JP7016522B2 - 次元データ低減を有するマシンビジョン - Google Patents
次元データ低減を有するマシンビジョン Download PDFInfo
- Publication number
- JP7016522B2 JP7016522B2 JP2017554580A JP2017554580A JP7016522B2 JP 7016522 B2 JP7016522 B2 JP 7016522B2 JP 2017554580 A JP2017554580 A JP 2017554580A JP 2017554580 A JP2017554580 A JP 2017554580A JP 7016522 B2 JP7016522 B2 JP 7016522B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- encoded
- encoded data
- retinal
- machine vision
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000009467 reduction Effects 0.000 title claims description 60
- 238000004422 calculation algorithm Methods 0.000 claims description 91
- 238000000034 method Methods 0.000 claims description 83
- 230000002207 retinal effect Effects 0.000 claims description 79
- 210000001525 retina Anatomy 0.000 claims description 57
- 238000012545 processing Methods 0.000 claims description 55
- 230000004256 retinal image Effects 0.000 claims description 41
- 238000012549 training Methods 0.000 claims description 38
- 230000008569 process Effects 0.000 claims description 29
- 230000009466 transformation Effects 0.000 claims description 17
- 239000013598 vector Substances 0.000 claims description 17
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims description 15
- 238000000844 transformation Methods 0.000 claims description 12
- 230000003278 mimic effect Effects 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000005055 memory storage Effects 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 description 39
- 230000000007 visual effect Effects 0.000 description 32
- 238000013527 convolutional neural network Methods 0.000 description 24
- 238000010304 firing Methods 0.000 description 15
- 238000001514 detection method Methods 0.000 description 10
- 241000282412 Homo Species 0.000 description 9
- 238000010801 machine learning Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 7
- 210000000887 face Anatomy 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 230000001815 facial effect Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000002591 computed tomography Methods 0.000 description 5
- 230000008451 emotion Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 208000003098 Ganglion Cysts Diseases 0.000 description 4
- 208000005400 Synovial Cyst Diseases 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000007781 pre-processing Methods 0.000 description 4
- 238000011946 reduction process Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 208000025174 PANDAS Diseases 0.000 description 3
- 208000021155 Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection Diseases 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 210000004709 eyebrow Anatomy 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 241000282693 Cercopithecidae Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 240000004718 Panda Species 0.000 description 2
- 235000016496 Panda oleosa Nutrition 0.000 description 2
- 230000036982 action potential Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000008921 facial expression Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 210000000245 forearm Anatomy 0.000 description 2
- 230000005021 gait Effects 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000037230 mobility Effects 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 210000003994 retinal ganglion cell Anatomy 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000001429 visible spectrum Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 241000669298 Pseudaulacaspis pentagona Species 0.000 description 1
- 241000238370 Sepia Species 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- JKRWZLOCPLZZEI-UHFFFAOYSA-N alpha-Trichloromethylbenzyl acetate Chemical compound CC(=O)OC(C(Cl)(Cl)Cl)C1=CC=CC=C1 JKRWZLOCPLZZEI-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000008906 neuronal response Effects 0.000 description 1
- 238000012015 optical character recognition Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/008—Artificial life, i.e. computing arrangements simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. based on robots replicating pets or humans in their appearance or behaviour
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/08—Devices or methods enabling eye-patients to replace direct visual perception by another kind of perception
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/103—Static body considered as a whole, e.g. static pedestrian or occupant recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/19—Sensors therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/193—Preprocessing; Feature extraction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Biophysics (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Ophthalmology & Optometry (AREA)
- Human Computer Interaction (AREA)
- Robotics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Prostheses (AREA)
Description
本出願は、米国特許法第119条に基づき、2015年4月20日に提出された米国仮特許出願第62/150,068号の優先権を主張し、同出願の全ての内容は、参照により本明細書に組み込まれる。本出願は、米国仮出願第61/527493号(2011年8月25日出願)、同第61/657406号(2012年6月8日出願)、同第61/308,681号(2010年2月26日出願)、同第61/359,188号(2010年6月28日出願)、同第61/378,793号(2010年8月31日出願)、同第61/382,280号(2010年9月13日出願)、同第13/230,488号(2011年9月12日出願)も参照により組み込む。本出願は、本明細書において「プロテーゼ出願」と呼ぶ国際特許出願第PCT/US2011/026526号(2011年2月28日出願)及び同第PCT/US2011/049188号(2011年8月25日出願)、本明細書において「マシンビジョン出願」と呼ぶ国際特許出願第PCT/US2012/052348号(2012年8月24日出願)も参照により組み込む。上記出願のそれぞれの内容は、そのそれぞれの全体が参照により組み込まれる。
Claims (14)
- 方法であって、
処理装置により、一連の未加工画像に対応する未加工画像データを受信することと、
前記未加工画像データを前記処理装置のエンコーダにより処理して、エンコードされたデータを生成することであって、前記エンコーダが、脊椎動物の網膜の少なくとも1つの網膜細胞の入力/出力変換を実質的に模倣する入力/出力変換により特徴付けられる、生成することと、
前記エンコードされたデータに次元低減アルゴリズムを適用することを含む、前記エンコードされたデータに前記プロセッサによる処理をして、次元低減されたエンコードされたデータを生成することであって、ここで、前記次元低減アルゴリズムが、前記エンコードされたデータ内に含まれる情報を圧縮するように構成されており、ここで、前記次元低減アルゴリズムは、前記エンコードされたデータの特徴のサブセットを特定のマシンビジョンタスクのために選択し、前記エンコードされたデータの他の特徴を前記特定のマシンビジョンタスクのために無視するものと、
前記特定のマシンビジョンタスクのための前記エンコードされたデータの特徴の前記サブセットから特徴部シグネチャデータを生成することであって、前記特徴部シグネチャデータは、横方向の動作の速度を含む速度成分を含み、前記特徴部シグネチャデータは、複数の網膜画像領域のそれぞれの領域に関連する特徴の前記サブセットの値を含む成分を有するベクトルを含み、前記ベクトルはAxNの成分を有し、Aはグリッド内の領域数に対応し、Nは横方向の動作の前記速度を含む前記速度成分が測定されたフレームペアの数に対応するものであることと、を含む、方法。 - 前記エンコードされたデータが、一連のエンコードされた網膜画像を含み、前記エンコードされたデータを処理することが、前記一連のエンコードされた網膜画像を処理して、前記エンコードされた網膜画像に基づいて前記特徴部シグネチャデータを生成することを含む、請求項1に記載の方法。
- 前記特徴部シグネチャデータが、前記複数の網膜画像領域に関する情報を含む、請求項2に記載の方法。
- 前記特徴部シグネチャデータが、前記複数の網膜画像領域のそれぞれに対応する動作データを含む、請求項3に記載の方法。
- 前記特徴部シグネチャデータが、前記複数の網膜画像領域のそれぞれに対応する光学フローデータを含む、請求項3に記載の方法。
- 前記エンコードされたデータを処理することが、訓練されたアルゴリズムを前記エンコードされたデータに適用することを含み、ここで、前記訓練されたアルゴリズムが、訓練データセットのエンコードされた訓練データで訓練され、前記エンコードされた訓練データが、脊椎動物の網膜の1つまたは複数の網膜細胞の入力/出力変換を実質的に模倣する入力/出力変換により特徴付けられる訓練エンコーダを使用してエンコードされたものである、請求項1に記載の方法。
- 前記訓練セットのエンコードされた訓練データが、仮想環境のエンコードされた画像を含み、前記未加工画像データが、現実環境の未加工画像を含む、請求項6に記載の方法。
- 前記訓練セットのエンコードされた訓練データが、第1の条件セットの下で取得された画像を含み、前記未加工画像データが、前記第1の条件セットとは異なる第2の条件セットの下で取得された未加工画像を含む、請求項6に記載の方法。
- 前記特定のマシンビジョンタスクを実行するためにマシンビジョンアルゴリズムを前記次元低減されたエンコードされたデータに適用することをさらに含む、請求項1に記載の方法。
- 前記エンコードされたデータを処理して次元低減されたエンコードされたデータを生成することが、前記未加工画像データを処理してエンコードされたデータを生成することの後に、かつ前記マシンビジョンアルゴリズムを前記次元低減されたエンコードされたデータに適用することの前に行われる、請求項9に記載の方法。
- 前記未加工画像データを処理してエンコードされたデータを生成することが、前記未加工画像データと比較して次元が低減されたエンコードされたデータを生成することを含み、前記エンコードされたデータを処理して前記次元低減されたエンコードされたデータを生成することが、前記未加工画像データと比較してすでに次元が低減された前記エンコードされたデータを追加的に圧縮することを含む、請求項1に記載の方法。
- 前記エンコードされたデータに含まれる情報の量が、前記対応する未加工画像データと比較して少なくとも約二分の一に圧縮され、前記次元低減されたエンコードされたデータが、前記対応するエンコードされたデータと比較して少なくとも約二分の一に圧縮される、請求項11に記載の方法。
- 装置であって、
未加工画像データを記憶するように構成された少なくとも1つのメモリ記憶装置と、
前記メモリに作動可能に連結された少なくとも1つのプロセッサであって、
一連の未加工画像に対応する未加工画像データを受信し、
脊椎動物の網膜の少なくとも1つの網膜細胞の入力/出力変換を実質的に模倣する入力/出力変換を使用して前記未加工画像データを処理してエンコードされたデータを生成し、
次元低減アルゴリズムを前記エンコードされたデータに適用することにより前記エンコードされたデータを処理して次元低減されたエンコードされたデータを生成し、前記次元低減アルゴリズムが、前記エンコードされたデータに含まれる情報の量を圧縮するように構成され、ここで、前記次元低減アルゴリズムは、前記エンコードされたデータの特徴のサブセットを特定のマシンビジョンタスクのために選択し、前記エンコードされたデータの他の特徴を前記特定のマシンビジョンタスクのために無視するものであり、
前記特定のマシンビジョンタスクのための前記エンコードされたデータの特徴の前記サブセットから特徴部シグネチャデータを生成し、前記特徴部シグネチャデータは、横方向の動作の速度を含む速度成分を含み、前記特徴部シグネチャデータは、複数の網膜画像領域のそれぞれの領域に関連する特徴の前記サブセットの値を含む成分を有するベクトルを含み、前記ベクトルはAxNの成分を有し、Aはグリッド内の領域数に対応し、Nは横方向の動作の前記速度を含む前記速度成分が測定されたフレームペアの数に対応するものである、ようにプログラムされた、少なくとも1つのプロセッサと、を備えた装置。 - 前記少なくとも1つのプロセッサに作動可能に連結されたロボット装置であって、前記未加工画像データを生成するように構成された少なくとも1つの画像センサを備えた、ロボット装置、をさらに備えた、請求項13に記載の装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562150068P | 2015-04-20 | 2015-04-20 | |
US62/150,068 | 2015-04-20 | ||
PCT/US2016/028406 WO2016172188A1 (en) | 2015-04-20 | 2016-04-20 | Machine vision with dimensional data reduction |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021019858A Division JP2021073627A (ja) | 2015-04-20 | 2021-02-10 | 次元データ低減を有するマシンビジョン |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018514036A JP2018514036A (ja) | 2018-05-31 |
JP2018514036A5 JP2018514036A5 (ja) | 2019-05-30 |
JP7016522B2 true JP7016522B2 (ja) | 2022-02-07 |
Family
ID=57144451
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017554580A Active JP7016522B2 (ja) | 2015-04-20 | 2016-04-20 | 次元データ低減を有するマシンビジョン |
JP2021019858A Pending JP2021073627A (ja) | 2015-04-20 | 2021-02-10 | 次元データ低減を有するマシンビジョン |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021019858A Pending JP2021073627A (ja) | 2015-04-20 | 2021-02-10 | 次元データ低減を有するマシンビジョン |
Country Status (8)
Country | Link |
---|---|
US (2) | US10515269B2 (ja) |
EP (1) | EP3291780A4 (ja) |
JP (2) | JP7016522B2 (ja) |
KR (1) | KR102489987B1 (ja) |
CN (2) | CN107624061B (ja) |
HK (1) | HK1250003A1 (ja) |
IL (1) | IL255128B (ja) |
WO (1) | WO2016172188A1 (ja) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102404791B1 (ko) * | 2017-03-30 | 2022-06-02 | 삼성전자주식회사 | 입력 영상에 포함된 객체를 인식하는 디바이스 및 방법 |
US11080533B2 (en) * | 2017-05-01 | 2021-08-03 | Sensormatic Electronics, LLC | Surveillance system with human behavior prediction by human action recognition |
US11209890B2 (en) * | 2017-07-25 | 2021-12-28 | Hewlett-Packard Development Company, L.P. | Determining user presence based on sensed distance |
US10860034B1 (en) | 2017-09-27 | 2020-12-08 | Apple Inc. | Barrier detection |
EP3725074A1 (en) | 2017-12-14 | 2020-10-21 | InterDigital VC Holdings, Inc. | Texture-based partitioning decisions for video compression |
US10489943B2 (en) | 2018-02-28 | 2019-11-26 | General Electric Company | System and method for sparse image reconstruction |
KR102177655B1 (ko) * | 2018-11-14 | 2020-11-11 | 이병섭 | Mvs 기반의 무인항공기를 갖춘 객체 추적 시스템 |
CN113382673A (zh) * | 2018-12-06 | 2021-09-10 | 先进欧氏解决方案有限责任公司 | 用于使用术后测量值的人工晶状体选择的装置和方法 |
EP3895058A1 (en) * | 2018-12-14 | 2021-10-20 | Xovis AG | Method and arrangement for determining a group of persons to be considered |
EP3754449A4 (en) * | 2018-12-26 | 2021-09-29 | Huawei Technologies Co., Ltd. | VEHICLE ORDERING PROCESS, ASSOCIATED DEVICE, AND COMPUTER STORAGE MEDIA |
CN110929793A (zh) * | 2019-11-27 | 2020-03-27 | 谢国宇 | 用于生态环境监测的时空域模型建模方法及系统 |
US11687778B2 (en) | 2020-01-06 | 2023-06-27 | The Research Foundation For The State University Of New York | Fakecatcher: detection of synthetic portrait videos using biological signals |
GB202007545D0 (en) * | 2020-05-20 | 2020-07-01 | Univ Ulster | Improvements in and relating to image classification using retinal ganglion cell modelling |
CN112451857A (zh) * | 2020-12-10 | 2021-03-09 | 深圳先进技术研究院 | 视网膜神经节细胞激活状态的判别方法、存储介质和设备 |
US20220398699A1 (en) * | 2021-06-14 | 2022-12-15 | Electronics And Telecommunications Research Institute | Image processing method and apparatus for machine vision |
EP4404570A1 (en) * | 2021-09-17 | 2024-07-24 | Samsung Electronics Co., Ltd. | Device and method for encoding and decoding image using ai |
CN116366852A (zh) * | 2021-12-28 | 2023-06-30 | 中国电信股份有限公司 | 面向机器视觉任务的视频编解码方法、装置、设备及介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014524630A (ja) | 2011-08-25 | 2014-09-22 | コーネル ユニヴァーシティー | 機械視覚のための網膜符号化器 |
JP5852969B2 (ja) | 2010-02-26 | 2016-02-03 | コーネル ユニヴァーシティー | 人工網膜 |
Family Cites Families (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5103306A (en) | 1990-03-28 | 1992-04-07 | Transitions Research Corporation | Digital image compression employing a resolution gradient |
JP2809954B2 (ja) | 1992-03-25 | 1998-10-15 | 三菱電機株式会社 | 画像感知および処理のための装置および方法 |
ATE208514T1 (de) | 1993-08-26 | 2001-11-15 | Univ California | Neuronales netzwerk-topographische sensorische organe und verfahren |
US5856152A (en) | 1994-10-28 | 1999-01-05 | The Trustees Of The University Of Pennsylvania | Hybrid adenovirus-AAV vector and methods of use therefor |
US5974159A (en) | 1996-03-29 | 1999-10-26 | Sarnoff Corporation | Method and apparatus for assessing the visibility of differences between two image sequences |
US5836996A (en) | 1996-12-30 | 1998-11-17 | Doorish; John F. | Artificial retina |
DE19707046A1 (de) | 1997-02-21 | 1998-08-27 | Rolf Prof Dr Ing Eckmiller | Lernfähiger "Active Vision" Implant Encoder |
EP0969896B1 (de) | 1997-02-21 | 2006-10-25 | Intelligent Aquisition, LLC | Lernfähiger sensomotorischer encoder für neuroprothesen |
WO1998048027A2 (en) | 1997-04-21 | 1998-10-29 | University Of Florida | Materials and methods for treatment of retinal diseases |
US6458157B1 (en) | 1997-08-04 | 2002-10-01 | Suaning Gregg Joergen | Retinal stimulator |
US6971066B2 (en) | 1997-08-18 | 2005-11-29 | National Instruments Corporation | System and method for deploying a graphical program on an image acquisition device |
AU775245B2 (en) | 1998-09-17 | 2004-07-22 | Catholic University Nijmegen | Methods for treatment of degenerative retinal diseases |
US6165192A (en) | 1999-01-05 | 2000-12-26 | Second Sight, Llc | Method and apparatus for intraocular retinal tack inserter |
EP1864690A3 (en) | 1999-03-24 | 2008-01-02 | Second Sight Medical Products, Inc. | Logarithmic light intensifier for use with photoreceptorbased implanted retinal prosthetics and those prosthetics |
JP5021119B2 (ja) | 1999-03-24 | 2012-09-05 | セカンド サイト メディカル プロダクツ インコーポレイテッド | 色覚回復用の網膜の人工色補装具 |
US7186560B2 (en) | 1999-09-21 | 2007-03-06 | Rutgers, The State University Of New Jersey | High level expression of immunogenic proteins in the plastids of higher plants |
US8019428B2 (en) | 2000-05-26 | 2011-09-13 | Second Sight Medical Products, Inc. | Video processing methods for improving visual acuity and/or perceived image resolution |
CA2410512A1 (en) | 2000-06-09 | 2001-12-13 | University Of Florida Research Foundation, Inc. | Recombinant aav vectors for gene therapy of obesity |
US6970745B2 (en) | 2000-08-09 | 2005-11-29 | The United States Of America As Represented By The Secretary Of The Navy | Microelectronic stimulator array for stimulating nerve tissue |
US6647297B2 (en) | 2000-08-09 | 2003-11-11 | The United States Of America As Represented By The Secretary Of The Navy | Permanent retinal implant device |
US7149586B2 (en) | 2002-03-28 | 2006-12-12 | Second Sight Medical Products, Inc. | Variable pitch electrode array |
EP1381276A4 (en) | 2001-04-13 | 2005-02-02 | Univ Pennsylvania | METHOD FOR TREATMENT OR DEVELOPMENT SLUDGE DEGRADATION |
WO2002085452A1 (en) | 2001-04-24 | 2002-10-31 | Neurodan A/S | Functional electrical therapy system (fets) |
EP1383577A2 (en) | 2001-05-03 | 2004-01-28 | Universite Catholique De Louvain | Vision rehabilitation method and device |
US6801655B2 (en) | 2001-05-10 | 2004-10-05 | The United States Of America As Represented By The Secretary Of The Navy | Spatial image processor |
US9143706B2 (en) | 2001-06-06 | 2015-09-22 | Andrew Zador | Imaging system utilizing spatial image oscillation |
US6675164B2 (en) * | 2001-06-08 | 2004-01-06 | The Regents Of The University Of California | Parallel object-oriented data mining system |
US7209788B2 (en) | 2001-10-29 | 2007-04-24 | Duke University | Closed loop brain machine interface |
US20030105409A1 (en) | 2001-11-14 | 2003-06-05 | Donoghue John Philip | Neurological signal decoding |
AU2002346611A1 (en) | 2001-12-03 | 2003-06-17 | The Regents Of The University Of California | Expression of glial-derived neurotrophic factor for treatment of diseases of the eye |
US20060193830A1 (en) | 2002-03-20 | 2006-08-31 | Hauswirth William W | Raav vector compositions and methods for the treatment of choroidal neovascularization |
US7203356B2 (en) * | 2002-04-11 | 2007-04-10 | Canesta, Inc. | Subject segmentation and tracking using 3D sensing technology for video compression in multimedia applications |
AU2003231230A1 (en) | 2002-05-01 | 2003-11-17 | University Of Florida Research Foundation, Inc. | Improved raav expression systems and methods for enhancing transduction of mammalian neural cells |
US20070015238A1 (en) | 2002-06-05 | 2007-01-18 | Snyder Richard O | Production of pseudotyped recombinant AAV virions |
WO2004028635A1 (en) | 2002-09-27 | 2004-04-08 | Novartis Ag | Ocular gene therapy |
KR100506533B1 (ko) | 2003-01-11 | 2005-08-05 | 삼성전자주식회사 | 이동로봇 및 그에 따른 자율주행 시스템 및 방법 |
US7311723B2 (en) | 2003-07-11 | 2007-12-25 | University Of Washington | Scanning laser device and methods of use |
ITMI20031449A1 (it) * | 2003-07-15 | 2005-01-16 | St Microelectronics Srl | Metodo per classificare una immagine digitale |
ATE429949T1 (de) | 2004-02-05 | 2009-05-15 | Motorika Ltd | Neuromuskuläre stimulation |
WO2005080573A1 (en) | 2004-02-20 | 2005-09-01 | Universite De Montreal | Recombinant viral vectors to promote neuronal cell survival and uses thereof |
CN1770177A (zh) * | 2004-06-28 | 2006-05-10 | 微软公司 | 编码高密度几何符号集的系统和方法 |
US7751585B2 (en) | 2004-06-28 | 2010-07-06 | Microsoft Corporation | System and method for encoding high density geometric symbol set |
KR20070037488A (ko) | 2004-07-13 | 2007-04-04 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | 공간 및 snr 화상 압축 방법 |
US8103352B2 (en) | 2004-12-03 | 2012-01-24 | Second Sight Medical Products, Inc. | Mimicking neural coding in retinal ganglion cells with short pulse electrical stimulation |
US8520944B2 (en) | 2004-12-24 | 2013-08-27 | Mario Cimbalista, JR. | Method for improving visualization of infrared images |
US7643694B2 (en) * | 2004-12-31 | 2010-01-05 | Zoran Corporation | Method and apparatus for processing a compressed image in an order other than the order in which it was compressed |
WO2006089155A2 (en) | 2005-02-16 | 2006-08-24 | Second Sight Medical Products, Inc. | Fitting of brightness in a visual prosthesis |
US9278159B2 (en) | 2005-07-22 | 2016-03-08 | The Board Of Trustees Of The Leland Stanford Junior University | Light-activated cation channel and uses thereof |
US20070050046A1 (en) | 2005-07-25 | 2007-03-01 | Georgopoulos Apostolos P | Methods for generating a signal indicative of an intended movement |
CN101867820B (zh) * | 2005-09-20 | 2013-05-29 | 三菱电机株式会社 | 图像解码装置以及图像解码方法 |
US8956396B1 (en) | 2005-10-24 | 2015-02-17 | Lockheed Martin Corporation | Eye-tracking visual prosthetic and method |
US20070198066A1 (en) | 2005-11-03 | 2007-08-23 | Greenberg Robert J | Method and apparatus for visual neural stimulation |
JP4572175B2 (ja) | 2006-04-25 | 2010-10-27 | 日本電信電話株式会社 | 非定常映像検出装置,非定常映像検出方法及びその方法を実装したプログラム |
US8298818B2 (en) | 2006-04-28 | 2012-10-30 | University Of Florida Research Foundation, Inc. | Self-complementary adeno-associated virus having a truncated CMV-chicken β-actin promoter |
US8470790B2 (en) | 2006-05-04 | 2013-06-25 | Wayne State University | Restoration of visual responses by in vivo delivery of rhodopsin nucleic acids |
US8197539B2 (en) | 2006-05-05 | 2012-06-12 | University Of Southern California | Intraocular camera for retinal prostheses |
US8311634B2 (en) | 2006-06-16 | 2012-11-13 | Second Sight Medical Products Inc. | Apparatus and method for electrical stimulation of human retina |
GB0612242D0 (en) | 2006-06-21 | 2006-08-02 | Imp Innovations Ltd | Retinal prosthetic devices |
EP1891976A1 (en) | 2006-08-23 | 2008-02-27 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute for Biomedical Research | Use of light sensitive genes |
CN101523414A (zh) * | 2006-09-28 | 2009-09-02 | 皇家飞利浦电子股份有限公司 | 图像的部分的内容检测 |
CN100481123C (zh) | 2007-03-08 | 2009-04-22 | 上海交通大学 | 采用时空滤波器的视网膜编码器实现方法 |
EP2134415B1 (en) | 2007-03-08 | 2017-05-03 | Second Sight Medical Products, Inc. | Flexible circuit electrode array |
US9799098B2 (en) | 2007-04-24 | 2017-10-24 | Massachusetts Institute Of Technology | Method and apparatus for image processing |
EP1995685A3 (en) | 2007-05-21 | 2012-08-01 | Biotronik CRM Patent AG | Medical device for monitoring biological signal |
US20090105786A1 (en) | 2007-10-22 | 2009-04-23 | University Of Washington | Method and device for strengthening synaptic connections |
US8195302B2 (en) | 2007-11-07 | 2012-06-05 | Second Sight Medical Products, Inc. | Video processing unit for a visual prosthetic apparatus |
US8195303B2 (en) | 2007-11-07 | 2012-06-05 | Second Sight Medical Products, Inc. | Video processing unit for a visual prosthetic apparatus |
WO2009072123A2 (en) | 2007-12-06 | 2009-06-11 | Technion Research & Development Foundation Ltd. | Method and system for optical stimulation of neurons |
US8204325B2 (en) * | 2008-01-18 | 2012-06-19 | Sharp Laboratories Of America, Inc. | Systems and methods for texture synthesis for video coding with side information |
CN100586403C (zh) | 2008-03-06 | 2010-02-03 | 上海交通大学 | 视觉假体图像处理装置及方法 |
US8098938B1 (en) * | 2008-03-17 | 2012-01-17 | Google Inc. | Systems and methods for descriptor vector computation |
EP2262410B1 (en) | 2008-04-08 | 2015-05-27 | National University of Singapore | Retinal image analysis systems and method |
CA2762118A1 (en) | 2008-05-20 | 2010-01-28 | Eos Neuroscience, Inc. | Vectors for delivery of light-sensitive proteins and methods of use |
US20100016732A1 (en) | 2008-07-17 | 2010-01-21 | Lockheed Martin Corporation | Apparatus and method for neural-signal capture to drive neuroprostheses or control bodily function |
EP2320830A4 (en) | 2008-08-07 | 2012-02-01 | Massachusetts Inst Technology | CODING FOR SEA PROSTHESES |
CN101336856B (zh) | 2008-08-08 | 2010-06-02 | 西安电子科技大学 | 辅助视觉系统的信息获取与传递方法 |
CN101393789A (zh) | 2008-11-04 | 2009-03-25 | 江苏圣安电缆有限公司 | 交联聚乙烯绝缘电力电缆内气体的排除方法 |
US8179452B2 (en) * | 2008-12-31 | 2012-05-15 | Lg Electronics Inc. | Method and apparatus for generating compressed file, and terminal comprising the apparatus |
US8108147B1 (en) | 2009-02-06 | 2012-01-31 | The United States Of America As Represented By The Secretary Of The Navy | Apparatus and method for automatic omni-directional visual motion-based collision avoidance |
US8744588B2 (en) | 2009-05-07 | 2014-06-03 | Hani Midani | Method and system for connecting an impaired nervous system to a muscle or a group of muscles based on template matching and intelligent end points |
JP5052569B2 (ja) * | 2009-06-25 | 2012-10-17 | シャープ株式会社 | 画像圧縮装置、画像圧縮方法、画像伸張装置、画像伸張方法、画像形成装置、コンピュータプログラム及び記録媒体 |
US20110213266A1 (en) | 2010-03-01 | 2011-09-01 | Williams Justin C | Closed Loop Neural Activity Triggered Rehabilitation Device And Method |
US8467623B2 (en) | 2010-03-26 | 2013-06-18 | Brain Corporation | Invariant pulse latency coding systems and methods systems and methods |
US9311593B2 (en) | 2010-03-26 | 2016-04-12 | Brain Corporation | Apparatus and methods for polychronous encoding and multiplexing in neuronal prosthetic devices |
US20110307079A1 (en) | 2010-04-29 | 2011-12-15 | Board Of Trustees Of Michigan State University, The | Multiscale intra-cortical neural interface system |
US8527056B2 (en) | 2010-04-30 | 2013-09-03 | Second Sight Medical Products, Inc. | Encoding of size and brightness of percepts in a visual prosthesis |
US20110293189A1 (en) * | 2010-05-28 | 2011-12-01 | Microsoft Corporation | Facial Analysis Techniques |
BR112013004964A2 (pt) | 2010-08-31 | 2017-05-23 | Univ Cornell | aparelho protético para recuperar ou melhorar a visão de um indivíduo em necessidade do mesmo |
US9302103B1 (en) | 2010-09-10 | 2016-04-05 | Cornell University | Neurological prosthesis |
US20120123293A1 (en) | 2010-11-11 | 2012-05-17 | IINN, Inc. | Motor nerve root stimulation |
CN102393960A (zh) * | 2011-06-29 | 2012-03-28 | 南京大学 | 一种图像的局部特征描述方法 |
WO2013096574A1 (en) | 2011-12-20 | 2013-06-27 | The Johns Hopkins University | Artifact control and miniaturization of the safe direct current stimulator for neural prostheses |
WO2013130946A1 (en) * | 2012-03-01 | 2013-09-06 | Sys-Tech Solutions, Inc. | Unique identification information from marked features |
CZ304893B6 (cs) | 2012-06-20 | 2015-01-07 | Miloslav Hering | Kolečková brusle |
CN102968632A (zh) * | 2012-10-15 | 2013-03-13 | 北京大学 | 获取图像的紧凑全局特征描述子的方法及图像检索方法 |
EP2965288A4 (en) * | 2013-03-08 | 2016-07-27 | Intel Corp | IMAGE ENCODING TECHNIQUES BASED ON AREA OF INTEREST |
US9773155B2 (en) * | 2014-10-14 | 2017-09-26 | Microsoft Technology Licensing, Llc | Depth from time of flight camera |
-
2016
- 2016-04-20 EP EP16783749.1A patent/EP3291780A4/en active Pending
- 2016-04-20 CN CN201680032611.1A patent/CN107624061B/zh active Active
- 2016-04-20 US US15/567,407 patent/US10515269B2/en active Active
- 2016-04-20 CN CN202110002964.XA patent/CN112842690B/zh active Active
- 2016-04-20 KR KR1020177033316A patent/KR102489987B1/ko active IP Right Grant
- 2016-04-20 JP JP2017554580A patent/JP7016522B2/ja active Active
- 2016-04-20 WO PCT/US2016/028406 patent/WO2016172188A1/en active Application Filing
-
2017
- 2017-10-18 IL IL255128A patent/IL255128B/en unknown
-
2018
- 2018-07-20 HK HK18109456.8A patent/HK1250003A1/zh unknown
-
2019
- 2019-12-20 US US16/724,145 patent/US11430263B2/en active Active
-
2021
- 2021-02-10 JP JP2021019858A patent/JP2021073627A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5852969B2 (ja) | 2010-02-26 | 2016-02-03 | コーネル ユニヴァーシティー | 人工網膜 |
JP2014524630A (ja) | 2011-08-25 | 2014-09-22 | コーネル ユニヴァーシティー | 機械視覚のための網膜符号化器 |
Also Published As
Publication number | Publication date |
---|---|
KR102489987B1 (ko) | 2023-01-17 |
CN107624061A (zh) | 2018-01-23 |
IL255128B (en) | 2022-04-01 |
IL255128A0 (en) | 2017-12-31 |
CN107624061B (zh) | 2021-01-22 |
US10515269B2 (en) | 2019-12-24 |
CN112842690A (zh) | 2021-05-28 |
JP2021073627A (ja) | 2021-05-13 |
EP3291780A4 (en) | 2019-01-23 |
EP3291780A1 (en) | 2018-03-14 |
CN112842690B (zh) | 2023-10-17 |
WO2016172188A1 (en) | 2016-10-27 |
US20200143138A1 (en) | 2020-05-07 |
US20180089493A1 (en) | 2018-03-29 |
US11430263B2 (en) | 2022-08-30 |
HK1250003A1 (zh) | 2018-11-23 |
KR20170139087A (ko) | 2017-12-18 |
JP2018514036A (ja) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7016522B2 (ja) | 次元データ低減を有するマシンビジョン | |
CN110622169A (zh) | 用于视频中的动作识别的神经网络系统 | |
WO2015143173A2 (en) | Methods and apparatus for autonomous robotic control | |
JP2005044330A (ja) | 弱仮説生成装置及び方法、学習装置及び方法、検出装置及び方法、表情学習装置及び方法、表情認識装置及び方法、並びにロボット装置 | |
JP2014524630A5 (ja) | ||
Avola et al. | 3D hand pose and shape estimation from RGB images for keypoint-based hand gesture recognition | |
Abed et al. | Python-based Raspberry Pi for hand gesture recognition | |
Sabbaghi et al. | Learning of gestures by imitation using a monocular vision system on a humanoid robot | |
Zhang et al. | Ochid-fi: Occlusion-robust hand pose estimation in 3d via rf-vision | |
Anjaneya et al. | MACHINE LEARNING APPROACH TO THE CLASSIFICATION AND IDENTIFICATION OF HAND GESTURE RECOGNITION USING PYTHON | |
Heinrich et al. | Continuous convolutional object tracking in developmental robot scenarios | |
CN113887373B (zh) | 基于城市智慧体育的并行融合网络的姿态识别方法和系统 | |
Gonzales et al. | Designing a Lightweight Edge-Guided Convolutional Neural Network for Segmenting Mirrors and Reflective Surfaces | |
Luís et al. | Human activity recognition for indoor robotics: A deep learning based approach using a human detection stage | |
Wang et al. | Research and Design of Human Behavior Recognition Method in Industrial Production Based on Depth Image | |
Nguyen et al. | Classification and temporal localization for human-human interactions | |
Flynn | Machine learning applied to object recognition in robot search and rescue systems | |
JP6814374B2 (ja) | 検出方法、検出プログラム及び検出装置 | |
Bansal et al. | Hand Gesture Recognition Using Machine Learning Technique | |
Rui et al. | DLW-YOLO: Improved YOLO for Student Behaviour Recognition | |
Mazhar | Vision-based human gestures recognition for human-robot interaction | |
Bouzegza et al. | OHON4D: optimised histogram of 4D normals for human behaviour recognition in depth sequences | |
Pulakurthi et al. | Enhancing human action recognition with GAN-based data augmentation | |
Puglisi et al. | Increased frame rate for Crowd Counting in Enclosed Spaces using GANs. | |
Rajasri | REAL-TIME OBJECT TRACKING USING ARTIFICIAL INTELLIGENCE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190419 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200928 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20201012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210210 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210210 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210222 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210225 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20210312 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20210318 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20211018 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20211129 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220104 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220119 |