JP7020612B2 - タイヤ用ビード部材、及びタイヤ - Google Patents
タイヤ用ビード部材、及びタイヤ Download PDFInfo
- Publication number
- JP7020612B2 JP7020612B2 JP2017196266A JP2017196266A JP7020612B2 JP 7020612 B2 JP7020612 B2 JP 7020612B2 JP 2017196266 A JP2017196266 A JP 2017196266A JP 2017196266 A JP2017196266 A JP 2017196266A JP 7020612 B2 JP7020612 B2 JP 7020612B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- bead
- tire
- based thermoplastic
- thermoplastic elastomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Tires In General (AREA)
Description
なお、こうしたビード部に用いられるビードワイヤーとして、樹脂による被覆部で被覆されたワイヤーを用いることが試されている。
<1> ビードワイヤー、及び前記ビードワイヤーを被覆し樹脂Aを含む被覆樹脂層を有するビードコアと、前記被覆樹脂層の少なくとも一部に接するよう配置され樹脂Bを含むビードフィラーと、を有するタイヤ用ビード部材であって、前記樹脂A及び前記樹脂Bは、それぞれ独立に、熱可塑性樹脂又は熱可塑性エラストマーであり、前記樹脂A及び前記樹脂Bは、互いに樹脂の主鎖を構成する構成単位中に共通する骨格を有する樹脂であり、前記樹脂A及び前記樹脂Bは、いずれも融点が175℃以上223℃以下であり、前記被覆樹脂層及び前記ビードフィラーは、いずれも吸水率が3.5質量%以下であるタイヤ用ビード部材。
<2> 前記被覆樹脂層及び前記ビードフィラーは、いずれもシャルピー衝撃強さが5kJ/m2以上である前記<1>に記載のタイヤ用ビード部材。
<3> 前記被覆樹脂層及び前記ビードフィラーは、いずれも引張弾性率が274MPa以上2000MPa以下である前記<1>又は<2>に記載のタイヤ用ビード部材。
<4> 前記樹脂A及び前記樹脂Bの少なくとも一方が熱可塑性エラストマーである前記<1>~<3>のいずれか1に記載のタイヤ用ビード部材。
<5> 前記樹脂A及び前記樹脂Bの少なくとも一方が、ポリアミド系熱可塑性エラストマー又はポリエステル系熱可塑性エラストマーである前記<4>に記載のタイヤ用ビード部材。
<6> 前記ビードコアが、前記ビードワイヤーと前記被覆樹脂層との間に配置され樹脂Cを含む接着樹脂層を有する前記<1>~<5>のいずれか1に記載のタイヤ用ビード部材。
<7> 前記樹脂Cが、極性官能基を有する熱可塑性樹脂又は極性官能基を有する熱可塑性エラストマーである前記<6>に記載のタイヤ用ビード部材。
<8> 前記樹脂Cの融点が139℃以上220℃以下である前記<6>又は<7>に記載のタイヤ用ビード部材。
<9> 一対のビード部に、前記<1>~<8>のいずれか1に記載のタイヤ用ビード部材を有するタイヤ。
本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その目的が達成されるものであれば、当該工程も本用語に含まれる。
本明細書において「熱可塑性エラストマー」とは、ハードセグメント及びソフトセグメントを有する共重合体を意味する。熱可塑性エラストマーとして具体的には、例えば、結晶性で融点の高いハードセグメント又は高い凝集力のハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーと、を有する共重合体が挙げられる。また、熱可塑性エラストマーとしては、例えば、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有するものが挙げられる。
なお、上記ハードセグメントは、例えば、主骨格に芳香族基若しくは脂環式基等の剛直な基を有する構造、又は分子間水素結合若しくはπ-π相互作用による分子間パッキングを可能にする構造等のセグメントが挙げられる。また、ソフトセグメントは、例えば、主鎖に長鎖の基(例えば長鎖のアルキレン基等)を有し、分子回転の自由度が高く、伸縮性を有する構造のセグメントが挙げられる。
本発明のタイヤ用ビード部材(以下単に「ビード部材」とも称す)は、ビードワイヤー、及びビードワイヤーを被覆する被覆樹脂層を有するビードコアと、被覆樹脂層の少なくとも一部に接するよう配置されるビードフィラーと、を有する。
なお、被覆樹脂層は樹脂Aを含み、ビードフィラーは樹脂Bを含み、樹脂A及び樹脂Bはそれぞれ独立に熱可塑性樹脂又は熱可塑性エラストマーである。また、樹脂A及び樹脂Bは、互いに樹脂の主鎖を構成する構成単位中に共通する骨格を有する樹脂である。
そして、樹脂A及び樹脂Bは、いずれも融点が175℃以上223℃以下である。
また、被覆樹脂層及びビードフィラーは、いずれも吸水率が3.5質量%以下である。
図1に示される、タイヤ10(図1では一実施形態としてランフラットタイヤを例に挙げて説明する)では、左右に一対のビード部12(図1では、片側のビード部12のみ図示)を有する。そして、一対のビード部12からタイヤ径方向外側へそれぞれ延びる一対のタイヤサイド部14と、一方のタイヤサイド部14から他方のタイヤサイド部14へ延びるトレッド部16と、を有している。
ビード部12にはビードコア18が埋設され、左右一対のビードコア18にカーカス22が跨っている。
また、ビード部12には、ビードコア18からタイヤ径方向外側へカーカス22の外面22Oに沿って延びるビードフィラー20が埋設されている。ビードフィラー20は、例えば、カーカス本体部22Aと折返し部分22Bとで囲まれた領域に配置される。
ビードコア18は、図2に示されるように、並んで配置された複数のビードワイヤー1と、このビードワイヤー1を被覆し樹脂Aを含む被覆樹脂層3とを有する。
なお、ランフラットタイヤである図1に示されるタイヤ10では、タイヤサイド部14のカーカス22のタイヤ幅方向内側に、タイヤサイド部14を補強するサイド補強層の一例としてのサイド補強ゴム26が配設されている。
図4に示されるように、タイヤ110では、左右一対のビード部112(図4では、片側のビード部112のみ図示)を有する。そして、一対のビード部112からタイヤ径方向外側へそれぞれ延びる一対のタイヤサイド部114と、一方のタイヤサイド部114から他方のタイヤサイド部114へ延びるトレッド部116と、を有している。
タイヤ110は、タイヤ骨格体に相当する円環状の形状のタイヤケース140を備えており、タイヤケース140は、ビード部112とタイヤサイド部114とトレッド部116とを含んで構成されている。また、タイヤサイド部114及びビード部112には保護層122が設けられている。
ビード部112にはタイヤ周方向に沿って延びる円環状のビードコア118が埋設されている。ビードコア118は、並んで配置された複数のビードワイヤーと、このビードワイヤーを被覆し樹脂Aを含む被覆樹脂層とを有する。
また、ビード部112には、ビードコア118からタイヤ径方向外側へ保護層122に沿って延びるビードフィラー120が埋設されている。
しかし、ビード部材における被覆樹脂層及びビードフィラーに熱可塑性樹脂や熱可塑性エラストマーを用いると、雨天走行などのタイヤ使用時等において、被覆樹脂層及びビードフィラーで吸水が発生し、この吸水に起因する弾性率変化が生じることがあった。被覆樹脂層及びビードフィラーにおいて弾性率変化が起こると、ビード部でのリムに対する押し付け力に変化が生じ、エア漏れが生じる(つまりエアシール性が低下する)ことがある。また、被覆樹脂層及びビードフィラーに弾性率変化が生じた状態のビード部材に対して、走行によって強い負荷が掛かった場合に、リムずれやリム外れが生じることもある。
被覆樹脂層及びビードフィラーにおける吸水率が上記範囲であることで、雨天走行等のタイヤ使用時においても、被覆樹脂層及びビードフィラーでの吸水自体を抑制することができ、給水に起因する弾性率変化も抑制される。その結果、弾性率変化に伴うエア漏れの発生(エアシール性の低下)、リムずれ、リム外れ等の発生が抑制される。
両者ともに融点が上記の範囲であることで、長時間走行時等においてビード部材が熱を持った場合でも、被覆樹脂層及びビードフィラーが柔らか過ぎずかつ硬過ぎず、適度な硬さが保たれる。つまり、ビード部に求められる柔軟性と強度とが確保される。これにより、ビード部でのリムに対する押し付け力の低下が抑制されて、エア漏れ(エアシール性の低下)が抑制されると共に、走行によって強い負荷が掛かった場合でもその負荷に対する追従性が得られ、リムずれやリム外れが抑制される。
ここで、「互いに樹脂の主鎖を構成する構成単位中に共通する骨格を有する樹脂」とは、例えば、樹脂A及び樹脂Bが共に「ポリエステル系熱可塑性エラストマー(TPC)及び熱可塑性ポリエステルの少なくとも一種」を含有する場合であれば、互いに樹脂の主鎖を構成する構成単位中に共通する骨格(すなわちエステル結合骨格)を有すると言える。また、同様に、樹脂A及び樹脂Bが共に以下の熱可塑性樹脂又は熱可塑性エラストマーを含む場合が挙げられる。
・樹脂A及び樹脂Bが共に「ポリアミド系熱可塑性エラストマー(TPA)及び熱可塑性ポリアミドの少なくとも一種」を含有する場合、互いに樹脂の主鎖を構成する構成単位中に共通する骨格として、アミド結合骨格を有する。
・樹脂A及び樹脂Bが共に「ポリスチレン系熱可塑性エラストマー(TPS)及び熱可塑性ポリスチレンの少なくとも一種」を含有する場合、互いに樹脂の主鎖を構成する構成単位中に共通する骨格として、ポリスチレン骨格を有する。
・樹脂A及び樹脂Bが共に「ポリウレタン系熱可塑性エラストマー(TPU)及び熱可塑性ポリウレタンの少なくとも一種」を含有する場合、互いに樹脂の主鎖を構成する構成単位中に共通する骨格として、ウレタン結合骨格を有する。
・樹脂A及び樹脂Bが共に「ポリオレフィン系熱可塑性エラストマー(TPO)及び熱可塑性ポリオレフィンの少なくとも一種」を含有する場合、互いに樹脂の主鎖を構成する構成単位中に共通する骨格として、ポリオレフィン骨格を有する。
また、樹脂の分子構造を構成する構成単位として、同じ化学構造の構成単位のみを含む熱可塑性樹脂又は熱可塑性エラストマー(例えば樹脂の原料となるモノマーとして同じ構造のモノマーのみを用いた熱可塑性樹脂又は熱可塑性エラストマー)を用いることがさらに好ましい。
本発明では、被覆樹脂層及びビードフィラーの吸水率が、いずれも3.5質量%以下である。なお、被覆樹脂層及びビードフィラーの吸水率は、共に3.0質量%以下であることがより好ましく、2.5質量%以下であることがさらに好ましく、0質量%に近いほど好ましい。
両者の吸水率が上記範囲であることで、給水に起因する被覆樹脂層及びビードフィラーの弾性率変化が抑制され、弾性率変化に伴うエア漏れ(エアシール性の低下)、リムずれ、リム外れ等の発生が抑制される。
本発明では、被覆樹脂層及びビードフィラーに含まれる樹脂A及び樹脂Bの融点が、いずれも175℃以上223℃以下である。なお、樹脂A及び樹脂Bの融点は、共に178℃以上220℃以下であることがより好ましく、180℃以上217℃以下であることがさらに好ましい。
両者の融点が上記の範囲であることで、ビード部材が熱を持った場合でもビード部に求められる柔軟性と強度とが確保され、エア漏れ(エアシール性の低下)、リムずれ、リム外れ等の発生が抑制される。
本発明のビード部材は、被覆樹脂層及びビードフィラーのシャルピー衝撃強さが、いずれも5kJ/m2以上であることが好ましく、6kJ/m2以上がより好ましく、7kJ/m2以上がさらに好ましい。また、両者のシャルピー衝撃強さの上限値は、特に限定されるものではないが、破壊しないこと(NB)が好ましく、20kJ/m2以下がより好ましく、15kJ/m2以下がさらに好ましい。
シャルピー衝撃強さの下限値が上記の範囲であることで、リム組み時や走行時(特にランフラット走行時)等において、被覆樹脂層やビードフィラーに瞬間的に負荷がかかった際に生じる割れの発生が抑制される。
一方、シャルピー衝撃強さの上限値が上記の範囲であることで、割れることなく、リム組、走行を行うことができ、樹脂を用いたビードとしての効果が得られる。
例えば、公称振り子エネルギー(ひょう量)を4J、ハンマー持上げ角度を150°の条件で、サンプルに衝突した後に戻った角度を測定することで、衝突前後の角度の差から消費されたエネルギー量(エネルギー吸収量)を算出する。
本発明のビード部材は、被覆樹脂層及びビードフィラーの引張弾性率が、いずれも274MPa以上2000MPa以下であることが好ましく、274MPa以上1500MPa以下がより好ましく、274MPa以上1000MPa以下がさらに好ましい。
引張弾性率の下限値が上記の範囲であることで、ビード部に適度な硬さを付与することができ、走行時(特にランフラット走行時)等において被覆樹脂層やビードフィラーに負荷がかかった場合でも該負荷に対する耐久性が得られ、その結果優れた走行耐久性が発揮される。一方、引張弾性率の上限値が上記の範囲であることで、ビード部に適度な柔らかさ、つまり柔軟性を付与することができ、優れたリム組み性が得られる。
ビード部材は、ビードワイヤー、及びビードワイヤーを被覆する被覆樹脂層を有するビードコアと、被覆樹脂層の少なくとも一部に接するよう配置されるビードフィラーと、を有し、その形状は特に制限されない。なお、ビードコアはビードワイヤーと被覆樹脂層との間に接着剤層を有していてもよい。
被覆樹脂層は樹脂Aを含み、ビードフィラーは樹脂Bを含む。また、接着剤層は樹脂Cを含んだ接着樹脂層であることが好ましい。
また、被覆樹脂層とこの被覆樹脂層の少なくとも一部に接するよう配置されるビードフィラーとを有する構造には、例えば、被覆樹脂層の表面の全部が直にビードフィラーに接するよう配置された状態と、被覆樹脂層の表面の一部にビードフィラーが接するよう配置された状態と、が挙げられる。
ビードワイヤーは特に制限されず、例えば従来のゴム製タイヤに用いられる金属製や有機樹脂製のコード等を適宜用いることができる。例えば、金属繊維や有機繊維等のモノフィラメント(単線)、又はこれらの繊維を撚ったマルチフィラメント(撚り線)で構成される。中でも、金属製のコード(より好ましくは鉄製のコード(スチールコード))が好ましい。
ビードワイヤーが複数本のコードの撚り線である場合、複数本のコードの数としては、例えば2本~10本が挙げられ、5本~9本が好ましい。
被覆樹脂層は、少なくとも熱可塑性樹脂又は熱可塑性エラストマーである樹脂Aを含む。また、被覆樹脂層に含まれる樹脂Aとしては、ビードフィラーに含まれる樹脂Bと互いに樹脂の主鎖を構成する構成単位中に共通する骨格を有する樹脂が選択される。
なお、樹脂Aには、融点が175℃以上223℃以下である樹脂が用いられ、また被覆樹脂層の吸水率が3.5質量%以下となる樹脂を選択することが好ましい。
-ポリアミド系熱可塑性エラストマー-
ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを形成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性の樹脂材料であって、ハードセグメントを形成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。
ポリアミド系熱可塑性エラストマーとしては、例えば、少なくともポリアミドが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル、ポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いて形成されてもよい。
ポリアミド系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004-346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
また、一般式(2)中、R2としては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
一般式(1)又は一般式(2)で表されるモノマーとしては、ω-アミノカルボン酸又はラクタムが挙げられる。また、ハードセグメントを形成するポリアミドとしては、これらω-アミノカルボン酸又はラクタムの重縮合体、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、メタキシレンジアミン等の炭素数2~20の脂肪族ジアミン等のジアミン化合物を挙げることができる。
また、ジカルボン酸は、HOOC-(R3)m-COOH(R3:炭素数3~20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2~20の脂肪族ジカルボン酸を挙げることができる。
ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε-カプロラクタム、又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
ポリエステル系熱可塑性エラストマーとしては、例えば、少なくともポリエステルが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランとの共重合体等が挙げられる。
脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。
これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られるポリエステルブロック共重合体の弾性特性の観点から、ソフトセグメントを形成するポリマーとしては、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペート等が好ましい。
ポリスチレン系熱可塑性エラストマーとしては、例えば、少なくともポリスチレンがハードセグメントを形成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法等で得られるものが好ましく用いられ、具体的には、アニオンリビング重合を持つポリスチレンが挙げられる。また、ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3-ジメチル-ブタジエン)等が挙げられる。
また、ソフトセグメントを形成するポリマーの数平均分子量としては、5000~1000000が好ましく、10000~800000がより好ましく、30000~500000が更に好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との体積比(x:y)は、成形性の観点から、5:95~80:20が好ましく、10:90~70:30がより好ましい。
ポリスチレン系熱可塑性エラストマーとしては、例えば、スチレン-ブタジエン系共重合体[SBS(ポリスチレン-ポリ(ブチレン)ブロック-ポリスチレン)、SEBS(ポリスチレン-ポリ(エチレン/ブチレン)ブロック-ポリスチレン)]、スチレン-イソプレン共重合体(ポリスチレン-ポリイソプレンブロック-ポリスチレン)、スチレン-プロピレン系共重合体[SEP(ポリスチレン-(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン-ポリ(エチレン/プロピレン)ブロック-ポリスチレン)、SEEPS(ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)]等が挙げられる。
ポリウレタン系熱可塑性エラストマーとしては、例えば、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを形成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
ポリウレタン系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるポリウレタン系熱可塑性エラストマー(TPU)が挙げられる。ポリウレタン系熱可塑性エラストマーは、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
[式中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。]
これらは、単独で又は2種以上を組み合わせて用いることができる。
また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4-シクロヘキサンジイソシアネート、4,4-シクロヘキサンジイソシアネート等が挙げられる。さらに、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。
これらは、単独で又は2種以上を組み合わせて用いることができる。
また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,3-ジオール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール等が挙げられる。
さらに、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルサルファイド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシジフェニルメタン、ビスフェノールA、1,1-ジ(4-ヒドロキシフェニル)シクロヘキサン、1,2-ビス(4-ヒドロキシフェノキシ)エタン、1,4-ジヒドロキシナフタリン、2,6-ジヒドロキシナフタリン等が挙げられる。
これらは、単独で又は2種以上を組み合わせて用いることができる。
オレフィン系熱可塑性エラストマーとしては、例えば、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリオレフィン、他のポリオレフィン、ポリビニル化合物等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
また、エチレンとプロピレンといったように2種以上のオレフィン樹脂を組み合わせて用いてもよい。また、オレフィン系熱可塑性エラストマー中のオレフィン樹脂含有率は、50質量%以上100質量%以下が好ましい。
オレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。
「オレフィン系熱可塑性エラストマーを酸変性してなるもの」とは、オレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることをいう。
オレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることとしては、例えば、オレフィン系熱可塑性エラストマーに、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
酸性基を有する不飽和化合物としては、オレフィン系熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する不飽和化合物が好ましく、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
-ポリアミド系熱可塑性樹脂-
ポリアミド系熱可塑性樹脂としては、前述のポリアミド系熱可塑性エラストマーのハードセグメントを形成するポリアミドを挙げることができる。ポリアミド系熱可塑性樹脂としては、具体的には、ε-カプロラクタムを開環重縮合したポリアミド(アミド6)、ウンデカンラクタムを開環重縮合したポリアミド(アミド11)、ラウリルラクタムを開環重縮合したポリアミド(アミド12)、ジアミンと二塩基酸とを重縮合したポリアミド(アミド66)、メタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を例示することができる。
アミド6の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、1022B、1011FB等)を用いることができる。アミド11の市販品としては、例えば、アルケマ(株)製の「Rilsan B」シリーズを用いることができる。アミド12の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、3024U、3020U、3014U等)を用いることができる。アミド66の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、2020B、2015B等)を用いることができる。アミドMXの市販品としては、例えば、三菱ガス化学(株)製の「MXナイロン」シリーズ(例えば、S6001、S6021、S6011等)を用いることができる。
ポリエステル系熱可塑性樹脂としては、前述のポリエステル系熱可塑性エラストマーのハードセグメントを形成するポリエステルを挙げることができる。
ポリエステル系熱可塑性樹脂としては、具体的には、ポリ乳酸、ポリヒドロキシ-3-ブチル酪酸、ポリヒドロキシ-3-ヘキシル酪酸、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等の芳香族ポリエステルなどを例示することができる。これらの中でも、耐熱性及び加工性の観点から、ポリエステル系熱可塑性樹脂としては、ポリブチレンテレフタレートが好ましい。
オレフィン系熱可塑性樹脂としては、前述のオレフィン系熱可塑性エラストマーのハードセグメントを形成するポリオレフィンを挙げることができる。
オレフィン系熱可塑性樹脂としては、具体的には、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂等を例示することができる。これらの中でも、耐熱性及び加工性の点から、オレフィン系熱可塑性樹脂としては、ポリプロピレン系熱可塑性樹脂が好ましい。
ポリプロピレン系熱可塑性樹脂の具体例としては、プロピレンホモ重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-α-オレフィンブロック共重合体等が挙げられる。α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数3~20程度のα-オレフィン等が挙げられる。
被覆樹脂層は、樹脂(樹脂A、又は樹脂Aと他の樹脂との混合物)以外にも、他の成分を含んでもよい。他の成分としては、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。
被覆樹脂層の厚みは、特に限定されない。耐久性に優れる点や溶着性の観点から、20μm以上1000μm以下であることが好ましく、30μm以上700μm以下であることがより好ましい。
被覆樹脂層の厚みは、ビードワイヤーの長さ方向に対する垂直断面のビデオマイクロスコープ等の顕微鏡による拡大画像を任意の5箇所から取得し、得られた5個の拡大画像からそれぞれ測定される被覆樹脂層の最小厚み部分の厚さを測定し、その数平均値とする。
ビードフィラーは、少なくとも熱可塑性樹脂又は熱可塑性エラストマーである樹脂Bを含む。また、ビードフィラーに含まれる樹脂Bとしては、被覆樹脂層に含まれる樹脂Aと互いに樹脂の主鎖を構成する構成単位中に共通する骨格を有する樹脂が選択される。
なお、樹脂Bには、融点が175℃以上223℃以下である樹脂が用いられ、またビードフィラーの吸水率が3.5質量%以下となる樹脂を選択することが好ましい。
また、フィードフィラーに含ませることができる他の成分についても、前述の被覆樹脂層の説明欄において列挙した他の成分を挙げることができる。
接着剤層の材質は特に制限されず、タイヤのビード部において用いられる接着剤を用いることができる。
接着剤層が樹脂Cを含む場合、その含有率は接着剤層全体の50質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることがさらに好ましい。
ただし、接着剤層に含まれる樹脂Cとしては、極性官能基を有する熱可塑性樹脂又は極性官能基を有する熱可塑性エラストマー(以下、単に「極性官能基含有樹脂」とも称す)であることがより好ましい。
本発明では、接着剤層に極性官能基含有樹脂を含むことで、極性官能基による電荷の偏りによって、ビードワイヤーが金属ワイヤーである場合に、その表面に存在する水和した水酸基との間で相互作用が生じ、両者の間に引力をもたらしたり、錯体を形成することでビードワイヤー(金属ワイヤー)と接着剤層との高い接着性が得られるものと考えられる。
そして、接着剤層を介して被覆樹脂層を設けることで、ビードワイヤー(金属ワイヤー)とビードフィラーとの間の剛性の差を緩和することができるため、ビードワイヤーを備えたビード部材として、優れた接着耐久性を実現し得るものと推察される。
極性官能基を有する熱可塑性樹脂としては、例えば、極性官能基を有するポリエステル系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。
極性官能基を有する熱可塑性エラストマーとしては、例えば、極性官能基を有するポリエステル系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー等が挙げられる。
これらは単独で又は2種以上を組み合わせて用いてもよい。
なお、上記「無水物基」とは、2つのカルボキシ基からH2Oが取れた無水物状の基(下記(2-1)に示す無水物状の基、なおR21は単結合又は置換基を有していてもよいアルキレン基を表し、R22及びR23はそれぞれ独立に水素原子又は有機基(例えばアルキル基)を表す。)を指す。下記(2-1)に示す無水物基は、H2Oが与えられることで下記(2-2)に示す状態、つまり2つのカルボキシ基を有する状態となる。
これらの中でも、ビードワイヤーとの接着性の観点から、エポキシ基、カルボキシ基及びその無水物基、ヒドロキシ基、並びにアミノ基が好ましい。
また、極性官能基は、エポキシ基との反応性の観点から、カルボキシ基及びその無水物基、ヒドロキシ基、並びにアミノ基が好ましい。
ここで、極性官能基含有樹脂の合成方法について、具体的に説明する。
例えば、極性官能基を有するスチレン系エラストマーであれば、未変性のスチレン系エラストマーに極性官能基を導入することで得られる。具体的には、極性官能基としてエポキシ基を有するスチレン系エラストマーの場合、未変性のスチレン系エラストマーと、エポキシ化剤と、を必要に応じて溶媒及び触媒の存在下で反応させることで得られる。上記エポキシ化剤としては、例えば、過酸化水素、ターシャリブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等のハイドロパーオキサイド類;過ギ酸、過酢酸、過安息香酸、トリフルオロ過酢酸等の過酸類;等が挙げられる。
(A)飽和ポリエステル系熱可塑性エラストマー
飽和ポリエステル系熱可塑性エラストマーは、通常、ポリアルキレンエーテルグリコールセグメントを含有するソフトセグメントとポリエステルを含有するハードセグメントとからなる、ブロック共重合体である。
このようなポリエステル系熱可塑性エラストマーの市販品としては、三菱ケミカル株式会社製「プリマロイ」、東洋紡績株式会社製「ペルプレン」、東レ・デュポン株式会社製「ハイトレル」等が挙げられる。
不飽和カルボン酸又はその誘導体としては、例えば、アクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸等の不飽和カルボン酸;例えば、コハク酸2-オクテン-1-イル無水物、コハク酸2-ドデセン-1-イル無水物、コハク酸2-オクタデセン-1-イル無水物、マレイン酸無水物、2,3-ジメチルマレイン酸無水物、ブロモマレイン酸無水物、ジクロロマレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、1-ブテン-3,4-ジカルボン酸無水物、1-シクロペンテン-1,2-ジカルボン酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、exo-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物、endo-ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸無水物等の不飽和カルボン酸無水物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルへキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、グリシジルメタクリレート、マレイン酸ジメチル、マレイン酸(2-エチルへキシル)、2-ヒドロキシエチルメタクリレート等の不飽和カルボン酸エステル等が挙げられる。この中では、不飽和カルボン酸無水物が好適である。これらの不飽和結合を有する化合物は、変性すべきポリアルキレンエーテルグリコールセグメントを含有する共重合体や、変性条件に応じて適宜選択すればよく、また二種以上を併用してもよい。この不飽和結合を有する化合物は有機溶剤等に溶解して加えることもできる。
変性処理に際し、ラジカル反応を行うために用いられるラジカル発生剤としては、例えばt-ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、2,5-ジメチルへキサン-2,5-ジヒドロパーオキサイド、2,5-ジメチル-2,5-ビス(ターシャリーブチルオキシ)ヘキサン、3,5,5-トリメチルへキサノイルパーオキサイド、t-ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、ジクミルパーオキサイド、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、ジブチルパーオキサイド、メチルエチルケトンパーオキサイド、過酸化カリウム、過酸化水素等の有機及び無機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(イソブチルアミド)ジハライド、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、アゾジ-t-ブタン等のアゾ化合物、及びジクミル等の炭素ラジカル発生剤等が例示できる。これらのラジカル発生剤は、変性処理に用いるポリアルキレンエーテルグリコールセグメントを含有する飽和ポリエステル系熱可塑性エラストマーの種類や、不飽和カルボン酸又はその誘導体の種類や、変性条件に応じて適宜選択すればよく、また二種以上を併用してもよい。このラジカル発生剤は有機溶剤等に溶解して加えることもできる。また、接着性をさらに向上させるために、ラジカル発生剤だけでなく、変性助剤として、不飽和結合を有する化合物(下記(D))を併用することもできる。
不飽和結合を有する化合物とは、前記(B)ラジカル発生剤以外の炭素-炭素多重結合を有する化合物のことをいい、具体的には、スチレン、メチルスチレン、エチルスチレン、イソプロピルスチレン、フェニルスチレン、o-メチルスチレン、2,4-ジメチルスチレン、o-クロロスチレン、o-クロロメチルスチレン等のビニル芳香族単量体等が挙げられる。これらの配合により、変性効率の向上が期待できる。
接着剤層を形成するための接着剤には、極性基含有TPC以外にも、任意の成分を配合することができる。具体的には、樹脂成分、ゴム成分、タルク、炭酸カルシウム、マイカ、ガラス繊維等のフィラー、パラフィンオイル等の可塑剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、滑剤、防曇剤、アンチブロッキング剤、スリップ剤、架橋剤、架橋助剤、着色剤、難燃剤、分散剤、帯電防止剤、防菌剤、蛍光増白剤等の各種添加物を添加することができる。中でも、フェノール系、ホスファイト系、チオエーテル系、芳香族アミン系等の各種酸化防止剤の少なくとも一種を添加することが好ましい。
極性基含有TPCを構成する各成分の配合割合は、(A)飽和ポリエステル系熱可塑性エラストマー100質量部に対して、(B)不飽和カルボン酸又はその誘導体が、好ましくは0.01~30質量部、より好ましくは0.05~5質量部、更に好ましくは0.1~2質量部、特に好ましくは0.1~1質量部の配合比となるものであり、また(C)ラジカル発生剤が、好ましくは0.001~3質量部、より好ましくは0.005~0.5質量部、更に好ましくは0.01~0.2質量部、特に好ましくは0.01~0.1質量部の配合比となるものである。
[但し、A1786は、極性基含有TPCの厚さ20μmのフィルムについて測定された、1786cm-1のピーク強度であり、Astは、標準試料(ポリアルキレンエーテルグリコールセグメントの含有量が65質量%である飽和ポリエステル系エラストマー)の厚さ20μmのフィルムについて測定された、規準波数のピーク強度であり、rは、極性基含有TPC中のポリエステルセグメントのモル分率を、上記標準試料中のポリエステルセグメントのモル分率で除した値である。]
mr=(w1/e1)/[(w1/e1)+(w2/e2)]
極性基含有TPCの合成は、例えば、(A)飽和ポリエステル系熱可塑性エラストマーを、(C)ラジカル発生剤の存在下、(B)不飽和カルボン酸又はその誘導体で変性することで行われる。この際、成分(A)を溶融物とすると、成分(B)との反応がより効率的に可能となり、十分な変性が実現されるので好ましい。例えば、予備的に、非溶融状態の成分(A)に成分(B)を混合した上で、成分(A)を溶融して成分(B)と反応させる方法も好ましく用いることができる。
また、成分(A)に成分(B)を混合するには、十分な剪断応力を与えることのできる混練機を使用した、いわゆる溶融混練法を選択することが好ましい。溶融混練法に使用する混練機としては、ミキシングロール、シグマ型回転羽根付混練機、バンバリーミキサー、高速二軸連続ミキサー、一軸、二軸、多軸押出機型混練機等の通常の混練機から、任意のものを選ぶことができる。中でも、反応効率が高いことや製造コストが低いことから、二軸押出機が好ましい。溶融混練は、粉状又は粒状の成分(A)、成分(B)及び成分(C)、並びに、必要であれば、成分(D)、前記付加的配合材料(任意成分)として挙げた、その他の配合剤を、所定の配合割合にて、ヘンシェルミキサー、リボンブレンダー、V型ブレンダー等を用いて均一に混合した後、行うこともできる。各成分の混練の温度は、成分(A)の熱劣化分解や成分(C)の半減期温度を考慮し、100℃~300℃の範囲が好ましく、より好ましくは120℃~280℃の範囲、特に好ましくは150℃~250℃の範囲である。実用上、最適な混練温度は、成分(A)の融点より20℃高い温度から融点までの温度範囲である。さらに、各成分の混練順序及び方法は、特に限定されるものではなく、成分(A)、成分(B)及び成分(C)と、成分(D)等の付加的配合材料とを一括して混練する方法、成分(A)~成分(D)の内の一部を混練した後、付加的な配合材料を含めた残りの成分を混練する方法でもよい。ただし、成分(C)を配合する場合は、これを成分(B)及び成分(D)と、同時に添加することが接着性向上の点から好ましい。
・接着剤層の引張弾性率
接着剤層は被覆樹脂層よりも引張弾性率が高い層であることが好ましい。接着剤層の引張弾性率は、例えば、接着剤層の形成に用いる接着剤の種類、接着剤層の形成条件や熱履歴(例えば、加熱温度、加熱時間等)等によって制御することができる。
接着剤層の引張弾性率は、例えば下限値は、1MPa以上が好ましく、20MPa以上がより好ましく、50MPa以上がさらに好ましい。引張弾性率が上記下限値以上であることで、ビードワイヤーとの接着性能及びタイヤ耐久性に優れる。
また、接着剤層の引張弾性率の上限値は、乗り心地の観点から、1500MPa以下が好ましく、600MPa以下がより好ましく、400MPa以下がさらに好ましい。
なお、接着剤層の引張弾性率の測定は、前記被覆樹脂層の引張弾性率と同様の方法で行うことができる。
また、接着剤層の引張弾性率をE1とし、被覆樹脂層の引張弾性率をE2としたとき、E1/E2の値としては、例えば0.5以上10以下が挙げられ、0.7以上7以下が好ましく、0.7以上5以下がより好ましい。E1/E2の値が前記範囲であることにより、前記範囲よりも小さい場合に比べてハンドリング性に優れ、前記範囲よりも大きい場合に比べて走行時の耐久性に優れる。
接着剤層に含まれる樹脂Cの融点は、139℃以上225℃以下が好ましく、139℃以上220℃以下がより好ましい。
融点の下限値が上記の範囲であることで、タイヤ製造時の加熱(例えば加硫)に対する耐熱性に優れる。また、融点が上記範囲であることで、被覆樹脂層に含まれる樹脂Aとの間で近い融点とすることが容易となり、近い融点とすることでより優れた接着性が得られる。
なお、樹脂Cの融点の測定は、前記被覆樹脂層における樹脂Aの融点と同様の方法で行うことができる。
接着剤層の平均厚みは、特に制限されないが、走行時の乗り心地及びタイヤの耐久性の観点で、5μm~500μmであることが好ましく、20μm~150μmであることがより好ましく、20μm~100μmであることが更に好ましい。
次いで、本発明のタイヤ用ビード部材を一対のビード部に有する、本発明に係るタイヤについて説明する。
以下、本発明のタイヤの一実施形態として、ランフラットタイヤを例に挙げ、図面に基づき説明する。
図1には、第1の実施形態のタイヤ10のタイヤ幅方向に沿って切断した切断面の片側が示されている。なお、図中矢印TWはタイヤ10の幅方向(タイヤ幅方向)を示し、矢印TRはタイヤ10の径方向(タイヤ径方向)を示す。ここでいうタイヤ幅方向とは、タイヤ10の回転軸と平行な方向を指し、タイヤ軸方向ともいう。また、タイヤ径方向とは、タイヤ10の回転軸と直交する方向をいう。また、符号CLはタイヤ10の赤道(タイヤ赤道)を示している。
ビード部12には、ビードコア18からタイヤ径方向外側へカーカス22の外面22Oに沿って延びるビードフィラー20が埋設されている。第1の実施形態では、ビードフィラー20は、カーカス本体部22Aと折返し部分22Bとで囲まれた領域に配置されている。なお、カーカス22の外面22Oは、カーカス本体部22Aにおいてはタイヤ外側の面であり、折返し部分22Bにおいてはタイヤ内側の面である。また、第1の実施形態では、ビードフィラー20のタイヤ径方向外側の端部20Aがタイヤサイド部14に入り込んでいる。また、ビードフィラー20は、タイヤ径方向外側に向けて厚みが減少している。
ビードコア18は、図2に示されるように、並んで配置された複数のビードワイヤー1と、このビードワイヤー1を被覆し樹脂Aを含む被覆樹脂層3とを有する。
なお、上記構成において「並んで配置」とは、タイヤに適用する際に必要な長さに切断したビード部材中で、複数のビードワイヤー1同士が交差しない位置関係にあることを意味する。
図3の(A)は、ビードコア18の一部をビードワイヤー1の長さ方向に対して垂直に切断したときの断面を模式的に表す図である。図3(A)では、3本のビードワイヤー1に直に接するよう被覆樹脂層3が設けられている。また、1本のビードワイヤー1を熱溶着しながら、横、縦に段済みし、作製してもよい。
図3(B)に示すビードコア18の一部は、3本のビードワイヤー1の表面に接着剤層2がそれぞれ設けられ、さらにその表面に被覆樹脂層3が設けられている。
図3(C)に示すビードコア18の一部は、3本のビードワイヤー1を含むように連結した接着剤層2が設けられた態様であり、さらに連結した接着剤層2の表面に被覆樹脂層3が設けられている。
また、図2に示されるビードコア18は、図3(A)~(C)のいずれかに示される3本のビードワイヤー1と被覆樹脂層3と(図3(B)、(C)ではさらに接着剤層2と)が3層積層された形態となっている。ただし、ビードコア18は、1層で使用しても、2層以上を積層して使用してもよい。その場合、被覆樹脂間溶着することが好ましい。
さらに、ビードコア18が取り得る形態について図3(A)~(C)を挙げて説明したが、本発明はこの構成に限定されない。
タイヤサイド部14には、カーカス22のタイヤ幅方向内側にタイヤサイド部14を補強するサイド補強層の一例としてのサイド補強ゴム26が配設されている。このサイド補強ゴム26は、タイヤ10の内圧がパンクなどで減少した場合に車両及び乗員の重量を支えた状態で所定の距離を走行させるための補強ゴムである。
また、第1の実施形態では、サイド補強層の一例としてゴムを主成分とするサイド補強ゴム26を用いているが、本発明はこの構成に限定されず、サイド補強層を他の材料で形成してもよい。例えば、熱可塑性樹脂等を主成分とするサイド補強層を形成してもよい。なお、サイド補強ゴム26は、他にフィラー、短繊維、樹脂等の材料を含んでもよい。
図1に示されるタイヤ10は、主に弾性材料で構成される。つまり、ビード部12におけるカーカス22の周囲の領域、タイヤサイド部14におけるカーカス22のタイヤ幅方向外側の領域、サイド補強層(サイド補強ゴム26)、トレッド部16におけるベルト層24A、キャップ層24B及びレイヤー層24C以外の領域、等が弾性材料で構成される。
特に、図1に示されるタイヤ10においては、上記の各部がゴム材料で構成されたゴムタイヤであることが好ましい。
ゴム材料は、ゴム(ゴム成分)を少なくとも含んでいればよく、本発明の効果を損なわない範囲で、添加剤等の他の成分を含んでもよい。ただし、前記ゴム材料中におけるゴム(ゴム成分)の含有量は、ゴム材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。
上記天然ゴムとしては、シートゴムでもブロックゴムでもよく、RSS#1~#5の総てを用いることができる。
上記合成ゴムとしては、各種ジエン系合成ゴムやジエン系共重合体ゴム及び特殊ゴムや変性ゴム等を使用できる。具体的には、例えば、ポリブタジエン(BR)、ブタジエンと芳香族ビニル化合物との共重合体(例えばSBR、NBRなど)、ブタジエンと他のジエン系化合物との共重合体等のブタジエン系重合体;ポリイソプレン(IR)、イソプレンと芳香族ビニル化合物との共重合体、イソプレンと他のジエン系化合物との共重合体等のイソプレン系重合体;クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X-IIR);エチレン-プロピレン系共重合体ゴム(EPM)、エチレン-プロピレン-ジエン系共重合体ゴム(EPDM)及びこれらの任意のブレンド物等が挙げられる。
添加物としては、例えば、カーボンブラック等の補強材、充填剤、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等が挙げられ、これらを適宜配合することができる。
第1の実施形態のタイヤ10の製造方法としては、公知のタイヤ成形ドラムの外周に、ゴム材料からなるインナーライナー(不図示)、ビードコア18、ビードフィラー20、コードを弾性材料(ゴム材料、樹脂材料等)で被覆したカーカス22、弾性材料(ゴム材料、樹脂材料等)で形成されるタイヤサイド部14におけるカーカス22のタイヤ幅方向外側の領域、及びサイド補強ゴム26からなる未加硫のタイヤケースを形成する。
最後に、ベルト層24Aの外周面に、未加硫のトレッドを貼り付け、生タイヤが得られる。このようにして製造された生タイヤは、加硫成形モールドで加硫成形され、タイヤ10が完成する。
次いで、本発明に係るタイヤの別の実施形態について、図面に基づき説明する。
図4には、第2の実施形態のタイヤ110のタイヤ幅方向に沿って切断した切断面の片側が示されている。なお、図中矢印TWはタイヤ110の幅方向(タイヤ幅方向)を示し、矢印TRはタイヤ110の径方向(タイヤ径方向)を示す。
タイヤケース140(タイヤ骨格体)は、弾性材料で形成される。つまり、タイヤ骨格体としては、弾性材料としてのゴム材料で形成される態様(いわゆるゴムタイヤ用のタイヤ骨格体)、弾性材料として樹脂材料で形成される態様(いわゆる樹脂タイヤ用のタイヤ骨格体)等が挙げられる。
特に、図4に示されるタイヤ110においては、上記の各部が樹脂材料で構成された樹脂タイヤであることが好ましい。
樹脂材料は、樹脂(樹脂成分)を少なくとも含んでいればよく、本発明の効果を損なわない範囲で、添加剤等の他の成分を含んでもよい。ただし、前記樹脂材料中における樹脂(樹脂成分)の含有量は、樹脂材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。タイヤ骨格体は、例えば樹脂材料を用いて形成することができる。
熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。これらは単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、及びオレフィン系熱可塑性樹脂から選ばれる少なくとも1種が好ましく、ポリアミド系熱可塑性樹脂及びオレフィン系熱可塑性樹脂から選ばれる少なくとも1種が更に好ましい。
なお、走行時に必要とされる弾性、製造時の成形性等を考慮すると、タイヤ骨格体を形成する樹脂材料としては、熱可塑性樹脂及び熱可塑性エラストマーの少なくとも一方を用いることが好ましく、走行時の乗り心地の観点から、熱可塑性エラストマーを含むことがより好ましい。中でも、ポリアミド系熱可塑性エラストマー及びポリエステル系熱可塑性エラストマーの少なくとも一方を含むことがさらに好ましい。
弾性材料(ゴム材料又は樹脂材料)は、所望に応じて、ゴム又は樹脂以外の他の成分を含んでもよい。他の成分としては、例えば、樹脂、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等が挙げられる。
弾性材料として樹脂材料を用いる場合(つまり樹脂タイヤ用のタイヤ骨格体の場合)、樹脂材料に含まれる樹脂の融点は、例えば100℃~350℃程度が挙げられ、タイヤの耐久性及び生産性の観点から、100℃~250℃程度が好ましく、120℃~250℃が更に好ましい。
タイヤケース140の作製方法は、特に制限されない。例えば、タイヤケース140を赤道面(図4中のCLで示される面)で分割した状態のタイヤケース半体をそれぞれ射出成形法等により作製し、タイヤケース半体同士を赤道面で接合することで作製してもよい。
タイヤケース140のトレッド部116にベルト層124Aを形成する方法としては、例えば、タイヤケース140を回転させながらリールに巻き取ったワイヤー等の部材を巻き出し、ワイヤーをトレッド部116に所定の回数巻き付けてベルト層124Aを形成してもよい。なお、ワイヤーが樹脂で被覆されている場合、加熱及び加圧を行って被覆されている樹脂をトレッド部116に溶着させてもよい。
タイヤケース140のビード部112にビードフィラー120及びビードコア118を形成する方法としては、例えば、予め形成したビードフィラー120及びビードコア118用の円環状の部材を、公知の方法でビード部112に埋め込むことで形成してもよい。
<ビードコアの作製>
上述の第1の実施形態で示した図3(B)に示す態様のビードコアを作製した。
まず、ビードワイヤーとしてモノフィラメント(平均直径φ1.25mmのモノフィラメント、スチール製、強力:2700N、伸度:7%)を用い、このビードワイヤーに、加熱溶融した表1及び表2に示す接着樹脂(樹脂C)を付着させて接着樹脂層となる層を形成した。
ビードコアにおける接着樹脂層の厚み(最小部の平均厚み)は50μm、被覆樹脂層の厚み(最小部の平均厚み)は200μmであった。また、隣り合うビードワイヤー間の平均距離は200μmであった。
上述の第1の実施形態で示した図1及び図2に示す態様のビード部材(ビードコア及びビードフィラーからなる部材)を作製した。
予めビードフィラー形状を加工した金型に前記より得たビードコアをセットし、射出成形機にてビードフィラー用の樹脂(樹脂B)を射出することで、ビードコアの外周にビードフィラーが接するよう配置された構造を有するビード部材を作製した。なお、金型温度は80~110℃、成形温度は200~270℃とした。
上述の第1の実施形態で示した図1及び図2に示す態様のタイヤ(ランフラットタイヤ)を、前記より得たビード部材を一対のビード部に用いて作製した。
前記より得たビード部材、及びポリエチレンフタレート製プライコードからなるカーカスを準備し、これに天然ゴム(NR)とスチレンブタジエンゴム(SBR)との混合ゴム材料を用いたタイヤサイド部(カーカスのタイヤ幅方向外側の領域)、サイド補強ゴム、及びトレッド部、並びに撚り線のベルト層を用いて、生タイヤを作製した。
作製した生タイヤについて、比較例1~3、実施例1~9は150℃、25分、比較例4~5、実施例10、11は170℃、20分の条件で加熱(ゴムの加硫)を行った。
得られたタイヤは、タイヤサイズ225/40R18、トレッド部の厚み10mmであった。
被覆樹脂層(樹脂A)、ビードフィラー(樹脂B)、及び接着樹脂層(樹脂C)の融点は、示差走査熱量測定(Differential scanning calorimetry;DSC)により得られる曲線(DSC曲線)において、吸熱ピークが得られる温度を指す。融点の測定は、示差走査熱量計DSCを用いて、JIS K 7121:2012に準拠して行なった。測定は、TAインスツルメント(株)の「DSC Q100」を用いて、掃引速度10℃/minで行った。
なお、測定試料は、被覆樹脂層又はビードフィラーと同じ材料を用いて別途準備した。具体的には、射出成形機(日精樹脂工業製、NEX-50)にてシリンダー温度180℃~260℃、金型温度50℃~110℃で、JIS3号の形状を成形し測定試料とした。もしくは110mm×110mm、厚さt=2mmの平板を成形し、(株)ダンベル製、スーパーダンベル(登録商標)にてJIS3号形状に打ち抜いて測定試料を作製した。
詳細には、公称振り子エネルギー(ひょう量)を4J、ハンマー持上げ角度を150°の条件で、サンプルに衝突した後に戻った角度を測定することで、衝突前後の角度の差から消費されたエネルギー量(エネルギー吸収量)を算出した。
なお、測定試料は前記の成形条件にて、JIS K7139:2009のA1の形状で成形した。
空気入りタイヤとして、タイヤサイズが225/40R18、リムはタイヤサイズに対応する標準リム7.5J×18を準備し、1人の作業者に3回リム組み作業を実施させ、リム組み作業時における「割れ(ビード部材における割れ)」の発生の有無を判定した。
ISO規格に基づいた室内ドラム試験において、内圧0kPaで速度80km/hでランフラット走行させた。タイヤ故障または支持体故障により走行が不可能になるまでの距離を測定した。なお、300km走行しても故障が生じない場合は、その時点で試験終了とした。
A(○):100km以上走行可能
B(△):80km以上100km未満走行可能
C(×):80km未満で走行不可能
以下の方法により、ビード部の材料(前記引張弾性率の測定の際してビードフィラーと同じ材料を用いて作製した測定試料)に対して吸湿させ、吸湿前後での引張弾性率変化を測定した。
吸湿させる方法は、蒸留水中に測定試料が互いに接触しないようにし、室温(23℃)にて75日間浸漬を行った。
75日給水後における引張弾性率の測定も、前記同様、JIS K7113:1995に準拠して行った。詳細には、島津製作所社製、島津オートグラフAGS-J(5KN)を用い、引張速度を100mm/minに設定し、引張弾性率の測定を行った。ただし、JIS K7113:1995の「3.試験片の状態調整,試験温度及び湿度」に規定される、試験前の温度23+2℃、相対湿度(50±5)%での48時間以上の状態調節は実施せず、75日間の蒸留水浸漬後、すみやかに試験を実施した。
(接着樹脂層)
・PA66:東レ(株)製、ナイロン66、製品名「アミラン CM1017」、融点265℃
・QE060:三井化学社製、無水マレイン酸変性プロピレン、「アドマー QE060」、融点139℃
・QF500:三井化学社製、無水マレイン酸変性ポリプロピレン、「アドマー QF500」、融点165℃
・GQ730:三菱ケミカル社製、無水マレイン酸変性ポリエステル系熱可塑性エラストマー、「プリマロイ-AP GQ730」、融点200℃
・PA6:宇部興産社製、ナイロン6、製品名「UBE ナイロン 1013B」、融点225℃
・PA11:アルケマ社製、ナイロン11、製品名「BMNO TLD」、融点188℃
・PA12:宇部興産社製、ナイロン12、製品名「UBESTA 3024U」、融点178℃
・PA610:アルケマ社製、ナイロン610、製品名「Hiprolon 70NN」、融点222℃
・PA612:アルケマ社製、ナイロン612、製品名「Hiprolon 90NN」、融点215℃
・PA1010:アルケマ社製、ナイロン1010、製品名「Hiprolon200NN」、融点202℃
・PA1012:アルケマ社製、ナイロン1012、製品名「Hiprolon400NN」、融点190℃
・XPA9055:宇部興産社製、製品名「UBESTA XPA9055」、融点164℃
・XPA9068:宇部興産社製、製品名「UBESTA XPA9068」、融点175℃
・ハイトレル5557:東レ・デュポン社製、ポリエステル系熱可塑性エラストマー、「ハイトレル5557」、融点208℃
・ハイトレル6347:東レ・デュポン社製、ポリエステル系熱可塑性エラストマー、「ハイトレル6347」、融点215℃
・ハイトレル7247:東レ・デュポン社製、ポリエステル系熱可塑性エラストマー、「ハイトレル7247」、融点216℃
・PBT:東レ(株)製、ポリブチレンテレフタレート樹脂(PBT)、「トレコン1401X06」、融点224℃
2 接着剤層
3 被覆樹脂層
10 タイヤ(ランフラットタイヤ)
12 ビード部
14 タイヤサイド部
16 トレッド部
18 ビードコア
20、120 ビードフィラー
20A 端部
22 カーカス
22A 本体部
22B 折返し部分
22C 端部
22I 内面
22O 外面
26 サイド補強ゴム
26A 端部(トレッド部側の端部)
26B 端部(ビードコア側の端部)
30 標準リム
110 タイヤ
112 ビード部
114 タイヤサイド部
116 トレッド部
118 ビードコア
122 保護層
124A ベルト層
124B クッションゴム
130 トレッド
140 タイヤケース(タイヤ骨格体)
CL タイヤ赤道面
Q 中点
Claims (7)
- ビードワイヤー、及び前記ビードワイヤーを被覆し樹脂Aを含む被覆樹脂層を有するビードコアと、前記被覆樹脂層の少なくとも一部に接するよう配置され樹脂Bを含むビードフィラーと、を有するタイヤ用ビード部材であって、
前記樹脂Aは、ポリアミド系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂又はポリエステル系熱可塑性エラストマーであり、
前記樹脂Bは、ポリアミド系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂又はポリエステル系熱可塑性エラストマーであり、
前記樹脂A及び前記樹脂Bは、互いに樹脂の主鎖を構成する構成単位中に共通する骨格を有する同一の樹脂種であり、
前記被覆樹脂層中における前記樹脂Aの含有量が、前記被覆樹脂層の総量に対して、50質量%以上であり、
前記ビードフィラー中における前記樹脂Bの含有量が、前記ビードフィラーの総量に対して、50質量%以上であり、
前記樹脂A及び前記樹脂Bは、いずれも融点が175℃以上223℃以下であり、
前記被覆樹脂層及び前記ビードフィラーは、いずれも、吸水率が3.5質量%以下であり、シャルピー衝撃強さが5kJ/m 2 以上であり、引張弾性率が274MPa以上2000MPa以下である、タイヤ用ビード部材。 - 前記樹脂A及び前記樹脂Bの少なくとも一方が熱可塑性エラストマーである請求項1に記載のタイヤ用ビード部材。
- 前記樹脂A及び前記樹脂Bの少なくとも一方が、ポリアミド系熱可塑性エラストマー又はポリエステル系熱可塑性エラストマーである請求項2に記載のタイヤ用ビード部材。
- 前記ビードコアが、前記ビードワイヤーと前記被覆樹脂層との間に配置され樹脂Cを含む接着樹脂層を有する請求項1~請求項3のいずれか1項に記載のタイヤ用ビード部材。
- 前記樹脂Cが、極性官能基を有する熱可塑性樹脂又は極性官能基を有する熱可塑性エラストマーである請求項4に記載のタイヤ用ビード部材。
- 前記樹脂Cの融点が139℃以上220℃以下である請求項4又は請求項5に記載のタイヤ用ビード部材。
- 一対のビード部に、請求項1~請求項6のいずれか1項に記載のタイヤ用ビード部材を有するタイヤ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017196266A JP7020612B2 (ja) | 2017-10-06 | 2017-10-06 | タイヤ用ビード部材、及びタイヤ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017196266A JP7020612B2 (ja) | 2017-10-06 | 2017-10-06 | タイヤ用ビード部材、及びタイヤ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019069672A JP2019069672A (ja) | 2019-05-09 |
JP7020612B2 true JP7020612B2 (ja) | 2022-02-16 |
Family
ID=66440428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017196266A Active JP7020612B2 (ja) | 2017-10-06 | 2017-10-06 | タイヤ用ビード部材、及びタイヤ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7020612B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020203649A (ja) * | 2019-06-19 | 2020-12-24 | 株式会社ブリヂストン | タイヤ |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005047028A1 (ja) | 2003-11-17 | 2005-05-26 | Akihiro Yamamoto | 空気入りタイヤ及びその製造方法 |
JP2011235835A (ja) | 2010-05-13 | 2011-11-24 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
US20120234450A1 (en) | 2011-03-17 | 2012-09-20 | Ralf Mruk | Runflat tire with thermoplastic sidewall insert |
JP2013063743A (ja) | 2011-09-20 | 2013-04-11 | Bridgestone Corp | ゴム複合体及び空気入りタイヤ |
JP2017197176A (ja) | 2016-04-26 | 2017-11-02 | ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー | 軽量タイヤ |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2601293B1 (fr) * | 1986-07-09 | 1988-11-18 | Michelin & Cie | Tringle gainee pour enveloppes de pneumatiques; procede pour realiser cette tringle; enveloppes de pneumatiques comportant cette tringle. |
JP3695840B2 (ja) * | 1996-05-13 | 2005-09-14 | 横浜ゴム株式会社 | 空気入りタイヤ |
-
2017
- 2017-10-06 JP JP2017196266A patent/JP7020612B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005047028A1 (ja) | 2003-11-17 | 2005-05-26 | Akihiro Yamamoto | 空気入りタイヤ及びその製造方法 |
JP2011235835A (ja) | 2010-05-13 | 2011-11-24 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
US20120234450A1 (en) | 2011-03-17 | 2012-09-20 | Ralf Mruk | Runflat tire with thermoplastic sidewall insert |
JP2013063743A (ja) | 2011-09-20 | 2013-04-11 | Bridgestone Corp | ゴム複合体及び空気入りタイヤ |
JP2017197176A (ja) | 2016-04-26 | 2017-11-02 | ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー | 軽量タイヤ |
Also Published As
Publication number | Publication date |
---|---|
JP2019069672A (ja) | 2019-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6785193B2 (ja) | タイヤ用樹脂金属複合部材、及びタイヤ | |
JP6937088B2 (ja) | タイヤ用樹脂金属複合部材、及びタイヤ | |
JPWO2019230822A1 (ja) | タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ | |
US20200262253A1 (en) | Bead member for tire, tire, and method of producing bead member for tire | |
JP6903542B2 (ja) | タイヤ用ビード部材、及びタイヤ | |
US20200238649A1 (en) | Bead member for tire, tire, and method of producing bead member for tire | |
US11135875B2 (en) | Resin-metal composite member for tire, and tire | |
JP7020612B2 (ja) | タイヤ用ビード部材、及びタイヤ | |
JP6785195B2 (ja) | タイヤ用樹脂金属複合部材、及びタイヤ | |
JP6936688B2 (ja) | タイヤ用ビード部材、及びタイヤ | |
JPWO2019230821A1 (ja) | タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ | |
JP6785194B2 (ja) | タイヤ用樹脂金属複合部材、及びタイヤ | |
WO2021117419A1 (ja) | 樹脂組成物、樹脂金属複合部材及びタイヤ | |
JPWO2020067473A1 (ja) | タイヤ | |
JPWO2019225622A1 (ja) | タイヤ用ビード部材、及びタイヤ | |
JP2020062935A (ja) | タイヤ用ワイヤー樹脂複合部材、及びタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200701 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211008 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7020612 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |