JP7009650B2 - フォトニックデバイス、フォトニックデバイスの動作方法、及びフォトニックデバイスの製造方法 - Google Patents

フォトニックデバイス、フォトニックデバイスの動作方法、及びフォトニックデバイスの製造方法 Download PDF

Info

Publication number
JP7009650B2
JP7009650B2 JP2020555810A JP2020555810A JP7009650B2 JP 7009650 B2 JP7009650 B2 JP 7009650B2 JP 2020555810 A JP2020555810 A JP 2020555810A JP 2020555810 A JP2020555810 A JP 2020555810A JP 7009650 B2 JP7009650 B2 JP 7009650B2
Authority
JP
Japan
Prior art keywords
membrane
photonic
optical
photonic device
photonic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020555810A
Other languages
English (en)
Other versions
JP2021521436A (ja
Inventor
ホフリヒター、ジェンズ
Original Assignee
アムス インターナショナル エージー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アムス インターナショナル エージー filed Critical アムス インターナショナル エージー
Publication of JP2021521436A publication Critical patent/JP2021521436A/ja
Application granted granted Critical
Publication of JP7009650B2 publication Critical patent/JP7009650B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0076Transmitting or indicating the displacement of flexible diaphragms using photoelectric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12159Interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Measuring Fluid Pressure (AREA)

Description

本発明は、フォトニックデバイス、フォトニックデバイスの動作方法、及びフォトニックデバイスの製造方法に関する。
本発明の別の態様は、相補型金属酸化膜半導体(CMOS)技術、例えば、CMOS技術で製造された電気回路及び光電子回路に関する。具体的には、本発明で提示する概念は、圧力センサ又は音響センサ、例えばマイクロフォンに関する。より詳細には、本発明で提示する概念は、消費者市場向けのモバイル機器への組み込みに適した微小電気機械システム(MEMS)マイクロフォンに関する。
現在、市販のマイクロフォン及び圧力センサの多くは電子的である。実際、性能及び価格に関しては、例えば光センサよりもずっと魅力的である。光マイクロフォンは優れたノイズ性能及びダイナミックレンジを提供するが、光マイクロフォンの展開は、これまで、フォトニック統合経路が無いことと、それによる個々の部品の大型の部品表(BOM)により妨げられている。電子的な解決方法は、しばしば、配線の後端内の2以上の金属レベル内に形成され得る容量センサを使用する。幾つかの解決方法は、MEMSセンサをチップ上に完全に統合しようとしているが、別の方法は、MEMSセンサを特定用途向け集積回路(ASIC)から分離することである。これは、より費用的効果が高いが、ノイズ性能を制限する。
これまでのところ、実現可能な統合経路が存在しないため、光学的方法は様々な別々の部品を使用している。従って、光学的解決方法は、性能が優れているにもかかわらず普及しておらず、ニッチ市場のみを対象としている。従って、これまでのところ、光マイクロフォン及び圧力センサは、複数の光学部品を含み、複雑な組立スキームに頼っているため、部品表及びシステムコスト全体が比較的大規模になっている。
本発明の目的は、上述の問題を克服するためのフォトニックデバイス、フォトニックデバイスの動作方法、及びフォトニックデバイスの製造方法を提供することである。詳細には、本発明の目的は、費用対効果が高く、高感度なフォトニックデバイス、フォトニックデバイスの製造、及びフォトニックデバイスの動作を可能にする統合経路を提供することである。
これらの目的は、独立請求項の発明主題により達成される。さらなる展開及び実施形態は、従属請求項に記載されている。
任意の一実施形態に関して以下に説明するいずれの特徴も、別途明示的に記載されていない限り、単独で、又は、以下に説明するその他の特徴と組み合わせて用いられることができ、また、その他の任意の実施形態の1以上の複数の特徴と組み合わせて、或いは、その他の任意の実施形態の任意の組合せで用いられ得ることを理解されたい。また、以下に記載されていない均等物及び変更もまた、添付の特許請求の範囲で定義されるような、フォトニックデバイス、フォトニックデバイスの動作方法、及び、フォトニックデバイスの製造方法の範囲から逸脱せずに用いられ得る。
以下の説明は、音響センサ、例えばマイクロフォン及び圧力センサの分野における改善された概念に関する。改善された概念は、フォトニックデバイス、フォトニックデバイスの動作方法、及びフォトニックデバイスの製造方法を提供する。前記フォトニックデバイスは、特殊なタイプの光学マイクロフォン又は圧力センサと見なされ得る。例えば、前記フォトニックデバイスは、メンブレンの撓みが検出されるのではなく、光学材料特性の変化が検出されるという意味において、光学的というよりもむしろフォトニック的である。これは、フォトニック構造を前記メンブレンに結合することにより達成され得て、前記フォトニック構造は、音波又は圧力が前記メンブレンに加えられたときに前記メンブレンと共に撓む。このようにして、前記フォトニック構造の光学特性の変化が、前記メンブレンに作用する前記音波又は圧力に関連付けられ得る。具体的には、本発明に提示するフォトニックデバイスは、前記メンブレンの撓みではなく、材料内のひずみを検出することを可能にする。前記フォトニックデバイス上に、前記メンブレンが圧力又は音圧により曲げられたときに引張又はひずみを受ける領域が存在し得る。従って、本発明に提示する概念は、フォトニック構造を用いて前記メンブレンの正確な運動を検出することを可能にする。
フォトニック構造はフォトニックデバイスに完全に組み込まれることができ、それにより、フォトニック圧力センサ及びマイクロフォンのための、これまでには欠けていた統合経路を提供できる。さらに、光センサを、同一基板内に、同一デバイス内にも配置できる。これは、780nm~950nmの波長範囲の赤色光又は近赤外光(NIR)で動作する場合に好都合である。特に、850nm又は940nmで動作する場合、シリコンフォトダイオードを同一基板内に組み込むことができる。また、前記波長範囲で動作するガリウムヒ素(GaAs)から作られたレーザなどの光源が、かなり安価であり、広く入手可能である。
別の実施形態において、デバイスは、遠赤外線波長範囲、例えば、約1310nm又は約1550nmでも動作され得て、この場合、例えば、InPベースのレーザ源及びゲルマニウムベースのフォトダイオードを使用できる。
光をフォトニックデバイスに結合することは、光カプラ、例えば、垂直結合のための格子カプラ又はその他のエッジカプラ、例えば断熱カプラなどにより実現され得る。
少なくとも1つの実施形態において、フォトニックデバイスは、半導体基板、感圧メンブレン、及びフォトニック構造を備えている。前記感圧メンブレンは、前記基板内に又は前記基板上に配置されている。前記フォトニック構造は、少なくとも部分的に前記メンブレンに結合されている。前記フォトニック構造は、前記メンブレンに加えられる圧力により誘起される変形に応じて光学特性を変化させるように構成されている。
動作中、圧力が前記感圧メンブレンに加えられる。前記圧力は、例えば、音波により誘起され得る。そして、前記メンブレンは、加えられた圧力下で撓み、そして同時にフォトニック構造の少なくとも一部が撓む。なぜなら、前記フォトニック構造がメンブレンに結合されているからである。その結果、前記フォトニック構造はその光学特性を前記変形に応じて変化させる。
本発明に提示されるフォトニックデバイスは、光マイクロフォン又は光圧力センサとして使用され得る。例えば、光が、音響的に活性のメンブレン内にガイドされ得る。また、共振器が、前記音響的に活性のメンブレン間に形成されるのではなく、前記メンブレン内に形成される。音波により前記メンブレンが撓み、前記メンブレンの領域が、ある程度の応力又はひずみを受ける。材料の光学特性はひずみに依存し得るため、前記撓みを、例えば、実効屈折率から推測できる。例えば、前記メンブレンを変位させることにより、屈折率が光学パラメータとして変化され得る。
既存のマイクロフォンは、電気マイクロフォン又は光マイクロフォンである。例えば、既存の光マイクロフォンは、メンブレンの撓みを、外部基準点とメンブレンとの間に形成された外部共振器構造の伸びの変化を利用して検出する。これとは異なり、本発明に提示されるフォトニックデバイスは、前記メンブレンの撓みを、光学特性、例えば誘発されたひずみ及び屈折率の変化を測定することにより利用する。従って、光は、前記メンブレン内にガイドされることができ、前記メンブレンに垂直に当てられた上で反射されるのではない。
本発明に提示される概念は、実行可能で費用対効果の高い光マイクロフォン又は圧力センサを形成することを特徴とする。これは、フォトニック統合技術を活用し、且つ、大量製造方法、例えば、相補型金属酸化膜半導体(CMOS)の製造方法を用いることにより行われる。例えば、850nm(並びに940nm、1310nm及び1550nm)で動作するシリコンフォトダイオード、及び窒化ケイ素導波路を使用できる。また、追加のコンポーネント、例えば、アナログ増幅器フロントエンドを前記フォトニックデバイスに組み込むことができる。さらに、デジタル機能を前記デバイスに追加できる。前記メンブレンは、ドライエッチング技術、例えばスルーシリコンビア(TSV)プロセスで使用されるような技術を用いて形成され得る。しかし、マイクロマシニング技術を用いてもよい(例えば、TMAH(水酸化テトラメチルアンモニウム水溶液)、KOH(水酸化カリウム)を用いたウェットエッチング、電気めっき、表面マイクロマシニングなど)。
本発明に提示される概念は、費用対効果に加えて、検出経路と光基準経路との両方を、同一の統合されたフォトニックデバイス内に、例えば、同一の基板に配置できるという利点を有する。これとは対照的に、その他の解決方法では、空洞が検出メンブレンと検出要素の外部の外部点との間に形成される。従って、温度変化などの外部の影響により性能が制限される場合がある。
1Pa(パスカル)以下のノイズ等価圧力を有する静的圧力差が検出され得る。さらに、分解能を、より最新の共振器構造、例えば、カスケードマッハ・ツェンダー干渉計、CMZI、又は、結合された共振器光導波路、CROWを使用することにより改善できる。フォームファクタに関しては、本発明が提示される概念は、高さがほぼ1mm未満の非常に浅いパッケージの作成を可能にする。なぜなら、前記空洞を垂直方向ではなく横方向に形成できるからである。
本発明に提示される前記フォトニックデバイスは、環境検出アプリケーションに適しているだけでなく、一般的な音響センサにも適している。本発明のデバイスは、モバイルデバイスに組み込まれるのに好適な光マイクロフォンとして使用され得る。前記アプリケーションは、多くの別々の光学部品をCMOSプロセスに統合できるため、高性能のミニチュア光マイクロフォンを低価格で製造するのに役立つ。一般的に、この方法を圧力センサにも使用できる。また、材料の応力又はひずみを測定するために使用することもできる。
少なくとも1つの実施形態において、前記フォトニック構造は前記メンブレンの懸架メンブレン領域に結合される。これは、前記メンブレンに加えられる圧力により誘起される変形が、フォトニック構造をもまた変形させるように実現される。
少なくとも1つの実施形態において、前記フォトニック構造は、少なくとも1つの光カプラ及び少なくとも1つの導波路を備えている。前記少なくとも1つの光カプラは、前記少なくとも1つの導波路に光を入力及び/又は出力するように配置されている。前記少なくとも1つの導波路は、前記メンブレンに加えられた圧力により誘起される変形の関数として変化する屈折率を有するように構成されている。
少なくとも1つの実施形態において、前記少なくとも1つの光カプラは、垂直結合のための格子カプラ、エッチングカプラ、及び/又は断熱カプラのうちの少なくとも1つを含む。
少なくとも1つの実施形態において、前記少なくとも1つの導波路は、コヒーレント受信機又は干渉計のうちの少なくとも1つを含む。
少なくとも1つの実施形態において、前記少なくとも1つの導波路は干渉計として実装され、測定ブランチ及び基準ブランチを含む。前記測定ブランチは測定セクションを含み、当該測定セクションは検出アームを形成し、且つ、少なくとも部分的に前記メンブレンに重なっている。前記基準ブランチは、基準アームを形成している基準セクションを含む。一般的に、前記基準セクションは、前記メンブレン又は感圧性の懸架メンブレン領域に重なっていない。
動作中、前記干渉計は共通の光源からの光を使用し得る。前記測定ブランチ及び前記基準ブランチに沿って移動する場合、前記光は、前記ブランチに関連する異なる光学特性の影響を受け得る。例えば、屈折率の変化により、前記測定ブランチを移動する光の位相が変化され得る。異なるブランチを移動する光は重畳され得る。重畳された光の干渉特性により、例えば強度を導波路の尺度として使用できるため、メンブレンの撓みの尺度として使用できる。
少なくとも1つの実施形態において、前記測定ブランチ及び前記基準ブランチは、マッハ・ツェンダー干渉計又はカスケードマッハ・ツェンダー干渉計として配置される。
少なくとも1つの実施形態において、前記測定ブランチ及び前記基準ブランチは、リング共振器又はレーストラック共振器干渉計として配置される。
少なくとも1つの実施形態において、前記フォトニックデバイスは、さらに、少なくとも1つの光カプラを用いて前記フォトニック構造に結合された光センサを含む。
少なくとも1つの実施形態において、前記フォトニックデバイスは、さらに、少なくとも1つの光カプラを用いて前記フォトニック構造に結合された光源を含む。
少なくとも1つの実施形態において、フォトニックデバイスの動作方法が、感圧メンブレンを含むフォトニックデバイスを使用する。前記メンブレンは基板内に又は基板上に配置されている。フォトニック構造が少なくとも部分的に前記メンブレンに結合されている。この方法は、メンブレンに圧力を加えて前記フォトニック構造の光学特性の変化を検出するステップを含む。前記検出は、前記メンブレンに加えられた圧力により誘起される変形に依存する。
少なくとも1つの実施形態において、前記方法は、光源により光を放出するステップをさらに含む。前記放出された光は、光カプラにより前記フォトニック構造の入力側に結合される。そして光は、前記フォトニック構造の出力側にて別の光カプラを介して出力結合される。例えば、前記フォトニック構造に沿って光は前記入力側と前記出力側の間を移動する。最後に、出力側からの光が光センサにより検出される。
少なくとも1つの実施形態において、前記フォトニック構造は、前記メンブレンに結合された少なくとも1つの導波路を含む。当該導波路は、屈折率を有するように構成され、当該屈折率は、前記メンブレンに加えられた圧力によりもたらされた変形の関数として変化する。前記光センサは、少なくとも1つの導波路の屈折率に応じた光強度の変化を検出する。
少なくとも1つの実施形態において、フォトニックデバイスの製造方法が、半導体基板を設けるステップと、前記基板内に又は前記基板上に感圧メンブレンを配置するステップとを含む。前記フォトニック構造は、少なくとも部分的に前記メンブレンに結合されている。前記フォトニック構造は、前記メンブレンに加えた圧力により生じる変形に応じて光学特性を変化させるように構成されている。
少なくとも1つの実施形態において、前記半導体基板はシリコンから作製され、前記フォトニック構造は、二酸化ケイ素、窒化ケイ素、又はこれらの任意の組合せから作製される。
フォトニックデバイスのさらなる動作方法及びフォトニックデバイスの製造方法の実現形態は、前記フォトニックデバイスの様々な実現形態及び実施形態から容易に導出され、またその逆もあり得る。
上述の概念を、以下に図面を参照しつつ例示的な実施形態を提示して、さらに詳細に説明する。
以下の例示的な実施形態及び図面において、類似の又は同一の要素の各々に同一の参照番号が付され得る。しかし、図面に示されている要素及びこれらの相互の寸法関係は、正確な縮尺であると見なされるべきではない。むしろ、個々の要素、例えば、層、部品、領域は、より良好な説明又は理解の向上を可能にするために強調されている場合がある。
フォトニックデバイスの一実施形態の断面図である。 フォトニックデバイスの別の実施形態の断面図である。 フォトニックデバイスの別の実施形態の断面図である。 フォトニックデバイスの別の実施形態の断面図である。 メンブレンの変形を示す概略図である。 フォトニックデバイスの一実施形態の概略上面図である。 フォトニックデバイス用の干渉計の実施形態の概略上面図である。 フォトニックデバイス用の干渉計の実施形態の別の概略上面図である。
図1は、フォトニックデバイスの一実施形態の断面を示している。フォトニックデバイスは、基板10、メンブレン20、及びフォトニック構造30を含む。基板10は、例えばシリコンを含み、フォトニックデバイスの部品を機械的に支持し且つ電気的に接続するためのキャリアとして機能する。これは、例えば、導電性トラック、パッド及びその他の特徴物を設けることにより行われる。例えば、基板10は、プリント回路基板(PCB)を含んでおり、パッドを基板10の底部側(図示せず)のパッケージリードに電気接続させる。電気接続部、例えばワイヤボンド又はスルーシリコンビアを設けて、フォトニックデバイスの電気部品を基板10(例えば基板10の裏側)に電気接続させ得る。
メンブレン20は基板10上に配置され、感圧性であるように作成されている。凹部21又は空洞が基板10内に設けられて、メンブレンに圧力が加えられたときにメンブレンが移動又は変形することを可能にしている。この特定の実施形態において、メンブレンは配線層の後端22内に配置されている。配線層の後端は半導体層を構成しており、半導体層にて、個々のデバイス、例えば、トランジスタ、コンデンサ、抵抗器などが、基板10により提供された配線に相互接続され得る。
フォトニック構造30はメンブレン内又はメンブレンの上に配置されている。フォトニック構造は、必ずしもそのプロファイル全体に沿ってメンブレンに接続されているとは限らない。むしろ、フォトニック構造の少なくとも一部がメンブレンに結合されている。また、フォトニック構造は、少なくとも1つの光カプラ(光結合器)31及び少なくとも1つの導波路32を含む。例えば、図示されているように、導波路の少なくとも一部が、懸架メンブレン領域23の内部又はその上に配置されている。光カプラは、光が配線層の後端22及び/又は基板10並びに導波路に入出力されるために配置されている。この実施形態において、フォトニック構造は、窒化ケイ素、二酸化ケイ素、又はこれらの任意の組合せからなる。
光カプラ31は、例えば、格子カプラ、エッジカプラ、逆テーパー又は断熱カプラを含む。典型的には、光カプラ31は、フォトニックデバイスに関連付けられた(例えば、フォトニックデバイスに組み込まれるか、又は外部コンポーネントとしてフォトニックデバイスに電子的に接続された)光源により放出される光を受け取るように調整される。
導波路32は、構造が、例えば圧力下で変形されたときに特徴的に変化する光学特性を有する構造物と見なされ得る。変形は、応力及びひずみ、例えば、引張ひずみ及び圧縮ひずみの結果であり得る。このような変形は、導波路の屈折率を変化させ得る。従って、屈折率は、圧力下で変化し得る光学特性の1つである。導波路は、メンブレン20又は配線層の後端22内に設けられ得て、例えば、限られた厚さ内で表面に構成されるか、又はその表面と面一にされ得る。また、導波路を、メンブレン20の表面上又は配線層の後端22上に例えば、表面から突出させて設けることもできる。導波路は、例えば、共振器又は干渉計を含む。
図1に示されているフォトニックデバイスに追加の電子部品を補完できる。例えば、光源40をフォトニックデバイスに組み込むか、又は外部コンポーネントとしてデバイスに電子接続できる。例えば、光源は、基板10又は配線層の後端22上に配置されて電気接続され得て、例えばPCBに接続され得る。光源は、レーザダイオード、例えばVCSEL又はVECSEL、スーパールミネッセントダイオード、SLEDなどを含み得る。これらのタイプのレーザは、特定の波長、たとえば電磁スペクトルの紫外線部分、可視部分、又は赤外線部分で発光するように構成されている。例えば、垂直共振器面発光レーザ(VCSEL)又は垂直外部共振器面発光レーザ(VECSEL)が、主に赤外線領域、例えば940nmで発光する。
さらに、フォトニックデバイスは、光センサ41も備えてもよい。光センサ41は、フォトニックデバイスに組み込まれることができ、又は外部コンポーネントとしてフォトニックデバイスに電子的に接続され得る。光センサは、例えば、フォトダイオード又はフォトダイオードのアレイを含む。
さらに、追加の電子部品は、制御論理、状態機械、マイクロプロセッサなどを含み得る。これらもまた、追加のコンポーネント、例えば、アナログ-デジタル変換器、アナログフロントエンド又はデジタルフロントエンド、増幅器を含み得て、これらのコンポーネントは、フォトニックデバイス、例えば基板10に組み込まれ、且つ、プリント回路基板に相互接続されて、フォトニックデバイスの個々のコンポーネントへの電気通信を提供し得る。追加の電子コンポーネントをフォトニックデバイスに実装することにより、本質的に低ノイズで高速動作という利点が得られる。
図2は、フォトニックデバイスの別の実施形態の断面図である。この実施形態は、図1に示した実施形態に基づいている。しかし、メンブレン20が変更されており、メンブレン20は、配線層の後端22により構成されている。配線の後端の上に配置された窒化ケイ素層を使用する代わりに、配線の後端の間又は内部に配置された窒化ケイ素層が用いられている。例えば、シャロートレンチアイソレーション(STI)において、プロセスシリサイドブロック層が使用され得る。これらの窒化ケイ素層を使用することは、追加の窒化ケイ素の堆積又はパターニングを行わなくてよいという利点を有する。基板除去プロセスのみが、フォトニック構造を含むメンブレンの取り外しのために必要であろう。
図3は、フォトニックデバイスの別の実施形態の断面図である。この実施形態は、図1に示した実施形態に基づいている。さらに、光源40及び光センサ41が図示されている。接着剤又は接着層50が、メンブレン及びフォトニック構造30の上に配置されている。実際には、フォトニック構造30は、接着剤又は接着層50に部分的又は完全に埋め込まれている。光源40及び光センサ41の両方が、接着剤又は接着層50の上に配置されている。図中に示されている矢印は、光がフォトニックデバイスを通って伝搬するための可能な光路を示している。
図4は、フォトニックデバイスの別の実施形態の断面図である。この実施形態は、図3に示した実施形態に基づいている。しかし、光センサ41も、フォトニックデバイス内に、例えば、同一の基板又はダイ内に組み込まれ得る。これは、目的の用途が赤色光から850nm付近の近赤外光を扱う場合に好都合であり、シリコンなどの基板が、前記波長のための透過ウィンドウを有する。図示されている矢印は、光がフォトニックデバイスを通って伝搬するための可能な光路を示している。
図3及び図4に図示されている、光がフォトニックデバイスを通って伝搬する光路は、それぞれ、フォトニックデバイスの可能な動作モードを示すものであり得る。光は、光源40、例えばレーザにより出射されて、光カプラ31を介してフォトニック構造30に結合される。光は、導波路に結合されたときに、導波路32に沿って移動し、最終的に、別の光カプラ31を介して出力結合される。そして、このようにして出力結合された光が、最終的に、光センサ41、例えばフォトダイオードにより検出され得る。
導波路の少なくとも一部は、懸架メンブレン領域23内又はその上に配置される。実際、導波路32とメンブレン20とは少なくともこの領域で結合されており、フォトニック構造を感圧性にしている。換言すれば、フォトニック構造は、圧力がメンブレンに加えられているときに音響的に活性であり、そのときメンブレン及びフォトニック構造が変位される。例えば、音波がメンブレンを撓ませ、メンブレンの層が応力又はひずみを受ける。メンブレンとフォトニック構造との結合により、応力又はひずみがフォトニック構造にも誘起される。材料の光学特性はひずみに依存することが多いため、メンブレンの撓みを、例えば導波路の実効屈折率から推測できる。すなわち、メンブレンを変位させることにより屈折率が変化する。
図5は、メンブレンの変形を示す概略図である。この図は、メンブレン及び導波路の2つの状態(a)及び(b)を示している。状態(a)において、メンブレンは、加えられた圧力下で上向きに曲げられる。導波路がメンブレンに結合されているため、導波路上に領域33が存在し、領域33は、メンブレンが上向きに曲げられたときに引張ひずみを受ける。また、導波路上に、圧縮ひずみを受ける領域34も存在し得る。状態(b)において、メンブレンは、加えられた圧力下で下向きに曲げられる。同一の領域33及び領域34が、それぞれ圧縮ひずみ及び引張ひずみを受ける。誘起されたひずみは材料特性の変化をもたらし、これが、例えば屈折率の変化として検出され得る。このように、本発明に提示する概念は、メンブレンの伸長ではなく、光学パラメータの変化の検出を利用する。フォトニック構造におけるこれらの変化は正確に検出され得て、従って、メンブレンの正確な運動の検出を可能にする。
図6は、フォトニックデバイスの一実施形態の概略上面図である。図6は、メンブレン20が、基板10の上にディスク状の幾何学的形状で実装されている様子を示す。フォトニック構造30が、導波路31を含む本質的に矩形の層、例えば、配線層の後端22として示されている。フォトニック構造は、図示されているように、少なくとも懸架メンブレン領域23においてメンブレンと重なり、且つメンブレンに結合されている。導波路は、光キャビティ(光共振器)37を形成するとみなされ得る2つのブランチ35,36を含む。上述したように、導波路は、メンブレン20内若しくは配線層の後端22内に、又は、メンブレン20の表面上又は配線層の後端22上に設けられ得る。さらに、図6は、光源40(例えばレーザ)、光源とフォトニック構造とを接続している第1光カプラ31、及び、フォトニック構造を光センサ41(例えばフォトダイオード)に接続している第2光カプラ31を示している。フォトニックデバイスは、例えば、図3及び図4に示されるように実装され得る。
動作中、音響信号(図中に矢印として示されている)をメンブレン20に加えることが可能である。メンブレン20は、感圧性であるため、音響信号に対して高感度となる。少なくともその一部がメンブレン領域23に重なっているフォトニック構造30は、メンブレン20に結合しているため音響信号に対して高感度となる。光は、光源40により出射され、第1光カプラ31を介して導波路30に結合される。
光キャビティ37を形成しているとみなし得る2つのブランチ35,36を、干渉計の測定ブランチ35及び基準ブランチ36として配置し得る。例えば、光がフォトニック構造に結合されたならば、第1部分が基準ブランチ36に沿って移動し、第2部分が測定ブランチ35に沿って移動する。測定ブランチ35の少なくとも一部がメンブレンに沿って延在するため、音響的に高感度な光路を形成している。しかし、基準ブランチ36を、メンブレン上又はメンブレン内に、懸架メンブレン領域23から分離するように配置することもできるため、音響的に高感度な光路を形成しない場合も考えられる。
上述したように、圧力により誘起された(例えば、メンブレンに加えられた音波による)メンブレン20の変形が、材料特性の変化、例えば導波路の屈折率の変化を生じさせる。これらの変化は、光の第1部分と第2部分との間の、すなわち、干渉計の測定ブランチ35と基準ブランチ36とを移動する光の位相シフトに現れる。次いで、2つのブランチからの光は組み合わされて、第2光カプラ31(第1カプラと異なり得る)を用いて光センサ41に結合される。2つのブランチを組み合わせると、光の1部分と第2部分とが重なる。導波路32にて誘起された位相シフトに応じて、光の干渉が特徴的な強度をもたらす。実際、音響信号における変化が光の変調として現れ、これを光の強度の変化として検出できる。オンチップ干渉計を形成することで、大きい信号スイングを得て、例えば光源の相対強度ノイズの抑制を補助でき、それにより良好なノイズ性能を達成できる。
図7は、フォトニックデバイス用の干渉計の実施形態の概略上面図である。干渉計をフォトニックデバイスに組み込むための可能な方法の1つは、測定ブランチ35及び基準ブランチ36を、マッハ・ツェンダー構成で、或いは、マッハ・ツェンダー干渉計(MZI)として配置することである。
この構成において、測定ブランチ35と基準ブランチ36とは分離されており、重なり合っていない。各ブランチは所定の長さを有し、この長さは同一であってもよいが、一般的には、一方のブランチ、例えば測定ブランチの方が、より長い。フォトニック構造に音波も圧力も加えない状態で2つのブランチに沿って移動することによる位相シフトを、既知のものとみなし得る。測定ブランチ35及び基準ブランチ36は結合(カップリング)セクションを含む。
第1結合セクションは、第1光カプラ(入力カプラ)を形成している。第1結合(セクションにおいて、測定ブランチ35と基準ブランチ36とが互いに近接するように曲げられて配置されている。これらのブランチは、基準ブランチ36に沿って移動している光の一部が結合から分離され、次いで測定ブランチ35に結合され得るように十分に近接している。第2結合セクションは、第2光カプラ(出力カプラ)を形成している。第2結合セクションにおいて、測定ブランチ35と基準ブランチ36とが互いに近接するように曲げられて配置されている。これらのブランチは、測定ブランチ35に沿って移動している光の一部が結合から分離され、次いで基準ブランチ36に結合され得るように十分に近接している。しかし、測定ブランチ35と基準ブランチ36とは、結合セクションにおいて互いに接触していない。
さらに、測定ブランチ35の測定セクション38は検出アームを形成し、且つ、メンブレンに、例えば、懸架メンブレン領域23に沿って少なくとも部分的に重なっている。測定セクションは、フォトニック構造の感圧部分と見なされ得る光キャビティを形成している。マッハ・ツェンダー構成において、光キャビティは開ループと見なされ得る。反対側において、基準セクション39が第1結合セクション及び第2結合セクションにより取り囲まれ、基準アームを形成し、懸架メンブレン領域23と重なっていない。基準セクションは、フォトニック構造の非感圧部分と見なされ得る。
デバイスの動作中、光源が光ビームを出射し、基準ブランチ36の入力側で入力される。この光ビームが、第1カプラ(入力カプラ)により分割され、これにより、ビームの第1部分が測定ブランチ35に沿って移動し、第2部分は基準ブランチ36に沿って移動し続ける。最終的に、音波又は圧力がメンブレン20に加えられ、検出アームの光学特性を上記のように変化させる。光の第1部分及び第2部分は、第2カプラ(出力カプラ)31にて再び結合する。第1部分の光の一部が測定ブランチ35に沿って移動し続け、第1光出力にてブランチを離れる。しかし、第1部分の光の別の一部は、測定ブランチ35との結合から分離されて、第2カプラ(出力カプラ)31により基準ブランチ35に結合される。結合から分離された光の第1部分が、基準ブランチ36に沿ってずっと移動してきた第2部分の光に重畳する。この重畳が干渉を生じさせる。測定ブランチと基準ブランチとの間で誘起される位相シフトに応じて、特徴的な強度の光が、第2光出力にて基準ブランチから離れる。第1光出力及び第2光出力で提供された光強度の比較により、最初にメンブレンに加えられた音響信号又は圧力の測定値が得られる。
図8は、フォトニックデバイス用の干渉計の実施形態の別の概略上面図である。干渉計をフォトニックデバイスに組み込むための別の可能な方法は、リング共振器又はレーストラック共振器構成で測定ブランチ35及び基準ブランチ36を配置することである。測定ブランチ35と基準ブランチ36とは、この構成においても別々であり、重なっていない。各ブランチは所定の長さを有し、これらの長さは同一であってもよいが、一般的には、一方のブランチ、例えば測定ブランチの方が、より長い。フォトニック構造に音波も圧力も加えない状態で2つのブランチに沿って移動することによる位相シフトは、既知のものと見なされ得る。測定ブランチ35及び基準ブランチ36は、結合セクションを含む。
結合セクションは、第1光カプラ31を形成している。結合セクションにおいて、測定ブランチ35及び基準ブランチ36は、互いに近接するように曲げられて配置されている。ブランチは、基準ブランチ36に沿って移動している光の一部が結合から分離し、次いで測定ブランチ35に結合できるように、そしてその逆も可能であるように十分に近接している。測定ブランチ35及び基準ブランチ36は、結合セクションにおいて互いに接触していない。
さらに、測定ブランチ35の測定セクションは検出アームを形成し、メンブレンに、例えば、懸架メンブレン領域23に沿って少なくとも部分的に重なっている。測定セクションは、フォトニック構造の感圧部分と見なされ得る光キャビティを形成している。リング共振器又はレーストラック共振器構成において、光キャビティは閉ループと見なされ得る。基準セクションは、フォトニック構造の非感圧部分と見なされ得る。
デバイスの動作中、光源は光ビームを出射し、基準ブランチ36の入力側で入力される。この光ビームが光カプラ31により分割され、これにより、ビームの第1部分が測定ブランチ35に沿って移動し、第2部分は基準ブランチ36に沿って移動し続ける。最終的に、音波又は圧力がメンブレンに加えられて、検出アームの光学特性を上述のように変化させる。光の第1部分及び第2部分が、同一の光カプラ31にて再び結合する。第1部分の光の一部が測定ブランチ35との結合から分離されて、光カプラにより基準ブランチ35に結合される。この、結合から分離された光の部分が、基準ブランチ36に沿ってずっと移動してきた第2部分の光に重畳する。この重畳が干渉を生じさせる。測定ブランチと基準ブランチとの間で誘起される位相シフトに応じて、特徴的な強度の光が、第2光出力にて基準ブランチ36から離れる。出力された光強度が、最初にメンブレンに加えられた音響信号又は圧力の測定値を提供する。
10 基板
20 メンブレン
21 凹部
22 配線層の後端
23 懸架メンブレン領域
30 フォトニック構造
31 光カプラ
32 導波路
33 領域
34 領域
35 測定ブランチ
36 基準ブランチ
37 キャビティ(光共振器)
38 測定セクション
39 基準セクション
40 光源
41 光センサ
50 接着剤層、接着層

Claims (18)

  1. 半導体の基板(10)と、
    前記基板(10)内に又は前記基板(10)上に配置された感圧のメンブレン(20)と、
    前記メンブレン(20)に少なくとも部分的に結合されたフォトニック構造(30)と、を備え、
    前記フォトニック構造(30)は、前記メンブレン(20)に加わる圧力によって生じる変形に応じて、光学特性を変化させるように配置されており、
    前記フォトニック構造(30)は、引張ひずみ及び圧縮ひずみにより前記光学特性を変化させるように配置され、
    変化する前記光学特性は、前記フォトニック構造(30)の屈折率であり、
    前記メンブレン(20)に加わる圧力によって生じる前記変形は、前記フォトニック構造(30)の屈折率の変化をもたらす、
    フォトニックデバイス。
  2. 前記メンブレン(20)に加わる圧力によって生じる変形が前記フォトニック構造(30)を変形させるように、前記フォトニック構造(30)は、前記メンブレン(20)の懸架メンブレン領域(23)に結合されている、請求項1に記載のフォトニックデバイス。
  3. 前記フォトニック構造(30)は、少なくとも1つの光カプラ(31)と、少なくとも1つの導波路(32)とを備え、
    前記少なくとも1つの光カプラ(31)は、前記少なくとも1つの導波路(32)に光を入力及び/又は出力するように配置され、
    前記少なくとも1つの導波路(32)は、前記メンブレン(20)に加わる圧力により生じる変形の関数として変化する屈折率を有するように構成されている、請求項1に記載のフォトニックデバイス。
  4. 前記導波路は、前記メンブレン(20)内若しくは配線層の後端(22)内に設けられ、例えば、所定の表面において限られた厚さの範囲内で構成されるか若しくはその表面と同一面となり、又は、
    前記導波路は、前記メンブレン(20)の表面上若しくは前記配線層の後端(22)上に設けられ、例えば、前記表面から突出している、請求項に記載のフォトニックデバイス。
  5. 前記少なくとも1つの光カプラ(31)は、垂直結合のための格子カプラ、エッジカプラ、断熱カプラのうちの少なくとも1つを含む、請求項又はに記載のフォトニックデバイス。
  6. 前記導波路(32)は、コヒーレント受信器又は干渉計のうちの少なくとも1つを含む、請求項からのうちいずれか一項に記載のフォトニックデバイス。
  7. 干渉計として実装される前記導波路(32)は、測定ブランチ(35)と、基準ブランチ(36)とを含み、
    前記測定ブランチ(35)は、測定セクション(38)を含み、
    前記測定セクション(38)は、検出アームを形成すると共に、前記メンブレン(20)に少なくとも部分的に重なり、
    前記基準ブランチ(36)は、基準アームを形成している基準セクション(39)を含む、請求項に記載のフォトニックデバイス。
  8. 前記測定ブランチ及び前記基準ブランチ(35,36)が、マッハ・ツェンダー干渉計又はカスケードマッハ・ツェンダー干渉計として配置されている、請求項に記載のフォトニックデバイス。
  9. 前記測定ブランチ及び前記基準ブランチ(35,36)は、リング共振器又はレーストラック共振器干渉計として配置されている、請求項に記載のフォトニックデバイス。
  10. 少なくとも1つの光カプラ(31)を用いて前記フォトニック構造(30)に結合された光センサ(41)をさらに備えている、請求項1~のうちいずれか一項に記載のフォトニックデバイス。
  11. 少なくとも1つの光カプラ(31)を用いて前記フォトニック構造(30)に結合された光源(40)をさらに備えている、請求項1~10のうちいずれか一項に記載のフォトニックデバイス。
  12. 請求項1~11のうちいずれか一項に記載の少なくとも1つのフォトニックデバイスを備えた光マイクロフォン。
  13. 前記フォトニック構造(30)は、前記フォトニックデバイスに完全に組み込まれており、
    前記フォトニックデバイスは、同一のフォトニックデバイス内に位置するか又は同一の基板に組み込まれた光センサを備え、
    複数のフォトダイオードが同一の基板に組み込まれている、
    請求項12に記載の光マイクロフォン。
  14. フォトニックデバイスを動作させるための方法であって、
    前記フォトニックデバイスは、
    基板(10)内に又は当該基板(10)上に配置された感圧のメンブレン(20)と、
    前記メンブレン(20)に少なくとも部分的に結合されたフォトニック構造(30)と、を備え、
    前記方法は、
    前記メンブレン(20)に圧力を加えるステップと、
    前記メンブレン(20)に加わる前記圧力により生じる変形に応じた前記フォトニック構造(30)の光学特性の変化を検出するステップと、を含み、
    前記フォトニック構造(30)は、引張ひずみ及び圧縮ひずみにより前記光学特性を変化させるように配置され、
    変化する前記光学特性は、前記フォトニック構造(30)の屈折率であり、
    前記メンブレン(20)に加わる圧力によって生じる前記変形は、前記フォトニック構造(30)の屈折率の変化をもたらす、
    フォトニックデバイスを動作させるための方法。
  15. 光源(40)を用いて光を出射するステップと、
    光カプラ(31)を用いて前記出射された光を前記フォトニック構造(30)の入力側に結合するステップと、
    前記フォトニック構造の出力側にて、別の光カプラ(31)を介して光を出力結合するステップと、
    前記出力側からの光を光センサ(41)を用いて検出するステップと、
    をさらに含む、
    請求項14に記載の方法。
  16. 前記フォトニック構造(30)は、前記メンブレン(32)に結合された少なくとも1つの導波路(32)を備え、
    前記導波路(32)は、前記メンブレン(20)に加わる圧力により生じる変形の関数として変化する屈折率を有するように構成され、
    前記光センサ(41)は、前記少なくとも1つの導波路(32)の前記屈折率に応じて光強度の変化を検出する、請求項15に記載の方法。
  17. フォトニックデバイスを製造するための方法であって、
    半導体の基板(10)を設けるステップと、
    前記基板(10)内に又は前記基板(10)上に感圧のメンブレン(20)を配置するステップと、
    フォトニック構造(30)を少なくとも部分的に前記メンブレン(20)に結合するステップと、を含み、
    前記フォトニック構造(30)は、前記メンブレン(20)に加わる圧力によって生じる変形に応じて、光学特性を変化させるように配置され、
    前記フォトニック構造(30)は、引張ひずみ及び圧縮ひずみにより前記光学特性を変化させるように配置され、
    変化する前記光学特性は、前記フォトニック構造(30)の屈折率であり、
    前記フォトニック構造(30)は、前記メンブレン(20)に加わる圧力によって生じる変形により前記フォトニック構造(30)の屈折率を変化させる材料からなる、
    フォトニックデバイスを製造するための方法。
  18. 前記半導体基板(10)は、シリコンからなり、
    前記フォトニック構造(30)は、二酸化ケイ素、窒化ケイ素又はこれらの組み合わせからなる、請求項17に記載の方法。
JP2020555810A 2018-04-16 2019-04-12 フォトニックデバイス、フォトニックデバイスの動作方法、及びフォトニックデバイスの製造方法 Active JP7009650B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18167569.5A EP3557211A1 (en) 2018-04-16 2018-04-16 Photonic device, method for operating a photonic device and method for manufacturing a photonic device
EP18167569.5 2018-04-16
PCT/EP2019/059535 WO2019201800A1 (en) 2018-04-16 2019-04-12 Photonic device, method for operating a photonic device and method for manufacturing a photonic device

Publications (2)

Publication Number Publication Date
JP2021521436A JP2021521436A (ja) 2021-08-26
JP7009650B2 true JP7009650B2 (ja) 2022-01-25

Family

ID=62044496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020555810A Active JP7009650B2 (ja) 2018-04-16 2019-04-12 フォトニックデバイス、フォトニックデバイスの動作方法、及びフォトニックデバイスの製造方法

Country Status (5)

Country Link
US (1) US11906385B2 (ja)
EP (1) EP3557211A1 (ja)
JP (1) JP7009650B2 (ja)
CN (1) CN112368556A (ja)
WO (1) WO2019201800A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3851815A1 (en) * 2020-01-16 2021-07-21 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO A photonic integrated device for converting sound into a modulation of a property of light
EP3851816A1 (en) * 2020-01-16 2021-07-21 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO A photonic integrated device for converting sound into a modulation of properties of light in the device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034569A1 (en) 2004-08-11 2006-02-16 General Electric Company Novel folded Mach-Zehnder interferometers and optical sensor arrays
JP2009543065A (ja) 2006-06-29 2009-12-03 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ ブラッグファイバーを用いた光ファイバーセンサ
WO2010124400A1 (en) 2009-05-01 2010-11-04 The University Of Western Ontario Photonic crystal pressure sensor
JP4995926B2 (ja) 2007-01-09 2012-08-08 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ 向上したフォトニック結晶構造センサ
JP5491857B2 (ja) 2006-05-04 2014-05-14 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 非対称光学共鳴を使用した装置および方法
JP6418749B2 (ja) 2013-02-12 2018-11-07 ザ・ボーイング・カンパニーThe Boeing Company 多機能光学センサユニット
JP6693759B2 (ja) 2015-02-09 2020-05-13 ザ・ボーイング・カンパニーThe Boeing Company フォトニック膜を背景とする多機能光ファイバー燃料センサシステム

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235113A (en) * 1978-08-21 1980-11-25 Carome Edward F Optical fiber acoustical sensors
FR2646033A1 (fr) 1989-04-18 1990-10-19 Labo Electronique Physique Circuit de veille et dispositif de transmission de donnees muni d'un tel circuit
JPH0682325A (ja) 1992-09-04 1994-03-22 Canon Inc 光集積センサ
JPH0728006A (ja) 1993-07-07 1995-01-31 Tokin Corp 光学バイアス調整方法及び導波路型光変調デバイス並びに導波光への位相差付与方法
DE19623504C1 (de) 1996-06-13 1997-07-10 Deutsche Forsch Luft Raumfahrt Optisches Mikrophon
US6014239C1 (en) 1997-12-12 2002-04-09 Brookhaven Science Ass Llc Optical microphone
US6567572B2 (en) 2000-06-28 2003-05-20 The Board Of Trustees Of The Leland Stanford Junior University Optical displacement sensor
US6763154B2 (en) * 2001-05-21 2004-07-13 Jds Uniphase Inc. Methods and structures for the control of optical waveguide devices by stress
US6829814B1 (en) 2002-08-29 2004-12-14 Delphi Technologies, Inc. Process of making an all-silicon microphone
JP2005045463A (ja) * 2003-07-25 2005-02-17 Toshiba Corp 音響電気変換素子
SE0401011L (sv) * 2004-04-19 2005-10-20 Phoxtal Comm Ab Optisk omkopplare
US8463084B2 (en) * 2004-12-16 2013-06-11 Kulite Semiconductor Products, Inc. Optical micromachined pressure sensor
JP4830415B2 (ja) 2005-09-12 2011-12-07 株式会社デンソー 光学装置およびその製造方法
WO2009006938A1 (en) * 2007-07-09 2009-01-15 Abb Research Ltd Pressure sensor
JP2009053031A (ja) * 2007-08-27 2009-03-12 Canon Inc 音波センサ、音波センサアレイ及び超音波撮像装置
CN101131450A (zh) 2007-09-11 2008-02-27 浙江大学 一种嵌入式耦合光学环形腔器件
US8391517B2 (en) 2010-02-11 2013-03-05 Silicon Audio, Inc. Optical microphone packaging
US8600200B1 (en) * 2010-04-01 2013-12-03 Sandia Corporation Nano-optomechanical transducer
CN102590936B (zh) 2011-01-10 2013-04-24 中国科学院上海微系统与信息技术研究所 锗悬浮膜式二维光子晶体微腔及制备方法
GB2493585B (en) 2011-08-11 2013-08-14 Ibm Scanning probe microscopy cantilever comprising an electromagnetic sensor
EP2696182A1 (en) * 2012-08-10 2014-02-12 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Optical sensor and method for measuring the pressure of a fluid
US9157856B2 (en) * 2012-09-10 2015-10-13 Yunbo Guo Integrated photonic crystal structures and their applications
EP3004829B1 (en) 2013-06-06 2018-02-28 Technical University of Denmark All-optical pressure sensor
US9274275B2 (en) * 2013-07-03 2016-03-01 Cisco Technology, Inc. Photonic integration platform
US9823150B2 (en) * 2013-11-27 2017-11-21 Agency For Science, Technology And Research Micro-machined optical pressure sensors
US9274283B1 (en) 2014-09-30 2016-03-01 Globalfoundries Inc. Silicon photonics alignment tolerant vertical grating couplers
US9503820B2 (en) 2015-01-23 2016-11-22 Silicon Audio Directional, Llc Multi-mode microphones
US9479875B2 (en) 2015-01-23 2016-10-25 Silicon Audio Directional, Llc Multi-mode microphones

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034569A1 (en) 2004-08-11 2006-02-16 General Electric Company Novel folded Mach-Zehnder interferometers and optical sensor arrays
JP5491857B2 (ja) 2006-05-04 2014-05-14 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 非対称光学共鳴を使用した装置および方法
JP2009543065A (ja) 2006-06-29 2009-12-03 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ ブラッグファイバーを用いた光ファイバーセンサ
JP4995926B2 (ja) 2007-01-09 2012-08-08 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ 向上したフォトニック結晶構造センサ
JP5317373B2 (ja) 2007-01-09 2013-10-16 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ 向上したフォトニック結晶構造センサ
WO2010124400A1 (en) 2009-05-01 2010-11-04 The University Of Western Ontario Photonic crystal pressure sensor
JP6418749B2 (ja) 2013-02-12 2018-11-07 ザ・ボーイング・カンパニーThe Boeing Company 多機能光学センサユニット
JP6693759B2 (ja) 2015-02-09 2020-05-13 ザ・ボーイング・カンパニーThe Boeing Company フォトニック膜を背景とする多機能光ファイバー燃料センサシステム

Also Published As

Publication number Publication date
US20210108978A1 (en) 2021-04-15
JP2021521436A (ja) 2021-08-26
EP3557211A1 (en) 2019-10-23
CN112368556A (zh) 2021-02-12
US11906385B2 (en) 2024-02-20
WO2019201800A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP6743761B2 (ja) 測距センサ
US8567257B2 (en) Optical tactile sensors
US8503701B2 (en) Optical sensing in a directional MEMS microphone
CN103776384B (zh) 光纤耦合光子晶体平板应变传感器、系统以及制作和使用方法
US7583390B2 (en) Accelerometer comprising an optically resonant cavity
US7355723B2 (en) Apparatus comprising a high-signal-to-noise displacement sensor and method therefore
JP7009650B2 (ja) フォトニックデバイス、フォトニックデバイスの動作方法、及びフォトニックデバイスの製造方法
Lee et al. Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout
US7626707B2 (en) Dual cavity displacement sensor
CN110531513B (zh) 一种mems换能结构及其应用
US20060193356A1 (en) Die level optical transduction systems
JP2010237205A (ja) 光センサ向けの自己較正式問合わせシステム
CN114175683B (zh) 用于测量位移的光学换能器及方法
CN115462096A (zh) 麦克风组件及制造方法
CN113167672B (zh) 用于检测动态压力变化的集成光学传感器和方法
JP4615932B2 (ja) 差圧測定システム及び差圧測定方法
Saadany et al. A miniature Michelson interferometer using vertical Bragg mirrors on SOI
EP2389014A1 (en) Microphone
Di Pasquale et al. Dynamic Fiber Bragg Grating Sensors Interrogators on Silicon Chips
Ming et al. A novel optical fibers MEMS pressure sensor
CN114034300A (zh) 光学加速度计和惯性导航系统
KR20170089341A (ko) 공진기 및 이를 이용한 광센서

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7009650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150