JP7022719B2 - 成形機および液圧回路の制御方法 - Google Patents

成形機および液圧回路の制御方法 Download PDF

Info

Publication number
JP7022719B2
JP7022719B2 JP2019108089A JP2019108089A JP7022719B2 JP 7022719 B2 JP7022719 B2 JP 7022719B2 JP 2019108089 A JP2019108089 A JP 2019108089A JP 2019108089 A JP2019108089 A JP 2019108089A JP 7022719 B2 JP7022719 B2 JP 7022719B2
Authority
JP
Japan
Prior art keywords
hydraulic
pull
hydraulic pressure
push
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019108089A
Other languages
English (en)
Other versions
JP2020199527A (ja
Inventor
京治 中谷
隆士 込山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2019108089A priority Critical patent/JP7022719B2/ja
Publication of JP2020199527A publication Critical patent/JP2020199527A/ja
Application granted granted Critical
Publication of JP7022719B2 publication Critical patent/JP7022719B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液圧シリンダ機構を備え、液圧シリンダ機構のピストンを進退動させてワークを成形する成形機に関する。
従来の成形機として、例えば特許文献1および特許文献2に記載のプレス成形機が知られる。特許文献1記載のプレス成形機は、1個の押圧シリンダと、押圧シリンダから下方へ延びるピストンロッドの先端に設けられるスライドと、押圧シリンダに油圧を供給する1個のポンプと、当該ポンプを駆動するモータとを備える。そして1個のモータでポンプを駆動し、押圧シリンダからピストンロッドを進出させてスライドをワークに向かって押し下げ、ワークをプレス成形する。さらに特許文献1記載のプレス成形機は、上記の油圧回路とは別系統に設けられてスライドを下方から支持可能な2個の反力シリンダと、これら反力シリンダと接続するアキュムレータを備える。そして上記のプレス成形が終了すると、アキュムレータから反力シリンダに圧力を供給して、スライドを押圧シリンダに向かって上方移動させ、元の上限位置に復帰させる。これによりスライドが上限位置と下限位置を1往復するサイクルが終了する。
特許文献2記載のプレス成形機では、油圧シリンダの内部空間にピストンが摺動可能に配置され、ピストンにはピストンロッドの末端が結合される。油圧シリンダの内部空間はピストンを境界としてピストンロッドが貫通配置されるロッド側油室と、ピストンロッドとは反対側のヘッド側油室に区画される。ロッド側油室とヘッド側油室は、双方向ポンプの2個の吐出口にそれぞれ接続される。双方向ポンプは油タンクを備え、サーボモータで駆動される。サーボモータが正回転すると、双方向ポンプは一方の吐出口からヘッド側油室に油圧を供給し、ピストンを押し下げてワークをプレス成形する。その後、サーボモータが逆回転して、双方向ポンプは他方の吐出口からロッド側油室に油圧を供給し、ピストンを引き上げて元位置に復帰させる。これによりピストンが後退した元位置と前進したプレス成形位置を1往復するサイクルが終了する。
特開2000-329104号公報 特開2000-312929号公報
昨今、ワークの大型化およびプレス成形サイクルの高速化の要求に対応することが求められている。またプレス成形技術の向上のため、繊維を含むプラスチック等に所望のプレス圧を付与することが求められている。
特許文献1および特許文献2のように1個のポンプおよび1個のモータで押圧シリンダに油圧を供給する油圧回路では、スライド位置の微調整、等のスライドの精緻な動作制御が困難である。また、ワークの性状に応じてスライドのプレス圧を細かく制御することが困難である。
特に特許文献2のような双方向ポンプは特殊なポンプであるため、ポンプ能力の大型化が困難であったり、非常に高価であったりする。
本発明は、上述の実情に鑑み、高速移動から低速移動までの広い速度範囲で液圧シリンダのピストンの位置を細かく制御することができ、またワークを成形する際にピストンの押し力を細かく制御することができ、さらには吸入口および吐出口が交代しない汎用ポンプで液圧回路を実現可能な技術を提供することを目的とする。
この目的のため本発明による成形機は、液圧シリンダおよびピストンによって区画される押側液圧室および引側液圧室を少なくとも1つずつ有しピストンに連動して成形用のスライダを変位させる液圧シリンダ機構と、押側ポンプとこの押側ポンプと駆動結合する押側モータを有し押側液圧室に作動液を供給する押側液圧回路と、引側ポンプとこの引側ポンプと駆動結合する引側モータを有し引側液圧室に作動液を供給する引側液圧回路と、押側液圧回路および引側液圧回路を複数のモードの中から選択される1のモードでそれぞれ制御するモーションコントローラとを備える。そして複数のモードは、スライダの実位置が目標スライダ位置になるよう押側モータまたは引側モータを制御する位置制御モードと、押側液圧室の実液圧が目標液圧になるよう、または引側液圧室の実液圧が目標液圧になるよう、押側モータまたは引側モータを制御する圧力制御モードと、1または複数の押側液圧室がピストンに付与する押し力の合計と、1または複数の引側液圧室がピストンに付与する引き力の合計のうち、一方が他方よりも小さくなるよう、一方に対応する押側モータまたは引側モータを運転して一方に対応する押側液圧室または引側液圧室にカウンタ液圧を供給するカウンタ圧モードとを含み、押側液圧回路および引側液圧回路は、複数のモードのうち互いに異なるモードで同時に制御される。
かかる本発明によれば、1のロッドをヘッド側およびロッド側から2個のモータで制御することから、ロッドの高速移動から低速移動までの広い速度範囲で、液圧シリンダ機構のロッドの位置を細かく制御することができ、またワークをプレス等で成形する際に押し力を細かく制御することができる。さらには押側および引側ポンプに、双方向ポンプではなく、汎用ポンプを使用することができるので、成形機の大型化を安価で実現することができる。また押側および引側モータの小型化および回生運転によって消費電力を少なくし得て、成形機の省エネルギー化を図ることができる。なお、本発明の液圧シリンダ機構は、1個の液圧シリンダを有してもよいし、あるいは複数の液圧シリンダを有してもよい。液圧シリンダは1の液圧室を有する単動式でもよいし、あるいは2の液圧室を有する複動式でもよい。複数の液圧シリンダは、共通する押側あるいは引側液圧回路で運転されてもよいし、あるいは液圧シリンダ毎に設けられる1対の押側および引側液圧回路で運転されてもよい。単純な局面として本発明は、1の複動式液圧シリンダと、1対の押側および引側液圧回路を備える。
複数の液圧シリンダを備える場合、その整数倍の数のモータを1個のモーションコントローラで制御することができる。これにより、ワークを押圧する大型のスライドを、平行制御することができる。押側液圧回路および引側液圧回路は別々に設けられる。押側液圧回路は1または複数設けられ、引側液圧回路も同様である。本発明の各液圧回路の制御は、各モータの(回転)速度制御またはトルク制御によって実行される。具体的には例えば、上述した位置制御モードは各モータを(回転)速度制御することによって実行され、上述したカウンタ圧モードは各モータをトルク制御することによって実行され、上述した圧力制御モードは各モータを(回転)速度制御することによって実行される。なお理論上、上述した3つのモードはそれぞれ、各モータの(回転)速度制御のみによって実行可能であるし、あるいは各モータのトルク制御のみによって実行可能である。押側液圧は、押側液圧室と接続する押側液圧センサによって検出されるとよい。引側液圧も、引側液圧室と接続する引側液圧センサによって検出されるとよい。ロッド位置は、ロッドに設けられる位置センサによって検出されるとよい。モータトルクは、例えばモーションコントローラが、モータの電流値に基づいて算出するとよい。
カウンタ圧モードにされる液圧回路がスライダ等に付与する力は、相手側液圧回路が付与する反対方向の力よりも小さければよい。これにより相手側液圧回路は、カウンタ圧モードにされる液圧回路からカウンタ液圧を付与されて好適に制御される。もしカウンタ圧モードにされる液圧回路の実液圧が略0であり相手側液圧回路の実液圧が0よりも遥かに大きい場合には、両液圧回路の液圧差が大きすぎて、相手側液圧回路は制御困難になる。本発明の一局面として、引側液圧室および押側液圧室は、1の液圧シリンダの両端部のうち、ロッドが貫通するロッド側の端部と、ピストンからみてロッドとは反対側に位置するヘッド側の端部をそれぞれ占める。このため引側液圧室はロッド側液圧室とも呼ばれ、押側液圧室はヘッド側液圧室とも呼ばれる。かかる局面によれば、押側および引側液圧室が共通する液圧シリンダのヘッド側およびロッド側にそれぞれ設けられる。
本発明の一局面としてモーションコントローラは、液圧シリンダからロッドを進動させる際、押側(ヘッド側)液圧回路を位置制御モードで制御すると同時に、引側(ロッド側)液圧回路をカウンタ圧モードあるいは圧力制御モードで制御する。かかる局面によれば、ロッドを高速で進動させることができ、成形のサイクルが短縮化される。またロッド側液圧回路を圧力制御モードで制御することにより、次にワークを加圧する際に、次のモードに迅速に移行することができる。
本発明の他の局面としてモーションコントローラは、ロッドを液圧シリンダに退動させる際、引側(ロッド側)液圧回路を位置制御モードで制御すると同時に、押側(ヘッド側)液圧回路をカウンタ圧モードあるいは圧力制御モードで制御する。かかる局面によれば、ロッドを高速で退動させることができ、成形のサイクルが短縮化される。
スライダには金型が取り付けられるとともに、スライダ近傍にはワークが配置され、スライダは金型をワークに押し付ける。スライダはロッドで押されてワークに近づき、反対にロッドで引かれてワークから遠ざかることから、引き方向とはワークから離れる方向をいい、押し方向とはワークに近づく方向をいう。本発明の他の局面として、複数の液圧シリンダはスライダからみて引き方向側に配置され、押側液圧室は1の液圧シリンダの端部のうちピストンからみてロッドとは反対側に位置するヘッド側の端部を占め、引側液圧室は他の液圧シリンダの端部のうちロッドが貫通するロッド側の端部を占める。かかる局面によれば、押側および引側液圧室が共通する液圧シリンダの両端にそれぞれ設けられる。かかる局面によれば、押側液圧室が1の液圧シリンダのヘッド側に設けられ、引側液圧室が他の液圧シリンダのロッド側に設けられる。
本発明のさらに他の局面として、複数の液圧シリンダは、スライダからみて押し方向側および引き方向側にそれぞれ配置され、押側液圧室は、引き方向側に配置される液圧シリンダの端部のうち、ピストンからみてロッドとは反対側に位置するヘッド側の端部を占め、引側液圧室は、押し方向側に配置される液圧シリンダの端部のうち、ピストンからみてロッドとは反対側に位置するヘッド側の端部を占める。かかる局面によれば、押側液圧室が1の液圧シリンダのヘッド側に設けられ、引側液圧室が他の液圧シリンダのヘッド側に設けられる。
本発明の制御方法は、液圧シリンダに押し方向の液圧を供給する押側液圧回路と、液圧シリンダに引き方向の液圧を供給する引側液圧回路を、複数のモードから選択される1のモードで制御する方法であって、これら複数のモードは、液圧シリンダ内を摺動するピストンの実位置が目標位置になるよう押側液圧回路または引側液圧回路を制御する位置制御モードと、押し方向の液圧の実液圧が目標液圧になるよう、または引き方向の液圧の実液圧が目標液圧になるよう、押側液圧回路または引側液圧回路を制御する圧力制御モードと、押し方向の液圧によって得られる押し力の合計と、引き方向の液圧によって得られる引き力の合計のうち、一方が他方よりも小さくなるよう、一方に対応する押側液圧回路または引側液圧回路にカウンタ液圧を発生させるカウンタ圧モードとを含み、押側液圧回路および引側液圧回路は複数のモードのうち互いに異なるモードで同時に制御される。かかる制御方法によれば、上述した本発明の成形機と同様の作用効果を得ることができる。
このように本発明によれば、2個以上のポンプによって液圧シリンダのロッドの位置を細かく制御することができ、高速から低速までの広い速度領域で精緻な制御が可能にある。またプレス用の成形機にあってはプレス圧を細かく制御することができる。さらに各ポンプに汎用ポンプを使用することができ、成形サイクルの高速化および成形機の大型化を図ることができる。本発明は、1個のモーションコントローラで複数の液圧シリンダ機構を同一に動作させることが可能なので、スライドの各角部に液圧シリンダ機構を設けて、スライドが傾かないよう平行制御することができる。
本発明の一実施形態になる成形機を模式的に示す全体図である。 同実施形態が実行する位置制御モードを示す構成図である。 同実施形態が実行するカウンタ圧モードを示す構成図である。 同実施形態が実行する圧力制御モードを示す構成図である。 同実施形態が実行する成形サイクルを示す図である。 本発明の他の実施形態になる成形機を模式的に示す全体図である。 本発明のさらに他の実施形態になる成形機を模式的に示す全体図である。 図1に示す実施形態の変形例になる成形機を模式的に示す全体図である。
以下、本発明の実施の形態を、図面に基づき詳細に説明する。図1は、本発明の一実施形態になる成形機として、プレス成形機を模式的に示す全体図である。
本実施形態のプレス成形機10は、液圧シリンダ機構11と、液圧シリンダ機構11に液圧を供給する液圧回路21と、液圧回路21を制御するモーションコントローラMCとを備える。
液圧シリンダ機構11は、液圧シリンダ12と、ピストン13と、ピストンロッド(以下、単にロッド14という)を有する複動式油圧シリンダである。ロッド14の末端は、液圧シリンダ12内部でピストン13に連結される。ロッド14は、液圧シリンダ12の一端を貫通して液圧シリンダ12外部へ延びる。ロッド14の先端には押圧体としてのスライド15が連結される。スライド15には、スライド15の位置を検出する位置センサ18が設けられる。
液圧シリンダ12およびロッド14は上下方向に延び、ロッド14の先端は下端にされる。液圧シリンダ12内部に配置されるピストン13が上下方向に摺動することにより、ロッド14は液圧シリンダ12から押し出されるように進動し、あるいは液圧シリンダ12内部へ引き込まれるように退動する。液圧シリンダ12の内部空間は、ピストン13を仕切壁として、ヘッド側液圧室12hおよびロッド側液圧室12rに仕切られる。
スライド15は上面でロッド14の先端に連結され、下面に上型16が取り付けられる。上型16よりも下方には下型17が配置される。上型16および下型17は1対の金型を構成する。下型17にはワークWが載せられる。ワークWは金属材料からなる鍛造品、炭素繊維強化プラスチック(CFRP)など特に限定されない。
液圧回路21は、ヘッド側液圧回路22と、ロッド側液圧回路32の2系統を有し、両系統は分離されている。図1に示すように、ピストン13を境界として、ヘッド側液圧室12hに接続する系統をヘッド側headといい、ロッド側液圧室12rに接続する系統をロッド側rodという。
ヘッド側液圧回路22は、一端がヘッド側液圧室12hに接続され、他端が作動液タンク24bに接続されるヘッド側通路23と、ヘッド側通路23の途中に設けられるヘッド側ポンプPhと、ヘッド側通路23に接続される液圧センサ25およびリリーフ弁26と、ヘッド側ポンプPhと駆動結合するサーボモータSMhと、リリーフ弁26から流出する作動液を受ける作動液タンク24cを含む。
ヘッド側液圧回路22は、ヘッド側液圧室12hに液圧を供給して、ロッド14を進動させ、スライド15を押し下げたり、あるいはスライド15の引き上げ時にヘッド側液圧室12hの液圧が急激に抜けたりしないようにする。本実施形態のヘッド側液圧回路22は押側液圧回路ともいい、ヘッド側液圧室12hは押側液圧室ともいい、ヘッド側ポンプPhは押側ポンプともいい、サーボモータSMhは押側モータあるいはヘッド側モータともいう。
ロッド側液圧回路32も上記と同様に構成され、一端がロッド側液圧室12rに接続され、他端が作動液タンク34bに接続されるロッド側通路33と、ロッド側通路33の途中に設けられるロッド側ポンプPrと、ロッド側通路33に接続される液圧センサ35およびリリーフ弁36と、ロッド側ポンプPrと駆動結合するサーボモータSMrと、リリーフ弁36から流出する作動液を受ける作動液タンク34cを含む。
ロッド側液圧回路32は、ロッド側液圧室12rに液圧を供給して、ロッド14を退動させ、スライド15を引き上げたり、あるいはスライド15の押し下げ時にロッド側液圧室12rの液圧が急激に抜けたりしないようにする。本実施形態のロッド側液圧回路32は引側液圧回路ともいい、ロッド側液圧室12rは引側液圧室ともいい、ロッド側ポンプPrは引側ポンプともいい、サーボモータSMrは引側モータあるいはロッド側モータともいう。
モーションコントローラMCは、複数の系統をそれぞれ同時に制御する上位の制御部であり、下位のサーボモータSMh,SMrをそれぞれ制御して、液圧回路21の各系統(ヘッド側液圧回路22およびロッド側液圧回路32)を個別に運転する。このためモーションコントローラMCは、スライド13の位置、速度、およびプレス圧を条件として、複数のモードの中から最適な1のモードを選択し、当該モードに則って各液圧回路22,32(具体的には各サーボモータSMh,SMr)を制御する。なお各液圧回路22,32の構成は、同一であってもよい。
次に、図2~図4を参照して、本実施形態が実行する複数のモードについて説明する。
モーションコントローラMCは、スライド15またはロッド14に関する目標を設定する目標指令手段42と、かかる目標に対応する指令を演算する制御演算部43を有する。サーボモータSMh,SMrはそれぞれ、モータ回転軸の回転速度を検出する回転速度センサUvを有し、各サーボモータSMh,SMrに設けられたサーボアンプAに接続される。以下の説明においてサーボモータSMhとサーボモータSMrを特に区別しない場合、単にサーボモータSMという。またヘッド側ポンプPhとロッド側ポンプPrを特に区別しない場合、単にポンプPという。
目標指令手段42は、予め記憶されたプログラムに基づき、複数のモードの中から1のモードを選択し、選択されたモードに対応する制御指令を、ヘッド側サーボモータSMhのサーボアンプに出力するとともに、選択されたモードに対応する目標値を制御演算部43に出力する。さらに目標指令手段42は、ロッド側サーボモータSMrも同様に制御する。1個のモーションコントローラMCは、複数のサーボモータSMを同時に個別に制御する。
図2は、複数のモードのうち、位置制御モードを示す構成図である。目標指令手段42が位置制御モードを選択する場合、サーボモータSMのサーボアンプAに回転速度制御指令を出力し、サーボモータSMの回転速度制御を実行させる。そして目標指令手段42は目標位置St(例えばスライド15の目標位置)を、制御演算部43に出力する。
制御演算部43は、目標位置Stと、位置センサ18から入力されるスライド15の実位置Sdに基づき、目標回転速度Vtを算出してサーボアンプAに出力する。
サーボアンプAは、目標回転速度Vtと、回転速度センサUvから得られる実回転速度Vdに基づき、サーボモータSMに制御指令SMcmdを出力し、サーボモータSMをフィードバック制御する。サーボモータSMによって液圧回路21のポンプPが回転する間、液圧回路21は運転され、液圧回路21から液圧シリンダ機構11に液圧を供給する。液圧シリンダ機構11はスライド15を押し下げ、あるいは引き上げる。
モーションコントローラMCは、複数のサーボモータSMを同時に制御する。このため目標指令手段42は、他系統のサーボアンプにもトルクあるいは回転速度制御指令を出力する。また制御演算部43は、他系統のサーボアンプにも目標トルクあるいは目標回転速度を出力する。
図3は本実施形態が実行するカウンタ圧モードを示す構成図である。目標指令手段42がカウンタ圧モードを選択する場合、サーボモータSMのサーボアンプAにトルク制御指令を出力し、サーボモータSMのトルク制御を実行させる。そして目標指令手段42はサーボモータSMの目標トルクTtを、制御演算部43に出力する。制御演算部43は、目標トルクTtをサーボアンプAに出力する。
サーボアンプAは、目標トルクTtと、サーボモータSMを流れる電流値から算出される実トルクTdに基づき、サーボモータSMに制御指令SMcmdを出力し、サーボモータSMをフィードバック制御する。サーボモータSMによって液圧回路21のポンプPが回転する間、液圧回路21は運転され、ヘッド側液圧室12hまたはロッド側液圧室12rの液圧が大気圧よりも高く維持される。ただしカウンタ圧モードにおける液圧は、以下に説明する圧力制御モードよりも弱い。カウンタ圧モードは、ヘッド側液圧室12hまたはロッド側液圧室12rの急激な体積縮小を抑制するために実行される。
なおカウンタ圧モードは上述したフィードバック制御に限定されない。図示しない変形例として、サーボモータSMは、オープンループ制御されてもよいし、目標値を定める制御を実行することなく実トルクを何ら監視しない単なる運転であってもよい。サーボモータSMは、カウンタ圧モードで、自身の液圧回路の実液圧が相手側の液圧回路の実液圧以下となるよう、相手側液圧回路にカウンタ液圧を与えれば足りるからである。
カウンタ液圧を与えられる相手側液圧回路は、カウンタ液圧に対してバランスを取りながら好適に制御される。従来、カウンタ液圧はリリーフ弁に依って付与されていた。しかしリリーフ弁は圧力というエネルギーを捨てる構造であるため、エネルギー効率上改善の余地があった。本実施形態によれば、作動液が液圧室から流出する側の液圧回路をカウンタ圧モードで運転することにより、従来捨てていた圧力を回生エネルギーとして取り出すことができ、エネルギー効率が改善する。もし作動液が送り込まれる方の液圧室に、反対側(液圧室から流出する側の液圧室)からカウンタ液圧を付与しない場合、作動液を送り込む方の液圧回路は制御困難になる。例えばヘッド側液圧回路がヘッド側液圧室へ作動液を送り込む際にロッド側液圧室の圧力が略0であると、ヘッド側液圧室はバランスを失ってしまい、スライダを目標位置へ変位させたり、スライダに所望の押し力を付与したりすることが困難になる。
図4は本実施形態が実行する圧力制御モードを示す構成図である。目標指令手段42が圧力制御モードを選択する場合、サーボモータSMのサーボアンプAに回転速度制御指令を出力し、サーボモータSMの回転速度制御を実行させる。そして目標指令手段42は目標液圧Ptを、制御演算部43に出力する。
制御演算部43は、目標液圧Ptと、液圧センサ25または液圧センサ35から入力されるヘッド側液圧室12hまたはロッド側液圧室12rの実液圧Pdに基づき、目標回転速度Vtを算出してサーボアンプAに出力する。
サーボアンプAは、回転速度センサUvから得られる実回転速度Vdに基づき、サーボモータSMに制御指令SMcmdを出力し、サーボモータSMをフィードバック制御する。サーボモータSMによって液圧回路21のポンプPが回転する間、液圧回路21は駆動され、ヘッド側液圧室12hまたはロッド側液圧室12rの液圧が目標液圧Ptに維持される。
本実施形態では、上述した3つのモードのうちから選択されるモードに基づいて、ヘッド側液圧回路22のサーボモータSMhおよびロッド側液圧回路32のサーボモータSMrがそれぞれ運転される。ヘッド側液圧回路22のモードおよびロッド側液圧回路32のモードは、同じであってもよいし異なってもよい。後者の場合、位置制御モードが主となり、残りのモードが従となり、スライド15は目標位置Stにされる。以下の説明では、ヘッド側液圧回路22のモードおよびロッド側液圧回路32のモードを、ヘッド側のモードおよびロッド側のモードと単にいう場合がある。いずれにせよヘッド側およびロッド側の各モードは、ヘッド側のサーボモータSMhおよびロッド側のサーボモータSMrの制御によって実行される。
次に、本実施形態が実行するプレス成形のサイクルを説明する。
サイクルの概略を説明すると、サーボモータSMhを駆動させてロッド14が進動すると、ロッド14とともにスライド15が押し下げられる。そうするとスライド15に取り付けられた上型16がワークWに押し付けられ、ワークWが上型16と下型17に挟圧されるようプレス成形を実行する。次にサーボモータSMrを駆動させてロッド14が退動すると、ロッド14とともにスライド15が引き上げられる。そうするとスライド15に取り付けられた上型16がワークWから離れ、上型16と下型17の間隔が大きくなり、次のプレス成形に備える。プレス成形されたワークWは金型から取り出され、次にプレス成形されるワークWが下型17に載置される。液圧シリンダ機構11は、このプレス成形のサイクルを繰り返す。
図5は、プレス成形のサイクルを示す図であり、横軸が時間、縦軸がスライド15の高さ位置(実位置Sdあるいは目標位置St)を表す。横軸よりも下の複数の段は、スライド15のモーションと、ヘッド側液圧回路22のモードと、ロッド側液圧回路32のモードと、ヘッド側モータ(サーボモータSMh)の制御と、ロッド側モータ(サーボモータSMr)の制御をそれぞれ表す。図5に二重丸および一重丸で示すモーションでは、ヘッド側液圧回路22とロッド側液圧回路32が互いに異なるモードで同時に制御される。図5に三角で示すモーションでは、複数のヘッド側液圧回路22とロッド側液圧回路32が同じモードで同時に制御される。
スライド15のモーションとして、まず時刻t1~t3で高速下降する。高速下降は、ヘッド側液圧回路22の位置制御モードによって実現される(サーボモータSMhの制御)。このときロッド側液圧回路32は、時刻t1から途中の時刻t2までをカウンタ圧モードにされ、次の時刻t2から時刻t3までを低圧の圧力制御モードにされる(サーボモータSMrの制御)。時刻t1で、目標指令手段42は、ヘッド側サーボモータSMhのサーボアンプAに、回転速度制御指令を出力するとともに、ロッド側サーボモータSMrのサーボアンプAに、トルク制御への切り替え指令を出力する。この高速下降中、ロッド14は高速で進動し、時刻t3でスライド15に取り付けられる上型16がワークWに接触する。
本実施形態によれば、時刻t2でロッド側液圧回路32をカウンタ圧モードから圧力制御モードに切り替えることから、スライド15の下降速度にブレーキをかける効果を得ることができて次の(時刻t4以降の)低速下降に速やかに移行することができる。なお図示しない変形例としてロッド側液圧回路32は、高速下降開始時刻t1から高速下降終了時刻t3までをカウンタ圧モードにされてもよい。
スライド15の次のモーションとして、時刻t3~t4で加圧下降する。時刻t3で、目標指令手段42は、ヘッド側サーボモータSMhのサーボアンプAに対してひきつづき回転速度制御指令を出力する。加圧下降は、ヘッド側液圧回路22の圧力制御モードによって実現される(サーボモータSMhの制御)。このときロッド側液圧回路32は、圧力制御モードにされる(サーボモータSMrの制御)。時刻t4でスライド5に取り付けられる上型16が下型17に接触する等して、スライド15の下降が終了する。上述した高速下降と対比して、時刻t3~t4におけるロッド14の進動は低速下降である。
本実施形態によれば、時刻t3よりも前に、ロッド側液圧回路32は圧力制御モードにされることから、時刻t3で目標指令手段42は、ロッド側サーボモータSMrのサーボアンプAに、トルクから回転速度への切り替え指令を出力する必要が無く、モーションの迅速な変化が可能になる。
上型16が下型17に接触しない等の理由によりスライド15の下限位置が定まらない場合、時刻t3以降も引き続いてヘッド側液圧回路22を位置制御モードとしつつ(サーボモータSMhの制御)、ロッド側液圧回路32を圧力制御モードにして(サーボモータSMrの制御)、加圧下降を実行するとよい。
スライド15の次のモーションとして、時刻t4~t5でホールディングされる。ホールディング中、スライド15は停止する。このときヘッド側サーボモータSMhおよびロッド側サーボモータSMrはそれぞれ圧力制御モードにされ、スライド15は下向き(進動方向)の圧力をワークWに付与する。
時刻t1~t5において、ヘッド側液圧室12hの液圧によってスライド15に付与される押し力は、ロッド側液圧室12rの液圧によってスライド15に付与される引き力以上である。このため、ヘッド側の位置制御モードがロッド側のカウンタ圧モードおよび圧力制御モードに阻害されることはない。時刻t6でワークWが安定し、時刻t3~t5に実行されるプレス成形が終了する。なお押し力は、液圧とピストン13の受圧面積の積である。
スライド15の次のモーションとして、時刻t5~t6で圧抜工程が実行され、ヘッド側液圧室12hの液圧を低下させる。このときヘッド側液圧回路22およびロッド側液圧回路32はそれぞれ圧力制御モードにされる。圧抜工程は、次にスライド15を引き上げてロッド14を原位置に復帰させるための準備工程であり、スライド15は停止している。
スライド15の次のモーションとして、時刻t6~t7で負荷上昇が実行される。このときロッド側液圧回路32は位置制御モードにされ(サーボモータSMrの制御)、スライド15は中・低速で引き上げられる。またヘッド側液圧回路22は圧力制御モードにされ(サーボモータSMhの制御)、スライド15が破線で示すように高速上昇することを抑制する。時刻t6で、目標指令手段42は、ロッド側サーボモータSMrのサーボアンプAに、ひきつづき回転速度制御を出力する。以下に説明する高速上昇と対比して、時刻t6~t7におけるロッド14の退動は低速上昇である。
スライド15の次のモーションとして、時刻t7~t8で高速上昇が実行される。このときロッド側は引き続き位置制御モードにされ(サーボモータSMrの制御)、スライド15は高速で引き上げられる。またヘッド側はカウンタ圧モードにされ(サーボモータSMhの制御)、大気圧以上となるようヘッド側液圧室12hの液圧をある程度確保する。時刻t7で、目標指令手段42は、ヘッド側サーボモータSMhのサーボアンプAに、トルク制御への切り替え指令を出力するとともに、ロッド側サーボモータSMrのサーボアンプAに、ひきつづき回転速度制御指令を出力する。この高速上昇中、ロッド14は高速で退動する。時刻t8で、目標指令手段42は、ヘッド側サーボモータSMhのサーボアンプAに、回転速度制御への切り替え指令を出力するとともに、ロッド側サーボモータSMrのサーボアンプAに、ひきつづき回転速度制御指令を出力する。
スライド15の次のモーションとして、時刻t8~t9で停止あるいは休止が実行される。このときロッド側は引き続き位置制御モードにされ(サーボモータSMrの制御)、スライド15は停止状態を維持する。またヘッド側は圧力制御モードにされる(サーボモータSMhの制御)。
なお時刻t5~t9において、ロッド側液圧室12rの液圧によってスライド15に付与される引き力は、ヘッド側液圧室12hの液圧によってスライド15に付与される押し力以上である。このため、ロッド側の位置制御モードがヘッド側の圧力およびカウンタ圧モードに阻害されることはない。
時刻t9で、スライド15の複数のモーションで構成されるプレス成形のサイクルが終了する。時刻t9以降、本実施形態は、上述した時刻t1~t9のサイクルを繰り返す。
本実施形態のサイクルを概略説明すると、まずヘッド側液圧回路22は、ヘッド側液圧室12hに液圧を供給して、ロッド14を進動させ、スライド15を押し下げる(位置制御モード)。このときロッド側液圧回路32は、ロッド側液圧室12rの液圧を調整する(圧力制御モード)。次にロッド側液圧回路32は、ロッド側液圧室12rに液圧を供給して、ロッド14を退動させ、スライド15を引き上げる(位置制御モード)。このときヘッド側液圧回路22は、ヘッド側液圧室12hの液圧を調整する(圧力制御モード)。
このように本実施形態のプレス成形機10は、互いに異なる位置制御モードおよび圧力制御モードを同時に実行して、液圧シリンダ12のヘッド側およびロッド側から積極的にピストン13を動作させることから、ピストン13に連動するスライド15の位置および移動速度と、スライド15がワークWに付与する圧力に関し、精緻な制御と、応答性の向上を図ることができる。
より詳細に説明すると、本実施形態のプレス成形機10は、ロッド14に連動するスライド15の実位置Sdが目標位置Stになるよう、ヘッド側サーボモータSMhまたはロッド側サーボモータSMrをそれぞれ制御する位置制御モード(図2)と、ヘッド側サーボモータSMhまたはロッド側サーボモータSMrの実トルクTdが目標トルクTtとなるよう、ヘッド側サーボモータSMhまたはロッド側サーボモータSMrをそれぞれ制御するカウンタ圧モード(図3)と、ヘッド側液圧室12hの実液圧Pdが目標液圧Ptになるよう、またはロッド側液圧室12rの実液圧Pdが目標液圧Ptになるよう、ヘッド側サーボモータSMhまたはロッド側サーボモータSMrをそれぞれ制御する圧力制御モード(図4)とを含み、図5に二重丸および一重丸で示すようにスライド15の高速下降と、負荷上昇と、高速上昇と、停止のモーションで、ヘッド側液圧回路22およびロッド側液圧回路32は、これら3つのモードのうち互いに異なるモードで同時に制御される。これにより1個のピストン13を2系統のヘッド側液圧回路22およびロッド側液圧回路32で精緻に制御し得て、高速移動から低速移動までロッド14およびスライド15の実位置Sdを細かく制御することができる。またワークWをプレス成形する際にワークWに付与する押し力を細かく制御することができる。さらにはヘッド側ポンプPhおよびロッド側ポンプPrを汎用ポンプにして、プレス成形機10の大型化を安価に実現することができる。
また本実施形態のモーションコントローラMCは、図5に二重丸で示す時刻t1~t2で液圧シリンダ12からロッド14を進動させる際、ヘッド側を位置制御モードで制御すると同時に、ロッド側をカウンタ圧モードで制御する。これによりロッド14を高速で進動させてスライド15を高速下降させることができ、プレス成形のサイクルが短縮化される。
また本実施形態のモーションコントローラMCは、図5に二重丸で示す時刻t2~t3で液圧シリンダ12からロッド14を進動させる際、ヘッド側を位置制御モードで制御すると同時に、ロッド側を圧力制御モードで制御する。これにより次(時刻t3~t4)の加圧下降のモーションに迅速に移行することができる。
また本実施形態のモーションコントローラMCは、図5に一重丸で示す時刻t6~t7でロッド14を液圧シリンダ12に退動させる際、ロッド側を位置制御モードで制御すると同時に、ヘッド側を圧力制御モードで制御する。これによりスライド15を引き上げながらスライド15の上昇速度を精緻に制御することができる。
また本実施形態のモーションコントローラは、図5に二重丸で示す時刻t7~t8でロッド14を液圧シリンダ12に退動させる際、ロッド側を位置制御モードで制御すると同時に、ヘッド側をカウンタ圧モードで制御する。これによりロッド14を高速で退動させてスライド15を高速上昇させることができ、プレス成形のサイクルが短縮化される。
図1に示す実施形態は1個の液圧シリンダ機構11と、1個のモーションコントローラMCに制御される複数のサーボモータ(具体的にはサーボモータSMh,SMrの2個)を備えるが、本発明のプレス成形機は図1に限定されない。図示しない変形例として、プレス成形機は複数の液圧シリンダ機構(例えば4個)と、その2倍の数のサーボモータSM(例えば8個)を備え、1個のモーションコントローラMCが複数(例えば8個)のサーボアンプAに同時に制御信号を出力するものであってもよい。図示しない変形例では、スライド15の各角部に設けられる複数の液圧シリンダ機構が同一の動作をして、スライド15が平行制御される。
また本実施形態のプレス成形機10によれば、サーボモータSMh,SMrの小型化および回生運転によって消費電力が少なくされる。したがって従来のプレス成形機と比較して、省エネルギー化を図ることができる。
本発明の理解を容易にするため従来のプレス成形機につき補足説明すると、従来のプレス成形機では、ヘッド側液圧回路を1個の電動モータで駆動し、ロッド側液圧回路にリリーフ弁を設けていた。特に大型のプレス成形機では、ヘッド側液圧回路に1個の大型モータを設け、ヘッド側液圧回路およびロッド側液圧回路にサーボ弁をそれぞれ設けていた。そして電動モータと、リリーフ弁と、サーボ弁を適宜制御しながら、ヘッド側液圧とロッド側液圧を生成していた。そうすると、ヘッド側液圧およびロッド側液圧の双方を発生させるために、電動モータを常に力行運転させなければならず、消費電力が大きかった。
これに対し本実施形態のプレス成形機10によれば、リリーフ弁およびサーボ弁が必須ではなくなり、サーボモータSMh,SMrの何れか一方を停止させたり、サーボモータSMh,SMrのいずれか一方を回生運転させたりすることができるので、プレス成形機10の省エネルギー化が実現する。
また本実施形態のプレス成形機10によれば、リリーフ弁およびサーボ弁が必須ではなくなることから、液圧回路22,32の構造が簡略化され、メンテナンスが簡素化される。
次に本発明の他の実施形態を説明する。図6は本発明の他の実施形態になるプレス成形機を模式的に示す全体図である。他の実施形態につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。他の実施形態のプレス成形機50は、液圧シリンダ機構51と、液圧シリンダ機構51に液圧を供給する液圧回路21と、液圧回路21を制御するモーションコントローラMCとを備える。液圧シリンダ機構51は複数の液圧シリンダ52,52・・・と、これらと同数のピストン53,53・・・と、これらと同数のピストンロッド(以下、単にロッド54という)を有する。各液圧シリンダ52は、押側液圧室52hあるいは引側液圧室52rを含む(押・引側液圧室の双方を備えない)。
複数の液圧シリンダ52,52・・・は、スライダ15からみて引き方向側に配置される。押側液圧室52hは、1の液圧シリンダ52の端部のうち、ピストン53からみてロッド54とは反対側に位置するヘッド側の端部を占める。かかる液圧シリンダ52は押側液圧室52hを有するが引側液圧室を有しない。そして液圧シリンダ52の端部のうち、ピストン53からみてロッド54側の端部は、空気室52qとされる。液圧シリンダ52には連通孔52jが形成されており、空気室52qは連通孔52jで外界と連通し、大気圧とされる。
各押側液圧室52hは、ヘッド側液圧回路22のヘッド側通路23と接続する。ヘッド側液圧回路22は各液圧シリンダ52に設けられる。
引側液圧室52rは、他の液圧シリンダ52の端部のうち、ロッド54が貫通するロッド側の端部を占める。かかる液圧シリンダ52は引側液圧室52rを有するが押側液圧室を有しない。そして液圧シリンダ52の端部のうち、ピストン53からみてロッド54側とは反対側に位置するヘッド側の端部は、空気室52pとされる。液圧シリンダ52には連通孔52jが形成されており、空気室52pは連通孔52jで外界と連通し、大気圧とされる。
各引側液圧室52rは、ロッド側液圧回路32のロッド側通路33と接続する。ロッド側液圧回路32は各液圧シリンダ52に設けられる。
複数のヘッド側液圧回路22と、複数のロッド側液圧回路32は、共通する1のモーションコントローラMCで、前述のとおり制御される。図6に示すプレス成形機50も、前述した図1のプレス成形機10と同様、液圧シリンダ52のロッド54の位置を細かく制御することができ、高速から低速までの広い速度領域で精緻な制御が可能にある。またプレス圧を細かく制御することができる。さらに各ポンプPh,Prに汎用ポンプを使用することができ、プレス成形サイクルの高速化およびプレス成形機の大型化を図ることができる。
なお図6では、押側液圧室52hを含む液圧シリンダ52を1のみ示すが、押側液圧室52hを含む液圧シリンダ52の個数はこれに限定されない。押側液圧室52hを含む液圧シリンダ52を複数備える場合、押し力は複数のピストン53がヘッド側液圧回路22からそれぞれ受ける力の合計である。また引側液圧室52rを含む液圧シリンダ52の個数も限定されない。引き力は、複数のピストン53がロッド側液圧回路32からそれぞれ受ける力の合計である。
次に本発明のさらに他の実施形態を説明する。図7は、本発明のさらに他の実施形態になるプレス成形機を模式的に示す全体図である。さらに他の実施形態につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。さらに他の実施形態のプレス成形機60は、液圧シリンダ機構61と、液圧シリンダ機構61に液圧を供給する液圧回路21と、液圧回路21を制御するモーションコントローラMCとを備える。液圧シリンダ機構61は前述した1または複数の液圧シリンダ52の他、複数の液圧シリンダ55を有する。これらの他にも液圧シリンダ機構61は、シリンダと同数のピストン53,56と、ロッド54,57を有する。各液圧シリンダ52は、押側液圧室52hを含むが、引側液圧室を含まない。各液圧シリンダ55は、引側液圧室55hを含むが、押側液圧室を含まない。全ての液圧シリンダ52,55は、押側または引側液圧室をヘッド側に含む。全ての液圧シリンダ52,55のロッド側は、空気室52q,55qとされる。
液圧シリンダ55は、スライダ15に関し、液圧シリンダ52と対称な姿勢で配置される。具体的にはスライダ15を押すために液圧シリンダ52がスライダ15の上側に配置されて、スライダ15を引くために液圧シリンダ55がスライダ15の下側に配置される。このように液圧シリンダ52,55は姿勢が対称であるものの同一構造である。
各液圧シリンダ55には連通孔55jが形成されており、空気室55qは連通孔55jで外界と連通し、大気圧とされる。各引側液圧室55hは、引側液圧回路62の通路33と接続する。1の引側液圧回路62は複数の液圧シリンダ55,55・・・に共通して設けられる。引側液圧回路62の構成は、前述したロッド側液圧回路32と同一である。
図7に示す実施形態の液圧回路21は、押側液圧回路としてのヘッド側液圧回路22および引側液圧回路62を有する。1のヘッド側液圧回路22(押側液圧回路)と、1の引側液圧回路62は、共通する1のモーションコントローラMCで、前述のとおり制御される。図7に示すプレス成形機60も、前述したプレス成形機10,50と同様、液圧シリンダ52のロッド54の位置と、液圧シリンダ55のロッド57を細かく制御することができ、高速から低速までの広い速度領域で精緻な制御が可能にある。またプレス圧を細かく制御することができる。さらに各ポンプPh,Prに汎用ポンプを使用することができ、プレス成形サイクルの高速化およびプレス成形機の大型化を図ることができる。
次に本発明の変形例を説明する。図8は本発明の変形例になるプレス成形機を模式的に示す全体図であり、図1に示す実施形態の変形例になる。この変形例につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。図8の変形例では、ピストン13に関し、ロッド14とは反対側、つまりヘッド側液圧室12h、にシャフト19が配置される。変形例の液圧シリンダ機構11はダブルロッドシリンダともいう。
シャフト19は、真っ直ぐに延びる一定断面の丸棒であり、末端でピストン13と結合する。シャフト19の先端領域19tは、液圧シリンダ12の他端を貫通する。図示しない変形例として、位置センサ18は先端領域19tの位置を検出するものであってもよい。あるいはシャフト19の先端は、図示しない機構に連結されていてもよい。
図8に示す変形例では、ロッド14の断面積とシャフト19の断面積を等しくすることにより、ピストン13の受圧面積をヘッド側液圧室12hとロッド側液圧室12rで等しくすることができる。したがって、上述した3つのモード、特に圧力制御モード、の演算が容易になる。
以上、図面を参照して本発明の実施の形態を説明したが、本発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、本発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。本実施形態のサーボモータSMh,SMrは、インバータに接続される回転電機であってもよい。
本発明は、プレス加工において有利に利用される。
10,50,60 プレス成形機、 11,51,61 液圧シリンダ機構、
12,52,55 液圧シリンダ、 12h ヘッド側液圧室、
12r ロッド側液圧室、 13,53,56 ピストン、
14,54,57 ロッド(ピストンロッド)、 15 スライド、
16 上型(金型)、 17 下型(金型)、 18 位置センサ、
21 液圧回路、 22 ヘッド側(押側)液圧回路、
23 ヘッド側通路、 24b,24c,34b,34c 作動液タンク、
25,35 液圧センサ、 26,36 リリーフ弁、
32,62 ロッド側(引側)液圧回路、 33 通路(ロッド側通路)、
42 目標指令手段、 43 制御演算部、 A サーボアンプ、
MC モーションコントローラ、 P ポンプ、
Ph ヘッド側ポンプ、 Pr ロッド側ポンプ、
Pt 目標液圧、 Pd 実液圧、 SM サーボモータ、
SMh ヘッド側サーボモータ、 SMr ロッド側サーボモータ、
St スライド15等の目標位置、 Sd スライド15の実位置、
Tt サーボモータの目標トルク、 サーボモータの実トルクTd。

Claims (7)

  1. 液圧シリンダおよびピストンによって区画される押側液圧室および引側液圧室を、少なくとも1つずつ有し、前記ピストンに連動して成形用のスライダを変位させる液圧シリンダ機構と、
    押側ポンプと、前記押側ポンプと駆動結合する押側モータを有し、前記押側液圧室に作動液を供給する押側液圧回路と、
    引側ポンプと、前記引側ポンプと駆動結合する引側モータを有し、前記引側液圧室に作動液を供給する引側液圧回路と、
    前記押側液圧回路および前記引側液圧回路を、複数のモードの中から選択される1のモードでそれぞれ制御するモーションコントローラとを備え、
    前記複数のモードは、
    前記スライダの実位置が目標スライダ位置になるよう、前記押側モータまたは前記引側モータを制御する位置制御モードと、
    前記押側液圧室の実液圧が目標液圧になるよう、または前記引側液圧室の実液圧が目標液圧になるよう、前記押側モータまたは前記引側モータを制御する圧力制御モードと、
    1または複数の前記押側液圧室が前記ピストンに付与する押し力の合計と、1または複数の前記引側液圧室が前記ピストンに付与する引き力の合計のうち、一方が他方よりも小さくなるよう、前記一方に対応する前記押側モータまたは前記引側モータを運転して前記一方に対応する前記押側液圧室または前記引側液圧室にカウンタ液圧を供給するカウンタ圧モードとを含み、
    前記押側液圧回路および前記引側液圧回路は、前記複数のモードのうち互いに異なるモードで同時に制御される、成形機。
  2. 前記引側液圧室および前記押側液圧室は、前記液圧シリンダの両端部のうち、前記ピストンと結合するロッドが貫通するロッド側の端部と、前記ピストンからみて前記ロッドとは反対側に位置するヘッド側の端部をそれぞれ占める、請求項1に記載の成形機。
  3. 前記モーションコントローラは、前記液圧シリンダから前記ロッドを進動させる際、前記押側液圧回路を前記位置制御モードで制御すると同時に、前記引側液圧回路を前記カウンタ圧モードあるいは前記圧力制御モードで制御する、請求項2に記載の成形機。
  4. 前記モーションコントローラは、前記ロッドを前記液圧シリンダに退動させる際、前記引側液圧回路を前記位置制御モードで制御すると同時に、前記押側液圧回路を前記カウンタ圧モードあるいは前記圧力制御モードで制御する、請求項2に記載の成形機。
  5. 前記液圧シリンダは、前記スライダからみて引き方向側に複数配置され、
    前記押側液圧室は、1の前記液圧シリンダの端部のうち、前記ピストンからみて前記スライダとは反対側に位置する端部を占め、
    前記引側液圧室は、他の前記液圧シリンダの端部のうち、前記ピストンからみて前記スライダ側の端部を占める、請求項1に記載の成形機。
  6. 前記液圧シリンダは、前記スライダからみて押し方向側および引き方向側にそれぞれ配置され、
    前記押側液圧室は、前記引き方向側に配置される前記液圧シリンダの端部のうち、前記ピストンからみて前記スライダとは反対側に位置する端部を占め、
    前記引側液圧室は、前記押し方向側に配置される前記液圧シリンダの端部のうち、前記ピストンからみて前記スライダとは反対側に位置する端部を占める、請求項1に記載の成形機。
  7. 液圧シリンダに押し方向の液圧を供給する押側液圧回路と、液圧シリンダに引き方向の液圧を供給する引側液圧回路を、複数のモードから選択される1のモードで制御する方法であって、
    前記複数のモードは、
    前記液圧シリンダ内を摺動するピストンの実位置が目標位置になるよう、前記押側液圧回路または前記引側液圧回路を制御する位置制御モードと、
    前記押し方向の液圧の実液圧が目標液圧になるよう、または前記引き方向の液圧の実液圧が目標液圧になるよう、前記押側液圧回路または前記引側液圧回路を制御する圧力制御モードと、
    前記押し方向の液圧によって得られる押し力の合計と、前記引き方向の液圧によって得られる引き力の合計のうち、一方が他方よりも小さくなるよう、前記一方に対応する前記押側液圧回路または前記引側液圧回路にカウンタ液圧を発生させるカウンタ圧モードとを含み、
    前記押側液圧回路および前記引側液圧回路は、前記複数のモードのうち互いに異なるモードで同時に制御される、液圧回路の制御方法。
JP2019108089A 2019-06-10 2019-06-10 成形機および液圧回路の制御方法 Active JP7022719B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019108089A JP7022719B2 (ja) 2019-06-10 2019-06-10 成形機および液圧回路の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019108089A JP7022719B2 (ja) 2019-06-10 2019-06-10 成形機および液圧回路の制御方法

Publications (2)

Publication Number Publication Date
JP2020199527A JP2020199527A (ja) 2020-12-17
JP7022719B2 true JP7022719B2 (ja) 2022-02-18

Family

ID=73741617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019108089A Active JP7022719B2 (ja) 2019-06-10 2019-06-10 成形機および液圧回路の制御方法

Country Status (1)

Country Link
JP (1) JP7022719B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329104A (ja) 1999-05-20 2000-11-28 Kawasaki Hydromechanics Corp 押圧用の油圧制御方法
JP2001214903A (ja) 2000-02-02 2001-08-10 Kayaba Ind Co Ltd 油圧式駆動装置
JP2004301189A (ja) 2003-03-28 2004-10-28 Tokimec Inc 液圧制御システム
DE102008053766A1 (de) 2008-10-21 2010-04-22 Voith Patent Gmbh Hydraulischer Pressenantrieb und Verfahren zum Betreiben eines hydraulischen Pressenantriebs
US20140318390A1 (en) 2011-02-02 2014-10-30 Langenstein & Schemann Gmbh Press and method for pressing workpieces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329104A (ja) 1999-05-20 2000-11-28 Kawasaki Hydromechanics Corp 押圧用の油圧制御方法
JP2001214903A (ja) 2000-02-02 2001-08-10 Kayaba Ind Co Ltd 油圧式駆動装置
JP2004301189A (ja) 2003-03-28 2004-10-28 Tokimec Inc 液圧制御システム
DE102008053766A1 (de) 2008-10-21 2010-04-22 Voith Patent Gmbh Hydraulischer Pressenantrieb und Verfahren zum Betreiben eines hydraulischen Pressenantriebs
US20140318390A1 (en) 2011-02-02 2014-10-30 Langenstein & Schemann Gmbh Press and method for pressing workpieces

Also Published As

Publication number Publication date
JP2020199527A (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
CN106925653B (zh) 模具缓冲装置和控制所述模具缓冲装置的方法
WO2008050659A1 (fr) Machine à coulée sous pression et procédé de coulage sous pression
US20040033141A1 (en) Method and drive system for the control/regulation of linear pressure/cast movement
JP5426833B2 (ja) 成形機
CN105729877A (zh) 一种可变合模力的内高压成形机及内高压成形加工方法
JP2015514586A (ja) プレス機械
JP4738631B2 (ja) ねじ駆動式油圧プレス装置
EP3690258B1 (en) Hydraulic device
WO2011070814A1 (ja) 鋳型を造型する装置及び方法
WO2013005597A1 (ja) 射出装置
JP7022719B2 (ja) 成形機および液圧回路の制御方法
CN2925841Y (zh) 注塑机油压伺服控制装置
US4941342A (en) Multi-ram forging assembly
KR100326648B1 (ko) 업셋팅프레스의주구동장치
JP2019533784A (ja) 電気液圧式駆動ユニット
JP2017213579A (ja) プレスブレーキ、および曲げ加工方法
WO2018117250A1 (ja) 油圧式射出成形機の制御方法及び駆動制御装置
CN210829920U (zh) 电动辅助式增压缸
JP2020529321A (ja) 工作機械
JP4871637B2 (ja) スライダ駆動装置
JP6010756B2 (ja) 多段プレス装置
JP2020183806A (ja) 流体静力学的なリニア駆動システム
JP6810713B2 (ja) プレス成形機械及びその制御方法
RU2773071C2 (ru) Станок
CN108361237B (zh) 一种快速高频高压节能控制装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7022719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150