JP7029008B2 - 化合物 - Google Patents

化合物 Download PDF

Info

Publication number
JP7029008B2
JP7029008B2 JP2021033201A JP2021033201A JP7029008B2 JP 7029008 B2 JP7029008 B2 JP 7029008B2 JP 2021033201 A JP2021033201 A JP 2021033201A JP 2021033201 A JP2021033201 A JP 2021033201A JP 7029008 B2 JP7029008 B2 JP 7029008B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
abbreviation
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021033201A
Other languages
English (en)
Other versions
JP2021098719A (ja
Inventor
唯 吉安
英子 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2021098719A publication Critical patent/JP2021098719A/ja
Application granted granted Critical
Publication of JP7029008B2 publication Critical patent/JP7029008B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明の一態様は、有機金属錯体に関する。特に、三重項励起状態におけるエネルギーを
発光に変換できる有機金属錯体に関する。また、有機金属錯体を用いた発光素子、発光装
置、電子機器、および照明装置に関する。なお、本発明の一態様は、上記の技術分野に限
定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造
方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファク
チャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため
、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表
示装置、液晶表示装置、発光装置、蓄電装置、記憶装置、それらの駆動方法、または、そ
れらの製造方法、を一例として挙げることができる。
一対の電極間に発光物質である有機化合物を有する発光素子(有機EL素子ともいう)は
、薄型軽量・高速応答・低電圧駆動などの特性から、次世代のフラットパネルディスプレ
イとして注目されている。そして、この有機EL素子(発光素子)に電圧を印加すること
により、電極から注入された電子およびホールが再結合して発光物質が励起状態となり、
その励起状態が基底状態に戻る際に発光する。なお、励起状態の種類としては、一重項励
起状態(S)と三重項励起状態(T)とがあり、一重項励起状態からの発光が蛍光、
三重項励起状態からの発光が燐光と呼ばれている。また、発光素子におけるそれらの統計
的な生成比率は、S:T=1:3であると考えられている。
また、上記発光物質のうち、一重項励起状態におけるエネルギーを発光に変換することが
可能な化合物は蛍光性化合物(蛍光材料)と呼ばれ、三重項励起状態におけるエネルギー
を発光に変換することが可能な化合物は燐光性化合物(燐光材料)と呼ばれる。
従って、蛍光材料を用いた発光素子における内部量子効率(注入したキャリアに対して発
生するフォトンの割合)の理論的限界は、S:T=1:3であることを根拠に25%
とされるが、燐光材料を用いた発光素子における内部量子効率の理論的限界は、75%と
なる。
つまり、蛍光材料を用いた発光素子に比べて、燐光材料を用いた発光素子では、より高い
効率を得ることが可能となる。従って、様々な種類の燐光材料の開発が近年盛んに行われ
ている。特に、その燐光量子収率の高さゆえに、イリジウム等を中心金属とする有機金属
錯体が注目されている(例えば、特許文献1。)。
特開2009-23938号公報
上述した特許文献1において報告されているように優れた特性を示す燐光材料の開発が進
んでいるが、さらに良好な特性を示す新規材料の開発が望まれている。
そこで、本発明の一態様では、新規な有機金属錯体を提供する。特に、燐光材料の中でも
材料開発が望まれている短波長な発光を呈する新規な有機金属錯体を提供する。また、本
発明の一態様では、発光量子効率の高い新規な有機金属錯体を提供する。また、発光スペ
クトルの半値幅が狭くなることにより色純度が向上した有機金属錯体を提供する。また、
昇華性に優れた新たな有機金属錯体を提供する。また、本発明の一態様では、発光素子に
用いることができる新規な有機金属錯体を提供する。また、本発明の一態様では、発光素
子のEL層に用いることができる、新規な有機金属錯体を提供する。また、本発明の一態
様では、新規な発光素子を提供する。また、新規な発光装置、新規な電子機器、または新
規な照明装置を提供する。なお、これらの課題の記載は、他の課題の存在を妨げるもので
はない。なお、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない
。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとな
るものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出すること
が可能である。
本発明の一態様は、中心金属と、中心金属に配位する第1乃至第4の配位子と、を有し、
第1の配位子は、トリアゾール骨格を有し、トリアゾール骨格は、中心金属と結合する窒
素を有し、第2の配位子は、中心金属と6位で結合するインドロ[3,2-b]カルバゾ
ール骨格もしくは中心金属と6位で結合するピリド[2,3-b:6,5-b’]ジイン
ドール骨格を有し、第3の配位子は中心金属と炭素とが結合するベンゼン骨格を有し、第
4の配位子は、中心金属と窒素とが結合するピリジン骨格もしくは中心金属と炭素とが結
合するベンゼン骨格を有することを特徴とする有機金属錯体である。
また、本発明の別の一態様は、下記一般式(G1)で表される有機金属錯体である。
Figure 0007029008000001
但し、一般式(G1)中、Mは、PtまたはPdを表し、R~R16は、それぞれ独立
に、水素、炭素数1~6のアルキル基、又は炭素数6~13の置換もしくは無置換のアリ
ール基のいずれかを表し、QまたはQのいずれか一方が窒素、いずれか他方が炭素で
ある。また、環Aは、トリアゾール環を表す。
また、本発明の別の一態様は、下記一般式(G1-1)または下記一般式(G1-2)で
表される有機金属錯体である。
Figure 0007029008000002
但し、一般式(G1-1)または一般式(G1-2)中、Mは、PtまたはPdを表し、
~R16は、それぞれ独立に、水素、炭素数1~6のアルキル基、又は炭素数6~1
3の置換もしくは無置換のアリール基のいずれかを表す。また、環Aは、トリアゾール環
を表す。
また、上記一般式(G1)、一般式(G1-1)または一般式(G1-2)において、環
Aを下記一般式(α)で表すとき、一般式(α)は、下記構造式(α-1)~下記(α-
4)のいずれか一である。
Figure 0007029008000003
Figure 0007029008000004
但し、上記一般式(α-1)~上記一般式(α-4)中、R21~R28は、それぞれ独
立に、水素、炭素数1~6のアルキル基、又は炭素数6~13の置換もしくは無置換のア
リール基のいずれかを表す。
上述した本発明の一態様である有機金属錯体は、中心金属に配位する4種の配位子のうち
1種が、中心金属と結合する窒素、を含むトリアゾール骨格を有するため、エネルギーを
効率よく吸収でき、かつ500nm付近に発光スペクトルのピークを有する発光量子効率
の高い燐光発光が得られる。また、中心金属に配位する4種の配位子において、中心金属
と6位で結合するインドロ[3,2-b]カルバゾール骨格もしくは中心金属と6位で結
合するピリド[2,3-b:6,5-b’]ジインドール骨格と、中心金属と炭素とが結
合するベンゼン骨格、および中心金属と窒素とが結合するピリジン骨格もしくは中心金属
と炭素とが結合するベンゼン骨格と、がそれぞれ中心金属と6位で結合するインドロ[3
,2-b]カルバゾール骨格もしくは中心金属と6位で結合するピリド[2,3-b:6
,5-b’]ジインドール骨格の窒素と結合する構造を有するため、剛直な構造を有する
。これにより、分子構造が安定化して動きにくくなるため、耐熱性を向上させることがで
きるとともに、基底状態と励起状態の原子の結合距離の違いが非常に小さいため、吸収と
発光の遷移エネルギーが等しくなる最低振動準位間の電子遷移(0-0遷移)の振動子強
度が大きくなることで発光スペクトルを狭線化させ、色純度の良い燐光発光が得ることが
できる。
また、本発明の別の一態様は、下記構造式(100)で表される有機金属錯体である。
Figure 0007029008000005
また、本発明の一態様である有機金属錯体は燐光を発光することができる、すなわち三重
項励起状態からの発光を得られ、かつ発光を呈することが可能であるため、発光素子に適
用することにより高効率化が可能となり、非常に有効である。したがって、本発明の一態
様である有機金属錯体を用いた発光素子は、本発明の一態様に含まれるものとする。
また、本発明の一態様は、発光素子を有する発光装置だけでなく、発光装置を有する照明
装置も範疇に含めるものである。従って、本明細書中における発光装置とは、画像表示デ
バイス、または光源(照明装置含む)を指す。また、発光装置にコネクター、例えばFP
C(Flexible printed circuit)もしくはTCP(Tape
Carrier Package)が取り付けられたモジュール、TCPの先にプリント
配線板が設けられたモジュール、または発光素子にCOG(Chip On Glass
)方式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むものと
する。
本発明の一態様では、新規な有機金属錯体を提供することができる。特に短波長な発光を
呈する新規な有機金属錯体を提供することができる。また、発光量子効率の高い新規な有
機金属錯体を提供することができる。また、発光スペクトルの半値幅が狭くなることによ
り色純度が向上した有機金属錯体を提供することができる。また、昇華性に優れた新たな
有機金属錯体を提供することができる。また、本発明の一態様では、発光素子に用いるこ
とができる新規な有機金属錯体を提供することができる。また、本発明の一態様では、発
光素子のEL層に用いることができる、新規な有機金属錯体を提供することができる。な
お、新たな有機金属錯体を用いた新規な発光素子を提供することができる。また、新規な
発光装置、新規な電子機器、または新規な照明装置を提供することができる。なお、これ
らの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必
ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、
図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項な
どの記載から、これら以外の効果を抽出することが可能である。
発光素子の構造について説明する図。 発光素子の構造について説明する図。 発光装置について説明する図。 発光装置について説明する図。 電子機器について説明する図。 電子機器について説明する図。 自動車について説明する図。 照明装置について説明する図。 照明装置について説明する図。 タッチパネルの一例を示す図。 タッチパネルの一例を示す図。 タッチパネルの一例を示す図。 タッチセンサのブロック図及びタイミングチャート。 タッチセンサの回路図。 構造式(100)に示す有機金属錯体のH-NMRチャート。 構造式(100)に示す有機金属錯体の紫外・可視吸収スペクトル及び発光スペクトル。 構造式(100)に示す有機金属錯体のLC-MS測定結果を示す図。 発光素子の構造について説明する図。 発光素子1の電流密度-輝度特性を示す図。 発光素子1の電圧-輝度特性を示す図。 発光素子1の輝度-電流効率特性を示す図。 発光素子1の電圧-電流特性を示す図。 発光素子1の色度座標を示す図。 発光素子1の発光スペクトルを示す図。 発光素子2の電流密度-輝度特性を示す図。 発光素子2の電圧-輝度特性を示す図。 発光素子2の輝度-電流効率特性を示す図。 発光素子2の電圧-電流特性を示す図。 発光素子2の色度座標を示す図。 発光素子2の発光スペクトルを示す図。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の
説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を
様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内容
に限定して解釈されるものではない。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応
じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜
」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用
語を、「絶縁層」という用語に変更することが可能な場合がある。
(実施の形態1)
本実施の形態では、本発明の一態様である有機金属錯体について説明する。
本実施の形態で示す有機金属錯体は、中心金属と、中心金属に配位する4種の配位子と、
を有し、4種の配位子の第1は、トリアゾール骨格を有し、トリアゾール骨格は、中心金
属と結合する窒素を有し、4種の配位子の第2は、中心金属と6位で結合するインドロ[
3,2-b]カルバゾール骨格もしくは中心金属と6位で結合するピリド[2,3-b:
6,5-b’]ジインドール骨格を有し、4種の配位子の第3は、中心金属と炭素とが結
合するベンゼン骨格を有し、4種の配位子の第4は、中心金属と窒素とが結合するピリジ
ン骨格もしくは中心金属と炭素とが結合するベンゼン骨格を有することを特徴とする有機
金属錯体である。
Figure 0007029008000006
一般式(G1)において、Mは、PtまたはPdを表し、R~R16は、それぞれ独立
に、水素、炭素数1~6のアルキル基、又は炭素数6~13の置換もしくは無置換のアリ
ール基のいずれかを表し、QまたはQのいずれか一方が窒素、いずれか他方が炭素で
ある。また、環Aは、トリアゾール環を表す。
なお、上記一般式(G1)において、Qが窒素、Qが炭素である場合、本発明の一態
様である有機金属錯体は、下記一般式(G1-1)で表され、Qが炭素、Qが窒素で
ある場合、本発明の一態様である有機金属錯体は、下記一般式(G1-2)で表される。
Figure 0007029008000007
但し、一般式(G1-1)および一般式(G1-2)中、Mは、PtまたはPdを表し、
~R16は、それぞれ独立に、水素、炭素数1~6のアルキル基、又は炭素数6~1
3の置換もしくは無置換のアリール基のいずれかを表す。また、環Aは、トリアゾール環
を表す。
また、上記一般式(G1)、一般式(G1-1)、および一般式(G1-2)において、
環Aは、下記一般式(α)で表されるトリアゾール環であり、その具体例としては、下記
一般式(α-1)~下記一般式(α-4)に示す構造が挙げられる。
Figure 0007029008000008
Figure 0007029008000009
但し、上記一般式(α-1)~上記一般式(α-4)中、R21~R28は、それぞれ独
立に、水素、炭素数1~6のアルキル基、又は炭素数6~13の置換もしくは無置換のア
リール基のいずれかを表す。
なお、上記一般式(G1)、一般式(G1-1)、一般式(G1-2)、および一般式(
α-1)~一般式(α-4)において、炭素数1乃至6のアルキル基を有する場合の具体
例としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチ
ル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、sec-ペン
チル基、tert-ペンチル基、ネオペンチル基、1-メチルペンチル基、ヘキシル基、
イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、ネオヘキシル基、3-メ
チルペンチル基、2-メチルペンチル基、2-エチルブチル基、1,2-ジメチルブチル
基、2,3-ジメチルブチル基等が挙げられる。
また、上記一般式(G1)、一般式(G1-1)、一般式(G1-2)、および一般式(
α-1)~一般式(α-4)において、炭素数6~13の置換もしくは無置換のアリール
基を有する場合の具体例としては、フェニル基、トリル基(o-トリル基、m-トリル基
、p-トリル基)、ナフチル基(1-ナフチル基、2-ナフチル基)、ビフェニル基(ビ
フェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基)、キシリル
基、インデニル基、フルオレニル基、フェナントリル基、インデニル基などが挙げられる
。例えば、アリール基が、置換基として9位に二つのフェニル基を有する2-フルオレニ
ル基である場合、該フェニル基が互いに結合し、スピロ-9,9’-ビフルオレン-2-
イル基となっても良い。
上述の一般式(G1)、一般式(G1-1)、一般式(G1-2)に示す本発明の一態様
である有機金属錯体は、中心金属に配位する4種の配位子のうち1種が、中心金属と結合
する窒素を含むトリアゾール骨格を有するため、エネルギーを効率よく吸収でき、かつ5
00nm付近に発光スペクトルのピークを有する発光量子効率の高い燐光発光が得られる
。また、中心金属に配位する4種の配位子において、中心金属と6位で結合するインドロ
[3,2-b]カルバゾール骨格もしくは中心金属と6位で結合するピリド[2,3-b
:6,5-b’]ジインドール骨格と、中心金属と炭素とが結合するベンゼン骨格、およ
び中心金属と窒素とが結合したピリジン骨格もしくは中心金属と炭素とが結合するベンゼ
ン骨格と、がそれぞれ中心金属と6位で結合するインドロ[3,2-b]カルバゾール骨
格もしくは中心金属と6位で結合するピリド[2,3-b:6,5-b’]ジインドール
骨格の窒素と結合する構造を有するため、剛直な構造を有する。これにより、分子構造が
安定化して動きにくくなるため、耐熱性を向上させることができるとともに、基底状態と
励起状態の原子の結合距離の違いが非常に小さいため、吸収と発光の遷移エネルギーが等
しくなる最低振動準位間の電子遷移(0-0遷移)の振動子強度が大きくなることで発光
スペクトルを狭線化させ、色純度の良い燐光発光が得ることができる。
次に、上述した本発明の一態様である有機金属錯体の具体的な構造式を下記に示す。ただ
し、本発明はこれらに限定されることはない。
Figure 0007029008000010
Figure 0007029008000011
Figure 0007029008000012
Figure 0007029008000013
なお、上記構造式(100)~(109)、(200)~(205)、(301)~(3
05)で表される有機金属錯体は、燐光を発光することが可能な新規物質である。なお、
これらの物質は、配位子の種類によっては幾何異性体と立体異性体が存在しうるが、本発
明の一態様である有機金属錯体にはこれらの異性体も全て含まれる。
次に、本発明の一態様であり、上記一般式(G1)で表される有機金属錯体の合成方法の
一例について説明する。
≪一般式(G0)で表される誘導体の合成法≫
下記一般式(G0)で表される誘導体は、以下のような簡便な合成スキーム(A)により
合成できる。なお、合成スキーム(A)において、Xはハロゲンを表す。
Figure 0007029008000014
一般式(G0)において、R~R16は、それぞれ独立に、水素、炭素数1~6のアル
キル基、又は炭素数6~13の置換もしくは無置換のアリール基のいずれかを表し、Q
またはQのいずれか一方が窒素、いずれか他方が炭素である。また、環Aは、トリアゾ
ール環を表す。
例えば、下記スキーム(A)に示すように、インドロ[3,2-b]カルバゾール骨格も
しくは中心金属と6位で結合するピリド[2,3-b:6,5-b’]ジインドール骨格
(A1)とハロゲン化ピリジン化合物もしくはハロゲン化ベンゼン化合物(A2)、ハロ
ゲン化トリアゾール化合物(A3)とをそれぞれカップリングすることにより得られる。
Figure 0007029008000015
上述の化合物(A1)、(A2)、(A3)は、様々な種類が入手可能であるか、あるい
は合成可能であるため、一般式(G0)で表される誘導体は数多くの種類を合成すること
ができる。したがって、本発明の一態様である有機金属錯体は、その配位子のバリエーシ
ョンが豊富であるという特徴がある。
次に、下記合成スキーム(B)に示すように、一般式(G0)で表される誘導体と、ハロ
ゲンを含むパラジウムもしくは白金の金属化合物(塩化パラジウム、テトラクロロ白金酸
カリウム等)および酢酸、または酢酸を含む溶媒を用いて、不活性ガス雰囲気にて加熱す
る。これにより、一般式(G1)で表される本発明の一態様である有機金属錯体が得られ
る。
Figure 0007029008000016
合成スキーム(B)において、Mは、PtまたはPdを表し、R~R16は、それぞれ
独立に、水素、炭素数1~6のアルキル基、又は炭素数6~13の置換もしくは無置換の
アリール基のいずれかを表し、QまたはQのいずれか一方が窒素、いずれか他方が炭
素である。また、環Aは、トリアゾール環を表す。
以上、本発明の一態様である有機金属錯体の合成方法の一例について説明したが、本発明
はこれに限定されることはなく、他のどのような合成方法によって合成されても良い。
なお、上述した本発明の一態様である有機金属錯体は、燐光を発光することが可能である
ため、発光材料や発光素子の発光物質として利用できる。
また、本発明の一態様である有機金属錯体を用いることで、発光効率の高い発光素子、発
光装置、電子機器、または照明装置を実現することができる。また、消費電力が低い発光
素子、発光装置、電子機器、または照明装置を実現することができる。
なお、本実施の形態において、本発明の一態様について述べた。また、他の実施の形態に
おいて、本発明の一態様について述べる。ただし、本発明の一態様は、これらに限定され
ない。つまり、本実施の形態および他の実施の形態では、様々な発明の態様が記載されて
いるため、本発明の一態様は、特定の態様に限定されない。例えば、本発明の一態様とし
て、発光素子に適用した場合の例を示したが、本発明の一態様は、これに限定されない。
また、状況に応じて、本発明の一態様は、発光素子以外のものに適用してもよい。
本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いること
ができる。
(実施の形態2)
本実施の形態では、本発明の一態様である発光素子について図1を用いて説明する。
本実施の形態に示す発光素子は、一対の電極(第1の電極(陽極)101と第2の電極(
陰極)103)間に発光層113を含むEL層102が挟まれており、EL層102は、
発光層113の他に、正孔(または、ホール)注入層111、正孔(または、ホール)輸
送層112、電子輸送層114、電子注入層115などを含んで形成される。
このような発光素子に対して電圧を印加すると、第1の電極101側から注入された正孔
と第2の電極103側から注入された電子とが、発光層113において再結合し、それに
より生じたエネルギーに起因して、発光層113に含まれる有機金属錯体などの発光物質
が発光する。
なお、EL層102における正孔注入層111は、正孔輸送層112または発光層113
に対して正孔を注入することができる層であり、例えば、正孔輸送性の高い物質とアクセ
プター性物質により形成することができる。この場合、アクセプター性物質によって正孔
輸送性の高い物質から電子が引き抜かれることにより正孔(ホール)が発生する。従って
、正孔注入層111から正孔輸送層112を介して発光層113に正孔が注入される。な
お、正孔注入層111には、正孔注入性の高い物質を用いることもできる。例えば、モリ
ブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸
化物等を用いることができる。この他、フタロシアニン(略称:HPc)や銅フタロシ
アニン(CuPC)等のフタロシアニン系の化合物、4,4’-ビス[N-(4-ジフェ
ニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、N,N’
-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N,N’-ジフェニル
-(1,1’-ビフェニル)-4,4’-ジアミン(略称:DNTPD)等の芳香族アミ
ン化合物、或いはポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホ
ン酸)(PEDOT/PSS)等の高分子等によっても正孔注入層111を形成すること
ができる。
以下に本実施の形態に示す発光素子を作製する上での好ましい具体例について説明する。
第1の電極(陽極)101および第2の電極(陰極)103には、金属、合金、電気伝導
性化合物、およびこれらの混合物などを用いることができる。具体的には、酸化インジウ
ム-酸化スズ(Indium Tin Oxide)、珪素若しくは酸化珪素を含有した
酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛(Indium Zinc Ox
ide)、酸化タングステン及び酸化亜鉛を含有した酸化インジウム、金(Au)、白金
(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo
)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)
の他、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシ
ウム(Cs)等のアルカリ金属、およびカルシウム(Ca)、ストロンチウム(Sr)等
のアルカリ土類金属、マグネシウム(Mg)、およびこれらを含む合金(MgAg、Al
Li)、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを
含む合金、その他グラフェン等を用いることができる。なお、第1の電極(陽極)101
および第2の電極(陰極)103は、例えばスパッタリング法や蒸着法(真空蒸着法を含
む)等により形成することができる。
正孔注入層111、および正孔輸送層112に用いる正孔輸送性の高い物質としては、芳
香族アミン化合物、カルバゾール誘導体、芳香族炭化水素、高分子化合物(オリゴマー、
デンドリマー、ポリマー等)など、種々の有機化合物を用いることができる。なお、複合
材料に用いる有機化合物としては、正孔輸送性の高い有機化合物であることが好ましい。
具体的には、1×10-6cm/Vs以上の正孔移動度を有する物質であることが好ま
しい。また、正孔輸送性の高い物質を用いてなる層は、単層だけでなく、二層以上の積層
であってもよい。以下に、正孔輸送性の物質として用いることのできる有機化合物を具体
的に列挙する。
例えば、芳香族アミン化合物としては、N,N’-ジ(p-トリル)-N,N’-ジフェ
ニル-p-フェニレンジアミン(略称:DTDPPA)、4,4’-ビス[N-(4-ジ
フェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、DN
TPD、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルア
ミノ]ベンゼン(略称:DPA3B)、4,4’-ビス[N-(1-ナフチル)-N-フ
ェニルアミノ]ビフェニル(略称:NPBまたはα-NPD)やN,N’-ビス(3-メ
チルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミ
ン(略称:TPD)、4,4’,4’’-トリス(カルバゾール-9-イル)トリフェニ
ルアミン(略称:TCTA)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)
トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチ
ルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,
4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ
]ビフェニル(略称:BSPB)等を挙げることができる。
また、カルバゾール誘導体としては、具体的には、3-[N-(9-フェニルカルバゾー
ル-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPC
A1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルア
ミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチ
ル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾー
ル(略称:PCzPCN1)等を挙げることができる。その他にも、4,4’-ジ(N-
カルバゾリル)ビフェニル(略称:CBP)、1,3,5-トリス[4-(N-カルバゾ
リル)フェニル]ベンゼン(略称:TCPB)、9-[4-(10-フェニル-9-アン
トリル)フェニル]-9H-カルバゾール(略称:CzPA)、1,4-ビス[4-(N
-カルバゾリル)フェニル]-2,3,5,6-テトラフェニルベンゼン等を用いること
ができる。
また、芳香族炭化水素としては、例えば、2-tert-ブチル-9,10-ジ(2-ナ
フチル)アントラセン(略称:t-BuDNA)、2-tert-ブチル-9,10-ジ
(1-ナフチル)アントラセン、9,10-ビス(3,5-ジフェニルフェニル)アント
ラセン(略称:DPPA)、2-tert-ブチル-9,10-ビス(4-フェニルフェ
ニル)アントラセン(略称:t-BuDBA)、9,10-ジ(2-ナフチル)アントラ
セン(略称:DNA)、9,10-ジフェニルアントラセン(略称:DPAnth)、2
-tert-ブチルアントラセン(略称:t-BuAnth)、9,10-ビス(4-メ
チル-1-ナフチル)アントラセン(略称:DMNA)、2-tert-ブチル-9,1
0-ビス[2-(1-ナフチル)フェニル]アントラセン、9,10-ビス[2-(1-
ナフチル)フェニル]アントラセン、2,3,6,7-テトラメチル-9,10-ジ(1
-ナフチル)アントラセン、2,3,6,7-テトラメチル-9,10-ジ(2-ナフチ
ル)アントラセン、9,9’-ビアントリル、10,10’-ジフェニル-9,9’-ビ
アントリル、10,10’-ビス(2-フェニルフェニル)-9,9’-ビアントリル、
10,10’-ビス[(2,3,4,5,6-ペンタフェニル)フェニル]-9,9’-
ビアントリル、アントラセン、テトラセン、ルブレン、ペリレン、2,5,8,11-テ
トラ(tert-ブチル)ペリレン等が挙げられる。また、この他、ペンタセン、コロネ
ン等も用いることができる。このように、1×10-6cm/Vs以上の正孔移動度を
有し、炭素数14から42である芳香族炭化水素を用いることがより好ましい。また、芳
香族炭化水素は、ビニル骨格を有していてもよい。ビニル基を有している芳香族炭化水素
としては、例えば、4,4’-ビス(2,2-ジフェニルビニル)ビフェニル(略称:D
PVBi)、9,10-ビス[4-(2,2-ジフェニルビニル)フェニル]アントラセ
ン(略称:DPVPA)等が挙げられる。
さらに、ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェ
ニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニル
アミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](
略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス
(フェニル)ベンジジン](略称:Poly-TPD)等の高分子化合物を用いることも
できる。
また、正孔注入層111、および正孔輸送層112に用いるアクセプター性物質としては
、7,7,8,8-テトラシアノ-2,3,5,6-テトラフルオロキノジメタン(略称
:F-TCNQ)、クロラニル、2,3,6,7,10,11-ヘキサシアノ-1,4
,5,8,9,12-ヘキサアザトリフェニレン(HAT-CN)等の電子吸引基(ハロ
ゲン基やシアノ基)を有する化合物を挙げることができる。特に、HAT-CNのように
複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であ
り好ましい。また、元素周期表における第4族乃至第8族に属する金属の酸化物を挙げる
ことができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、
酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムは電子受容性が高いた
め好ましい。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱い
やすいため好ましい。
発光層113は、発光物質を含む層である。なお、発光物質としては、蛍光性の発光物質
と燐光性の発光物質とが挙げられるが、本発明の一態様である発光素子においては、実施
の形態1で示した有機金属錯体を発光物質として発光層113に用いることが好ましい。
また、発光層113は、この有機金属錯体(ゲスト材料)よりも三重項励起エネルギーの
大きい物質をホスト材料として含むことが好ましい。また、発光層113は、発光物質に
加えて、発光層113におけるキャリア(電子及びホール)の再結合の際に励起錯体(エ
キサイプレックスとも言う)を形成することができる組み合わせとなる2種類の有機化合
物(上記ホスト材料のいずれかであってもよい)を含む構成としてもよい。なお、効率よ
く励起錯体を形成するためには、電子を受け取りやすい化合物(電子輸送性を有する材料
)と、正孔を受け取りやすい化合物(正孔輸送性を有する材料)とを組み合わせることが
特に好ましい。このように電子輸送性を有する材料と、正孔輸送性を有する材料とを組み
合わせて励起錯体を形成するホスト材料とする場合、電子輸送性を有する材料及び正孔輸
送性を有する材料の混合比率を調節することで、発光層における正孔と電子のキャリアバ
ランスを最適化することが容易となる。発光層における正孔と電子のキャリアバランスを
最適化することにより、発光層中で電子と正孔の再結合が起こる領域が偏ることを抑制で
きる。再結合が起こる領域の偏りを抑制することで、発光素子の信頼性を向上させること
ができる。
なお、上記励起錯体を形成する上で用いることが好ましい電子を受け取りやすい化合物(
電子輸送性を有する材料)としては、含窒素複素芳香族化合物のようなπ電子不足型複素
芳香族や金属錯体などを用いることができる。具体的には、ビス(10-ヒドロキシベン
ゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2-メチル-8
-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq
)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾ
オキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベン
ゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体や、2-
(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジ
アゾール(略称:PBD)、3-(4-ビフェニリル)-4-フェニル-5-(4-te
rt-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、1,3-ビス[
5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベ
ンゼン(略称:OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾー
ル-2-イル)フェニル]-9H-カルバゾール(略称:CO11)、2,2’,2’’
-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール
)(略称:TPBI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-
フェニル-1H-ベンゾイミダゾール(略称:mDBTBIm-II)などのポリアゾー
ル骨格を有する複素環化合物や、2-[3-(ジベンゾチオフェン-4-イル)フェニル
]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq-II)、2-[3’-
(ジベンゾチオフェン-4-イル)ビフェニル-3-イル]ジベンゾ[f、h]キノキサ
リン(略称:2mDBTBPDBq-II)、2-[3’-(9H-カルバゾール-9-
イル)ビフェニル-3-イル]ジベンゾ[f、h]キノキサリン(略称:2mCzBPD
Bq)、2-[4-(3,6-ジフェニル-9H-カルバゾール-9-イル)フェニル]
ジベンゾ[f,h]キノキサリン(略称:2CzPDBq-III)、7-[3-(ジベ
ンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mD
BTPDBq-II)、及び、6-[3-(ジベンゾチオフェン-4-イル)フェニル]
ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq-II)、4,6-ビス[
3-(フェナントレン-9-イル)フェニル]ピリミジン(略称:4,6mPnP2Pm
)、4,6-ビス〔3-(4-ジベンゾチエニル)フェニル〕ピリミジン(略称:4,6
mDBTP2Pm-II)、4,6-ビス[3-(9H-カルバゾール-9-イル)フェ
ニル]ピリミジン(略称:4,6mCzP2Pm)などのジアジン骨格を有する複素環化
合物や、2-{4-[3-(N-フェニル-9H-カルバゾール-3-イル)-9H-カ
ルバゾール-9-イル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略
称:PCCzPTzn)などのトリアジン骨格を有する複素環化合物や、3,5-ビス[
3-(9H-カルバゾール-9-イル)フェニル]ピリジン(略称:35DCzPPy)
、1,3,5-トリ[3-(3-ピリジル)フェニル]ベンゼン(略称:TmPyPB)
などのピリジン骨格を有する複素環化合物が挙げられる。上述した中でも、ジアジン骨格
及びトリアジン骨格を有する複素環化合物やピリジン骨格を有する複素環化合物は、信頼
性が良好であり好ましい。特に、ジアジン(ピリミジンやピラジン)骨格及びトリアジン
骨格を有する複素環化合物は、電子輸送性が高く、駆動電圧低減にも寄与する。
また、上記励起錯体を形成するために用いる上で好ましい正孔を受け取りやすい化合物(
正孔輸送性を有する材料)としては、π電子過剰型複素芳香族(例えばカルバゾール誘導
体やインドール誘導体)又は芳香族アミンなどを好適に用いることができる。具体的には
、2-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]スピロ-
9,9’-ビフルオレン(略称:PCASF)、4,4’,4’’-トリス[N-(1-
ナフチル)-N-フェニルアミノ]トリフェニルアミン(略称:1’-TNATA)、2
,7-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]-スピロ-
9,9’-ビフルオレン(略称:DPA2SF)、N,N’-ビス(9-フェニルカルバ
ゾール-3-イル)-N,N’-ジフェニルベンゼン-1,3-ジアミン(略称:PCA
2B)、N-(9,9-ジメチル-2-ジフェニルアミノ-9H-フルオレン-7-イル
)ジフェニルアミン(略称:DPNF)、N,N’,N’’-トリフェニル-N,N’,
N’’-トリス(9-フェニルカルバゾール-3-イル)ベンゼン-1,3,5-トリア
ミン(略称:PCA3B)、2-[N-(4-ジフェニルアミノフェニル)-N-フェニ
ルアミノ]スピロ-9,9’-ビフルオレン(略称:DPASF)、N,N’-ビス[4
-(カルバゾール-9-イル)フェニル]-N,N’-ジフェニル-9,9-ジメチルフ
ルオレン-2,7-ジアミン(略称:YGA2F)、NPB、N,N’-ビス(3-メチ
ルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン
(略称:TPD)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェ
ニルアミノ]ビフェニル(略称:DPAB)、BSPB、4-フェニル-4’-(9-フ
ェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)、4-フェニ
ル-3’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:mBPA
FLP)、N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-{9,9-ジ
メチル-2-[N’-フェニル-N’-(9,9-ジメチル-9H-フルオレン-2-イ
ル)アミノ]-9H-フルオレン-7-イル}フェニルアミン(略称:DFLADFL)
、PCzPCA1、3-[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ
]-9-フェニルカルバゾール(略称:PCzDPA1)、3,6-ビス[N-(4-ジ
フェニルアミノフェニル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:
PCzDPA2)、DNTPD、3,6-ビス[N-(4-ジフェニルアミノフェニル)
-N-(1-ナフチル)アミノ]-9-フェニルカルバゾール(略称:PCzTPN2)
、PCzPCA2、4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イ
ル)トリフェニルアミン(略称:PCBA1BP)、4,4’-ジフェニル-4’’-(
9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBBi
1BP)、4-(1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-イ
ル)トリフェニルアミン(略称:PCBANB)、4,4’-ジ(1-ナフチル)-4’
’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PC
BNBB)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル
)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)、9,9-ジメチル-
N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]
-フルオレン-2-アミン(略称:PCBAF)、N-フェニル-N-[4-(9-フェ
ニル-9H-カルバゾール-3-イル)フェニル]-スピロ-9,9’-ビフルオレン-
2-アミン(略称:PCBASF)、N-(4-ビフェニル)-N-(9,9-ジメチル
-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾール-3-アミン(略
称:PCBiF)、N-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニ
ル-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン
-2-アミン(略称:PCBBiF)などの芳香族アミン骨格を有する化合物や、1,3
-ビス(N-カルバゾリル)ベンゼン(略称:mCP)、CBP、3,6-ビス(3,5
-ジフェニルフェニル)-9-フェニルカルバゾール(略称:CzTP)、9-フェニル
-9H-3-(9-フェニル-9H-カルバゾール-3-イル)カルバゾール(略称:P
CCP)などのカルバゾール骨格を有する化合物や、4,4’,4’’-(ベンゼン-1
,3,5-トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P-II)、2,8
-ジフェニル-4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ジ
ベンゾチオフェン(略称:DBTFLP-III)、4-[4-(9-フェニル-9H-
フルオレン-9-イル)フェニル]-6-フェニルジベンゾチオフェン(略称:DBTF
LP-IV)などのチオフェン骨格を有する化合物や、4,4’,4’’-(ベンゼン-
1,3,5-トリイル)トリ(ジベンゾフラン)(略称:DBF3P-II)、4-{3
-[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]フェニル}ジベンゾ
フラン(略称:mmDBFFLBi-II)などのフラン骨格を有する化合物が挙げられ
る。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合
物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好
ましい。
なお、発光層113において、上述した有機金属錯体(ゲスト材料)とホスト材料とを含
んで形成することにより、発光層113からは、発光効率の高い燐光発光を得ることがで
きる。
また、発光層113は、発光素子において図1(A)に示す単層構造だけに限らず、図1
(B)に示すような2層以上の積層構造であってもよい。但し、この場合には、積層され
た各層からそれぞれの発光が得られる構成とする。例えば、1層目の発光層113(a1
)からは、蛍光発光が得られる構成とし、1層目に積層される2層目の発光層113(a
2)からは燐光発光が得られる構成とすればよい。なお、積層順については、この逆であ
ってもよい。また、燐光発光が得られる層においては、励起錯体からドーパントへのエネ
ルギー移動による発光が得られる構成とするのが好ましい。また、発光色については、一
方の層から得られる発光色と、他方の層から得られる発光色とが同一であっても異なって
いてもよいが、異なっている場合には、例えば、一方の層から青色発光が得られる構成と
し、他方の層からは橙色発光または黄色発光などが得られる構成とすることができる。ま
た、各層において、複数種のドーパントが含まれる構成としてもよい。
なお、発光層113が積層構造を有する場合には、実施の形態1で示した有機金属錯体の
他、一重項励起エネルギーを発光に変える発光物質、または三重項励起エネルギーを発光
に変える発光物質等を各々単独または組み合わせて用いることができる。この場合には、
例えば、以下のようなものが挙げられる。
一重項励起エネルギーを発光に変える発光物質としては、例えば、蛍光を発する物質(蛍
光性化合物)が挙げられる。
蛍光を発する物質としては、N,N’-ビス[4-(9H-カルバゾール-9-イル)フ
ェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)
、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)
トリフェニルアミン(略称:YGAPA)、4-(9H-カルバゾール-9-イル)-4
’-(9,10-ジフェニル-2-アントリル)トリフェニルアミン(略称:2YGAP
PA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル
]-9H-カルバゾール-3-アミン(略称:PCAPA)、ペリレン、2,5,8,1
1-テトラ-(tert-ブチル)ペリレン(略称:TBP)、4-(10-フェニル-
9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニ
ルアミン(略称:PCBAPA)、N,N’’-(2-tert-ブチルアントラセン-
9,10-ジイルジ-4,1-フェニレン)ビス[N,N’,N’-トリフェニル-1,
4-フェニレンジアミン](略称:DPABPA)、N,9-ジフェニル-N-[4-(
9,10-ジフェニル-2-アントリル)フェニル]-9H-カルバゾール-3-アミン
(略称:2PCAPPA)、N-[4-(9,10-ジフェニル-2-アントリル)フェ
ニル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPA
PPA)、N,N,N’,N’,N’’,N’’,N’’’,N’’’-オクタフェニル
ジベンゾ[g,p]クリセン-2,7,10,15-テトラアミン(略称:DBC1)、
クマリン30、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-
9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,
1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバ
ゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-ア
ントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2D
PAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリ
ル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAB
PhA)、9,10-ビス(1,1’-ビフェニル-2-イル)-N-[4-(9H-カ
ルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2
YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPh
APhA)、クマリン545T、N,N’-ジフェニルキナクリドン、(略称:DPQd
)、ルブレン、5,12-ビス(1,1’-ビフェニル-4-イル)-6,11-ジフェ
ニルテトラセン(略称:BPT)、2-(2-{2-[4-(ジメチルアミノ)フェニル
]エテニル}-6-メチル-4H-ピラン-4-イリデン)プロパンジニトリル(略称:
DCM1)、2-{2-メチル-6-[2-(2,3,6,7-テトラヒドロ-1H,5
H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}
プロパンジニトリル(略称:DCM2)、N,N,N’,N’-テトラキス(4-メチル
フェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフ
ェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-
a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)、{2-イソプロ
ピル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1
H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリ
デン}プロパンジニトリル(略称:DCJTI)、{2-tert-ブチル-6-[2-
(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ
[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジ
ニトリル(略称:DCJTB)、2-(2,6-ビス{2-[4-(ジメチルアミノ)フ
ェニル]エテニル}-4H-ピラン-4-イリデン)プロパンジニトリル(略称:Bis
DCM)、2-{2,6-ビス[2-(8-メトキシ-1,1,7,7-テトラメチル-
2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エ
テニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:BisDCJTM
)などが挙げられる。
三重項励起エネルギーを発光に変える発光物質としては、例えば、燐光を発する物質(燐
光性化合物)や熱活性化遅延蛍光(TADF)を示すTADF材料(熱活性化遅延蛍光性
化合物)が挙げられる。なお、TADF材料における遅延蛍光とは、通常の蛍光と同様の
スペクトルを持ちながら、寿命が著しく長い発光をいう。その寿命は、1×10-6秒以
上、好ましくは1×10-3秒以上である。
燐光を発する物質としては、ビス{2-[3’,5’-ビス(トリフルオロメチル)フェ
ニル]ピリジナト-N,C2’}イリジウム(III)ピコリナート(略称:[Ir(C
ppy)(pic)])、ビス[2-(4’,6’-ジフルオロフェニル)ピリジ
ナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac
)、トリス(2-フェニルピリジナト)イリジウム(III)(略称:[Ir(ppy)
])、ビス(2-フェニルピリジナト)イリジウム(III)アセチルアセトナート(
略称:[Ir(ppy)(acac)])、トリス(アセチルアセトナト)(モノフェ
ナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])、
ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[
Ir(bzq)(acac)])、ビス(2,4-ジフェニル-1,3-オキサゾラト
-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(dpo)
(acac)])、ビス{2-[4’-(パーフルオロフェニル)フェニル]ピリジナト
-N,C2’}イリジウム(III)アセチルアセトナート(略称:[Ir(p-PF-
ph)(acac)])、ビス(2-フェニルベンゾチアゾラト-N,C2’)イリジ
ウム(III)アセチルアセトナート(略称:[Ir(bt)(acac)])、ビス
[2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’]イリジウム(
III)アセチルアセトナート(略称:[Ir(btp)(acac)])、ビス(1
-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(
略称:[Ir(piq)(acac)])、(アセチルアセトナト)ビス[2,3-ビ
ス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(F
dpq)(acac)])、(アセチルアセトナト)ビス(3,5-ジメチル-2-フ
ェニルピラジナト)イリジウム(III)(略称:[Ir(mppr-Me)(aca
c)])、(アセチルアセトナト)ビス(5-イソプロピル-3-メチル-2-フェニル
ピラジナト)イリジウム(III)(略称:[Ir(mppr-iPr)(acac)
])、(アセチルアセトナト)ビス(2,3,5-トリフェニルピラジナト)イリジウム
(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5-トリフ
ェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(t
ppr)(dpm)])、(アセチルアセトナト)ビス(6-tert-ブチル-4-
フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(ac
ac)])、(アセチルアセトナト)ビス(4,6-ジフェニルピリミジナト)イリジウ
ム(III)(略称:[Ir(dppm)(acac)])、2,3,7,8,12,
13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:
PtOEP)、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナ
ントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、ト
リス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナント
ロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])などが挙
げられる。
また、TADF材料としては、例えば、フラーレンやその誘導体、プロフラビン等のアク
リジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、
カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラ
ジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。該金属含有ポルフィリンと
しては、例えば、プロトポルフィリン-フッ化スズ錯体(SnF(Proto IX)
)、メソポルフィリン-フッ化スズ錯体(SnF(Meso IX))、ヘマトポルフ
ィリン-フッ化スズ錯体(SnF(Hemato IX))、コプロポルフィリンテト
ラメチルエステル-フッ化スズ錯体(SnF(Copro III-4Me))、オク
タエチルポルフィリン-フッ化スズ錯体(SnF(OEP))、エチオポルフィリン-
フッ化スズ錯体(SnF(Etio I))、オクタエチルポルフィリン-塩化白金錯
体(PtClOEP)等が挙げられる。さらに、2-(ビフェニル-4-イル)-4,
6-ビス(12-フェニルインドロ[2,3-a]カルバゾール-11-イル)-1,3
,5-トリアジン(PIC-TRZ)等のπ電子過剰型複素芳香環及びπ電子不足型複素
芳香環を有する複素環化合物を用いることもできる。なお、π電子過剰型複素芳香環とπ
電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ
電子不足型複素芳香環のアクセプター性が共に強くなり、S1とT1のエネルギー差が小
さくなるため、特に好ましい。
電子輸送層114は、電子輸送性の高い物質(電子輸送性化合物ともいう)を含む層であ
る。電子輸送層114には、トリス(8-キノリノラト)アルミニウム(略称:Alq
)、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、Be
Bq、BAlq、ビス[2-(2-ヒドロキシフェニル)ベンズオキサゾラト]亜鉛(
略称:Zn(BOX))、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]
亜鉛(略称:Zn(BTZ))などの金属錯体を用いることができる。また、PBD、
1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール
-2-イル]ベンゼン(略称:OXD-7)、TAZ、3-(4-tert-ブチルフェ
ニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリア
ゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキ
ュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イ
ル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。また
、ポリ(2,5-ピリジンジイル)(略称:PPy)、ポリ[(9,9-ジヘキシルフル
オレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py
)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビ
ピリジン-6,6’-ジイル)](略称:PF-BPy)のような高分子化合物を用いる
こともできる。ここに述べた物質は、主に1×10-6cm/Vs以上の電子移動度を
有する物質である。なお、正孔よりも電子の輸送性の高い物質であれば、上記以外の物質
を電子輸送層114として用いてもよい。
また、電子輸送層114は、単層のものだけでなく、上記物質からなる層が2層以上積層
された構造としてもよい。
電子注入層115は、電子注入性の高い物質を含む層である。電子注入層115には、フ
ッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、
リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、またはそれら
の化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類金
属化合物を用いることができる。また、電子注入層115にエレクトライドを用いてもよ
い。該エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子
を高濃度添加した物質等が挙げられる。なお、上述した電子輸送層114を構成する物質
を用いることもできる。
また、電子注入層115に、有機化合物と電子供与体(ドナー)とを混合してなる複合材
料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生
するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、
発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電
子輸送層114を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる
。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的に
は、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マ
グネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ
金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、
バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いるこ
ともできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いること
もできる。
なお、上述した正孔注入層111、正孔輸送層112、発光層113、電子輸送層114
、電子注入層115は、それぞれ、蒸着法(真空蒸着法を含む)、印刷法(例えば、凸版
印刷法、凹版印刷法、グラビア印刷法、平版印刷法、孔版印刷法等)、インクジェット法
、塗布法等の方法を単独または組み合わせて用いて形成することができる。また、上述し
た、正孔注入層111、正孔輸送層112、発光層113、電子輸送層114、及び電子
注入層115には、上述した材料の他、量子ドットなどの無機化合物または高分子化合物
(オリゴマー、デンドリマー、ポリマー等)を用いてもよい。
上述した発光素子は、第1の電極101および第2の電極103との間に与えられる電位
差により電流が流れ、EL層102において正孔と電子とが再結合することにより発光す
る。そして、この発光は、第1の電極101および第2の電極103のいずれか一方また
は両方を通って外部に取り出される。従って、第1の電極101および第2の電極103
のいずれか一方、または両方が透光性を有する電極となる。
以上により説明した発光素子は、有機金属錯体に基づく燐光発光が得られることから、蛍
光性化合物のみを用いた発光素子に比べて、高効率な発光素子を実現することができる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いる
ことができるものとする。
(実施の形態3)
本実施の形態では、本発明の一態様であり、EL層を複数有する構造の発光素子(以下、
タンデム型発光素子という)について説明する。
本実施の形態に示す発光素子は、図2(A)に示すように一対の電極(第1の電極201
および第2の電極204)間に、電荷発生層205を介して複数のEL層(第1のEL層
202(1)、第2のEL層202(2))を有するタンデム型発光素子である。
本実施の形態において、第1の電極201は、陽極として機能する電極であり、第2の電
極204は陰極として機能する電極である。なお、第1の電極201および第2の電極2
04は、実施の形態2と同様な構成を用いることができる。また、複数のEL層(第1の
EL層202(1)、第2のEL層202(2))は、実施の形態2で示したEL層と両
方とも同様な構成であっても良いが、いずれか一方が同様の構成であっても良い。すなわ
ち、第1のEL層202(1)と第2のEL層202(2)は、同じ構成であっても異な
る構成であってもよく、同じ構成である場合は、実施の形態2を適用することができる。
また、複数のEL層(第1のEL層202(1)、第2のEL層202(2))の間に設
けられている電荷発生層205は、第1の電極201と第2の電極204に電圧を印加し
たときに、一方のEL層に電子を注入し、他方のEL層に正孔を注入する機能を有する。
本実施の形態の場合には、第1の電極201に第2の電極204よりも電位が高くなるよ
うに電圧を印加すると、電荷発生層205から第1のEL層202(1)に電子が注入さ
れ、第2のEL層202(2)に正孔が注入される。
なお、電荷発生層205は、光の取り出し効率の点から、可視光に対して透光性を有する
(具体的には、電荷発生層205の可視光の透過率が、40%以上)ことが好ましい。ま
た、電荷発生層205は、第1の電極201や第2の電極204よりも低い導電率であっ
ても機能する。
電荷発生層205は、正孔輸送性の高い有機化合物に電子受容体(アクセプター)が添加
された構成であっても、電子輸送性の高い有機化合物に電子供与体(ドナー)が添加され
た構成であってもよい。また、これらの両方の構成が積層されていても良い。
正孔輸送性の高い有機化合物に電子受容体が添加された構成とする場合において、正孔輸
送性の高い有機化合物としては、実施の形態2で正孔注入層111、および正孔輸送層1
12に用いる正孔輸送性の高い物質として示した物質を用いることができる。例えば、N
PBやTPD、TDATA、MTDATA、BSPBなどの芳香族アミン化合物等を用い
ることができる。ここに述べた物質は、主に1×10-6cm/Vs以上の正孔移動度
を有する物質である。但し、電子よりも正孔の輸送性の高い有機化合物であれば、上記以
外の物質を用いても構わない。
また、電子受容体としては、7,7,8,8-テトラシアノ-2,3,5,6-テトラフ
ルオロキノジメタン(略称:F-TCNQ)、クロラニル等を挙げることができる。ま
た元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具
体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、
酸化タングステン、酸化マンガン、酸化レニウムは電子受容性が高いため好ましい。中で
も特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好まし
い。
一方、電子輸送性の高い有機化合物に電子供与体が添加された構成とする場合において、
電子輸送性の高い有機化合物としては、実施の形態2で電子輸送層114に用いる電子輸
送性の高い物質として示した物質を用いることができる。例えば、Alq、Almq
BeBq、BAlqなど、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等
を用いることができる。また、この他、Zn(BOX)、Zn(BTZ)などのオキ
サゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、
金属錯体以外にも、PBDやOXD-7、TAZ、BPhen、BCPなども用いること
ができる。ここに述べた物質は、主に1×10-6cm/Vs以上の電子移動度を有す
る物質である。なお、正孔よりも電子の輸送性の高い有機化合物であれば、上記以外の物
質を用いても構わない。
また、電子供与体としては、アルカリ金属またはアルカリ土類金属または希土類金属また
は元素周期表における第2、第13族に属する金属およびその酸化物、炭酸塩を用いるこ
とができる。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)
、カルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム、
炭酸セシウムなどを用いることが好ましい。また、テトラチアナフタセンのような有機化
合物を電子供与体として用いてもよい。
なお、上述した材料を用いて電荷発生層205を形成することにより、EL層が積層され
た場合における駆動電圧の上昇を抑制することができる。また、電荷発生層205の形成
方法としては、蒸着法(真空蒸着法を含む)、印刷法(例えば、凸版印刷法、凹版印刷法
、グラビア印刷法、平版印刷法、孔版印刷法等)、インクジェット法、塗布法等の方法を
単独または組み合わせて用いて形成することができる。
本実施の形態では、EL層を2層有する発光素子について説明したが、図2(B)に示す
ように、n層(ただし、nは、3以上)のEL層(202(1)~202(n))を積層
した発光素子についても、同様に適用することが可能である。本実施の形態に係る発光素
子のように、一対の電極間に複数のEL層を有する場合、EL層とEL層との間にそれぞ
れ電荷発生層(205(1)~205(n-1))を配置することで、電流密度を低く保
ったまま、高輝度領域での発光が可能である。電流密度を低く保てるため、長寿命素子を
実現できる。
また、それぞれのEL層の発光色を異なるものにすることで、発光素子全体として、所望
の色の発光を得ることができる。例えば、2つのEL層を有する発光素子において、第1
のEL層の発光色と第2のEL層の発光色を補色の関係になるようにすることで、発光素
子全体として白色発光する発光素子を得ることも可能である。なお、補色とは、混合する
と無彩色になる色同士の関係をいう。つまり、補色の関係にある色の光を互いに混合する
と、白色発光を得ることができる。具体的には、第1のEL層から青色発光が得られ、第
2のEL層から黄色発光または橙色発光が得られる組み合わせが挙げられる。この場合、
青色発光と黄色発光(または橙色発光)が両方とも同じ蛍光発光、または燐光発光である
必要はなく、青色発光が蛍光発光であり、黄色発光(または橙色発光)が燐光発光である
組み合わせや、その逆の組み合わせとしてもよい。
また、3つのEL層を有する発光素子の場合でも同様であり、例えば、第1のEL層の発
光色が赤色であり、第2のEL層の発光色が緑色であり、第3のEL層の発光色が青色で
ある場合、発光素子全体としては、白色発光を得ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用い
ることができる。
(実施の形態4)
本実施の形態では、本発明の一態様である発光装置について説明する。
なお、上記発光装置は、パッシブマトリクス型の発光装置でもアクティブマトリクス型の
発光装置でもよい。また、本実施の形態に示す発光装置には、他の実施形態で説明した発
光素子を適用することが可能である。
本実施の形態では、まずアクティブマトリクス型の発光装置について図3を用いて説明す
る。
なお、図3(A)は発光装置を示す上面図であり、図3(B)は図3(A)を鎖線A-A
’で切断した断面図である。アクティブマトリクス型の発光装置は、素子基板301上に
設けられた画素部302と、駆動回路部(ソース線駆動回路)303と、駆動回路部(ゲ
ート線駆動回路)304a及び304bと、を有する。画素部302、駆動回路部304
a及び304bは、シール材305によって、素子基板301と封止基板306との間に
封止されている。
また、素子基板301上には、駆動回路部303、及び駆動回路部304a及び304b
に外部からの信号(例えば、ビデオ信号、クロック信号、スタート信号、又はリセット信
号等)や電位を伝達する外部入力端子を接続するための引き回し配線307が設けられる
。ここでは、外部入力端子としてFPC(フレキシブルプリントサーキット)308を設
ける例を示している。なお、ここではFPCしか図示されていないが、このFPCにはプ
リント配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には
、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含む
ものとする。
次に、断面構造について図3(B)を用いて説明する。素子基板301上には駆動回路部
及び画素部が形成されているが、ここでは、ソース線駆動回路である駆動回路部303と
、画素部302が示されている。
駆動回路部303はFET309とFET310とを組み合わせた構成について例示して
いる。なお、駆動回路部303は、単極性(N型またはP型のいずれか一方のみ)のトラ
ンジスタを含む回路で形成されても良いし、N型のトランジスタとP型のトランジスタを
含むCMOS回路で形成されても良い。また、本実施の形態では、基板上に駆動回路を形
成したドライバー一体型を示すが、必ずしもその必要はなく、基板上ではなく外部に駆動
回路を形成することもできる。
また、画素部302はスイッチング用FET(図示せず)と、電流制御用FET312と
を有し、電流制御用FET312の配線(ソース電極又はドレイン電極)は、発光素子3
17aおよび発光素子317bの第1の電極(陽極)(313a、313b)と電気的に
接続されている。また、本実施の形態においては、画素部302に2つのFET(スイッ
チング用FET、電流制御用FET312)を用いて構成する例について示したが、これ
に限定されない。例えば、3つ以上のFETと、容量素子とを組み合わせる構成としても
よい。
FET309、310、312としては、例えば、スタガ型や逆スタガ型のトランジスタ
を適用することができる。FET309、310、312に用いることのできる半導体材
料としては、例えば、第13族半導体、14族(ケイ素等)半導体、化合物半導体、酸化
物半導体、有機半導体を用いることができる。また、該半導体材料の結晶性については、
特に限定されず、例えば、非晶質半導体、または結晶性半導体を用いることができる。特
に、FET309、310、311、312としては、酸化物半導体を用いると好ましい
。なお、酸化物半導体としては、例えば、In-Ga酸化物、In-M-Zn酸化物(M
は、Al、Ga、Y、Zr、La、Ce、HfまたはNd)等が挙げられる。FET30
9、310、312として、例えば、エネルギーギャップが2eV以上、好ましくは2.
5eV以上、さらに好ましくは3eV以上の酸化物半導体を用いることで、トランジスタ
のオフ電流を低減することができる。
また、第1の電極(313a、313b)には、光学調整のための導電膜(320a、3
20b)を積層した構造を含む。例えば、図3(B)に示すように発光素子317aと発
光素子317bとで取り出す光の波長が異なる場合には、導電膜320aと導電膜320
bとの膜厚は異なる。また、第1の電極(313a、313b)の端部を覆って絶縁物3
14が形成されている。ここでは、絶縁物314として、ポジ型の感光性アクリル樹脂を
用いることにより形成する。また、本実施の形態においては、第1の電極(313a、3
13b)を陽極として用いる。
また、絶縁物314の上端部または下端部に曲率を有する曲面を形成するのが好ましい。
絶縁物314の形状を上記のように形成することで、絶縁物314の上層に形成される膜
の被覆性を良好なものとすることができる。例えば、絶縁物314の材料として、ネガ型
の感光性樹脂、或いはポジ型の感光性樹脂のいずれかを使用することができ、有機化合物
に限らず無機化合物、例えば、酸化シリコン、酸化窒化シリコン、窒化シリコン等を使用
することができる。
第1の電極(313a、313b)上には、EL層315及び第2の電極316が積層形
成される。EL層315は、少なくとも発光層が設けられており、第1の電極(313a
、313b)、EL層315及び第2の電極316からなる発光素子(317a、317
b)は、EL層315の端部が、第2の電極316で覆われた構造を有する。また、EL
層315の構成については、実施の形態2や実施の形態3に示す単層構造または積層構造
と同様であっても異なっていてもよい。さらに、発光素子ごとに異なっていてもよい。
なお、第1の電極313、EL層315及び第2の電極316に用いる材料としては、実
施の形態2に示す材料を用いることができる。また、発光素子(317a、317b)の
第1の電極(313a、313b)は、領域321において、引き回し配線307と電気
的に接続されFPC308を介して外部信号が入力される。さらに、発光素子(317a
、317b)の第2の電極316は、領域322において、引き回し配線323と電気的
に接続され、ここでは図示しないが、FPC308を介して外部信号が入力される。
また、図3(B)に示す断面図では発光素子317を2つのみ図示しているが、画素部3
02において、複数の発光素子がマトリクス状に配置されているものとする。すなわち、
画素部302には、2種類(例えば(B、Y))の発光が得られる発光素子だけでなく、
3種類(例えば(R、G、B))の発光が得られる発光素子や、4種類(例えば(R、G
、B、Y)または(R、G、B、W)等)の発光が得られる発光素子等をそれぞれ形成し
、フルカラー表示可能な発光装置を形成することができる。なお、この時の発光層の形成
には、発光素子の発光色などに応じて異なる材料を用いた発光層を形成(いわゆる塗り分
け形成)してもよいし、複数の発光素子が同じ材料を用いて形成された共通の発光層を有
し、カラーフィルタと組み合わせることによってフルカラー化を実現させてもよい。この
ように数種類の発光が得られる発光素子を組み合わせることにより、色純度の向上、消費
電力の低減等の効果が得ることができる。さらに、量子ドットとの組み合わせにより発光
効率を向上させ、消費電力を低減させた発光装置としてもよい。
さらに、シール材305で封止基板306を素子基板301と貼り合わせることにより、
素子基板301、封止基板306、およびシール材305で囲まれた空間318に発光素
子317が備えられた構造になっている。
また、封止基板306には、有色層(カラーフィルタ)324が設けられており、隣り合
う有色層の間には、黒色層(ブラックマトリクス)325が設けられている。なお、黒色
層(ブラックマトリクス)325と一部重なるように隣り合う有色層(カラーフィルタ)
324の一方または両方が設けられていてもよい。なお、発光素子317a、317bで
得られた発光は、有色層(カラーフィルタ)324を介して外部に取り出される。
なお、空間318には、不活性気体(窒素やアルゴン等)が充填される場合の他、シール
材305で充填される構成も含むものとする。また、シール材を塗布して貼り合わせる場
合には、UV処理や熱処理等のいずれか、またはこれらを組み合わせて行うのが好ましい
また、シール材305にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。また
、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、
封止基板306に用いる材料としてガラス基板や石英基板の他、FRP(Fiber-R
einforced Plastics)、PVF(ポリビニルフロライド)、ポリエス
テルまたはアクリル樹脂等からなるプラスチック基板を用いることができる。シール材と
してガラスフリットを用いる場合には、接着性の観点から素子基板301及び封止基板3
06はガラス基板であることが好ましい。
なお、発光素子と電気的に接続されるFETの構造は、図3(B)とはゲート電極の位置
が異なる構造、すなわち図3(C)に示すFET326、FET327、FET328に
示す構造としてもよい。また、封止基板306に設けられる有色層(カラーフィルタ)3
24は、図3(C)に示すように黒色層(ブラックマトリクス)325と重なる位置でさ
らに隣り合う有色層(カラーフィルタ)324とも重なるように設けられていてもよい。
以上のようにして、アクティブマトリクス型の発光装置を得ることができる。
また、本発明の一態様である発光装置としては、上述したアクティブマトリクス型の発光
装置のみならずパッシブマトリクス型の発光装置とすることもできる。
図4(A)(B)にパッシブマトリクス型の発光装置を示す。図4(A)には、パッシブ
マトリクス型の発光装置の上面図、図4(B)には、断面図をそれぞれ示す。
図4(A)に示すように、基板401上には、第1の電極402と、EL層(403a、
403b、403c)と、第2の電極404とを有する発光素子405が形成される。な
お、第1の電極402は、島状であり、一方向(図4(A)では、横方向)にストライプ
状に複数形成されている。また、第1の電極402上の一部には、絶縁膜405が形成さ
れている。絶縁膜405上には絶縁材料を用いてなる隔壁406が設けられる。隔壁40
6の側壁は、図4(B)に示すように基板面に近くなるに伴って、一方の側壁と他方の側
壁との間隔が狭くなるような傾斜を有する。
なお、絶縁膜405は、第1の電極402上の一部に開口部を有するため、EL層(40
3a、403b、403c)および第2の電極404を第1の電極402上に所望の形状
に分離形成することができる。図4(A)および図4(B)には、メタルマスク等のマス
クと絶縁膜405上の隔壁406とを組み合わせてEL層(403a、403b、403
c)および第2の電極404を形成する例を示す。また、EL層403a、EL層403
b、EL層403cは、それぞれ異なる発光色(例えば、赤、緑、青、黄、橙、白等)を
呈する場合の例を示す。
また、EL層(403a、403b、403c)を形成した後、第2の電極404が形成
される。従って、第2の電極404は、EL層(403a、403b、403c)上に第
1の電極402と接することなく形成される。
なお、封止の方法については、アクティブマトリクス型の発光装置の場合と同様に行うこ
とができるので、説明は省略する。
以上のようにして、パッシブマトリクス型の発光装置を得ることができる。
例えば、本明細書等において、様々な基板を用いて、トランジスタまたは発光素子を形成
することが出来る。基板の種類は、特定のものに限定されることはない。その基板の一例
としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板
、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチ
ル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓
性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどがある。ガ
ラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又は
ソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム、基材フィルムなどの
一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET
)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテ
トラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例とし
ては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリ
エステル、ポリフッ化ビニル、又はポリ塩化ビニルなどがある。または、一例としては、
ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、又は紙類などがある
。特に、半導体基板、単結晶基板、又はSOI基板などを用いてトランジスタを製造する
ことによって、特性、サイズ、又は形状などのばらつきが少なく、電流能力が高く、サイ
ズの小さいトランジスタを製造することができる。このようなトランジスタによって回路
を構成すると、回路の低消費電力化、又は回路の高集積化を図ることができる。
また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタまたは発光素
子を形成してもよい。または、基板とトランジスタまたは発光素子との間に剥離層を設け
てもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より分
離し、他の基板に転載するために用いることができる。その際、トランジスタまたは発光
素子は耐熱性の劣る基板や可撓性の基板にも転載できる。なお、上述の剥離層には、例え
ば、タングステン膜と酸化シリコン膜との無機膜の積層構造の構成や、基板上にポリイミ
ド等の有機樹脂膜が形成された構成等を用いることができる。
つまり、ある基板を用いてトランジスタまたは発光素子を形成し、その後、別の基板にト
ランジスタまたは発光素子を転置し、別の基板上にトランジスタまたは発光素子を配置し
てもよい。トランジスタまたは発光素子が転置される基板の一例としては、上述したトラ
ンジスタまたは発光素子を形成することが可能な基板に加え、紙基板、セロファン基板、
アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊
維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊
維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又
はゴム基板などがある。これらの基板を用いることにより、特性のよいトランジスタの形
成、消費電力の小さいトランジスタの形成、壊れにくい装置の製造、耐熱性の付与、軽量
化、又は薄型化を図ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができる。
(実施の形態5)
本実施の形態では、本発明の一態様である発光装置を適用して完成させた様々な電子機器
や自動車の一例について、説明する。
発光装置を適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジ
ョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオ
カメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携
帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げ
られる。これらの電子機器の具体例を図5、図6に示す。
図5(A)は、テレビジョン装置の一例を示している。テレビジョン装置7100は、筐
体7101に表示部7103が組み込まれている。表示部7103により、映像を表示す
ることが可能であり、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)
であってもよい。なお、本発明の一態様である発光装置を表示部7103に用いることが
できる。また、ここでは、スタンド7105により筐体7101を支持した構成を示して
いる。
テレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモ
コン操作機7110により行うことができる。リモコン操作機7110が備える操作キー
7109により、チャンネルや音量の操作を行うことができ、表示部7103に表示され
る映像を操作することができる。また、リモコン操作機7110に、当該リモコン操作機
7110から出力する情報を表示する表示部7107を設ける構成としてもよい。
なお、テレビジョン装置7100は、受信機やモデムなどを備えた構成とする。受信機に
より一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線又は無線によ
る通信ネットワークに接続することにより、一方向(送信者から受信者)又は双方向(送
信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図5(B)はコンピュータであり、本体7201、筐体7202、表示部7203、キー
ボード7204、外部接続ポート7205、ポインティングデバイス7206等を含む。
なお、コンピュータは、本発明の一態様である発光装置をその表示部7203に用いるこ
とにより作製することができる。また、表示部7203は、タッチセンサ(入力装置)を
搭載したタッチパネル(入出力装置)であってもよい。
図5(C)は、スマートウオッチであり、筐体7302、表示部7304、操作ボタン7
311、7312、接続端子7313、バンド7321、留め金7322、等を有する。
ベゼル部分を兼ねる筐体7302に搭載された表示部7304は、非矩形状の表示領域を
有している。表示部7304は、時刻を表すアイコン7305、その他のアイコン730
6等を表示することができる。また、表示部7304は、タッチセンサ(入力装置)を搭
載したタッチパネル(入出力装置)であってもよい。
なお、図5(C)に示すスマートウオッチは、様々な機能を有することができる。例えば
、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネ
ル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウェア(プログラ
ム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュ
ータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を
行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示す
る機能、等を有することができる。
また、筐体7302の内部に、スピーカ、センサ(力、変位、位置、速度、加速度、角速
度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電
圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むも
の)、マイクロフォン等を有することができる。なお、スマートウオッチは、発光装置を
その表示部7304に用いることにより作製することができる。
図5(D)は、携帯電話機(スマートフォンを含む)の一例を示している。携帯電話機7
400は、筐体7401に、表示部7402、マイク7406、スピーカ7405、カメ
ラ7407、外部接続部7404、操作用ボタン7403などを備えている。また、本発
明の一態様に係る発光素子を、可撓性を有する基板に形成して発光装置を作製した場合、
図5(D)に示すような曲面を有する表示部7402に適用することが可能である。
図5(D)に示す携帯電話機7400は、表示部7402を指などで触れることで、情報
を入力することができる。また、電話を掛ける、或いはメールを作成するなどの操作は、
表示部7402を指などで触れることにより行うことができる。
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする表
示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示
モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力を
主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合
、表示部7402の画面のほとんどにキーボード又は番号ボタンを表示させることが好ま
しい。
また、携帯電話機7400内部に、ジャイロセンサや加速度センサ等の検出装置を設ける
ことで、携帯電話機7400の向き(縦か横か)を判断して、表示部7402の画面表示
を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操作
用ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類
によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画
のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表示
部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部74
02に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。ま
た、表示部に近赤外光を発光するバックライト又は近赤外光を発光するセンシング用光源
を用いれば、指静脈、掌静脈などを撮像することもできる。
さらに、携帯電話機(スマートフォンを含む)の別の構成として、図5(D’-1)や図
5(D’-2)のような構造を有する携帯電話機に適用することもできる。
なお、図5(D’-1)や図5(D’-2)のような構造を有する場合には、文字情報や
画像情報などを筐体7500(1)、7500(2)の第1面7501(1)、7501
(2)だけでなく、第2面7502(1)、7502(2)に表示させることができる。
このような構造を有することにより、携帯電話機を胸ポケットに収納したままの状態で、
第2面7502(1)、7502(2)などに表示された文字情報や画像情報などを使用
者が容易に確認することができる。
また、発光装置を適用した電子機器として、図6(A)~(C)に示すような折りたたみ
可能な携帯情報端末が挙げられる。図6(A)には、展開した状態の携帯情報端末931
0を示す。また、図6(B)には、展開した状態又は折りたたんだ状態の一方から他方に
変化する途中の状態の携帯情報端末9310を示す。さらに、図6(C)には、折りたた
んだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態で
は可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優
れる。
表示部9311はヒンジ9313によって連結された3つの筐体9315に支持されてい
る。なお、表示部9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出
力装置)であってもよい。また、表示部9311は、ヒンジ9313を介して2つの筐体
9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたた
んだ状態に可逆的に変形させることができる。本発明の一態様の発光装置を表示部931
1に用いることができる。表示部9311における表示領域9312は折りたたんだ状態
の携帯情報端末9310の側面に位置する表示領域である。表示領域9312には、情報
アイコンや使用頻度の高いアプリやプログラムのショートカットなどを表示させることが
でき、情報の確認やアプリなどの起動をスムーズに行うことができる。
また、発光装置を適用した自動車を図7(A)(B)に示す。すなわち、発光装置を、自
動車と一体にして設けることができる。具体的には、図7(A)に示す自動車の外側のラ
イト5101(車体後部も含む)、タイヤのホイール5102、ドア5103の一部また
は全体などに適用することができる。また、図7(B)に示す自動車の内側の表示部51
04、ハンドル5105、シフトレバー5106、座席シート5107、バックミラー5
108
等に適用することができる。その他、ガラス窓の一部に適用してもよい。
以上のようにして、本発明の一態様である発光装置を適用して電子機器や自動車を得るこ
とができる。なお、適用できる電子機器や自動車は、本実施の形態に示したものに限らず
、あらゆる分野において適用することが可能である。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用い
ることができる。
(実施の形態6)
本実施の形態では、本発明の一態様である発光素子を適用して作製される照明装置の構成
について図8を用いて説明する。
図8(A)、(B)、(C)、(D)には、照明装置の断面図の一例を示す。なお、図8
(A)、(B)は基板側に光を取り出すボトムエミッション型の照明装置であり、図8(
C)、(D)は、封止基板側に光を取り出すトップエミッション型の照明装置である。
図8(A)に示す照明装置4000は、基板4001上に発光素子4002を有する。ま
た、基板4001の外側に凹凸を有する基板4003を有する。発光素子4002は、第
1の電極4004と、EL層4005と、第2の電極4006を有する。
第1の電極4004は、電極4007と電気的に接続され、第2の電極4006は電極4
008と電気的に接続される。また、第1の電極4004と電気的に接続される補助配線
4009を設けてもよい。なお、補助配線4009上には、絶縁層4010が形成されて
いる。
また、基板4001と封止基板4011は、シール材4012で接着されている。また、
封止基板4011と発光素子4002の間には、乾燥剤4013が設けられていることが
好ましい。なお、基板4003は、図8(A)のような凹凸を有するため、発光素子40
02で生じた光の取り出し効率を向上させることができる。
また、基板4003に代えて、図8(B)の照明装置4100のように、基板4001の
外側に拡散板4015を設けてもよい。
図8(C)の照明装置4200は、基板4201上に発光素子4202を有する。発光素
子4202は第1の電極4204と、EL層4205と、第2の電極4206とを有する
第1の電極4204は、電極4207と電気的に接続され、第2の電極4206は電極4
208と電気的に接続される。また第2の電極4206と電気的に接続される補助配線4
209を設けてもよい。また、補助配線4209の下部に、絶縁層4210を設けてもよ
い。
基板4201と凹凸のある封止基板4211は、シール材4212で接着されている。ま
た、封止基板4211と発光素子4202の間にバリア膜4213および平坦化膜421
4を設けてもよい。なお、封止基板4211は、図8(C)のような凹凸を有するため、
発光素子4202で生じた光の取り出し効率を向上させることができる。
また、封止基板4211に代えて、図8(D)の照明装置4300のように、発光素子4
202の上に拡散板4215を設けてもよい。
なお、本実施の形態で示すEL層4005、4205に、本発明の一態様である有機金属
錯体を適用することができる。この場合、消費電力の低い照明装置を提供することができ
る。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用い
ることができる。
(実施の形態7)
本実施の形態では、本発明の一態様である発光装置を適用した応用品である照明装置の一
例について、図9を用いて説明する。
図9は、発光装置を室内の照明装置8001として用いた例である。なお、発光装置は大
面積化も可能であるため、大面積の照明装置を形成することもできる。その他、曲面を有
する筐体を用いることで、発光領域が曲面を有する照明装置8002を形成することもで
きる。本実施の形態で示す発光装置に含まれる発光素子は薄膜状であり、筐体のデザイン
の自由度が高い。したがって、様々な意匠を凝らした照明装置を形成することができる。
さらに、室内の壁面に照明装置8003を備えても良い。
なお、上記以外にも室内に備えられた家具の一部に発光装置を適用することにより、家具
としての機能を備えた照明装置とすることができる。
以上のように、発光装置を適用した様々な照明装置が得られる。なお、これらの照明装置
は本発明の一態様に含まれるものとする。
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用い
ることができる。
(実施の形態8)
本実施の形態においては、本発明の一態様の発光素子または本発明の一態様の発光装置を
有するタッチパネルについて、図10~図14を用いて説明を行う。
図10(A)(B)は、タッチパネル2000の斜視図である。なお、図10(A)(B
)において、明瞭化のため、タッチパネル2000の代表的な構成要素を示す。
タッチパネル2000は、表示部2501とタッチセンサ2595とを有する(図10(
B)参照)。また、タッチパネル2000は、基板2510、基板2570、及び基板2
590を有する。なお、基板2510、基板2570、及び基板2590はいずれも可撓
性を有する。
表示部2501は、基板2510上に複数の画素及び該画素に信号を供給することができ
る複数の配線2511を有する。複数の配線2511は、基板2510の外周部にまで引
き回され、その一部が端子2519を構成している。端子2519はFPC2509(1
)と電気的に接続する。
基板2590には、タッチセンサ2595と、タッチセンサ2595と電気的に接続する
複数の配線2598とを有する。複数の配線2598は、基板2590の外周部に引き回
され、その一部は端子2599を構成する。そして、端子2599はFPC2509(2
)と電気的に接続される。なお、図10(B)では明瞭化のため、基板2510の裏面側
(基板2590と対向する面側)に設けられるタッチセンサ2595の電極や配線等を実
線で示している。
タッチセンサ2595として、例えば静電容量方式のタッチセンサを適用できる。静電容
量方式としては、表面型静電容量方式、投影型静電容量方式等がある。
投影型静電容量方式としては、主に駆動方式の違いから自己容量方式、相互容量方式など
がある。相互容量方式を用いると同時多点検出が可能となるため好ましい。
まず、投影型静電容量方式のタッチセンサを適用する場合について、図10(B)を用い
て説明する。なお、投影型静電容量方式の場合には、指等の検知対象の近接または接触を
検知することができる、様々なセンサを適用することができる。
投影型静電容量方式のタッチセンサ2595は、電極2591と電極2592とを有する
。電極2591と電極2592は、複数の配線2598のうちのそれぞれ異なる配線と電
気的に接続する。また、電極2592は、図10(A)(B)に示すように、一方向に繰
り返し配置された複数の四辺形が角部で配線2594により、一方向に接続される形状を
有する。電極2591も同様に複数の四辺形が角部で接続される形状を有するが、接続さ
れる方向は、電極2592が接続される方向と交差する方向となる。なお、電極2591
が接続される方向と、電極2592が接続される方向とは、必ずしも直交する関係にある
必要はなく、0度を超えて90度未満の角度をなすように配置されてもよい。
なお、配線2594の電極2592との交差部の面積は、できるだけ小さくなる形状が好
ましい。これにより、電極が設けられていない領域の面積を低減でき、透過率のバラツキ
を低減できる。その結果、タッチセンサ2595を透過する光の輝度のバラツキを低減す
ることができる。
なお、電極2591及び電極2592の形状はこれに限定されず、様々な形状を取りうる
。例えば、複数の電極2591をできるだけ隙間が生じないように配置し、絶縁層を介し
て電極2592を複数設ける構成としてもよい。このとき、隣接する2つの電極2592
の間に、これらとは電気的に絶縁されたダミー電極を設けると、透過率の異なる領域の面
積を低減できるため好ましい。
次に、図11を用いて、タッチパネル2000の詳細について説明する。図11は、図1
0(A)に示す一点鎖線X1-X2間の断面図に相当する。
タッチセンサ2595は、基板2590上に千鳥格子状に配置された電極2591及び電
極2592と、電極2591及び電極2592を覆う絶縁層2593と、隣り合う電極2
591を電気的に接続する配線2594とを有する。
また、配線2594の下方には、接着層2597が設けられる。接着層2597は、タッ
チセンサ2595が表示部2501に重なるように、基板2590を基板2570に貼り
合わせている。
電極2591及び電極2592は、透光性を有する導電材料を用いて形成する。透光性を
有する導電性材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化
物、酸化亜鉛、ガリウムを添加した酸化亜鉛などの導電性酸化物を用いることができる。
なお、グラフェンを含む膜を用いることもできる。グラフェンを含む膜は、例えば膜状に
形成された酸化グラフェンを含む膜を還元して形成することができる。還元する方法とし
ては、熱を加える方法等を挙げることができる。
例えば、透光性を有する導電性材料を基板2590上にスパッタリング法により成膜した
後、フォトリソグラフィ法等の様々なパターニング技術により、不要な部分を除去して、
電極2591及び電極2592を形成することができる。
また、絶縁層2593に用いる材料としては、例えば、アクリル、エポキシなどの樹脂、
シロキサン結合を有する樹脂の他、酸化シリコン、酸化窒化シリコン、酸化アルミニウム
などの無機絶縁材料を用いることもできる。
また、絶縁層2593に設けられた開口部に配線2594を形成することにより、隣接す
る電極2591が電気的に接続される。透光性の導電性材料は、タッチパネルの開口率を
高めることができるため、配線2594に好適に用いることができる。また、電極259
1及び電極2592より導電性の高い材料は、電気抵抗を低減できるため配線2594に
好適に用いることができる。
一対の電極2591は、配線2594により電気的に接続されている。また、一対の電極
2591の間には、電極2592が設けられている。
また、配線2598は、電極2591または電極2592と電気的に接続される。なお、
配線2598の一部は、端子として機能する。配線2598には、例えば、アルミニウム
、金、白金、銀、ニッケル、チタン、タングステン、クロム、モリブデン、鉄、コバルト
、銅、またはパラジウム等の金属材料や、該金属材料を含む合金材料を用いることができ
る。
また、端子2599により、配線2598とFPC2509(2)とが電気的に接続され
る。なお、端子2599には、様々な異方性導電フィルム(ACF:Anisotrop
ic Conductive Film)や、異方性導電ペースト(ACP:Aniso
tropic Conductive Paste)などを用いることができる。
また、接着層2597は、透光性を有する。例えば、熱硬化性樹脂や紫外線硬化樹脂を用
いることができ、具体的には、アクリル系樹脂、ウレタン系樹脂、エポキシ系樹脂、また
はシロキサン系樹脂を用いることができる。
表示部2501は、マトリクス状に配置された複数の画素を有する。該画素は表示素子と
、該表示素子を駆動する画素回路とを有する。
基板2510及び基板2570としては、例えば、水蒸気の透過率が1×10-5g/(
・day)以下、好ましくは1×10-6g/(m・day)以下である可撓性を
有する材料を好適に用いることができる。または、基板2510の熱膨張率と、基板25
70の熱膨張率とが、およそ等しい材料を用いると好適である。例えば、線膨張率が1×
10-3/K以下、好ましくは5×10-5/K以下、より好ましくは1×10-5/K
以下である材料を好適に用いることができる。
また、封止層2560は、空気より大きい屈折率を有すると好ましい。
また、表示部2501は、画素2502Rを有する。また、画素2502Rは発光モジュ
ール2580Rを有する。
画素2502Rは、発光素子2550Rと、発光素子2550Rに電力を供給することが
できるトランジスタ2502tとを有する。なお、トランジスタ2502tは、画素回路
の一部として機能する。また、発光モジュール2580Rは、発光素子2550Rと、着
色層2567Rとを有する。
発光素子2550Rは、下部電極と、上部電極と、下部電極と上部電極の間にEL層とを
有する。
また、封止層2560が光を取り出す側に設けられている場合、封止層2560は、発光
素子2550Rと着色層2567Rに接する。
着色層2567Rは、発光素子2550Rと重なる位置にある。これにより、発光素子2
550Rが発する光の一部は着色層2567Rを透過して、図中に示す矢印の方向の発光
モジュール2580Rの外部に射出される。
また、表示部2501には、光を射出する方向に遮光層2567BMが設けられる。遮光
層2567BMは、着色層2567Rを囲むように設けられている。
また、表示部2501は、画素に重なる位置に反射防止層2567pを有する。反射防止
層2567pとして、例えば円偏光板を用いることができる。
表示部2501には、絶縁層2521が設けられる。絶縁層2521はトランジスタ25
02tを覆う。なお、絶縁層2521は、画素回路に起因する凹凸を平坦化するための機
能を有する。また、絶縁層2521に不純物の拡散を抑制できる機能を付与してもよい。
これにより、不純物の拡散によるトランジスタ2502t等の信頼性の低下を抑制できる
また、発光素子2550Rは、絶縁層2521の上方に形成される。また、発光素子25
50Rが有する下部電極には、該下部電極の端部に重なる隔壁2528が設けられる。な
お、基板2510と、基板2570との間隔を制御するスペーサを、隔壁2528上に形
成してもよい。
走査線駆動回路2503g(1)は、トランジスタ2503tと、容量素子2503cと
を有する。なお、駆動回路を画素回路と同一の工程で同一基板上に形成することができる
また、基板2510上には、信号を供給することができる配線2511が設けられる。ま
た、配線2511上には、端子2519が設けられる。また、端子2519には、FPC
2509(1)が電気的に接続される。また、FPC2509(1)は、画像信号及び同
期信号等の信号を供給する機能を有する。なお、FPC2509(1)にはプリント配線
基板(PWB)が取り付けられていても良い。
また、表示部2501には、様々な構造のトランジスタを適用することができる。なお、
図11(A)においては、ボトムゲート型のトランジスタを適用する場合について、例示
している。図11(A)に示す、トランジスタ2502t及びトランジスタ2503tに
は、酸化物半導体を含む半導体層をチャネル領域として用いることができる。または、ト
ランジスタ2502t及びトランジスタ2503tには、アモルファスシリコンを含む半
導体層をチャネル領域として用いることができる。または、トランジスタ2502t及び
トランジスタ2503tには、レーザーアニールなどの処理により結晶化させた多結晶シ
リコンを含む半導体層をチャネル領域として用いることができる。
また、トップゲート型のトランジスタを適用する場合の表示部2501の構成を図11(
B)に示す。
トップゲート型のトランジスタの場合、ボトムゲート型のトランジスタに用いることので
きる半導体層と同様の構成の他、多結晶シリコンまたは単結晶シリコン基板等から転置さ
れた単結晶シリコン膜等を含む半導体層をチャネル領域として用いてもよい。
次に、図11に示す構成と異なる構成のタッチパネルについて、図12を用いて説明する
図12は、タッチパネル2001の断面図である。図12に示すタッチパネル2001は
、図11に示すタッチパネル2000と、表示部2501に対するタッチセンサ2595
の位置が異なる。ここでは異なる構成について詳細に説明し、同様の構成を用いることが
できる部分は、タッチパネル2000の説明を援用する。
着色層2567Rは、発光素子2550Rと重なる位置にある。また、図12(A)に示
す発光素子2550Rは、トランジスタ2502tが設けられている側に光を射出する。
これにより、発光素子2550Rが発する光の一部は、着色層2567Rを透過して、図
中に示す矢印の方向の発光モジュール2580Rの外部に射出される。
表示部2501は、光を射出する方向に遮光層2567BMを有する。遮光層2567B
Mは、着色層2567Rを囲むように設けられている。
タッチセンサ2595は、表示部2501の基板2510側に設けられている(図12(
A)参照)。
接着層2597は、基板2510と基板2590の間にあり、表示部2501とタッチセ
ンサ2595を貼り合わせる。
また、表示部2501には、様々な構造のトランジスタを適用することができる。なお、
図12(A)においては、ボトムゲート型のトランジスタを適用する場合について例示し
ている。また、図12(B)には、トップゲート型のトランジスタを適用する場合につい
て例示している。
次に、タッチパネルの駆動方法の一例について、図13を用いて説明を行う。
図13(A)は、相互容量方式のタッチセンサの構成を示すブロック図である。図13(
A)では、パルス電圧出力回路2601、電流検出回路2602を示している。なお、図
13(A)では、パルス電圧が与えられる電極2621をX1-X6として、電流の変化
を検知する電極2622をY1-Y6として、それぞれ6本の配線で例示している。また
、図13(A)は、電極2621と、電極2622とが重畳することで形成される容量2
603を示している。なお、電極2621と電極2622とはその機能を互いに置き換え
てもよい。
パルス電圧出力回路2601は、X1-X6の配線に順にパルスを印加するための回路で
ある。X1-X6の配線にパルス電圧が印加されることで、容量2603を形成する電極
2621と電極2622との間に電界が生じる。この電極間に生じる電界が遮蔽等により
容量2603の相互容量に変化を生じさせることを利用して、被検知体の近接、または接
触を検出することができる。
電流検出回路2602は、容量2603での相互容量の変化による、Y1~Y6の配線で
の電流の変化を検出するための回路である。Y1-Y6の配線では、被検知体の近接、ま
たは接触がないと検出される電流値に変化はないが、検出する被検知体の近接、または接
触により相互容量が減少する場合には電流値が減少する変化を検出する。なお電流の検出
は、積分回路等を用いて行えばよい。
次に、図13(B)には、図13(A)で示す相互容量方式のタッチセンサにおける入出
力波形のタイミングチャートを示す。図13(B)では、1フレーム期間で各行列での被
検知体の検出を行うものとする。また図13(B)では、被検知体を検出しない場合(非
タッチ)と被検知体を検出する場合(タッチ)との2つの場合について示している。なお
Y1-Y6の配線については、検出される電流値に対応する電圧値とした波形を示してい
る。
X1-X6の配線には、順にパルス電圧が与えられ、該パルス電圧にしたがってY1-Y
6の配線での波形が変化する。被検知体の近接または接触がない場合には、X1-X6の
配線の電圧の変化に応じてY1-Y6の波形が一様に変化する。一方、被検知体が近接ま
たは接触する箇所では、電流値が減少するため、これに対応する電圧値の波形も変化する
。このように、相互容量の変化を検出することにより、被検知体の近接または接触を検知
することができる。
また、図13(A)ではタッチセンサとして配線の交差部に容量2603のみを設けるパ
ッシブ型のタッチセンサの構成を示したが、トランジスタと容量とを備えたアクティブ型
のタッチセンサとしてもよい。図14にアクティブ型のタッチセンサに含まれる一つのセ
ンサ回路の例を示している。
図14に示すセンサ回路は、容量2603と、トランジスタ2611と、トランジスタ2
612と、トランジスタ2613とを有する。
トランジスタ2613はゲートに信号G2が与えられ、ソースまたはドレインの一方に電
圧VRESが与えられ、他方が容量2603の一方の電極およびトランジスタ2611の
ゲートと電気的に接続する。トランジスタ2611は、ソースまたはドレインの一方がト
ランジスタ2612のソースまたはドレインの一方と電気的に接続し、他方に電圧VSS
が与えられる。トランジスタ2612は、ゲートに信号G1が与えられ、ソースまたはド
レインの他方が配線MLと電気的に接続する。容量2603の他方の電極には電圧VSS
が与えられる。
次に、図14に示すセンサ回路の動作について説明する。まず信号G2としてトランジス
タ2613をオン状態とする電位が与えられることで、トランジスタ2611のゲートが
接続されるノードnに電圧VRESに対応した電位が与えられる。次に、信号G2として
トランジスタ2613をオフ状態とする電位が与えられることで、ノードnの電位が保持
される。続いて、指等の被検知体の近接または接触により、容量2603の相互容量が変
化することに伴い、ノードnの電位がVRESから変化する。
読み出し動作は、信号G1にトランジスタ2612をオン状態とする電位を与える。ノー
ドnの電位に応じてトランジスタ2611に流れる電流、すなわち配線MLに流れる電流
が変化する。この電流を検出することにより、被検知体の近接または接触を検出すること
ができる。
トランジスタ2611、トランジスタ2612、及びトランジスタ2613としては、酸
化物半導体層をチャネル領域が形成される半導体層に用いることが好ましい。とくにトラ
ンジスタ2613にこのようなトランジスタを適用することにより、ノードnの電位を長
期間に亘って保持することが可能となり、ノードnにVRESを供給しなおす動作(リフ
レッシュ動作)の頻度を減らすことができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み
合わせて実施することができる。
≪合成例1≫
本実施例では、実施の形態1の構造式(100)で表される本発明の一態様である有機金
属錯体、{6-[4-(2,6-ジイソプロピルフェニル)-5-(2-メチルフェニル
)-4H-1,2,4-トリアゾール-3-イル-κN)]-2-[5-(ピリジン-
2-イル-κN)-5,7-ジヒドロ-インドロ[2,3-b]カルバゾール-5,7-
ジイル-κC]フェニル-κC}白金(II)(略称:[Pt(ptzICz)])の
合成方法について説明する。なお、[Pt(ptzICz)]の構造を以下に示す。
Figure 0007029008000017
<ステップ1:N-3-ブロモベンゾイル-N’-2-メチルベンゾイルヒドラジドの合
成>
O-トルイル酸ヒドラジド25.0g(166mmol)、N-メチル-2-ピロリジノ
ン(NMP)120mLを500mL三口フラスコに加え、フラスコ内を窒素置換し、氷
冷下で撹拌した。この混合溶液に3-ブロモベンゾイルクロリド36.5g(166mm
ol)とNMP50mLの混合溶液をゆっくり滴下し、20時間撹拌した。所定時間反応
後、この反応溶液を水300mLにゆっくり加えると、白色固体が析出した。析出した固
体を水と1M塩酸で交互に超音波洗浄した。その後、エタノールで超音波洗浄を行い、白
色固体を39.5g、収率71%で得た。核磁気共鳴法(NMR)により、得られた白色
固体がN-3-ブロモベンゾイル-N’-2-メチルベンゾイルヒドラジドであることを
確認した。ステップ1の合成スキームを下記式(a-0)に示す。
Figure 0007029008000018
<ステップ2:N-クロロ-3-ブロモフェニルメチリデン-N’-クロロ-2-メチル
フェニルメチリデンヒドラゾンの合成>
N-3-ブロモベンゾイル-N’-2-メチルベンゾイルヒドラジド39.5g(119
mmol)、トルエン800mLを2000mL三口フラスコに入れた。この混合溶液に
五塩化リン75.0g(360mmol)を加え、窒素気流下、120℃で8時間加熱撹
拌した。所定時間反応後、この反応溶液を水400mLにゆっくりと加え、室温で30分
撹拌した。撹拌後、析出した固体をろ過で取り除き、得られたろ液を水層と有機層とに分
液し、水層をトルエンで抽出した。得られた抽出溶液と有機層とを回収し、この有機層を
2M水酸化カリウム水溶液400mLにゆっくりと加え、室温で48時間撹拌した。この
混合物の水層と有機層を分液し、水層をトルエンで抽出した。得られた抽出溶液と有機層
を合わせて飽和食塩水で洗浄した。洗浄後、有機層に無水硫酸マグネシウムを加えて乾燥
させ、得られた混合物を自然ろ過して、ろ液を得た。得られたろ液を濃縮して油状物を得
た。得られた油状物をシリカカラムクロマトグラフィーにより精製した。展開溶媒には、
トルエンを用いた。得られたフラクションを濃縮して、黄色固体を42.6g、収率97
%で得た。核磁気共鳴法(NMR)により得られた黄色固体がN-クロロ-3-ブロモフ
ェニルメチリデン-N’-クロロ-2-メチルフェニルメチリデンヒドラゾンであること
を確認した。ステップ2の合成スキームを下記式(b-0)に示す。
Figure 0007029008000019
<ステップ3:3-(3-ブロモフェニル)-4-(2,6-ジイソプロピルフェニル)
-5-(2―メチルフェニル)-4H-1,2,4-トリアゾールの合成>
N-クロロ-3-ブロモフェニルメチリデン-N’-クロロ-2-メチルフェニルメチリ
デンヒドラゾン30.0g(81.0mmol)、2,6-ジイソプロピルアニリン43
.1g(243mmol)、N,N-ジメチルアニリン250mLを1000mL三口フ
ラスコに入れ、窒素気流下、160℃で13時間加熱撹拌した。所定時間反応後、反応溶
液を3M塩酸に入れ、30分間撹拌した。ここにトルエンを入れ、水層をトルエンで抽出
した。有機層と得られた抽出溶液を合わせて、水、飽和炭酸水素ナトリウム水溶液、飽和
食塩水で洗浄し、有機層に無水硫酸マグネシウムを加えて乾燥させた。得られた混合物を
自然ろ過し、ろ液を濃縮して油状物を得た。得られた油状物をシリカカラムクロマトグラ
フィーにより精製した。展開溶媒には、ヘキサン:酢酸エチル=5:1の混合溶媒を用い
た。得られたフラクションを濃縮して、白色固体を得た。得られた固体を酢酸エチル/ヘ
キサンの混合溶媒で再結晶し、白色固体を17.6g、収率46%で得た。核磁気共鳴法
(NMR)により得られた白色固体が3-(3-ブロモフェニル)-4-(2,6-ジイ
ソプロピルフェニル)-5-(2―メチルフェニル)-4H-1,2,4-トリアゾール
であることを確認した。ステップ3の合成スキームを下記式(c-0)に示す。
Figure 0007029008000020
<ステップ4:5,7-ジヒドロ-5-(2-ピリジル)-インドロ[2,3-b]カル
バゾールの合成>
5,7-ジヒドロ-インドロ[2,3-b]カルバゾール1.0g(3.9mmol)、
2-ヨードピリジン0.80g(3.9mmol)、1,10-フェナントロリン0.1
4g(0.78mmol)、炭酸セシウム2.5g(7.8mmol)を反応容器に入れ
、フラスコ内を窒素置換した。この混合物にN,N-ジメチルホルムアミド8mLを入れ
、フラスコ内を減圧しながら撹拌して、この混合物を脱気した。脱気後、フラスコ内を窒
素置換し、ヨウ化銅0.074g(0.39mmol)を入れ、100℃で11.5時間
加熱した。反応混合物にクロロホルムを加え、セライトに通してろ過した。得られたろ液
を濃縮して油状物を得た。得られた油状物をシリカカラムクロマトグラフィーにより精製
した。展開溶媒には、ヘキサン:酢酸エチル=3:1の混合溶媒を用いた。得られたフラ
クションを濃縮して、固体を得た。得られた固体にメタノールを加えて、超音波を照射し
、吸引ろ過をして固体を除いた。得られたろ液を濃縮し、目的物である白色固体を0.3
7g、収率28%で得た。核磁気共鳴法(NMR)により得られた白色固体が5,7-ジ
ヒドロ-5-(2-ピリジル)-インドロ[2,3-b]カルバゾールであることを確認
した。ステップ4の合成スキームを下記式(d-0)に示す。
Figure 0007029008000021
<ステップ5:7-{3-[4-(2,6-ジイソプロピルフェニル)-5-(2―メチ
ルフェニル)-4H-1,2,4-トリアゾール-3-イル]フェニル}-5-(2-ピ
リジル)-5,7-ジヒドロ-インドロ[2,3-b]カルバゾール(略称:Hptz
ICz)の合成>
2-(3-ブロモフェニル)-4-(2,6-ジイソプロピルフェニル)-5-(2―メ
チルフェニル)-4H-1,2,4-トリアゾール1.3g(2.7mmol)、5,7
-ジヒドロ-5-(2-ピリジル)-インドロ[2,3-b]カルバゾール0.91g(
2.7mmol)、カリウムtert-ブトキシド0.91g(8.1mmol)、2-
ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(S-phos)0.
067g(0.162mmol)、キシレン100mLを300mL三口フラスコに入れ
、フラスコ内を窒素置換した後、フラスコ内を減圧しながら撹拌し、脱気した。脱気後、
フラスコ内を窒素置換し、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.0
74g(0.081mmol)を加え、窒素気流下、120℃で7.5時間撹拌した。反
応混合物にトルエンを加え、セライトに通してろ過した。得られたろ液を濃縮して油状物
を得た。得られた油状物をシリカカラムクロマトグラフィーにより精製した。展開溶媒に
は、ヘキサン:酢酸エチル=1:1の混合溶媒を用いた。得られたフラクションを濃縮し
て、白色固体を0.64g、収率33%で得た。核磁気共鳴法(NMR)により得られた
白色固体が7-{3-[4-(2,6-ジイソプロピルフェニル)-5-(2―メチルフ
ェニル)-4H-1,2,4-トリアゾール-3-イル]フェニル}-5-(2-ピリジ
ル)-5,7-ジヒドロ-インドロ[2,3-b]カルバゾールであることを確認した。
ステップ5の合成スキームを下記式(e-0)に示す。
Figure 0007029008000022
<ステップ6;{6-[4-(2,6-ジイソプロピルフェニル)-5-(2-メチルフ
ェニル)-4H-1,2,4-トリアゾール-3-イル-κN)]-2-[5-(ピリ
ジン-2-イル-κN)-5,7-ジヒドロ-インドロ[2,3-b]カルバゾール-5
,7-ジイル-κC]フェニル-κC}白金(II)(略称:[Pt(ptzICz)
])の合成>
7-{3-[4-(2,6-ジイソプロピルフェニル)-5-(2―メチルフェニル)-
4H-1,2,4-トリアゾール-3-イル)]フェニル}-5-(2-ピリジル)-5
,7-ジヒドロ-インドロ[2,3-b]カルバゾール0.64g(0.88mmol)
、塩化白金酸カリウム0.37g(0.88mmol)、テトラブチルアンモニウムブロ
ミド0.028g(0.088mmol)、氷酢酸60mLを300mLナスフラスコに
入れ、窒素気流下、120℃で56時間撹拌した。反応混合物に水60mLを加え、30
分撹拌し、吸引ろ過することで固体を得た。得られた固体にトルエンを加えて、セライト
、アルミナ、フロリジール、セライトの順で積層したろ過補助剤を通してろ過した。得ら
れたろ液を濃縮して固体を得た。得られた固体を酢酸エチル/ヘキサンの混合溶媒で再結
晶し、黄色固体を0.22g、収率27%で得た。得られた固体0.21gをトレインサ
ブリメーション法により昇華精製した。圧力2.6Pa、アルゴン流量5.0mL/mi
nの条件で、320℃で16時間加熱して行った。昇華精製後、0.15g、回収率71
%で目的の[Pt(ptzICz)]を得た。ステップ6の合成スキームを下記式(f-
0)に示す。
Figure 0007029008000023
上記ステップ6で得られた黄色固体のプロトン(H)を核磁気共鳴法(NMR)により
測定した。以下に得られた値を示す。また、H-NMRチャートを図15に示す。この
ことから、本合成例1において、上述の構造式(100)で表される本発明の有機金属錯
体[Pt(ptzICz)]が得られたことがわかった。
H-NMR.δ(CDCl):0.98(dd,12H),2.60-2.68(m
,2H),2.71(s,3H),6.22(d,1H),6.97-7.05(m,3
H),7.14(t,1H),7.28-7.47(m,8H),7.61(t,1H)
,7.95(t,1H),8.04-8.06(m,1H),8.24-8.35(m,
5H),8.60(s,1H),10.78(d,1H).
続いて、[Pt(ptzICz)]のジクロロメタン溶液の紫外可視吸収スペクトル(以
下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。吸収スペクトルの
測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、ジクロロメタ
ン溶液(0.0010mmol/L)を石英セルに入れ、室温で測定を行った。また、発
光スペクトルの測定には、絶対PL量子収率測定装置((株)浜松ホトニクス製 C11
347-01)を用い、グローブボックス((株)ブライト製 LABstarM13(
1250/780))にて、窒素雰囲気下でジクロロメタン脱酸素溶液(0.0010m
mol/L)を石英セルに入れ、密栓し、室温で測定を行った。得られた吸収スペクトル
及び発光スペクトルの測定結果を図16(A)に示す。横軸は波長、縦軸は吸収強度およ
び発光強度を表す。また、図16(A)に示す吸収スペクトルのうち、一重項基底状態か
ら三重項励起状態への遷移と考えられる吸収を図16(B)に示す。横軸は波長、縦軸は
吸収強度(モル吸光係数L/(mol・cm))を表す。なお、図16(A)および(B
)に示す吸収スペクトルは、ジクロロメタン溶液(0.0010mmol/L)を石英セ
ルに入れて測定した吸収スペクトルから、ジクロロメタンのみを石英セルに入れて測定し
た吸収スペクトルを差し引いた結果を示している。また、得られた量子収率は0.92で
あった。
図16(A)に示す通り、白金錯体[Pt(ptzICz)]は、510nmに発光ピー
クを有しており、ジクロロメタンからは緑色の発光が観測された。また、図16(B)に
示す通り、白金錯体[Pt(ptzICz)]は、470~550nmに強度の強い一重
項基底状態から三重項励起状態への遷移に由来する吸収が観測された。
次に、本実施例で得られた[Pt(ptzICz)]を液体クロマトグラフ質量分析(L
iquid Chromatography Mass Spectrometry(略
称:LC/MS分析))によって質量(MS)分析した。
LC/MS分析は、LC(液体クロマトグラフィー)分離をウォーターズ社製Acqui
ty UPLC(登録商標)により、MS分析(質量分析)をウォーターズ社製Xevo
G2 Tof MSにより行った。LC分離で用いたカラムはAcquity UPL
C BEH C8 (2.1×100mm 1.7μm)、カラム温度は40℃とした。
移動相は移動相Aをアセトニトリル、移動相Bを0.1%ギ酸水溶液とした。また、サン
プルは任意の濃度の[Pt(ptzICz)]をクロロホルムに溶解し、アセトニトリル
で希釈して調整し、注入量は5.0μLとした。
LC分離には移動相の組成を変化させるグラジエント法を用い、測定開始後0分から1分
までが、移動相A:移動相B=75:25、その後組成を変化させ、10分における移動
相Aと移動相Bとの比が移動相A:移動相B=95:5となるようにした。組成はリニア
に変化させた。
MS分析では、エレクトロスプレーイオン化法(ElectroSpray Ioniz
ation(略称:ESI))によるイオン化を行った。この時のキャピラリー電圧は3
.0kV、サンプルコーン電圧は30Vとし、検出はポジティブモードで行った。以上の
条件でイオン化されたm/z=919.30の成分を衝突室(コリジョンセル)内でアル
ゴンガスと衝突させてプロダクトイオンに解離させた。アルゴンを衝突させる際のエネル
ギー(コリジョンエネルギー)は70eVとした。なお、測定する質量範囲はm/z=1
00~1200とした。図17に、解離させたプロダクトイオンを飛行時間(TOF)型
MSで検出した結果を示す。
図17の結果から、[Pt(ptzICz)]は、主としてm/z=903、888、8
75、859、844、771、757、627、221付近にプロダクトイオンが検出
されることがわかった。なお、図17に示す結果は、[Pt(ptzICz)]に由来す
る特徴的な結果を示すものであることから、混合物中に含まれる[Pt(ptzICz)
]を同定する上での重要なデータであるといえる。
本実施例では、本発明の一態様である有機金属錯体、[Pt(ptzICz)](構造式
(100))を用いた発光素子1および発光素子2を作製した。なお、これらの発光素子
の作製については、図18を用いて説明する。また、本実施例で用いる材料の化学式を以
下に示す。
Figure 0007029008000024
≪発光素子の作製≫
まず、ガラス製の基板900上に酸化珪素を含むインジウム錫酸化物(ITO)をスパッ
タリング法により成膜し、陽極として機能する第1の電極901を形成した。なお、その
膜厚は70nmとし、電極面積は2mm×2mmとした。
次に、基板900上に発光素子を形成するための前処理として、基板表面を水で洗浄し、
200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、1×10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空
蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板900を
30分程度放冷した。
次に、第1の電極901が形成された面が下方となるように、基板900を真空蒸着装置
内に設けられたホルダーに固定した。本実施例では、真空蒸着法により、EL層902を
構成する正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子
注入層915が順次形成される場合について説明する。
真空装置内を1×10-4Paに減圧した後、1,3,5-トリ(ジベンゾチオフェン-
4-イル)ベンゼン(略称:DBT3P-II)と酸化モリブデンとを、DBT3P-I
I:酸化モリブデン=4:2(質量比)となるように共蒸着し、第1の電極901上に正
孔注入層911を形成した。膜厚は60nmとした。なお、共蒸着とは、異なる複数の物
質をそれぞれ異なる蒸発源から同時に蒸発させる蒸着法である。
次に、9-フェニル-9H-3-(9-フェニル-9H-カルバゾール-3-イル)カル
バゾール(略称:PCCP)を20nm蒸着し、正孔輸送層912を形成した。
次に、正孔輸送層912上に発光層913を形成した。
発光素子1の場合は、9-フェニル-9H-3-(9-フェニル-9H-カルバゾール-
3-イル)カルバゾール(略称:PCCP)、3,5-ビス[3-(9H-カルバゾール
-9-イル)フェニル]ピリジン(略称:35DCzPPy)、[Pt(ptzICz)
]を、PCCP:35DCzPPy:[Pt(ptzICz)]=0.5:0.5:0.
05(質量比)となるように共蒸着し、20nmの膜厚で形成した後、PCCP:35D
CzPPy:[Pt(ptzICz)]=0.8:0.2:0.05(質量比)となるよ
う共蒸着し、20nmの膜厚で形成することにより積層構造を有する発光層913を40
nmの膜厚で形成した。
発光素子2の場合は、PCCP、9,9’-(ピリミジン-4,6-ジイルジ-3,1-
フェニレン)ビス(9H-カルバゾール)(略称:4,6mCzP2Pm)、[Pt(p
tzICz)]を、PCCP:4,6mCzP2Pm:[Pt(ptzICz)]=0.
5:0.5:0.05(質量比)となるように共蒸着し、20nmの膜厚で形成した後、
PCCP:4,6mCzP2Pm:[Pt(ptzICz)]=0.8:0.2:0.0
5(質量比)となるよう共蒸着し、20nmの膜厚で形成することにより積層構造を有す
る発光層913を40nmの膜厚で形成した。
次に、発光層913上に、発光素子1の場合は、35DCzPPyを15nm蒸着した後
、Bphenを15nm蒸着し、電子輸送層914を形成した。また、発光素子2の場合
は、4,6mCzP2Pmを20nm蒸着した後、Bphenを10nm蒸着し、電子輸
送層914を形成した。
さらに、電子輸送層914上に、フッ化リチウムを1nm蒸着し、電子注入層915を形
成した。
最後に、電子注入層915上にアルミニウムを200nmの膜厚となるように蒸着し、陰
極となる第2の電極903を形成し、発光素子1および発光素子2を得た。なお、上述し
た蒸着過程において、蒸着は全て抵抗加熱法を用いた。
以上により、得られた発光素子1および発光素子2の素子構造を表1に示す。
Figure 0007029008000025
また、作製した各発光素子は、大気に曝されないように窒素雰囲気のグローブボックス内
において封止した(シール材を素子の周囲に塗布し、封止時にUV処理、及び80℃にて
1時間熱処理)。
≪発光素子の動作特性≫
作製した発光素子1および発光素子2について、その動作特性を測定した。なお、測定は
室温(25℃に保たれた雰囲気)で行った。
発光素子1の電流密度-輝度特性を図19、電圧-輝度特性を図20、輝度-電流効率特
性を図21、電圧-電流特性を図22、色度座標を図23にそれぞれ示す。また、発光素
子2の電流密度-輝度特性を図25、電圧-輝度特性を図26、輝度-電流効率特性を図
27、電圧-電流特性を図28、色度座標を図29にそれぞれ示す。
また、1000cd/m付近における発光素子1および発光素子2の主な初期特性値を
以下の表2に示す。
Figure 0007029008000026
また、発光素子1に1.7mA/cmの電流密度で電流を流した際の発光スペクトルを
図24、発光素子2に1.6mA/cmの電流密度で電流を流した際の発光スペクトル
を図30にそれぞれ示す。発光素子1の発光スペクトルは、図24において、514nm
付近、および549nm付近にピークを有しており、発光素子2の発光スペクトルは、図
30において、513nm付近、および546nm付近にピークを有している。従って、
発光素子1および発光素子2のEL層に用いた有機金属錯体[Pt(ptzICz)]の
緑色発光に由来していることが示唆される。
101 第1の電極
102 EL層
103 第2の電極
111 正孔注入層
112 正孔輸送層
113 発光層
114 電子輸送層
115 電子注入層
201 第1の電極
202(1) 第1のEL層
202(2) 第2のEL層
202(n-1) 第(n-1)のEL層
202(n) 第(n)のEL層
204 第2の電極
205 電荷発生層
205(1) 第1の電荷発生層
205(2) 第2の電荷発生層
205(n-2) 第(n-2)の電荷発生層
205(n-1) 第(n-1)の電荷発生層
301 素子基板
302 画素部
303 駆動回路部(ソース線駆動回路)
304a、304b 駆動回路部(ゲート線駆動回路)
305 シール材
306 封止基板
307 配線
308 FPC(フレキシブルプリントサーキット)
309 FET
310 FET
312 電流制御用FET
313a、313b 第1の電極(陽極)
314 絶縁物
315 EL層
316 第2の電極(陰極)
317a、317b 発光素子
318 空間
320a、320b 導電膜
321、322 領域
323 引き回し配線
324 有色層(カラーフィルタ)
325 黒色層(ブラックマトリクス)
326、327、328 FET
401 基板
402 第1の電極
404 第2の電極
403a、403b、403c EL層
405 絶縁膜
406 隔壁
900 基板
901 第1の電極
902 EL層
903 第2の電極
911 正孔注入層
912 正孔輸送層
913 発光層
914 電子輸送層
915 電子注入層
4000 照明装置
4001 基板
4002 発光素子
4003 基板
4004 電極
4005 EL層
4006 電極
4007 電極
4008 電極
4009 補助配線
4010 絶縁層
4011 封止基板
4012 シール材
4013 乾燥剤
4015 拡散板
4100 照明装置
4200 照明装置
4201 基板
4202 発光素子
4204 電極
4205 EL層
4206 電極
4207 電極
4208 電極
4209 補助配線
4210 絶縁層
4211 封止基板
4212 シール材
4213 バリア膜
4214 平坦化膜
4215 拡散板
4300 照明装置
5101 ライト
5102 ホイール
5103 ドア
5104 表示部
5105 5105
5106 シフトレバー
5107 座席シート
5108 バックミラー
7100 テレビジョン装置
7101 筐体
7103 表示部
7105 スタンド
7107 表示部
7109 操作キー
7110 リモコン操作機
7201 本体
7202 筐体
7203 表示部
7204 キーボード
7205 外部接続ポート
7206 ポインティングデバイス
7302 筐体
7304 表示部
7305 時刻を表すアイコン
7306 その他のアイコン
7311 操作ボタン
7312 操作ボタン
7313 接続端子
7321 バンド
7322 留め金
7400 携帯電話機
7401 筐体
7402 表示部
7403 操作用ボタン
7404 外部接続部
7405 スピーカ
7406 マイク
7407 カメラ
7500(1)、7500(2) 筐体
7501(1)、7501(2) 第1面
7502(1)、7502(2) 第2面
8001 照明装置
8002 照明装置
8003 照明装置
9310 携帯情報端末
9311 表示部
9312 表示領域
9313 ヒンジ
9315 筐体

Claims (3)

  1. 下記式で表される化合物。
    Figure 0007029008000027
  2. 下記式で表される化合物。
    Figure 0007029008000028
  3. 下記式で表される化合物。
    Figure 0007029008000029


JP2021033201A 2015-05-20 2021-03-03 化合物 Active JP7029008B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015102410 2015-05-20
JP2015102410 2015-05-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016094581A Division JP6847589B2 (ja) 2015-05-20 2016-05-10 有機金属錯体、発光素子、発光装置、電子機器、および照明装置

Publications (2)

Publication Number Publication Date
JP2021098719A JP2021098719A (ja) 2021-07-01
JP7029008B2 true JP7029008B2 (ja) 2022-03-02

Family

ID=57324569

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016094581A Active JP6847589B2 (ja) 2015-05-20 2016-05-10 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
JP2021033201A Active JP7029008B2 (ja) 2015-05-20 2021-03-03 化合物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016094581A Active JP6847589B2 (ja) 2015-05-20 2016-05-10 有機金属錯体、発光素子、発光装置、電子機器、および照明装置

Country Status (2)

Country Link
US (1) US10170710B2 (ja)
JP (2) JP6847589B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI615457B (zh) * 2016-06-08 2018-02-21 奇美實業股份有限公司 發光材料與發光材料的製備方法
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US11548905B2 (en) 2016-12-15 2023-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US10804475B2 (en) 2017-01-11 2020-10-13 Universal Display Corporation Organic electroluminescent materials and devices
JP6883437B2 (ja) * 2017-01-31 2021-06-09 日本放送協会 有機エレクトロルミネッセンス素子
JP6901883B2 (ja) * 2017-03-22 2021-07-14 株式会社ジャパンディスプレイ 表示装置の製造方法
US20190025271A1 (en) * 2017-07-21 2019-01-24 Apple Inc. Chemically robust miniature gas sensors
CN112898327A (zh) * 2021-01-29 2021-06-04 上海蓝骋光电科技有限公司 一种有机金属配合物及含有该化合物的有机光电元件
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199473A (ja) 2012-02-24 2013-10-03 Semiconductor Energy Lab Co Ltd 燐光性有機金属イリジウム錯体、発光素子、発光装置、電子機器、および照明装置
WO2014085296A1 (en) 2012-11-29 2014-06-05 E. I. Du Pont De Nemours And Company Blue luminescent compounds
JP2015081257A (ja) 2013-10-14 2015-04-27 アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティーArizona Board of Regents on behalf of Arizona State University 白金錯体およびデバイス

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628108B2 (ja) 2003-02-14 2011-02-09 株式会社半導体エネルギー研究所 有機金属錯体、及び電界発光素子を有する電子機器
JP2009023938A (ja) 2007-07-19 2009-02-05 Showa Denko Kk イリジウム錯体化合物、有機エレクトロルミネッセンス素子およびその用途
SG10201405491VA (en) * 2009-09-07 2014-10-30 Semiconductor Energy Lab Light-emitting element, light-emitting device, lighting device, and electronic device
KR20110113470A (ko) * 2010-04-09 2011-10-17 에스에프씨 주식회사 이형고리 화합물 및 이를 포함하는 유기전계발광소자
KR101866851B1 (ko) * 2010-12-24 2018-06-14 에스에프씨 주식회사 이형고리 화합물 및 이를 포함하는 유기전계발광소자
TWI541247B (zh) 2011-02-18 2016-07-11 美國亞利桑那州立大學董事會 具有幾何失真電荷轉移態之四配位鉑及鈀錯合物及彼等於發光裝置中之應用
WO2012162488A1 (en) 2011-05-26 2012-11-29 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US9461254B2 (en) 2012-01-03 2016-10-04 Universal Display Corporation Organic electroluminescent materials and devices
CN106986858B (zh) * 2012-01-16 2019-08-27 默克专利有限公司 有机金属络合物
JP6234100B2 (ja) 2012-07-31 2017-11-22 株式会社半導体エネルギー研究所 発光素子、複素環化合物、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置及び電子機器
KR102238075B1 (ko) 2013-05-03 2021-04-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 복소환 화합물, 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 조명 장치, 및 전자 기기
US9502671B2 (en) * 2014-07-28 2016-11-22 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US10115912B2 (en) 2015-04-28 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US10256420B2 (en) 2015-08-31 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199473A (ja) 2012-02-24 2013-10-03 Semiconductor Energy Lab Co Ltd 燐光性有機金属イリジウム錯体、発光素子、発光装置、電子機器、および照明装置
WO2014085296A1 (en) 2012-11-29 2014-06-05 E. I. Du Pont De Nemours And Company Blue luminescent compounds
JP2015081257A (ja) 2013-10-14 2015-04-27 アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティーArizona Board of Regents on behalf of Arizona State University 白金錯体およびデバイス

Also Published As

Publication number Publication date
JP6847589B2 (ja) 2021-03-24
JP2016216448A (ja) 2016-12-22
JP2021098719A (ja) 2021-07-01
US20160343960A1 (en) 2016-11-24
US10170710B2 (en) 2019-01-01

Similar Documents

Publication Publication Date Title
JP6945681B2 (ja) 発光素子、発光装置、電子機器、照明装置、および有機金属錯体
JP7029008B2 (ja) 化合物
JP7154337B2 (ja) 有機金属錯体、発光素子用材料、発光素子、発光装置、電子機器、および照明装置
JP7258968B2 (ja) 有機金属錯体および発光素子
JP6764671B2 (ja) 複素環化合物、発光素子、発光装置、電子機器、および照明装置
JP7055917B2 (ja) 化合物
JP7442597B2 (ja) 発光素子、発光装置、電子機器、および照明装置
JP7032069B2 (ja) 有機化合物
JP6983288B2 (ja) 発光素子、発光装置、電子機器、および照明装置
JP7162701B2 (ja) 化合物および合成方法
JP7029012B2 (ja) 発光素子、発光装置、電子機器および照明装置
JP6804935B2 (ja) 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
JP6775303B2 (ja) 有機金属錯体、発光素子、発光装置、電子機器、および照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7029008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150