduced. Further, since the spin rinse dryer 20 has a cover for preventing the liquid on the substrate W from scattering, it also prevents the chemical liquid 28 supplied by the chemical liquid nozzle 25 from scattering to the outside of the spin rinse dryer 20. be able to. Further, by providing the oxide film removing device 24 on the spin rinse dryer 20, the footprint of the entire plating device can be reduced.

めっきされる基板W上にはシード層が形成されており、このシード層に薬液28が付着
したまま放置すると、シード層が溶ける虞がある。このため、めっきされる基板Wのエッジ以外の部分、例えば、レジストパターンの開口から露出されるシード層に薬液28が付着した場合、薬液28が残らないように十分な洗浄が必要になる。第2実施形態によれば、基板Wのエッジ部に局所的に薬液28を供給することができる。これにより、レジストパターンの開口から露出されるシード層に薬液28を付着させることなく、基板のエッジ部に形成された酸化膜を除去することができる。したがって、基板Wの全面に薬液28を付着させた場合に比べて、基板Wの洗浄時間を大幅に短縮することができる。
A seed layer is formed on the substrate W to be plated, and if the chemical solution 28 is left to adhere to the seed layer, the seed layer may dissolve. Therefore, when the chemical solution 28 adheres to a portion other than the edge of the substrate W to be plated, for example, the seed layer exposed from the opening of the resist pattern, sufficient cleaning is required so that the chemical solution 28 does not remain. According to the second embodiment, the chemical solution 28 can be locally supplied to the edge portion of the substrate W. As a result, the oxide film formed on the edge portion of the substrate can be removed without adhering the chemical solution 28 to the seed layer exposed from the opening of the resist pattern. Therefore, the cleaning time of the substrate W can be significantly shortened as compared with the case where the chemical solution 28 is adhered to the entire surface of the substrate W.

<第3実施形態>
図12は、第3実施形態にかかるめっき装置の全体配置図である。第3実施形態に係るめっき装置は、第1実施形態における図8に示しためっき装置におけるスピンリンスドライヤ20を、第2実施形態に係る図10に示したスピンリンスドライヤ20に置換した構成を有する。その他の構成は第1実施形態の図8に示しためっき装置と同様であるので、第1実施形態と同様の構成については同一の符号を付して説明を省略する。
<Third Embodiment>
FIG. 12 is an overall layout of the plating apparatus according to the third embodiment. The plating apparatus according to the third embodiment has a configuration in which the spin rinse dryer 20 in the plating apparatus shown in FIG. 8 in the first embodiment is replaced with the spin rinse dryer 20 shown in FIG. 10 according to the second embodiment. .. Since other configurations are the same as those of the plating apparatus shown in FIG. 8 of the first embodiment, the same configurations as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

図12に示すめっき装置は、図10に示した酸化膜除去装置24を備えたスピンリンスドライヤ20と、有機物脱離装置45とを有する。このため、本めっき装置は、基板Wのエッジ部に存在する有機物及び酸化膜の両方を、局所的に除去することができる。 The plating apparatus shown in FIG. 12 includes a spin rinse dryer 20 provided with the oxide film removing device 24 shown in FIG. 10 and an organic substance desorption device 45. Therefore, the plating apparatus can locally remove both the organic substance and the oxide film existing at the edge portion of the substrate W.

図13は、第3実施形態に係るめっき方法を示すフロー図である。第3実施形態に係るめっき方法は、図7に示しためっき方法に、図11に示したステップS701を組み合わせた方法である。即ち、図13に示すように、ステップS602でアッシング処理及びディスカム処理が行われた基板Wは、図11に示しためっき装置に搬送される。続いて、基板Wを収容したフープ102から、基板搬送装置122によって、基板Wがアライナ40へ搬送される。アライナ40において、基板Wはエッジ部の洗浄が行われる(ステップS603)。具体的には、アライナ40において、基板Wのエッジ部に存在する有機物が有機物脱離装置45により脱離される。なお、この時基板Wの向きがアライナ40によって整列される。なお、ここでのエッジ部とは、基板ホルダ60により基板Wが保持される際、シール部材70が接触する部分よりも基板Wの周縁部側となる領域であって、例えば、基板Wの外周縁部から基板中心に向かって約5mmの範囲内、より好ましくは約2mmの範囲内をいう。 FIG. 13 is a flow chart showing the plating method according to the third embodiment. The plating method according to the third embodiment is a method in which the plating method shown in FIG. 7 is combined with the step S701 shown in FIG. That is, as shown in FIG. 13, the substrate W subjected to the ashing treatment and the discum treatment in step S602 is conveyed to the plating apparatus shown in FIG. Subsequently, the substrate W is conveyed to the aligner 40 by the substrate transfer device 122 from the hoop 102 accommodating the substrate W. In the aligner 40, the edge portion of the substrate W is cleaned (step S603). Specifically, in the aligner 40, the organic substance existing at the edge portion of the substrate W is desorbed by the organic substance desorption device 45. At this time, the orientation of the substrate W is aligned by the aligner 40. The edge portion here is a region that is closer to the peripheral edge portion of the substrate W than the portion that the seal member 70 contacts when the substrate W is held by the substrate holder 60, and is, for example, outside the substrate W. It means within a range of about 5 mm from the peripheral edge portion toward the center of the substrate, more preferably within a range of about 2 mm.

さらに、本実施形態においても、アライナ40に、基板のエッジ部の状態を測定するために、基板Wのエッジ部に、エッジ部の上方から紫外領域(200nmから380nm)の光、例えば365nmを励起光として照射し、エッジ部の吸光度を測定するように構成されたセンサ(分光光度計)、又は蛍光領域の光を照射してその反射光の強度をモニタするためのセンサ(蛍光反射膜厚計)を設けてもよい(不図示)。めっき装置の制御部は、このセンサにより測定された吸光度または蛍光強度の値が、予め設定した閾値よりも大きい値か否かによって、エッジ部の汚染物質(有機物及び酸化膜を含む)が十分に除去されているか否かを判定することができるように構成されている。その場合、エッジ部の洗浄中又は洗浄後の基板Wのエッジ部の上方にセンサを位置させる。そして、基板Wを回転させ、このセンサから基板Wのエッジ部に光を照射して、基板Wから反射する光をセンサの受光部にて受光し、この反射光の蛍光強度又は吸光度を測定する。これにより、基板Wのエッジ部における汚染物質(有機物及び酸化膜を含む)が十分に除去されたか否かを判定し、エッジ部に汚染物質が存在しているかいないかを判定するようにしてもよい。このようにすることで、基板Wのエッジ部に汚染物質が存在しているかいないかをめっき処理を行う前に判定し、その後、エッジ部に汚染物質が残存していない基板についてめっき処理を行うようにすることができるので、基板ホルダ60が有する電気接点の接触抵抗のばらつきに起因する基板Wのめっき膜厚の面内均一性の悪化等を防止できる。さらに、基板Wのエッジ部の洗浄中に基板Wのエッジ部に汚染物質が存在しているかいないかを判定する
ようにした場合には、洗浄の終点を、このセンサの判定結果に基づいて決定することもできる。さらに、もともとエッジ部に異常がある基板Wの有無も、センサの測定結果に基づいて判定できる。
Further, also in the present embodiment, in order to measure the state of the edge portion of the substrate, the aligner 40 is excited with light in the ultraviolet region (200 nm to 380 nm) from above the edge portion of the substrate W, for example, 365 nm. A sensor (spectrophotometer) configured to irradiate as light and measure the absorbance at the edge, or a sensor (fluorescence reflection film thickness meter) for irradiating light in the fluorescent region and monitoring the intensity of the reflected light. ) May be provided (not shown). The control unit of the plating device is sufficiently free of contaminants (including organic substances and oxide film) at the edge portion depending on whether the value of the absorbance or fluorescence intensity measured by this sensor is larger than the preset threshold value. It is configured so that it can be determined whether or not it has been removed. In that case, the sensor is positioned above the edge portion of the substrate W during or after cleaning the edge portion. Then, the substrate W is rotated, the edge portion of the substrate W is irradiated with light from this sensor, the light reflected from the substrate W is received by the light receiving portion of the sensor, and the fluorescence intensity or absorbance of the reflected light is measured. .. As a result, it is determined whether or not the contaminants (including organic substances and oxide film) at the edge portion of the substrate W are sufficiently removed, and whether or not the contaminants are present at the edge portion is determined. good. By doing so, it is determined whether or not a contaminant is present on the edge portion of the substrate W before the plating treatment is performed, and then the substrate on which no contaminant is left on the edge portion is subjected to the plating treatment. Therefore, it is possible to prevent deterioration of the in-plane uniformity of the plating film thickness of the substrate W due to the variation in the contact resistance of the electric contacts of the substrate holder 60. Further, when it is determined whether or not a contaminant is present on the edge portion of the substrate W during cleaning of the edge portion of the substrate W, the end point of cleaning is determined based on the determination result of this sensor. You can also do it. Further, the presence or absence of the substrate W having an abnormality in the edge portion can also be determined based on the measurement result of the sensor.

エッジ部の有機物が脱離された基板Wは続いて、基板搬送装置122によって、スピンリンスドライヤ20へ搬送される。スピンリンスドライヤ20において、基板Wはエッジ部の洗浄が行われる(ステップS701)。具体的には、スピンリンスドライヤ20において、基板Wのエッジ部に存在する酸化膜が酸化膜除去装置24により脱離される。なお、ここでのエッジ部とは、基板ホルダにより基板が保持される際、シール部材70が接触する部分よりも基板Wの周縁部側となる領域をいい、例えば基板Wが300mmウェハの場合には基板Wの外周縁部から基板中心に向かって約5mmの範囲内、より好ましくは約2mmの範囲内をいうが、薬液の成分・濃度をレジストパターンに悪影響を与えにくい成分・濃度としたうえで、エッジ部周辺に存在する酸化膜をあわせて除去することもできる。 The substrate W from which the organic matter at the edge portion has been removed is subsequently conveyed to the spin rinse dryer 20 by the substrate transfer device 122. In the spin rinse dryer 20, the edge portion of the substrate W is cleaned (step S701). Specifically, in the spin rinse dryer 20, the oxide film existing at the edge portion of the substrate W is removed by the oxide film removing device 24. The edge portion here refers to a region that is closer to the peripheral edge of the substrate W than the portion that the sealing member 70 contacts when the substrate is held by the substrate holder, for example, when the substrate W is a 300 mm wafer. Is within a range of about 5 mm, more preferably about 2 mm from the outer peripheral edge of the substrate W toward the center of the substrate, but the component / concentration of the chemical solution is set to a component / concentration that does not adversely affect the resist pattern. Therefore, the oxide film existing around the edge portion can also be removed.

エッジ部の洗浄が行われた基板Wは、基板搬送装置122によってフィキシングユニット120に搬送され、基板ホルダ60にセットされる(ステップS604)。このとき、基板Wのエッジ部の有機物及び酸化膜は除去されているので、基板ホルダ60の電気接点は、洗浄された基板Wのエッジ部と接触する。これにより、有機物及び酸化膜に起因する基板ホルダ60の電気接点の接触抵抗のバラつきを低減することができる。基板ホルダ60にセットされた基板Wは、後段のステップS605~ステップS609において、処理される。 The substrate W whose edge portion has been cleaned is transported to the fixing unit 120 by the substrate transport device 122 and set in the substrate holder 60 (step S604). At this time, since the organic matter and the oxide film at the edge portion of the substrate W are removed, the electric contact of the substrate holder 60 comes into contact with the edge portion of the cleaned substrate W. This makes it possible to reduce variations in contact resistance of the electrical contacts of the substrate holder 60 due to organic substances and oxide films. The substrate W set in the substrate holder 60 is processed in the subsequent steps S605 to S609.

以上で説明したように、第3実施形態によれば、基板ホルダ60にセットされる前に、基板のエッジ部に存在する有機物及び酸化膜を局所的に除去することができる。したがって、基板Wの表面に形成されたレジストパターンに悪影響を与えることなく、基板Wのエッジ部に存在する有機物及び酸化膜に起因する基板ホルダ60の電気接点72の接触抵抗のバラつきを抑制し、めっき膜厚の均一性の悪化を防止することができる。 As described above, according to the third embodiment, the organic matter and the oxide film existing at the edge portion of the substrate can be locally removed before being set in the substrate holder 60. Therefore, the variation in the contact resistance of the electric contact 72 of the substrate holder 60 due to the organic matter and the oxide film existing at the edge portion of the substrate W is suppressed without adversely affecting the resist pattern formed on the surface of the substrate W. It is possible to prevent deterioration of the uniformity of the plating film thickness.

基板Wのエッジ部においては、酸化膜上に有機物が付着し得る。したがって、有機物を脱離する前に酸化膜を除去した場合、有機物が付着した部分の酸化膜が除去され難い。第3実施形態によれば、有機物を脱離した後に酸化膜を除去するので、効果的に有機物及び酸化膜を除去することができる。ただし、一実施形態では、エッジ部の薬液洗浄(ステップS701)の後に有機物脱離処理(ステップS603)を行ってもよい。 At the edge portion of the substrate W, an organic substance may adhere to the oxide film. Therefore, if the oxide film is removed before the organic substance is desorbed, it is difficult to remove the oxide film on the portion to which the organic substance is attached. According to the third embodiment, since the oxide film is removed after the organic substance is desorbed, the organic substance and the oxide film can be effectively removed. However, in one embodiment, the organic substance desorption treatment (step S603) may be performed after the chemical solution cleaning of the edge portion (step S701).

<第4実施形態>
図14は、第4実施形態にかかるめっき装置の全体配置図である。第4実施形態のめっき装置は、第1実施形態に係る図1のめっき装置と比べて、スポンジ洗浄装置80を有する点と、有機物脱離装置45を備えない点とが異なる。その他の構成は第1実施形態と同様であるので、第1実施形態と同様の構成については同一の符号を付して説明を省略する。
<Fourth Embodiment>
FIG. 14 is an overall layout of the plating apparatus according to the fourth embodiment. The plating apparatus of the fourth embodiment is different from the plating apparatus of FIG. 1 according to the first embodiment in that it has a sponge cleaning device 80 and does not have an organic substance desorption device 45. Since other configurations are the same as those of the first embodiment, the same reference numerals are given to the same configurations as those of the first embodiment, and the description thereof will be omitted.

図14に示すめっき装置のアライナ40は、第1実施形態において説明した有機物脱離装置45を備えない。スポンジ洗浄装置80は、ロード/アンロード部170A内に設けられ、基板Wのエッジ部に存在するパーティクルを局所的に除去する。 The aligner 40 of the plating apparatus shown in FIG. 14 does not include the organic matter desorption apparatus 45 described in the first embodiment. The sponge cleaning device 80 is provided in the load / unload portion 170A and locally removes particles existing at the edge portion of the substrate W.

図15は、スポンジ洗浄装置80の概略側面図である。図示のように、スポンジ洗浄装置80は、回転ステージ81と、DIWノズル83と、スポンジ洗浄部84(エッジ部洗浄装置の一例に相当する)と、カバー88を有する。回転ステージ81は、基板Wの裏面を吸着するように構成され、基板Wを周方向に回転させる。なお、回転ステージ81は、
静電吸着式又は真空吸着式で基板Wを吸着する。DIWノズル83は、基板Wの略中央部にDIWを供給するように構成される。基板Wに供給されたDIWは、基板Wの回転により遠心力を受けて、基板Wの外周部に向かって流れる。カバー88は、基板Wの周囲を覆い、基板WのDIWが外部に飛散することを防止する。
FIG. 15 is a schematic side view of the sponge cleaning device 80. As shown in the figure, the sponge cleaning device 80 includes a rotary stage 81, a DIW nozzle 83, a sponge cleaning unit 84 (corresponding to an example of the edge portion cleaning device), and a cover 88. The rotation stage 81 is configured to attract the back surface of the substrate W, and rotates the substrate W in the circumferential direction. The rotary stage 81 is
The substrate W is adsorbed by an electrostatic adsorption type or a vacuum adsorption type. The DIW nozzle 83 is configured to supply DIW to a substantially central portion of the substrate W. The DIW supplied to the substrate W receives centrifugal force due to the rotation of the substrate W and flows toward the outer peripheral portion of the substrate W. The cover 88 covers the periphery of the substrate W and prevents the DIW of the substrate W from scattering to the outside.

スポンジ洗浄部84は、基板Wのエッジ部を物理的に洗浄するスポンジヘッド85と、スポンジヘッド85に接続されたアーム86と、アーム86を旋回するように構成された回転軸87とを有する。スポンジヘッド85は、例えばPVA(ポリビニルアルコール)から成り、鉛直軸を中心に回転可能に構成される。また、回転軸87は、軸方向に伸縮自在に構成される。 The sponge cleaning unit 84 has a sponge head 85 that physically cleans the edge portion of the substrate W, an arm 86 connected to the sponge head 85, and a rotation shaft 87 configured to rotate the arm 86. The sponge head 85 is made of, for example, PVA (polyvinyl alcohol) and is rotatably configured about a vertical axis. Further, the rotating shaft 87 is configured to be expandable and contractible in the axial direction.

スポンジ洗浄部84で基板Wのエッジ部に存在するパーティクルを局所的に除去するためには、まず、スポンジ洗浄装置80が基板Wの直径に応じてアーム86を旋回し、スポンジヘッド85を基板Wのエッジ部の上方に位置させる。スポンジヘッド85が基板Wのエッジ部の上方に位置した状態で、回転軸87が軸方向下方に収縮し、スポンジヘッド85を基板Wのエッジ部に当接させる。スポンジ洗浄部84は、スポンジヘッド85が回転する基板Wのエッジ部に当接した状態で、スポンジヘッド85を回転させる。このとき、DIWノズル83により、基板WにDIWが供給される。これにより、スポンジ洗浄装置80は、基板Wのエッジ部のパーティクルを局所的に除去することができる。また、スポンジ洗浄装置80にセンサ(不図示)を設け、エッジ部に汚染物質が存在しているかいないかを判定するようにしてもよい。 In order for the sponge cleaning unit 84 to locally remove the particles existing at the edge portion of the substrate W, first, the sponge cleaning device 80 swirls the arm 86 according to the diameter of the substrate W, and the sponge head 85 is attached to the substrate W. It is located above the edge of the. With the sponge head 85 located above the edge of the substrate W, the rotating shaft 87 contracts downward in the axial direction to bring the sponge head 85 into contact with the edge of the substrate W. The sponge cleaning unit 84 rotates the sponge head 85 in a state where the sponge head 85 is in contact with the edge portion of the rotating substrate W. At this time, DIW is supplied to the substrate W by the DIW nozzle 83. As a result, the sponge cleaning device 80 can locally remove particles at the edge portion of the substrate W. Further, a sensor (not shown) may be provided in the sponge cleaning device 80 to determine whether or not a contaminant is present at the edge portion.

図16は、第4実施形態に係るめっき方法を示すフロー図である。第4実施形態に係るめっき方法は、第1実施形態に係る図7に示しためっき方法におけるステップS603に代えて、ステップS801を有する。図7のめっき方法と同一の部分の説明は一部省略する。 FIG. 16 is a flow chart showing a plating method according to a fourth embodiment. The plating method according to the fourth embodiment includes step S801 instead of step S603 in the plating method shown in FIG. 7 according to the first embodiment. A part of the description of the same part as the plating method of FIG. 7 will be omitted.

図16に示すフローにおいて、ステップS602でアッシング処理及びディスカム処理が行われた基板Wは、図14に示しためっき装置に搬送される。続いて、基板Wを収容したフープ102から、基板搬送装置122によって、基板Wがスポンジ洗浄装置80へ搬送される。スポンジ洗浄装置80において、基板Wはエッジ部の洗浄が行われる(ステップS801)。具体的には、スポンジ洗浄装置80において、基板Wのエッジ部に存在するパーティクルがスポンジ洗浄部84により除去される。 In the flow shown in FIG. 16, the substrate W subjected to the ashing treatment and the discard treatment in step S602 is conveyed to the plating apparatus shown in FIG. Subsequently, the substrate W is transported from the hoop 102 accommodating the substrate W to the sponge cleaning device 80 by the substrate transport device 122. In the sponge cleaning device 80, the edge portion of the substrate W is cleaned (step S801). Specifically, in the sponge cleaning device 80, the particles existing at the edge portion of the substrate W are removed by the sponge cleaning unit 84.

本実施形態においても、スポンジ洗浄装置80に、基板のエッジ部の状態を測定するために、基板Wのエッジ部に、エッジ部の上方から紫外領域(200nmから380nm)の光、例えば365nmを励起光として照射し、エッジ部の吸光度を測定するように構成されたセンサ(分光光度計)、又は蛍光領域の光を照射してその反射光の強度をモニタするためのセンサ(蛍光反射膜厚計)を設けてもよい(不図示)。めっき装置の制御部は、このセンサにより測定された吸光度又は蛍光強度の値が、予め設定した閾値よりも大きい値か否かによって、エッジ部の汚染物質(有機物及び酸化膜を含む)が十分に除去されているか否かを判定することができるように構成されている。スポンジ洗浄装置80にセンサを設けた場合、エッジ部の洗浄中又は洗浄後の基板Wのエッジ部の上方にセンサを位置させる。そして、基板Wを回転させ、基板Wのエッジ部におけるパーティクルの有無を判定し、エッジ部に汚染物質が存在しているかいないかを判定するようにしてもよい。このようにすることで、基板Wのエッジ部に汚染物質が存在しているかいないかをめっき処理を行う前に判定し、その後、エッジ部に汚染物質が残存していない基板についてめっき処理を行うようにすることができるので、基板ホルダ60が有する電気接点の接触抵抗のばらつきに起因する基板Wのめっき膜厚の面内均一性の悪化等を防止できる。さらに、基板Wのエッジ部の洗浄中に基板Wのエッジ部に汚染物質が存在しているかいないかを判定す
るようにした場合には、洗浄の終点を、このセンサの判定結果に基づいて決定することもできる。さらに、もともとエッジ部に異常がある基板Wの有無も、センサの測定結果に基づいて判定できる。
Also in this embodiment, in order to measure the state of the edge portion of the substrate, the sponge cleaning device 80 excites light in the ultraviolet region (200 nm to 380 nm) from above the edge portion of the substrate W, for example, 365 nm. A sensor (spectrophotometer) configured to irradiate as light and measure the absorbance at the edge, or a sensor (fluorescence reflection film thickness meter) for irradiating light in the fluorescent region and monitoring the intensity of the reflected light. ) May be provided (not shown). The control unit of the plating apparatus is sufficiently free of contaminants (including organic substances and oxide film) at the edge portion depending on whether or not the value of the absorbance or fluorescence intensity measured by this sensor is larger than the preset threshold value. It is configured so that it can be determined whether or not it has been removed. When the sensor is provided in the sponge cleaning device 80, the sensor is positioned above the edge portion of the substrate W during or after cleaning the edge portion. Then, the substrate W may be rotated to determine the presence or absence of particles at the edge portion of the substrate W, and it may be determined whether or not a contaminant is present at the edge portion. By doing so, it is determined whether or not a contaminant is present on the edge portion of the substrate W before the plating treatment is performed, and then the substrate on which no contaminant is left on the edge portion is plated. Therefore, it is possible to prevent deterioration of the in-plane uniformity of the plating film thickness of the substrate W due to the variation in the contact resistance of the electric contact of the substrate holder 60. Further, when it is determined whether or not a contaminant is present on the edge portion of the substrate W during cleaning of the edge portion of the substrate W, the end point of cleaning is determined based on the determination result of this sensor. You can also do it. Further, the presence or absence of the substrate W having an abnormality in the edge portion can also be determined based on the measurement result of the sensor.

エッジ部の洗浄が行われた基板Wは、基板搬送装置122によってフィキシングユニット120に搬送され、基板ホルダ60にセットされる(ステップS604)。このとき、基板Wのエッジ部のパーティクルは除去されているので、基板ホルダ60の電気接点は、洗浄された基板Wのエッジ部と接触する。これにより、パーティクルに起因する基板ホルダ60の電気接点の接触抵抗のバラつきを低減することができる。基板ホルダ60にセットされた基板Wは、後段のステップS605~ステップS609において、処理される。 The substrate W whose edge portion has been cleaned is transported to the fixing unit 120 by the substrate transport device 122 and set in the substrate holder 60 (step S604). At this time, since the particles at the edge portion of the substrate W are removed, the electric contact of the substrate holder 60 comes into contact with the edge portion of the cleaned substrate W. This makes it possible to reduce variations in the contact resistance of the electrical contacts of the substrate holder 60 caused by particles. The substrate W set in the substrate holder 60 is processed in the subsequent steps S605 to S609.

以上で説明したように、第4実施形態によれば、基板ホルダ60にセットされる前に、基板Wのエッジ部に存在するパーティクルを局所的に除去することができる。したがって、基板ホルダ60の電気接点と基板Wのエッジ部上のシード層との間にパーティクルが挟み込まれることを防止することができ、パーティクルに起因する接触抵抗の悪化を抑制することができる。 As described above, according to the fourth embodiment, the particles existing at the edge portion of the substrate W can be locally removed before being set in the substrate holder 60. Therefore, it is possible to prevent particles from being sandwiched between the electrical contacts of the substrate holder 60 and the seed layer on the edge portion of the substrate W, and it is possible to suppress deterioration of contact resistance due to the particles.

<第5実施形態>
図17は、第5実施形態にかかるめっき装置の全体配置図である。第5実施形態のめっき装置は、第1実施形態に係る図1のめっき装置と比べて、スポンジ薬液洗浄装置90を有する点が異なる。その他の構成は第1実施形態と同様であるので、第1実施形態と同様の構成については同一の符号を付して説明を省略する。
<Fifth Embodiment>
FIG. 17 is an overall layout of the plating apparatus according to the fifth embodiment. The plating apparatus of the fifth embodiment is different from the plating apparatus of FIG. 1 according to the first embodiment in that it has a sponge chemical solution cleaning device 90. Since other configurations are the same as those of the first embodiment, the same reference numerals are given to the same configurations as those of the first embodiment, and the description thereof will be omitted.

図17に示すスポンジ薬液洗浄装置90は、ロード/アンロード部170A内に設けられ、基板Wのエッジ部に存在する酸化膜及びパーティクルを局所的に除去する。また、図17には示していないが、スポンジ薬液洗浄装置90においても、基板Wのエッジ部上方に位置する付近にセンサ(不図示)を設け、エッジ部に汚染物質が存在しているかいないかを判定するようにしてもよい。この場合、基板Wのエッジ部に、エッジ部の上方から紫外領域(200nmから380nm)の光、例えば365nmを励起光として照射し、エッジ部の吸光度を測定するように構成されたセンサ(分光光度計)、又は蛍光領域の光を照射してその反射光の強度をモニタするためのセンサ(蛍光反射膜厚計)を設けてもよい(不図示)。めっき装置の制御部は、このセンサにより測定された吸光度または蛍光強度の値が、予め設定した閾値よりも大きい値か否かによって、エッジ部の汚染物質(有機物及び酸化膜を含む)が十分に除去されているか否かを判定することができるように構成されている The sponge chemical solution cleaning device 90 shown in FIG. 17 is provided in the load / unload portion 170A and locally removes the oxide film and particles existing at the edge portion of the substrate W. Further, although not shown in FIG. 17, in the sponge chemical solution cleaning device 90 as well, a sensor (not shown) is provided in the vicinity of the substrate W located above the edge portion, and whether or not contaminants are present on the edge portion. May be determined. In this case, a sensor (spectral luminosity) configured to irradiate the edge portion of the substrate W with light in the ultraviolet region (200 nm to 380 nm) as excitation light from above the edge portion and measure the absorbance of the edge portion. A sensor (fluorescence reflection film thickness meter) for irradiating light in the fluorescent region and monitoring the intensity of the reflected light may be provided (not shown). The control unit of the plating device is sufficiently free of contaminants (including organic substances and oxide film) at the edge portion depending on whether the value of the absorbance or fluorescence intensity measured by this sensor is larger than the preset threshold value. It is configured to be able to determine if it has been removed.

図18は、スポンジ薬液洗浄装置90の概略側面図である。図示のように、スポンジ薬液洗浄装置90は、回転ステージ91と、DIWノズル93と、スポンジ洗浄部84と、酸化膜除去装置94(エッジ部洗浄装置の一例に相当する)と、カバー98を有する。回転ステージ91は、基板Wの裏面を吸着するように構成され、基板Wを周方向に回転させる。なお、回転ステージ91は、静電吸着式又は真空吸着式で基板Wを吸着する。 FIG. 18 is a schematic side view of the sponge chemical solution cleaning device 90. As shown in the figure, the sponge chemical solution cleaning device 90 has a rotary stage 91, a DIW nozzle 93, a sponge cleaning section 84, an oxide film removing device 94 (corresponding to an example of the edge section cleaning device), and a cover 98. .. The rotation stage 91 is configured to attract the back surface of the substrate W, and rotates the substrate W in the circumferential direction. The rotary stage 91 adsorbs the substrate W by an electrostatic adsorption type or a vacuum adsorption type.

酸化膜除去装置94は、基板に薬液を供給する薬液供給装置であり、薬液を供給するように構成された薬液ノズル95と、薬液ノズル95に接続されたアーム96と、アーム96を旋回するように構成された回転軸97とを有する。薬液ノズル95の先端と基板Wとの距離は、約1mm以上約10mm以下とすることが好ましい。この距離が1mm未満であると、基板と薬液ノズル95とが物理的に接触する可能性がある。また、この距離を10mm超とすると、局所的に薬液を供給できない可能性がある。基板と薬液ノズル95とをより確実に物理的に接触させることなく、また、局所的に薬液を供給できるようにするためには、薬液ノズル95の先端と基板との距離を約2mm以上約5mm以下とすることがより好ましい。 The oxide film removing device 94 is a chemical solution supply device that supplies a chemical solution to a substrate, and has a chemical solution nozzle 95 configured to supply the chemical solution, an arm 96 connected to the chemical solution nozzle 95, and an arm 96 so as to rotate. It has a rotating shaft 97 configured in. The distance between the tip of the chemical solution nozzle 95 and the substrate W is preferably about 1 mm or more and about 10 mm or less. If this distance is less than 1 mm, the substrate and the chemical solution nozzle 95 may come into physical contact with each other. Further, if this distance is more than 10 mm, there is a possibility that the chemical solution cannot be locally supplied. In order to ensure that the substrate and the chemical solution nozzle 95 are not in physical contact with each other and that the chemical solution can be locally supplied, the distance between the tip of the chemical solution nozzle 95 and the substrate is about 2 mm or more and about 5 mm. The following is more preferable.

スポンジ薬液洗浄装置90で基板Wのエッジ部に存在する酸化膜を局所的に除去するためには、まず、酸化膜除去装置94は、基板Wの直径に応じてアーム96を旋回し、薬液ノズル95を基板Wのエッジ部の上方に位置させる。薬液ノズル95が基板Wのエッジ部の上方に位置した状態で、回転する基板Wの略中央部にDIWノズル93からDIWを供給するとともに、回転する基板Wのエッジ部に薬液を噴出する。薬液は基板Wのエッジ部に供給されるとともに、基板Wの回転により遠心力を受けて基板Wの外周部に向かって流れる。これにより、酸化膜除去装置94は、基板Wのエッジ部に局所的に薬液を供給することができる。言い換えれば、実質的に基板Wのエッジ部以外の領域は、薬液に曝されない。回転ステージ91が基板Wを回転することにより、基板Wのエッジ部全周に亘って薬液を効率的に供給することができる。基板Wのエッジ部に形成された酸化膜に薬液が供給されると、酸化膜は薬液により溶解し、除去される。所定時間薬液を供給した後、薬液の供給は停止され、DIWの供給が継続される。これにより、基板Wのエッジ部に供給された薬液が洗い流される。ここで、基板Wのエッジ部とは、前述したように電気接点72が接触しうる領域、又は基板ホルダ60により基板Wが保持される際、基板Wがシール部材70が接触する部分よりも基板Wの周縁部側となる領域である。ただし、薬液を基板に対してスポット的に供給する際に、一部の薬液が飛散しうることをあらかじめ想定して、レジストパターンに悪影響を与えにくい薬液成分・濃度としたうえで、基板Wのエッジ部の周辺部にある酸化膜を薬液28により溶解し、除去するように構成することもできる。 In order to locally remove the oxide film existing at the edge portion of the substrate W by the sponge chemical solution cleaning device 90, first, the oxide film removing device 94 swirls the arm 96 according to the diameter of the substrate W, and the chemical solution nozzle The 95 is positioned above the edge portion of the substrate W. With the chemical solution nozzle 95 located above the edge portion of the substrate W, DIW is supplied from the DIW nozzle 93 to the substantially central portion of the rotating substrate W, and the chemical solution is ejected to the edge portion of the rotating substrate W. The chemical solution is supplied to the edge portion of the substrate W and receives centrifugal force due to the rotation of the substrate W to flow toward the outer peripheral portion of the substrate W. As a result, the oxide film removing device 94 can locally supply the chemical solution to the edge portion of the substrate W. In other words, the region other than the edge portion of the substrate W is not substantially exposed to the chemical solution. By rotating the substrate W by the rotary stage 91, the chemical solution can be efficiently supplied over the entire circumference of the edge portion of the substrate W. When the chemical solution is supplied to the oxide film formed on the edge portion of the substrate W, the oxide film is dissolved and removed by the chemical solution. After supplying the chemical solution for a predetermined time, the supply of the chemical solution is stopped and the supply of DIW is continued. As a result, the chemical solution supplied to the edge portion of the substrate W is washed away. Here, the edge portion of the substrate W is a region where the electric contact 72 can contact as described above, or when the substrate W is held by the substrate holder 60, the substrate W is more than a portion where the seal member 70 contacts. This is a region on the peripheral side of W. However, when the chemical solution is supplied to the substrate in a spot manner, it is assumed in advance that a part of the chemical solution may be scattered, and the chemical solution component / concentration that does not adversely affect the resist pattern is set, and then the substrate W is used. It can also be configured to dissolve and remove the oxide film in the peripheral portion of the edge portion with the chemical solution 28.

また、スポンジ薬液洗浄装置90は、酸化膜除去装置94により基板Wのエッジ部の酸化膜を除去しつつ、スポンジ洗浄部84によって基板Wのエッジ部に存在するパーティクルを局所的に除去することができる。なお、本実施形態においても、基板のエッジ部に汚染物質が存在しているかいないかを測定するために、基板Wのエッジ部に、エッジ部の上方から紫外領域(200nmから380nm)の光、例えば365nmを励起光として照射し、エッジ部の吸光度を測定するように構成されたセンサ(分光光度計)、又は蛍光領域の光を照射してその反射光の強度をモニタするためのセンサ(蛍光反射膜厚計)をスポンジ薬液洗浄装置90に設けてもよい(不図示)。めっき装置の制御部は、このセンサにより測定された吸光度又は蛍光強度の値が、予め設定した閾値よりも大きい値か否かによって、エッジ部の汚染物質(有機物及び酸化膜を含む)が十分に除去されているか否かを判定することができるように構成されている。その場合、エッジ部の洗浄中又は洗浄後の基板Wのエッジ部の上方にセンサを位置させた状態で基板Wを回転させ、エッジ部に汚染物質が存在しているかいないかを判定できる。このようにすることで、基板Wのエッジ部に汚染物質が存在しているかいないかをめっき処理を行う前に判定し、その後、エッジ部に汚染物質が残存していない基板についてめっき処理を行うようにすることができるので、基板ホルダ60が有する電気接点の接触抵抗のばらつきに起因する基板Wのめっき膜厚の面内均一性の悪化等を防止できる。さらに、基板Wのエッジ部の洗浄中に基板Wのエッジ部に汚染物質が存在しているかいないかを判定するようにした場合には、洗浄の終点を、このセンサの判定結果に基づいて決定することもできる。さらに、もともとエッジ部に異常がある基板Wの有無も、センサの測定結果に基づいて判定できる。 Further, the sponge chemical cleaning device 90 can locally remove particles existing at the edge portion of the substrate W by the sponge cleaning unit 84 while removing the oxide film at the edge portion of the substrate W by the oxide film removing device 94. can. Also in this embodiment, in order to measure whether or not a contaminant is present on the edge portion of the substrate, light in the ultraviolet region (200 nm to 380 nm) from above the edge portion on the edge portion of the substrate W is used. For example, a sensor (spectrophotometer) configured to irradiate 365 nm as excitation light and measure the absorbance at the edge, or a sensor (fluorescence) to irradiate light in the fluorescent region and monitor the intensity of the reflected light. A reflective film thickness meter) may be provided in the sponge chemical solution cleaning device 90 (not shown). The control unit of the plating apparatus is sufficiently free of contaminants (including organic substances and oxide film) at the edge portion depending on whether or not the value of the absorbance or fluorescence intensity measured by this sensor is larger than the preset threshold value. It is configured so that it can be determined whether or not it has been removed. In that case, the substrate W can be rotated with the sensor positioned above the edge portion of the substrate W during or after cleaning of the edge portion, and it can be determined whether or not a contaminant is present on the edge portion. By doing so, it is determined whether or not a contaminant is present on the edge portion of the substrate W before the plating treatment is performed, and then the substrate on which no contaminant is left on the edge portion is subjected to the plating treatment. Therefore, it is possible to prevent deterioration of the in-plane uniformity of the plating film thickness of the substrate W due to the variation in the contact resistance of the electric contacts of the substrate holder 60. Further, when it is determined whether or not a contaminant is present on the edge portion of the substrate W during cleaning of the edge portion of the substrate W, the end point of cleaning is determined based on the determination result of this sensor. You can also do it. Further, the presence or absence of the substrate W having an abnormality in the edge portion can also be determined based on the measurement result of the sensor.

図19は、第5実施形態に係るめっき方法を示すフロー図である。第5実施形態に係るめっき方法は、第1実施形態に係る図7に示しためっき方法に加えて、ステップS901を有する。図7のめっき方法と同一の部分の説明は一部省略する。 FIG. 19 is a flow chart showing a plating method according to a fifth embodiment. The plating method according to the fifth embodiment includes step S901 in addition to the plating method shown in FIG. 7 according to the first embodiment. A part of the description of the same part as the plating method of FIG. 7 will be omitted.

ステップS603において、アライナ40が有する有機物脱離装置45(図4ないし図6参照)が、基板Wのエッジ部に存在する有機物を脱離する。続いて、基板搬送装置122によって、基板Wがスポンジ薬液洗浄装置90へ搬送される。スポンジ薬液洗浄装置90において、基板Wはエッジ部の洗浄が行われる(ステップS901)。具体的には、スポンジ薬液洗浄装置90において、基板Wのエッジ部に存在するパーティクル及び酸化膜が除去される。また、図19には示されていないが、エッジ部の洗浄が行われた基板Wのエッジ部における有機物、酸化膜、パーティクル等の有無を判定するために、エッジ部に汚染物質が存在しているかいないかを判定するようにしてもよい。 In step S603, the organic matter desorption device 45 (see FIGS. 4 to 6) included in the aligner 40 desorbs the organic matter existing at the edge portion of the substrate W. Subsequently, the substrate W is conveyed to the sponge chemical solution cleaning device 90 by the substrate transfer device 122. In the sponge chemical solution cleaning device 90, the edge portion of the substrate W is cleaned (step S901). Specifically, in the sponge chemical solution cleaning device 90, the particles and the oxide film existing at the edge portion of the substrate W are removed. Further, although not shown in FIG. 19, a contaminant is present on the edge portion in order to determine the presence or absence of organic substances, oxide films, particles, etc. on the edge portion of the substrate W whose edge portion has been washed. It may be determined whether or not it is present.

エッジ部の洗浄が行われた基板Wは、基板搬送装置122によってフィキシングユニット120に搬送され、基板ホルダ60にセットされる(ステップS604)。このとき、基板ホルダ60の電気接点は、洗浄された基板Wのエッジ部と接触する。これにより、パーティクルに起因する基板ホルダ60の電気接点の接触抵抗のバラつきを低減することができる。基板ホルダ60にセットされた基板Wは、後段のステップS605~ステップS609において、処理される。 The substrate W whose edge portion has been cleaned is transported to the fixing unit 120 by the substrate transport device 122 and set in the substrate holder 60 (step S604). At this time, the electric contact of the substrate holder 60 comes into contact with the edge portion of the cleaned substrate W. This makes it possible to reduce variations in the contact resistance of the electrical contacts of the substrate holder 60 caused by particles. The substrate W set in the substrate holder 60 is processed in the subsequent steps S605 to S609.

以上で説明したように、第5実施形態によれば、基板ホルダ60にセットされる前に、基板Wのエッジ部に存在する有機物、酸化膜、及びパーティクルを局所的に除去することができる。したがって、基板Wのエッジ部に存在する有機物、酸化膜、及びパーティクルに起因する基板ホルダ60の電気接点72の接触抵抗のバラつきを抑制し、めっき膜厚の均一性の悪化を防止することができる。 As described above, according to the fifth embodiment, organic substances, oxide films, and particles existing at the edge portion of the substrate W can be locally removed before being set in the substrate holder 60. Therefore, it is possible to suppress the variation in the contact resistance of the electric contact 72 of the substrate holder 60 due to the organic matter, the oxide film, and the particles existing at the edge portion of the substrate W, and prevent the deterioration of the uniformity of the plating film thickness. ..

<第6実施形態>
図20は、第6実施形態にかかるめっき装置の全体配置図である。第6実施形態のめっき装置は、第1実施形態から第5実施形態のめっき装置と比べて、矩形(角形)基板にめっきを行うように構成されている点が大きく異なる。以下の説明において、第1実施形態のめっき装置と同様の構成については詳細な説明を省略する。
<Sixth Embodiment>
FIG. 20 is an overall layout of the plating apparatus according to the sixth embodiment. The plating apparatus of the sixth embodiment is significantly different from the plating apparatus of the first to fifth embodiments in that it is configured to perform plating on a rectangular (square) substrate. In the following description, detailed description of the same configuration as the plating apparatus of the first embodiment will be omitted.

第6実施形態のめっき装置は、フープ102と、フィキシングユニット120と、基板搬送装置122とを有する。後述するように、第6実施形態に係るフィキシングユニット120は、基板ホルダ60にセットされる前の矩形基板のエッジ部に存在する有機物を局所的に脱離する有機物脱離装置を有する。第6実施形態のめっき装置では、矩形基板を保持することができる基板ホルダ60が使用される。フィキシングユニット120は、有機物脱離装置で、矩形基板のエッジ部に存在する有機物を局所的に脱離した後、基板ホルダ60に矩形基板を保持させるように構成される。 The plating apparatus of the sixth embodiment includes a hoop 102, a fixing unit 120, and a substrate transfer device 122. As will be described later, the fixing unit 120 according to the sixth embodiment has an organic substance desorption device that locally desorbs organic substances existing at the edge portion of the rectangular substrate before being set in the substrate holder 60. In the plating apparatus of the sixth embodiment, a substrate holder 60 capable of holding a rectangular substrate is used. The fixing unit 120 is an organic matter desorption device, and is configured to locally desorb the organic matter existing at the edge portion of the rectangular substrate and then hold the rectangular substrate in the substrate holder 60.

めっき装置は、さらに、ストッカ124と、プリウェット槽126と、活性化槽129と、ブロー槽132と、めっき槽10と、を有する。活性化槽129では、プリウェット後の基板の表面を酸等で洗浄して活性化させる。ストッカ124、プリウェット槽126、活性化槽129、ブロー槽132、及びめっき槽10は、この順に配置されている。また、めっき装置は、めっき処理された矩形基板を洗浄及び乾燥するための洗浄乾燥装置135を有する。 The plating apparatus further includes a stocker 124, a pre-wet tank 126, an activation tank 129, a blow tank 132, and a plating tank 10. In the activation tank 129, the surface of the substrate after pre-wetting is washed with an acid or the like to activate it. The stocker 124, the pre-wet tank 126, the activation tank 129, the blow tank 132, and the plating tank 10 are arranged in this order. Further, the plating apparatus includes a cleaning / drying device 135 for cleaning and drying the plated rectangular substrate.

図21は、第6実施形態に係るめっき方法を示すフロー図である。本めっき方法では、まず、図20に示しためっき装置に矩形基板を搬送する前に、矩形基板にレジストパターンを形成する(ステップS2101)。続いて、レジストパターンが形成された矩形基板にUVの照射を行い、矩形基板表面上のレジスト残渣を除去し(アッシング処理)且つレジスト表面の親水化処理(ディスカム処理)を行う(ステップS2102)。ステップS2101及びステップS2102の処理は、図20に示しためっき装置以外の任意の装置において行われる。 FIG. 21 is a flow chart showing the plating method according to the sixth embodiment. In this plating method, first, a resist pattern is formed on the rectangular substrate before the rectangular substrate is conveyed to the plating apparatus shown in FIG. 20 (step S2101). Subsequently, the rectangular substrate on which the resist pattern is formed is irradiated with UV, the resist residue on the surface of the rectangular substrate is removed (ashing treatment), and the resist surface is hydrophilized (discum treatment) (step S2102). The processing of steps S2101 and S2102 is performed in any device other than the plating device shown in FIG.

続いて、矩形基板を収容したフープ102から、基板搬送装置122によって、矩形基板がフィキシングユニット120へ搬送される。フィキシングユニット120において、矩形基板のエッジ部の洗浄が行われる(ステップS2103)。具体的には、フィキシン
グユニット120において、有機物脱離装置により矩形基板のエッジ部に局所的にUV又はプラズマが適用され、有機物が脱離される。
Subsequently, the rectangular substrate is conveyed to the fixing unit 120 by the substrate transfer device 122 from the hoop 102 accommodating the rectangular substrate. In the fixing unit 120, the edge portion of the rectangular substrate is cleaned (step S2103). Specifically, in the fixing unit 120, UV or plasma is locally applied to the edge portion of the rectangular substrate by the organic substance desorption device, and the organic substance is desorbed.

図21に示すフローには記載されていないが、フィキシングユニット120にセンサ(不図示)を設けた場合には、矩形基板のエッジ部に存在する有機物にUV又はプラズマを適用して局所的に除去した後に、エッジ部の汚染物質(有機物を含む)の有無を確認することができる。具体的には、まず、フィキシングユニット120に供えられた有機物脱離装置に配置された矩形基板の表面の上方にセンサ(分光光度計又は蛍光反射膜厚計)を位置させる。センサを矩形基板中心部からエッジ部へ(又はエッジ部から基板中心部へ)走査させながら、センサから矩形基板の表面に向かって紫外領域(200nmから380nm)の光、例えば365nmの波長の光を励起光として照射し、吸光度または蛍光強度を測定する。 Although not shown in the flow shown in FIG. 21, when the fixing unit 120 is provided with a sensor (not shown), UV or plasma is applied to the organic matter existing at the edge of the rectangular substrate to locally remove it. After that, it is possible to confirm the presence or absence of contaminants (including organic substances) in the edge portion. Specifically, first, a sensor (spectrophotometer or fluorescence reflection film thickness meter) is positioned above the surface of a rectangular substrate arranged in an organic matter desorption device provided in the fixing unit 120. While scanning the sensor from the center of the rectangular substrate to the edge (or from the edge to the center of the substrate), light in the ultraviolet region (200 nm to 380 nm), for example, light having a wavelength of 365 nm, is emitted from the sensor toward the surface of the rectangular substrate. Irradiate as excitation light and measure absorbance or fluorescence intensity.

矩形基板表面には、UV又はプラズマ処理が行われたエッジ部と、UV又はプラズマ処理が行われていない被めっき面とが存在し、シード層は、矩形基板表面の全域(被めっき面とエッジ部)に形成されている。そして、被めっき面とエッジ部にセンサを走査させることで、被めっき面とエッジ部の両方の吸光度又は蛍光強度を測定することができる。めっき装置の図示しない制御部は、例えば、この被めっき面とエッジ部の両方の吸光度を比較し、例えば被めっき面の吸光度に対するエッジ部の吸光度の比の値が予め設定した閾値(例えば50%以下)より大きいか否かにより、エッジ部の汚染物質(有機物および酸化膜を含む)が十分に除去されているか否かを判定することができる。上記比の値が閾値より大きい場合は、エッジ部の汚染物質(有機物および酸化膜を含む)は十分に除去されていないと判定できる。また、上記比の値が閾値より大きくない場合はエッジ部の汚染物質(有機物および酸化膜を含む)は十分に除去されていると判定できる。蛍光強度を測定する場合も、同様に所定の閾値と測定値とを比較することで、エッジ部の汚染物質が十分に除去されているか否かを判定することができる。 The surface of the rectangular substrate has an edge portion subjected to UV or plasma treatment and a surface to be plated not subjected to UV or plasma treatment, and the seed layer is formed on the entire surface of the rectangular substrate surface (the surface to be plated and the edge). It is formed in the part). Then, by scanning the sensor on the surface to be plated and the edge portion, the absorbance or fluorescence intensity of both the surface to be plated and the edge portion can be measured. A control unit (not shown) of the plating apparatus compares, for example, the absorbances of both the surface to be plated and the edge portion, and for example, the value of the ratio of the absorbance of the edge portion to the absorbance of the surface to be plated is a preset threshold value (for example, 50%). Whether or not it is larger than the following) can be used to determine whether or not the contaminants (including organic substances and oxide film) at the edge portion are sufficiently removed. When the value of the above ratio is larger than the threshold value, it can be determined that the contaminants (including organic substances and oxide film) at the edge portion are not sufficiently removed. Further, when the value of the above ratio is not larger than the threshold value, it can be determined that the contaminants (including organic substances and oxide film) at the edge portion are sufficiently removed. Also in the case of measuring the fluorescence intensity, it is possible to determine whether or not the contaminants on the edge portion are sufficiently removed by similarly comparing the predetermined threshold value with the measured value.

この判定に基づき、エッジ部の汚染物質が十分に除去されていないと判定された場合は、矩形基板のエッジ部に局所的にUV又はプラズマを放射する工程を繰り返し実施してもよい。また、エッジ部の汚染物質が十分に除去されていると判定された場合は、有機物の脱離が完了したものとして、基板ホルダ搬送装置140によって各処理槽に搬送され、一連のめっき処理が実施される。このように、矩形基板のエッジ部に汚染物質が存在しているかいないかをめっき処理前に判定し、その後、エッジ部に汚染物質が残存していない矩形基板についてめっき処理を行うようにすることで、基板ホルダ60が有する電気接点の接触抵抗のばらつきに起因する矩形基板のめっき膜厚の面内均一性の悪化等を、より確実に防止できる。 If it is determined based on this determination that the contaminants on the edge portion have not been sufficiently removed, the step of locally radiating UV or plasma to the edge portion of the rectangular substrate may be repeated. Further, when it is determined that the contaminants on the edge portion have been sufficiently removed, it is assumed that the desorption of organic substances has been completed, and the contaminants are transported to each treatment tank by the substrate holder transport device 140, and a series of plating treatments are carried out. Will be done. In this way, it is determined whether or not there is a contaminant on the edge portion of the rectangular substrate before the plating treatment, and then the plating treatment is performed on the rectangular substrate in which the contaminant does not remain on the edge portion. Therefore, deterioration of the in-plane uniformity of the plating film thickness of the rectangular substrate due to the variation in the contact resistance of the electric contact of the substrate holder 60 can be more reliably prevented.

エッジ部の洗浄が行われた矩形基板は、フィキシングユニット120により基板ホルダ60にセットされる(ステップS2104)。このとき、矩形基板のエッジ部の有機物は脱離されているので、基板ホルダ60の電気接点は、洗浄された矩形基板のエッジ部と接触する。これにより、有機物の付着に起因する基板ホルダ60の電気接点の接触抵抗のバラつきを低減することができる。 The rectangular substrate whose edge portion has been cleaned is set in the substrate holder 60 by the fixing unit 120 (step S2104). At this time, since the organic matter at the edge portion of the rectangular substrate is desorbed, the electric contact of the substrate holder 60 comes into contact with the edge portion of the cleaned rectangular substrate. This makes it possible to reduce variations in the contact resistance of the electrical contacts of the substrate holder 60 due to the adhesion of organic substances.

基板ホルダ60に保持された矩形基板は、基板ホルダ搬送装置140により、まずプリウェット槽126に搬送され、プリウェット槽126に収容された純水に基板Wが浸漬される(ステップS2105)。続いて、矩形基板は、活性化槽129に搬送され、基板Wの表面が活性化される(ステップS2106)。 The rectangular substrate held in the substrate holder 60 is first conveyed to the pre-wet tank 126 by the substrate holder transfer device 140, and the substrate W is immersed in the pure water contained in the pre-wet tank 126 (step S2105). Subsequently, the rectangular substrate is conveyed to the activation tank 129, and the surface of the substrate W is activated (step S2106).

矩形基板は、めっき槽10のいずれかのめっきセル134に浸漬されて、めっき処理が行われる(ステップS2107)。表面にめっき膜が形成された矩形基板は、ブロー槽1
32においてブロー乾燥される(ステップS2108)。続いて、基板ホルダ60に保持された矩形基板はフィキシングユニット120に搬送され、基板ホルダ60から矩形基板が取り外される。基板搬送装置122は、フィキシングユニット120から矩形基板を受け取り、洗浄乾燥装置135に矩形基板を搬送する。矩形基板は、洗浄乾燥装置135において、表面の洗浄及び乾燥が行われる(ステップS2109)。
The rectangular substrate is immersed in any of the plating cells 134 of the plating tank 10 to perform a plating process (step S2107). The rectangular substrate on which the plating film is formed is the blow tank 1.
It is blow-dried at 32 (step S2108). Subsequently, the rectangular substrate held in the substrate holder 60 is conveyed to the fixing unit 120, and the rectangular substrate is removed from the substrate holder 60. The substrate transfer device 122 receives the rectangular substrate from the fixing unit 120 and conveys the rectangular substrate to the washing / drying device 135. The surface of the rectangular substrate is washed and dried in the washing / drying device 135 (step S2109).

次に、図21に示したステップS2103における処理について詳細に説明する。図22は、フィキシングユニット120に設けられる有機物脱離装置50の一例の概略側面図である。有機物脱離装置50は、UV照射装置又はプラズマ放射装置を構成する。図22に示すように、有機物脱離装置50は、基板支持台55(回転機構の一例に相当する)と、第1アクチュエータ53(アクチュエータの一例に相当する)と、第2アクチュエータ52(アクチュエータの一例に相当する)と、ヘッド部51と、制御部54と、を有する。基板支持台55は、矩形基板S1の裏面を吸着するように構成され、矩形基板S1を周方向に回転させる。なお、基板支持台55は、静電吸着式又は真空吸着式で矩形基板S1を吸着する。 Next, the process in step S2103 shown in FIG. 21 will be described in detail. FIG. 22 is a schematic side view of an example of the organic matter desorption device 50 provided in the fixing unit 120. The organic matter desorption device 50 constitutes a UV irradiation device or a plasma radiation device. As shown in FIG. 22, the organic matter desorption device 50 includes a substrate support 55 (corresponding to an example of a rotation mechanism), a first actuator 53 (corresponding to an example of an actuator), and a second actuator 52 (corresponding to an example of an actuator). (Corresponding to one example), a head unit 51, and a control unit 54. The substrate support 55 is configured to attract the back surface of the rectangular substrate S1 and rotates the rectangular substrate S1 in the circumferential direction. The substrate support 55 adsorbs the rectangular substrate S1 by an electrostatic adsorption type or a vacuum adsorption type.

ヘッド部51は、基板支持台55に配置された矩形基板S1の上方から矩形基板S1のエッジ部に局所的にUV又はプラズマを適用できるように構成される。即ち、ヘッド部51がUVを照射するように構成される場合は、有機物脱離装置50はUV照射装置を構成し、ヘッド部51がプラズマを放射するように構成される場合は、有機物脱離装置50はプラズマ照射装置を構成する。有機物脱離装置50は、基板ホルダ60に保持される前の矩形基板S1のエッジ部に局所的にUV又はプラズマを適用することができる。言い換えれば、矩形基板S1のエッジ部以外の領域は、UV又はプラズマに曝されない。 The head portion 51 is configured so that UV or plasma can be locally applied to the edge portion of the rectangular substrate S1 from above the rectangular substrate S1 arranged on the substrate support 55. That is, when the head portion 51 is configured to irradiate UV, the organic substance desorption device 50 constitutes a UV irradiation device, and when the head portion 51 is configured to radiate plasma, the organic substance desorption device 50 is configured. The device 50 constitutes a plasma irradiation device. The organic substance desorption device 50 can locally apply UV or plasma to the edge portion of the rectangular substrate S1 before being held by the substrate holder 60. In other words, the region other than the edge portion of the rectangular substrate S1 is not exposed to UV or plasma.

第1アクチュエータ53及び第2アクチュエータ52は、ヘッド部51を水平方向に移動させることができる。具体的には、第1アクチュエータ53は、ヘッド部51を水平方向であり且つ直線方向の第1方向に移動させることができ、第2アクチュエータ52は、第1方向と直交する第2方向に移動させることができる。図示の例では、第1アクチュエータ53により、矩形基板S1のエッジ部に沿ってヘッド部51を移動させることができ、第2アクチュエータ52により、矩形基板S1の端部からUV又はプラズマの適用位置までの距離d2を調節することができる。本実施形態においては、基板ホルダ60のシール部材70のリップ部70aが当接する部分よりも外周側の領域にUV又はプラズマが適用されるように、距離d2は、約5mm以下、より好ましくは約2mm以下となるようにヘッド部51の位置が調整される。なお、本実施形態において第1方向又は第2方向とは、一方向ではなく、例えばX軸のプラス方向及びマイナス方向のような双方向を意味する。 The first actuator 53 and the second actuator 52 can move the head portion 51 in the horizontal direction. Specifically, the first actuator 53 can move the head portion 51 in the first direction in the horizontal direction and the linear direction, and the second actuator 52 moves in the second direction orthogonal to the first direction. Can be made to. In the illustrated example, the first actuator 53 can move the head portion 51 along the edge portion of the rectangular substrate S1, and the second actuator 52 allows the second actuator 52 to move the UV or plasma application position from the end portion of the rectangular substrate S1. Distance d2 can be adjusted. In the present embodiment, the distance d2 is about 5 mm or less, more preferably about, so that UV or plasma is applied to the region on the outer peripheral side of the portion where the lip portion 70a of the seal member 70 of the substrate holder 60 abuts. The position of the head portion 51 is adjusted so that it is 2 mm or less. In the present embodiment, the first direction or the second direction does not mean one direction, but means two directions such as a plus direction and a minus direction of the X axis.

また、ヘッド部51は、図示しない昇降機構により、鉛直方向に移動可能に構成される。ヘッド部51のUV照射源又はプラズマ放射口と矩形基板S1との距離d1は、約1mm以上約10mm以下とすることが好ましい。この距離が1mm未満であると、矩形基板S1とUV照射源又はプラズマ放射口とが物理的に接触する可能性がある。また、この距離d1を10mm超とすると、局所的にUV又はプラズマを照射できない可能性がある。矩形基板とUV照射源又はプラズマ放射口とをより確実に物理的に接触させることなく、また、局所的に照射できるようにするためには、この距離d1を約2mm以上約5mm以下とすることがより好ましい。 Further, the head portion 51 is configured to be movable in the vertical direction by an elevating mechanism (not shown). The distance d1 between the UV irradiation source or plasma emission port of the head portion 51 and the rectangular substrate S1 is preferably about 1 mm or more and about 10 mm or less. If this distance is less than 1 mm, the rectangular substrate S1 may come into physical contact with the UV irradiation source or the plasma emission port. Further, if this distance d1 is more than 10 mm, it may not be possible to locally irradiate UV or plasma. This distance d1 should be about 2 mm or more and about 5 mm or less in order to enable local irradiation without more reliable physical contact between the rectangular substrate and the UV irradiation source or plasma emission port. Is more preferable.

有機物脱離装置50は、さらに、ヘッド部51、第1アクチュエータ53、及び第2アクチュエータ、及び図示しない昇降機構を制御するための制御部54を有する。また、有機物脱離装置50は、ヘッド部51が放射するUV又はプラズマが矩形基板S1の中央側に拡散しないように、図22に示すように、ヘッド部51の矩形基板S1の中央側にUV
又はプラズマを遮蔽するためのマスク57を有してもよい。
The organic matter desorption device 50 further includes a head unit 51, a first actuator 53, a second actuator, and a control unit 54 for controlling an elevating mechanism (not shown). Further, in the organic matter desorption device 50, as shown in FIG. 22, UV on the center side of the rectangular substrate S1 of the head portion 51 so that the UV or plasma radiated by the head portion 51 does not diffuse to the center side of the rectangular substrate S1.
Alternatively, it may have a mask 57 for shielding the plasma.

図23Aから図23Eは、図22に示した有機物脱離装置50で矩形基板S1のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置50の平面図である。図23Aに示すように、まず、有機物脱離装置50は、図示しない昇降機構により、ヘッド部51の鉛直方向の位置合わせをし、第2アクチュエータ52により、ヘッド部51の位置を矩形基板S1の4つのエッジ部のうちの一つに位置合わせする。続いて、有機物脱離装置50の制御部54は、ヘッド部51及び第1アクチュエータ53を制御して、ヘッド部51からUV又はプラズマを放射しながら、第1アクチュエータ53により矩形基板S1のエッジ部に沿ってヘッド部51を移動させて、エッジ部の一つを洗浄する。 23A to 23E are plan views of the organic substance desorption device 50 showing the process of desorbing the organic substance at the edge portion of the rectangular substrate S1 by the organic substance desorption device 50 shown in FIG. 22. As shown in FIG. 23A, first, the organic matter desorption device 50 aligns the head portion 51 in the vertical direction by an elevating mechanism (not shown), and the position of the head portion 51 is positioned by the second actuator 52 of the rectangular substrate S1. Align to one of the four edges. Subsequently, the control unit 54 of the organic matter desorption device 50 controls the head unit 51 and the first actuator 53, and while radiating UV or plasma from the head unit 51, the edge portion of the rectangular substrate S1 is generated by the first actuator 53. The head portion 51 is moved along the surface to clean one of the edge portions.

エッジ部の一つが洗浄されると、有機物脱離装置50は、基板支持台55(図22参照)を回転させて、図23Bに示すように矩形基板S1を90度回転させる。このとき、制御部54は、ヘッド部51からのUV又はプラズマの放射を停止させてから、基板支持台55を回転させるように、ヘッド部51及び基板支持台55を制御する。言い換えれば、ヘッド部51からのUV又はプラズマの放射と基板支持台55による矩形基板S1の回転とが同時に行われないように、ヘッド部51及び基板支持台55を制御する。これにより、矩形基板S1上の意図しない領域にUV又はプラズマが放射されることを防止することができる。 When one of the edges is cleaned, the organic desorption device 50 rotates the substrate support 55 (see FIG. 22) to rotate the rectangular substrate S1 by 90 degrees as shown in FIG. 23B. At this time, the control unit 54 controls the head unit 51 and the substrate support 55 so as to rotate the substrate support 55 after stopping the radiation of UV or plasma from the head 51. In other words, the head portion 51 and the substrate support 55 are controlled so that the radiation of UV or plasma from the head portion 51 and the rotation of the rectangular substrate S1 by the substrate support 55 are not performed at the same time. This makes it possible to prevent UV or plasma from being radiated to an unintended region on the rectangular substrate S1.

図23Bに示すように、有機物脱離装置50は、UV又はプラズマの放射を停止させたまま、第2アクチュエータ52により、ヘッド部51を矩形基板S1のエッジ部に位置合わせする。本実施形態では、第2アクチュエータ52を有するので、図23Aから図23Eに示すように矩形基板S1が長辺と短辺を有する場合であっても、ヘッド部51を矩形基板S1のエッジ部に位置合わせすることができる。 As shown in FIG. 23B, the organic matter desorption device 50 aligns the head portion 51 with the edge portion of the rectangular substrate S1 by the second actuator 52 while stopping the radiation of UV or plasma. In the present embodiment, since the second actuator 52 is provided, even when the rectangular substrate S1 has a long side and a short side as shown in FIGS. 23A to 23E, the head portion 51 is used as the edge portion of the rectangular substrate S1. It can be aligned.

続いて、有機物脱離装置50は、ヘッド部51からUV又はプラズマを放射しながら、第1アクチュエータ53により矩形基板S1のエッジ部に沿ってヘッド部51を移動させて、エッジ部の他の一つを洗浄する。同様に、図23C及び図23Dに示すように、有機物脱離装置50は、エッジ部の一つを洗浄するごとに、矩形基板S1を90度回転させ、各エッジ部を洗浄する。 Subsequently, the organic matter desorption device 50 moves the head portion 51 along the edge portion of the rectangular substrate S1 by the first actuator 53 while radiating UV or plasma from the head portion 51, and the other one of the edge portions. Wash one. Similarly, as shown in FIGS. 23C and 23D, the organic substance desorption device 50 rotates the rectangular substrate S1 by 90 degrees each time one of the edge portions is cleaned, and cleans each edge portion.

矩形基板S1の4辺のエッジ部の洗浄が終了すると、有機物脱離装置50は、さらに矩形基板S1を90度回転させて、矩形基板S1を図23Aと同一の位置(ホームポジション)に戻す(図23E)。以上のように、矩形基板S1の4辺のエッジ部が洗浄される。図22から図23Eに示す有機物脱離装置50においては、一組の第1アクチュエータ53、第2アクチュエータ52、及びヘッド部51を有するものとしているが、これらを複数組有してもよい。その場合は、エッジ部の洗浄に要する時間を低減させることができる。 After cleaning the edges of the four sides of the rectangular substrate S1, the organic substance desorption device 50 further rotates the rectangular substrate S1 by 90 degrees to return the rectangular substrate S1 to the same position (home position) as in FIG. 23A (home position). FIG. 23E). As described above, the edge portions of the four sides of the rectangular substrate S1 are cleaned. The organic matter desorption device 50 shown in FIGS. 22 to 23E has a set of a first actuator 53, a second actuator 52, and a head portion 51, but a plurality of sets thereof may be provided. In that case, the time required for cleaning the edge portion can be reduced.

図24は、フィキシングユニット120に設けられる有機物脱離装置50の他の一例の概略側面図である。図24に示す有機物脱離装置50では、図22に示した有機物脱離装置50と異なり、基板支持台55が回転しないように構成される。その代り、図24に示す有機物脱離装置50は、ヘッド部51、第1アクチュエータ53、及び第2アクチュエータ52を旋回させる旋回軸56を有する。旋回軸56は、その中心軸が矩形基板S1の略中心を通過するように位置決めされる。ヘッド部51、第1アクチュエータ53、及び第2アクチュエータ52は、図24に示すようにヘッド部51が矩形基板S1のエッジ部の上方に位置することができるように、直接的又は間接的に旋回軸56に接続される。制御部54は、ヘッド部51、第1アクチュエータ53、及び第2アクチュエータ52に加えて、旋回軸56の駆動も制御する。 FIG. 24 is a schematic side view of another example of the organic matter desorption device 50 provided in the fixing unit 120. Unlike the organic substance desorption device 50 shown in FIG. 22, the organic substance desorption device 50 shown in FIG. 24 is configured so that the substrate support 55 does not rotate. Instead, the organic desorption device 50 shown in FIG. 24 has a head portion 51, a first actuator 53, and a swivel shaft 56 that swivels the second actuator 52. The swivel shaft 56 is positioned so that its central axis passes substantially the center of the rectangular substrate S1. The head portion 51, the first actuator 53, and the second actuator 52 rotate directly or indirectly so that the head portion 51 can be located above the edge portion of the rectangular substrate S1 as shown in FIG. 24. It is connected to the shaft 56. The control unit 54 controls the drive of the swivel shaft 56 in addition to the head unit 51, the first actuator 53, and the second actuator 52.

図25Aから図25Eは、図24に示した有機物脱離装置50で矩形基板S1のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置50の平面図である。図25Aに示すように、まず、有機物脱離装置50は、図示しない昇降機構により、ヘッド部51の鉛直方向の位置合わせをし、旋回軸56及び第2アクチュエータ52により、ヘッド部51の位置を矩形基板S1の4つのエッジ部のうちの一つに位置合わせする。続いて、有機物脱離装置50の制御部54は、ヘッド部51及び第1アクチュエータ53を制御して、ヘッド部51からUV又はプラズマを放射しながら、第1アクチュエータ53により矩形基板S1のエッジ部に沿ってヘッド部51を移動させて、エッジ部の一つを洗浄する。 25A to 25E are plan views of the organic substance desorption device 50 showing the process of desorbing the organic substance at the edge portion of the rectangular substrate S1 by the organic substance desorption device 50 shown in FIG. 24. As shown in FIG. 25A, first, the organic matter desorption device 50 aligns the head portion 51 in the vertical direction by an elevating mechanism (not shown), and positions the head portion 51 by the swivel shaft 56 and the second actuator 52. It is aligned with one of the four edges of the rectangular substrate S1. Subsequently, the control unit 54 of the organic matter desorption device 50 controls the head unit 51 and the first actuator 53, and while radiating UV or plasma from the head unit 51, the edge portion of the rectangular substrate S1 is generated by the first actuator 53. The head portion 51 is moved along the surface to clean one of the edge portions.

エッジ部の一つが洗浄されると、有機物脱離装置50は、旋回軸56を回転させて、図25Bに示すようにヘッド部51を90度旋回させる。このとき、制御部54は、ヘッド部51からのUV又はプラズマの放射を停止させてから、ヘッド部51を旋回させるように、ヘッド部51及び旋回軸56を制御する。言い換えれば、ヘッド部51からのUV又はプラズマの放射と旋回軸56によるヘッド部51の旋回とが同時に行われないように、ヘッド部51及び旋回軸56を制御する。これにより、矩形基板S1上の意図しない領域にUV又はプラズマが放射されることを防止することができる。 When one of the edge portions is cleaned, the organic desorption device 50 rotates the swivel shaft 56 to swivel the head portion 51 by 90 degrees as shown in FIG. 25B. At this time, the control unit 54 controls the head unit 51 and the swivel shaft 56 so as to stop the radiation of UV or plasma from the head unit 51 and then rotate the head unit 51. In other words, the head portion 51 and the swivel shaft 56 are controlled so that the radiation of UV or plasma from the head portion 51 and the swivel of the head portion 51 by the swivel shaft 56 are not performed at the same time. This makes it possible to prevent UV or plasma from being radiated to an unintended region on the rectangular substrate S1.

図25Bに示すように、有機物脱離装置50は、UV又はプラズマの放射を停止させたまま、第2アクチュエータ52により、ヘッド部51を矩形基板S1のエッジ部に位置合わせする。続いて、有機物脱離装置50は、ヘッド部51からUV又はプラズマを放射しながら、第1アクチュエータ53により矩形基板S1のエッジ部に沿ってヘッド部51を移動させて、エッジ部の他の一つを洗浄する。同様に、図25C及び図25Dに示すように、有機物脱離装置50は、エッジ部の一つを洗浄するごとに、旋回軸56を中心にヘッド部51を90度旋回させ、各エッジ部を洗浄する。 As shown in FIG. 25B, the organic matter desorption device 50 aligns the head portion 51 with the edge portion of the rectangular substrate S1 by the second actuator 52 while stopping the radiation of UV or plasma. Subsequently, the organic matter desorption device 50 moves the head portion 51 along the edge portion of the rectangular substrate S1 by the first actuator 53 while radiating UV or plasma from the head portion 51, and the other one of the edge portions. Wash one. Similarly, as shown in FIGS. 25C and 25D, each time the organic matter desorption device 50 cleans one of the edge portions, the head portion 51 is swiveled about 90 degrees around the swivel shaft 56, and each edge portion is swiveled. To wash.

矩形基板S1の4辺のエッジ部の洗浄が終了すると、有機物脱離装置50は、さらにヘッド部51を90度旋回させて、ヘッド部を図25Aと同一の位置(ホームポジション)に戻す(図25E)。以上のように、矩形基板S1の4辺のエッジ部が洗浄される。図24から図25Eに示す有機物脱離装置50においては、一組の旋回軸56、第1アクチュエータ53、第2アクチュエータ52、及びヘッド部51を有するものとしているが、これらを複数組有してもよい。その場合は、エッジ部の洗浄に要する時間を低減させることができる。 When the cleaning of the four edge portions of the rectangular substrate S1 is completed, the organic matter desorption device 50 further turns the head portion 51 by 90 degrees and returns the head portion to the same position (home position) as in FIG. 25A (FIG. FIG. 25E). As described above, the edge portions of the four sides of the rectangular substrate S1 are cleaned. The organic matter desorption device 50 shown in FIGS. 24 to 25E has a set of a swivel shaft 56, a first actuator 53, a second actuator 52, and a head portion 51, but has a plurality of sets thereof. May be good. In that case, the time required for cleaning the edge portion can be reduced.

図26は、フィキシングユニット120に設けられる有機物脱離装置50の他の一例の概略側面図である。図26に示す有機物脱離装置50では、図22に示した有機物脱離装置50と異なり、ヘッド部が2つ設けられる。即ち、有機物脱離装置50は、第1ヘッド部51aと、第2ヘッド部51bと、第1ヘッド部51a及び第2ヘッド部51bに対応する2つの第2アクチュエータ52a,52bを有する。図26に示すように、第1ヘッド部51aと第2ヘッド部51bは、第1アクチュエータ53を挟んで互いに対向する位置に設けられる。したがって、第1ヘッド部51a及び第2ヘッド部は、第2アクチュエータ52a,52bにより互いに同一方向に往復動することができる。 FIG. 26 is a schematic side view of another example of the organic matter desorption device 50 provided in the fixing unit 120. Unlike the organic substance desorption device 50 shown in FIG. 22, the organic substance desorption device 50 shown in FIG. 26 is provided with two head portions. That is, the organic matter desorption device 50 has a first head portion 51a, a second head portion 51b, and two second actuators 52a and 52b corresponding to the first head portion 51a and the second head portion 51b. As shown in FIG. 26, the first head portion 51a and the second head portion 51b are provided at positions facing each other with the first actuator 53 interposed therebetween. Therefore, the first head portion 51a and the second head portion can reciprocate in the same direction by the second actuators 52a and 52b.

図27Aから図27Cは、図26に示した有機物脱離装置50で矩形基板S1のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置50の平面図である。図27Aに示すように、まず、有機物脱離装置50は、図示しない昇降機構により、ヘッド部51の鉛直方向の位置合わせをし、第2アクチュエータ52a,52bにより、第1ヘッド部51a及び第2ヘッド部51bの位置を矩形基板S1の4つのエッジ部のうちの対向する二つに位置合わせする。続いて、有機物脱離装置50の制御部54は、第1ヘッド部51a及び第2ヘッド部51b並びに第1アクチュエータ53を制御して、第1ヘッド部51a及
び第2ヘッド部51bからUV又はプラズマを放射しながら、第1アクチュエータ53により矩形基板S1のエッジ部に沿って第1ヘッド部51a及び第2ヘッド部51bを移動させて、対向する二つのエッジ部を洗浄する。
27A to 27C are plan views of the organic substance desorption device 50 showing the process of desorbing the organic substance at the edge portion of the rectangular substrate S1 by the organic substance desorption device 50 shown in FIG. 26. As shown in FIG. 27A, first, the organic matter desorption device 50 aligns the head portion 51 in the vertical direction by an elevating mechanism (not shown), and first, the first head portions 51a and the second by the second actuators 52a and 52b. The positions of the head portions 51b are aligned with the opposite two of the four edge portions of the rectangular substrate S1. Subsequently, the control unit 54 of the organic matter desorption device 50 controls the first head portion 51a, the second head portion 51b, and the first actuator 53, and UV or plasma from the first head portion 51a and the second head portion 51b. The first actuator 53 moves the first head portion 51a and the second head portion 51b along the edge portion of the rectangular substrate S1 to clean the two facing edge portions.

対向する二つのエッジ部が洗浄されると、有機物脱離装置50は、基板支持台55(図26参照)を回転させて、図27Bに示すように矩形基板S1を90度回転させる。このとき、制御部54は、第1ヘッド部51a及び第2ヘッド部51bからのUV又はプラズマの放射を停止させてから、基板支持台55を回転させるように、第1ヘッド部51a及び第2ヘッド部51b並びに基板支持台55を制御する。これにより、矩形基板S1上の意図しない領域にUV又はプラズマが放射されることを防止することができる。 When the two facing edges are cleaned, the organic desorption device 50 rotates the substrate support 55 (see FIG. 26) to rotate the rectangular substrate S1 by 90 degrees as shown in FIG. 27B. At this time, the control unit 54 stops the radiation of UV or plasma from the first head unit 51a and the second head unit 51b, and then rotates the substrate support 55 so that the first head unit 51a and the second head unit 51a and the second head unit 54 rotate. It controls the head portion 51b and the substrate support base 55. This makes it possible to prevent UV or plasma from being radiated to an unintended region on the rectangular substrate S1.

図27Bに示すように、有機物脱離装置50は、UV又はプラズマの放射を停止させたまま、第2アクチュエータ52a,52bにより、第1ヘッド部51a及び第2ヘッド部51bを矩形基板S1の対向する二つのエッジ部に位置合わせする。続いて、有機物脱離装置50は、第1ヘッド部51a及び第2ヘッド部51bからUV又はプラズマを放射しながら、第1アクチュエータ53により矩形基板S1のエッジ部に沿って第1ヘッド部51a及び第2ヘッド部51bを移動させて、対向する二つのエッジ部を洗浄する。 As shown in FIG. 27B, in the organic matter desorption device 50, the first head portion 51a and the second head portion 51b are opposed to the rectangular substrate S1 by the second actuators 52a and 52b while the UV or plasma radiation is stopped. Align to the two edges. Subsequently, the organic matter desorption device 50 emits UV or plasma from the first head portion 51a and the second head portion 51b, while the first actuator 53 radiates the first head portion 51a and the first head portion 51a along the edge portion of the rectangular substrate S1. The second head portion 51b is moved to clean the two facing edge portions.

矩形基板S1の4辺のエッジ部の洗浄が終了すると、有機物脱離装置50は、さらに矩形基板S1を270度回転させて、矩形基板S1を図27Aと同一の位置(ホームポジション)に戻す(図27C)。以上のように、矩形基板S1の4辺のエッジ部が洗浄される。図26及び図27A-27Cに示す有機物脱離装置50は、第1ヘッド部51a及び第2ヘッド部51bを有する。このため、図22及び図23A-23Eに示した有機物脱離装置50に比べて、UV又はプラズマを矩形基板S1に照射する時間、及び矩形基板S1を回転させる時間を低減させることができる。また、図26から図27Cに示す有機物脱離装置50においては、一組の第1アクチュエータ53、第2アクチュエータ52a,52b、第1ヘッド部51a、及び第2ヘッド部51bを有するものとしているが、これらを複数組有してもよい。その場合は、エッジ部の洗浄に要する時間を低減させることができる。 When the cleaning of the edges of the four sides of the rectangular substrate S1 is completed, the organic substance desorption device 50 further rotates the rectangular substrate S1 by 270 degrees and returns the rectangular substrate S1 to the same position (home position) as in FIG. 27A (home position). FIG. 27C). As described above, the edge portions of the four sides of the rectangular substrate S1 are cleaned. The organic matter desorption device 50 shown in FIGS. 26 and 27A-27C has a first head portion 51a and a second head portion 51b. Therefore, as compared with the organic substance desorption device 50 shown in FIGS. 22 and 23A-23E, the time for irradiating the rectangular substrate S1 with UV or plasma and the time for rotating the rectangular substrate S1 can be reduced. Further, the organic matter desorption device 50 shown in FIGS. 26 to 27C has a set of a first actuator 53, a second actuator 52a, 52b, a first head portion 51a, and a second head portion 51b. , These may have a plurality of sets. In that case, the time required for cleaning the edge portion can be reduced.

図28は、フィキシングユニット120に設けられる有機物脱離装置50の他の一例の概略側面図である。図28に示す有機物脱離装置50では、図24に示した有機物脱離装置50と異なり、ヘッド部が2つ設けられる。即ち、有機物脱離装置50は、第1ヘッド部51aと、第2ヘッド部51bと、第1ヘッド部51a及び第2ヘッド部51bに対応する2つの第2アクチュエータ52a,52bを有する。図28に示すように、第1ヘッド部51aと第2ヘッド部51bは、第1アクチュエータ53を挟んで互いに対向する位置に設けられる。したがって、第1ヘッド部51a及び第2ヘッド部51bは、第2アクチュエータ52a,52bにより互いに同一方向に往復動することができる。 FIG. 28 is a schematic side view of another example of the organic matter desorption device 50 provided in the fixing unit 120. Unlike the organic substance desorption device 50 shown in FIG. 24, the organic substance desorption device 50 shown in FIG. 28 is provided with two head portions. That is, the organic matter desorption device 50 has a first head portion 51a, a second head portion 51b, and two second actuators 52a and 52b corresponding to the first head portion 51a and the second head portion 51b. As shown in FIG. 28, the first head portion 51a and the second head portion 51b are provided at positions facing each other with the first actuator 53 interposed therebetween. Therefore, the first head portion 51a and the second head portion 51b can reciprocate in the same direction by the second actuators 52a and 52b.

図29Aから図29Cは、図28に示した有機物脱離装置50で矩形基板S1のエッジ部の有機物を脱離するプロセスを示す有機物脱離装置50の平面図である。図29Aに示すように、まず、有機物脱離装置50は、図示しない昇降機構により、第1ヘッド部51a及び第2ヘッド部51bの鉛直方向の位置合わせをし、旋回軸56及び第2アクチュエータ52a,52bにより、第1ヘッド部51a及び第2ヘッド部51bの位置を矩形基板S1の対向する二つのエッジ部に位置合わせする。続いて、有機物脱離装置50の制御部54は、第1ヘッド部51a及び第2ヘッド部51b並びに第1アクチュエータ53を制御して、第1ヘッド部51a及び第2ヘッド部51bからUV又はプラズマを放射しながら、第1アクチュエータ53により矩形基板S1のエッジ部に沿って第1ヘッド部51a及び第2ヘッド部51bを移動させて、エッジ部の一つを洗浄する。 29A to 29C are plan views of the organic substance desorption device 50 showing the process of desorbing the organic substance at the edge portion of the rectangular substrate S1 by the organic substance desorption device 50 shown in FIG. 28. As shown in FIG. 29A, first, the organic matter desorption device 50 aligns the first head portion 51a and the second head portion 51b in the vertical direction by an elevating mechanism (not shown), and then the swivel shaft 56 and the second actuator 52a. , 52b aligns the positions of the first head portion 51a and the second head portion 51b with the two opposite edge portions of the rectangular substrate S1. Subsequently, the control unit 54 of the organic matter desorption device 50 controls the first head portion 51a, the second head portion 51b, and the first actuator 53, and UV or plasma from the first head portion 51a and the second head portion 51b. The first actuator 53 moves the first head portion 51a and the second head portion 51b along the edge portion of the rectangular substrate S1 to clean one of the edge portions.

対向する二つのエッジ部が洗浄されると、有機物脱離装置50は、旋回軸56を回転させて、図29Bに示すように第1ヘッド部51a及び第2ヘッド部51bを90度旋回させる。このとき、制御部54は、第1ヘッド部51a及び第2ヘッド部51bからのUV又はプラズマの放射を停止させてから第1ヘッド部51a及び第2ヘッド部51bを旋回させるように、第1ヘッド部51a及び第2ヘッド部51b及び旋回軸56を制御する。これにより、矩形基板S1上の意図しない領域にUV又はプラズマが放射されることを防止することができる。 When the two facing edges are cleaned, the organic desorption device 50 rotates the swivel shaft 56 to swivel the first head portion 51a and the second head portion 51b by 90 degrees as shown in FIG. 29B. At this time, the control unit 54 first stops the radiation of UV or plasma from the first head unit 51a and the second head unit 51b, and then turns the first head unit 51a and the second head unit 51b. It controls the head portion 51a, the second head portion 51b, and the swivel shaft 56. This makes it possible to prevent UV or plasma from being radiated to an unintended region on the rectangular substrate S1.

図29Bに示すように、有機物脱離装置50は、UV又はプラズマの放射を停止させたまま、第2アクチュエータ52a,52bにより、第1ヘッド部51a及び第2ヘッド部51bを矩形基板S1のエッジ部に位置合わせする。続いて、有機物脱離装置50は、第1ヘッド部51a及び第2ヘッド部51bからUV又はプラズマを放射しながら、第1アクチュエータ53により矩形基板S1のエッジ部に沿って第1ヘッド部51a及び第2ヘッド部51bを移動させて、対向する二つのエッジ部を洗浄する。 As shown in FIG. 29B, the organic matter desorption device 50 uses the second actuators 52a and 52b to make the first head portion 51a and the second head portion 51b the edges of the rectangular substrate S1 while the UV or plasma radiation is stopped. Align to the part. Subsequently, the organic matter desorption device 50 emits UV or plasma from the first head portion 51a and the second head portion 51b, while the first actuator 53 radiates the first head portion 51a and the first head portion 51a along the edge portion of the rectangular substrate S1. The second head portion 51b is moved to clean the two facing edge portions.

矩形基板S1の4辺のエッジ部の洗浄が終了すると、有機物脱離装置50は、さらに第1ヘッド部51a及び第2ヘッド部51bを270度旋回させて、第1ヘッド部51a及び第2ヘッド部51bを図29Aと同一の位置(ホームポジション)に戻す(図29C)。以上のように、矩形基板S1の4辺のエッジ部が洗浄される。図28及び図29A-29Cに示す有機物脱離装置50は、第1ヘッド部51a及び第2ヘッド部51bを有する。このため、図24及び図25A-25Eに示した有機物脱離装置50に比べて、UV又はプラズマを矩形基板S1に照射する時間、及びヘッド部を回転させる時間を低減させることができる。また、図28から図29Cに示す有機物脱離装置50においては、一組の旋回軸56、第1アクチュエータ53、第2アクチュエータ52a,52b、第1ヘッド部51a、及び第2ヘッド部51bを有するものとしているが、これらを複数組有してもよい。その場合は、エッジ部の洗浄に要する時間を低減させることができる。 When the cleaning of the edges of the four sides of the rectangular substrate S1 is completed, the organic matter desorption device 50 further turns the first head portion 51a and the second head portion 51b by 270 degrees, and the first head portion 51a and the second head The portion 51b is returned to the same position (home position) as in FIG. 29A (FIG. 29C). As described above, the edge portions of the four sides of the rectangular substrate S1 are cleaned. The organic matter desorption device 50 shown in FIGS. 28 and 29A-29C has a first head portion 51a and a second head portion 51b. Therefore, as compared with the organic substance desorption device 50 shown in FIGS. 24 and 25A-25E, the time for irradiating the rectangular substrate S1 with UV or plasma and the time for rotating the head portion can be reduced. Further, the organic matter desorption device 50 shown in FIGS. 28 to 29C has a set of a swivel shaft 56, a first actuator 53, a second actuator 52a, 52b, a first head portion 51a, and a second head portion 51b. However, a plurality of sets of these may be provided. In that case, the time required for cleaning the edge portion can be reduced.

以上で説明した第6実施形態の有機物脱離装置50がUV照射装置である場合において、UV光源としては、例えば、高圧水銀ランプ、低圧水銀ランプ、ブラックライト、又はUV領域の光を放射可能なレーザー光源等を採用することができる。高圧水銀ランプ、低圧水銀ランプ、及びブラックライトは光が発散する傾向を有するので、これらの光源を採用する場合は、光源を基板Wの近傍に設置するか、光学系を用いてエッジ部のみにUVを照射するようにすることが好ましい。有機物脱離装置50がプラズマ放射装置である場合は、例えば大気リモートプラズマ装置等を採用することができる。 When the organic substance desorption device 50 of the sixth embodiment described above is a UV irradiation device, the UV light source can emit, for example, a high-pressure mercury lamp, a low-pressure mercury lamp, a black light, or light in the UV region. A laser light source or the like can be adopted. High-pressure mercury lamps, low-pressure mercury lamps, and black lights tend to emit light. Therefore, when adopting these light sources, install the light source near the substrate W or use an optical system only at the edge. It is preferable to irradiate with UV. When the organic matter desorption device 50 is a plasma radiating device, for example, an atmospheric remote plasma device or the like can be adopted.

第6実施形態において、有機物脱離装置50は、フィキシングユニット120に設けられるものとして説明したが、これに限らず、他のユニットに設けられてもよいし、別途独立した装置としてめっき装置内に設けられてもよい。また、有機物脱離装置50は、矩形基板の4辺のエッジ部を洗浄するものとしたが、例えば対向する2辺のエッジ部のみを洗浄するようにしてもよい。その場合、矩形基板S1の回転回数又はヘッド部51の旋回回数を減少させることができる。また、図22に示したマスク57は、図24から図29Cに示した他の有機物脱離装置50においても採用することができる。 In the sixth embodiment, the organic matter desorption device 50 has been described as being provided in the fixing unit 120, but the present invention is not limited to this, and the organic matter desorption device 50 may be provided in another unit, or may be provided in another unit as a separate device in the plating device. It may be provided. Further, although the organic matter desorption device 50 is intended to clean the edge portions of the four sides of the rectangular substrate, for example, only the edge portions of the two opposing sides may be cleaned. In that case, the number of rotations of the rectangular substrate S1 or the number of rotations of the head portion 51 can be reduced. Further, the mask 57 shown in FIG. 22 can also be used in the other organic substance desorption device 50 shown in FIGS. 24 to 29C.

以上、本発明の実施形態について説明したが、上述した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲及び明細書に記載された各構成要素の任意の組み合わせ、又は省略が可能である。例えば、図1ないし図19において説明した、基板Wのエッジ部を洗浄する有機物脱離装置45、酸化膜除去装置24、及びスポンジ洗浄装置80は、任意に組み合わせることができる。 Although the embodiments of the present invention have been described above, the embodiments of the invention described above are for facilitating the understanding of the present invention and do not limit the present invention. The present invention can be modified and improved without departing from the spirit thereof, and it goes without saying that the present invention includes an equivalent thereof. In addition, any combination or omission of the claims and the components described in the specification is possible within the range in which at least a part of the above-mentioned problems can be solved, or in the range in which at least a part of the effect is exhibited. be. For example, the organic substance desorption device 45, the oxide film removing device 24, and the sponge cleaning device 80 for cleaning the edge portion of the substrate W described with reference to FIGS. 1 to 19 can be arbitrarily combined.

10 めっき槽
20 スピンリンスドライヤ
24,94 酸化膜除去装置
25 薬液ノズル
28 薬液
40 アライナ
45 有機物脱離装置
50 有機物脱離装置
51 ヘッド部
51a 第1ヘッド部
51b 第2ヘッド部
52,52a,52b 第2アクチュエータ
53 第1アクチュエータ
54 制御部
55 基板支持台
56 旋回軸
60 基板ホルダ
80 スポンジ洗浄装置
84 スポンジ洗浄部
10 Plating tank 20 Spin rinse dryer 24,94 Oxide film remover 25 Chemical solution nozzle 28 Chemical solution 40 Aligner 45 Organic substance desorption device 50 Organic substance desorption device 51 Head part 51a 1st head part 51b 2nd head part 52, 52a, 52b 2 Actuator 53 1st actuator 54 Control unit 55 Board support 56 Swing shaft 60 Board holder 80 Sponge cleaning device 84 Sponge cleaning unit

Claims (8)

基板にめっきを行うめっき装置であって、
前記基板が基板ホルダにより保持される際にシール部材でシールされる領域に隣接する、基板周縁部までのエッジ領域に存在する有機物を局所的に脱離する有機物脱離装置と、
めっき液を収容し、前記基板とアノードとを該めっき液に浸漬させた状態で該基板と該アノード間に電圧を印加してめっきを行うためのめっき槽と、を有し、
前記有機物脱離装置は、前記基板のエッジ領域にUVを照射するUV照射装置又は前記基板のエッジ領域にプラズマを放射するプラズマ放射装置を含み、
前記有機物脱離装置は、
前記基板のエッジ領域に局所的にUV又はプラズマを適用するように構成されたヘッド部と、
前記ヘッド部を水平方向に移動させるアクチュエータと、を有する、めっき装置。
It is a plating device that plating the substrate.
An organic substance desorption device that locally desorbs organic substances existing in the edge region up to the peripheral edge of the substrate, which is adjacent to the region sealed by the sealing member when the substrate is held by the substrate holder.
It has a plating tank for accommodating a plating solution and applying a voltage between the substrate and the anode in a state where the substrate and the anode are immersed in the plating solution.
The organic substance desorption device includes a UV irradiation device that irradiates the edge region of the substrate with UV or a plasma radiating device that radiates plasma to the edge region of the substrate.
The organic matter desorption device is
A head portion configured to locally apply UV or plasma to the edge region of the substrate,
A plating apparatus comprising an actuator for moving the head portion in a horizontal direction.
請求項1に記載されためっき装置であって、
前記アクチュエータは、第1方向に前記ヘッド部を移動させる第1アクチュエータと、前記第1方向と直交する第2方向に前記ヘッド部を移動させる第2アクチュエータと、を有する、めっき装置。
The plating apparatus according to claim 1.
The actuator is a plating apparatus having a first actuator for moving the head portion in a first direction and a second actuator for moving the head portion in a second direction orthogonal to the first direction.
請求項1又は2に記載されためっき装置であって、
前記有機物脱離装置は、前記ヘッド部及び前記アクチュエータを制御する制御部を有し、
前記アクチュエータは、前記基板のエッジ部に沿って前記ヘッド部を移動させるように構成され、
前記制御部は、前記ヘッド部によるUV又はプラズマの放射と前記アクチュエータによる前記基板のエッジ部に沿った前記ヘッド部の移動とを同時に行うように、前記ヘッド部及び前記アクチュエータを制御する、めっき装置。
The plating apparatus according to claim 1 or 2.
The organic matter desorption device has a control unit that controls the head unit and the actuator.
The actuator is configured to move the head portion along the edge portion of the substrate.
The control unit controls the head unit and the actuator so that the head unit emits UV or plasma and the actuator simultaneously moves the head unit along the edge portion of the substrate. ..
請求項3に記載されためっき装置であって、
前記有機物脱離装置は、前記ヘッド部を旋回させる旋回機構を有し、
前記制御部は、前記旋回機構による前記ヘッド部の旋回時には前記ヘッド部によるUV又はプラズマの放射を停止させるように、前記ヘッド部及び前記旋回機構を制御する、めっき装置。
The plating apparatus according to claim 3, wherein the plating apparatus is used.
The organic matter desorption device has a swivel mechanism for swiveling the head portion.
The control unit is a plating device that controls the head unit and the swivel mechanism so as to stop the radiation of UV or plasma by the head unit when the head unit is swiveled by the swivel mechanism.
請求項3に記載されためっき装置であって、
前記有機物脱離装置は、前記基板を回転させる回転機構を有し、
前記制御部は、前記ヘッド部、前記回転機構、及び前記アクチュエータを制御するように構成され、
前記制御部は、前記回転機構による前記基板の回転時には前記ヘッド部によるUV又はプラズマの放射を停止させるように、前記ヘッド部及び前記回転機構を制御する、めっき装置。
The plating apparatus according to claim 3, wherein the plating apparatus is used.
The organic matter desorption device has a rotation mechanism for rotating the substrate, and has a rotation mechanism.
The control unit is configured to control the head unit, the rotation mechanism, and the actuator.
The control unit is a plating device that controls the head unit and the rotation mechanism so as to stop the radiation of UV or plasma by the head unit when the substrate is rotated by the rotation mechanism.
基板にめっきを行うめっき方法であって、
前記基板が基板ホルダにより保持される際にシール部材でシールされる領域に隣接する、基板周縁部までのエッジ領域に存在する有機物を局所的に脱離する脱離工程と、
前記基板を前記基板ホルダに保持する工程と、
前記基板ホルダに保持された前記基板にめっき処理を行う工程と、を有し、
前記脱離工程は、UV又はプラズマを放射するヘッド部を水平方向に移動させて、矩形の前記基板のエッジ部に前記ヘッド部を位置合わせする工程と、前記ヘッド部を矩形の前記基板のエッジ部に沿って移動させながらUV又はプラズマを放射する工程と、を有する、めっき方法。
It is a plating method that plating the substrate.
A desorption step of locally desorbing organic substances existing in the edge region up to the peripheral edge of the substrate, which is adjacent to the region sealed by the sealing member when the substrate is held by the substrate holder.
The process of holding the substrate in the substrate holder and
It has a step of plating the substrate held in the substrate holder.
The desorption step includes a step of horizontally moving the head portion that radiates UV or plasma to align the head portion with the edge portion of the rectangular substrate, and a step of aligning the head portion with the edge portion of the rectangular substrate. A plating method comprising a step of radiating UV or plasma while moving along a portion.
請求項6に記載されためっき方法において、
前記脱離工程は、前記矩形の基板のエッジ部の一つにUV又はプラズマを放射した後、UV又はプラズマの放射を停止させながら前記ヘッド部を旋回させる工程を有する、めっき方法。
In the plating method according to claim 6,
The desorption step is a plating method comprising a step of radiating UV or plasma to one of the edge portions of the rectangular substrate and then swirling the head portion while stopping the radiation of UV or plasma.
請求項6又は7に記載されためっき方法において、
前記脱離工程は、前記矩形の基板のエッジ部の一つにUV又はプラズマを放射した後、UV又はプラズマの放射を停止させながら前記矩形の基板を回転させる工程を有する、めっき方法。
In the plating method according to claim 6 or 7.
The desorption step is a plating method comprising a step of radiating UV or plasma to one of the edges of the rectangular substrate and then rotating the rectangular substrate while stopping the emission of UV or plasma.
JP2021014472A 2016-03-04 2021-02-01 Plating equipment and plating method Active JP7029556B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016042145 2016-03-04
JP2016042145 2016-03-04

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017029890A Division JP6833557B2 (en) 2016-03-04 2017-02-21 Plating equipment and plating method

Publications (2)

Publication Number Publication Date
JP2021063306A JP2021063306A (en) 2021-04-22
JP7029556B2 true JP7029556B2 (en) 2022-03-03

Family

ID=59853063

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017029890A Active JP6833557B2 (en) 2016-03-04 2017-02-21 Plating equipment and plating method
JP2021014472A Active JP7029556B2 (en) 2016-03-04 2021-02-01 Plating equipment and plating method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017029890A Active JP6833557B2 (en) 2016-03-04 2017-02-21 Plating equipment and plating method

Country Status (4)

Country Link
US (1) US20210040641A1 (en)
JP (2) JP6833557B2 (en)
CN (1) CN108699722B (en)
TW (1) TWI735547B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6942045B2 (en) * 2017-12-25 2021-09-29 株式会社荏原製作所 Substrate processing equipment, plating equipment, and substrate processing method
JP7011947B2 (en) * 2018-01-29 2022-02-10 東京エレクトロン株式会社 Ashing equipment, ashing methods and computer-readable recording media
JP7455608B2 (en) * 2020-02-25 2024-03-26 株式会社荏原製作所 Cleaning method and cleaning equipment
CN111599727A (en) * 2020-06-01 2020-08-28 厦门通富微电子有限公司 Equipment for removing attachments on surface of wafer
KR102493634B1 (en) * 2021-10-18 2023-02-06 가부시키가이샤 에바라 세이사꾸쇼 Plating method and plating device
CN114525575A (en) * 2022-04-12 2022-05-24 鑫巨(深圳)半导体科技有限公司 Electrochemical additive reaction control device and method
KR20240028974A (en) * 2022-08-26 2024-03-05 가부시키가이샤 에바라 세이사꾸쇼 Substrate condition measurement device, plating device, and substrate condition measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231993A (en) 2002-02-08 2003-08-19 Tokyo Electron Ltd Method, apparatus, and system for electrolytic plating
JP2003528214A (en) 1998-11-30 2003-09-24 アプライド マテリアルズ インコーポレイテッド Electrochemical deposition equipment
JP2005113162A5 (en) 2003-10-02 2006-11-16
JP2008112772A (en) 2006-10-30 2008-05-15 Toshiba Corp Method of manufacturing semiconductor device
JP5160105B2 (en) 2007-03-01 2013-03-13 キヤノンマシナリー株式会社 Backup plate
JP2014216393A (en) 2013-04-23 2014-11-17 株式会社荏原製作所 Substrate processing apparatus and method for manufacturing processed substrate
JP2018503266A (en) 2014-11-12 2018-02-01 オントス イクイップメント システムズ インコーポレイテッド Simultaneous hydrophilization of photoresist and metal surface treatments: methods, systems, and products

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160105A (en) * 1991-12-05 1993-06-25 Ricoh Co Ltd Wet etching method
JPH0794450A (en) * 1993-06-29 1995-04-07 Japan Storage Battery Co Ltd Local ashing device
JPH0764450A (en) * 1993-08-30 1995-03-10 Mita Ind Co Ltd Copying machine, key counter used therein, and copy-bill calculator using information stored in key counter
DE60044470D1 (en) * 2000-06-23 2010-07-08 Fujitsu Ltd METHOD FOR PRODUCING A SEMICONDUCTOR ELEMENT
CN100370578C (en) * 2002-06-21 2008-02-20 株式会社荏原制作所 Substrate holder and plating apparatus
JP2005019802A (en) * 2003-06-27 2005-01-20 Fujitsu Ltd Semiconductor device manufacturing method and wafer structure
JP2005113162A (en) * 2003-10-02 2005-04-28 Ebara Corp Plating method and plating apparatus
TWI636518B (en) * 2013-04-23 2018-09-21 荏原製作所股份有限公司 Substrate processing apparatus and a processed substrate manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528214A (en) 1998-11-30 2003-09-24 アプライド マテリアルズ インコーポレイテッド Electrochemical deposition equipment
JP2003231993A (en) 2002-02-08 2003-08-19 Tokyo Electron Ltd Method, apparatus, and system for electrolytic plating
JP2005113162A5 (en) 2003-10-02 2006-11-16
JP2008112772A (en) 2006-10-30 2008-05-15 Toshiba Corp Method of manufacturing semiconductor device
JP5160105B2 (en) 2007-03-01 2013-03-13 キヤノンマシナリー株式会社 Backup plate
JP2014216393A (en) 2013-04-23 2014-11-17 株式会社荏原製作所 Substrate processing apparatus and method for manufacturing processed substrate
JP2018503266A (en) 2014-11-12 2018-02-01 オントス イクイップメント システムズ インコーポレイテッド Simultaneous hydrophilization of photoresist and metal surface treatments: methods, systems, and products

Also Published As

Publication number Publication date
JP2021063306A (en) 2021-04-22
TWI735547B (en) 2021-08-11
CN108699722B (en) 2020-05-05
JP2017160535A (en) 2017-09-14
JP6833557B2 (en) 2021-02-24
CN108699722A (en) 2018-10-23
US20210040641A1 (en) 2021-02-11
TW201800620A (en) 2018-01-01

Similar Documents

Publication Publication Date Title
JP7029556B2 (en) Plating equipment and plating method
US10573542B2 (en) Heater cleaning method
KR101440185B1 (en) Substrate processing apparatus and substrate processing method
CN112216631B (en) Apparatus and method for processing substrate
US10416092B2 (en) Remote detection of plating on wafer holding apparatus
KR20160100839A (en) Substrate processing apparatus
JP2001250767A (en) Substrate treatment method and device
TWI715811B (en) Plating device, plating method, and computer-readable recording medium
TWI833817B (en) Cleaning device, plating device including the same, and cleaning method
TWI742229B (en) Plating device, plating method, substrate holder, resistance measuring module, and substrate holder testing method
US20190096729A1 (en) Substrate inverting device, substrate processing apparatus, and substrate catch-and-hold device
US9165758B2 (en) Peeling system, peeling method, and computer storage medium
KR20190062366A (en) Substrate cleaning device, substrate processing apparatus, substrate cleaning method and substrate processing method
CN108701602B (en) Substrate processing apparatus
JP7145893B2 (en) Remote detection of plating on wafer holder
TWI698555B (en) Plating device and plating method
JP6942045B2 (en) Substrate processing equipment, plating equipment, and substrate processing method
KR102342006B1 (en) Plating apparatus and plating method
WO2000070128A1 (en) Plating jig and device for semiconductor wafer
US11167326B2 (en) Substrate processing apparatus and nozzle unit
JP2009117597A (en) Substrate processing device and substrate processing method
KR20150076808A (en) Unit for transferring substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220218

R150 Certificate of patent or registration of utility model

Ref document number: 7029556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150