JP7001348B2 - 光走査装置及び距離画像センサ - Google Patents

光走査装置及び距離画像センサ Download PDF

Info

Publication number
JP7001348B2
JP7001348B2 JP2017026466A JP2017026466A JP7001348B2 JP 7001348 B2 JP7001348 B2 JP 7001348B2 JP 2017026466 A JP2017026466 A JP 2017026466A JP 2017026466 A JP2017026466 A JP 2017026466A JP 7001348 B2 JP7001348 B2 JP 7001348B2
Authority
JP
Japan
Prior art keywords
unit
optical scanning
drive
frequency
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017026466A
Other languages
English (en)
Other versions
JP2018132666A (ja
Inventor
博隆 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2017026466A priority Critical patent/JP7001348B2/ja
Publication of JP2018132666A publication Critical patent/JP2018132666A/ja
Application granted granted Critical
Publication of JP7001348B2 publication Critical patent/JP7001348B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、リサジュー走査する光走査装置及び距離画像センサに関する。
2軸を駆動してリサジュー走査する光走査装置として、光走査部の共振周波数が変動しても駆動信号の周波数を変動した共振周波数に近づけるために、2軸の駆動信号について、周波数比を維持しつつ2駆動信号の周波数を変更するものが知られている(特許文献1参照)。
また、レーザ光を対象領域内でリサジュー走査する光走査装置において、光走査部の共振周波数が変動した場合に、共振周波数に対する駆動周波数のずれ量に応じてパルス光の投光タイミングを制御するものが知られている(特許文献2参照)。なお、特許文献2において、高周波側や低周波側で駆動周波数が大きく変動する場合についての記載がある。
しかしながら、光走査部の共振周波数の変動に対応すべく駆動信号の周波数の調整すなわち駆動周波数の変更のさせ方について、例えば電力消費をより抑えたものとなるようにするといった観点から、より好適な変更あるいは最適な変更が行われているとは必ずしも限らない。
特許5829391号公報 特許5806006号公報
本発明は上記した点に鑑みてなされたものであり、リサジュー走査する光走査装置において、共振周波数の変動への対応に際して、電力消費をより抑えた効率的な駆動制御を行う光走査装置及びこれを用いた距離画像センサを提供することを目的とする。
上記目的を達成するため光走査装置は、2軸を駆動してリサジュー走査する光走査部と、光走査部の駆動を制御する駆動制御部とを備え、駆動制御部は、光走査部の共振周波数と駆動周波数とにずれが生じた場合に、2軸の駆動周波数比を維持しつつ各軸の駆動周波数を変更するときと、2軸の周波数比を各軸の駆動周波数とともに変更するときとで、共振周波数と駆動周波数とのずれ量に基づいて判別する判別部を有する。


上記光走査装置では、駆動制御部は、判別部において、2軸の駆動周波数比を維持しつつ各軸の駆動周波数を変更するか、2軸の周波数比を各軸の駆動周波数とともに変更するかを、共振周波数と駆動周波数とのずれ量に基づいて判別し、判別した結果に応じて光走査部の駆動を制御する。これにより、共振周波数の変動によって共振周波数と駆動周波数とにずれが生じた場合であっても、電力消費をより抑えた効率的な駆動制御を行うためにより好適なあるいは最適な選択が可能になる。
本発明の具体的な側面では、判別部は、必要となる駆動エネルギーの大小関係から、駆動周波数の変更についての選択を行う。この場合、駆動エネルギーの大小関係に基づく好適なあるいは最適な選択が可能になる。
本発明の別の側面では、駆動制御部は、光走査部の共振周波数と選択可能な複数の2軸の駆動周波数の組合せとの駆動エネルギーの差をそれぞれ示す複数の候補規定値を算出する候補規定値算出部を有し、判別部は、候補規定値算出部で算出された複数の候補規定値の比較結果に基づいて、駆動周波数の変更についての選択を行う。この場合、候補規定値算出部で算出された複数の候補規定値のうちから適切に選択を行うことができ、確実な選択が可能になる。
本発明のさらに別の側面では、候補規定値算出部において、算出される候補規定値は、各軸のQ値により重み付けされている。この場合、状況に応じてQ値を加味したものとすることで、より適した選択が可能になる。
本発明のさらに別の側面では、2軸の走査タイミングを強制的に同期させる強制同期部をさらに備える。この場合、例えば離散的な数値からの選択といった制約から、周波数比が理想の状態に完全には合わせられない場合であっても、2軸の走査タイミングの同期を維持して、所望の状態のリサジュー周期を得ることができる。
上記目的を達成するため、本発明に係る距離画像センサは、上記いずれかに記載の光走査装置と、光走査装置の光走査部に光を射出する光源部と、光走査部から射出された光が物体によって反射された反射光を受光する受光部と、光源部から射出された光が受光部で反射光として受光されるまでの時間に基づいて距離を計測する測距部とを備える。
上記距離画像センサでは、光走査装置を備えることにより、共振周波数の変動によって共振周波数と駆動周波数とにずれが生じた場合であっても、電力消費をより抑えた効率的な駆動制御を行うためにより好適なあるいは最適な選択が可能になる。
一実施形態に係る光走査装置を備える距離画像装置について説明するためのブロック図である。 光走査部の一例について説明するための図である。 光走査部における可動部の揺動角度の検出について一例を説明するための図である。 駆動周波数の組合せの選択について説明するための図である。 駆動周波数の変更処理の一例を示すフローチャートである。 (A)~(C)は、2軸の走査タイミングを強制的に同期させる強制同期について説明するための図である。 (A)~(C)は、リサジューパターンについて説明するための図である。
以下、図1等を参照して、本発明の一実施形態に係る光走査装置を備える距離画像装置について説明する。図1は、距離画像装置の概略構成の一例を示すブロック図である。本実施形態の一態様としての距離画像装置100は、例えばレーザパルス等によるパルス光PLを図中一点鎖線で示す対象領域内でリサジュー走査し、該対象領域内に存在する物体Pによる反射光RLを受光して物体Pまでの距離を計測し、その計測結果に基づく距離画像を生成して出力する。
図1に示すように、距離画像装置100は、光走査装置50と、パルス光PLを射出する光源部7と、光源部7から射出されたパルス光PLの反射光RLを受光する受光部9と、光源部7から射出されたパルス光PLを反射した物体Pまでの距離を計測する測距部11と、測距部11による計測結果に基づいて距離画像を生成する画像生成部13と、画像生成部13によって生成された距離画像を出力(表示)する表示部15と、を備える。
距離画像装置100のうち、光走査装置50は、光走査によるリサジュー走査を行うための本体部分であり、光源部7からのパルス光PLの対象領域内に向けて走査させて該対象領域内に存在する物体Pによる反射光RLを受光部9に受光させる。このため、光走査装置50は、電磁駆動型の光走査部3と、光走査部3の動作全般を制御する駆動制御部として機能する光走査制御部4と、光走査制御部4により制御に従って光走査部3を駆動させる駆動部5と、光走査部3の動作における周波数に関するずれ量を検出するずれ量検出部6とを備える。
光源部7は、光走査部3に向かって射出タイミングを制御しつつパルス光PLを射出するものであり、レーザダイオード等で構成される。なお、射出タイミングは、例えば対象領域内の計測位置と関連付けられ、対象領域内の一定の位置(複数位置)にパルス光PLが射出されるように制御されている。
受光部9は、例えばフォトセンサを用いて構成され、光源部7から射出されたパルス光PLが物体Pによって反射された成分である反射光RLを受光して検知する。なお、受光部9は、反射光RLを直接受光するものであってもよいし、光走査部3を介して受光するものであってもよい。
測距部11は、光源部7によるパルス光PLの射出タイミングと、受光部9による反射光RLの受光タイミングとの時間差(光源部7から射出されたパルス光PLが受光部9で反射光RLとして受光されるまでの時間)に基づいて、パルス光PLを反射した物体Pまでの距離を計測する。測距部11による距離の計測は、対象領域内の各計測位置において、すなわち、光源部7からのパルス光PLの射出毎に行なわれ、その計測結果が画像生成部13に出力される。
画像生成部13は、測距部11によって計測された距離に基づいて各計測位置の画素値を決定し、対象領域についての距離画像を例えば光走査部3による走査の一周期毎に生成する。生成される距離画像は、計測された距離毎に色が異なる画像、すなわち、対象領域内の存在する物体Pについてはその距離や奥行きが反映された三次元的な画像とすることができる。この画像生成部13で生成された距離画像は表示部15に出力される。
表示部15は、ディスプレイを備え、画像生成部13から出力された距離画像を表示する。表示部15に表示される距離画像によって対象領域内に物体が存在するか否かを認識できることはもちろん、物体が存在する場合には、当該物体の対象領域内における位置、当該物体までの距離、当該物体の形状なども認識することができる。また、距離画像は走査周期毎に更新されるから、当該物体の姿勢の変化をも認識するができる。
距離画像装置100は、以上のような構成を有することで、光走査装置50でのリサジュー走査による設置位置から対象領域内にある物体までの距離を計測した計測結果に基づく距離画像の生成及び出力を可能としている。
以下、距離画像装置100を構成する光走査装置50の各部について説明する。まず、光走査装置50のうち、光走査部3は、光反射面(ミラー)を有する可動部が互いに直交する第1軸及び第2軸回りに揺動可能に形成されており、光反射面に入射される光(パルス光)を対象領域内で二次元走査、より具体的にはリサジュー走査することが可能である。このような光走査部3として、例えば図2に示す二次元走査型の半導体ガルバノミラー(二次元ガルバノミラー)を用いることができる。すなわち、光走査装置50は、図2に例示されるように、光走査部3において中央に配置される光反射面(ミラー)36を揺動させるための一対の第1トーションバー32,32による中心軸であるx軸(第1軸)と、x軸と軸方向が直交する一対の第2トーションバー34,34による中心軸であるy軸(第2軸)とを駆動させてリサジュー走査を行う。以下の説明において、光走査部3のx軸回りの共振周波数を「第1共振周波数」といい、光走査部3のy軸回りの共振周波数を「第2共振周波数」とする。ここでは、第1共振周波数の方が第2共振周波数よりも高くなっており、これに応じて、第1駆動信号の周波数の方が第2駆動信号の周波数よりも高くなっている。つまり、光走査部3は、x軸回りに高速で揺動駆動され、y軸回りに低速で揺動駆動される。なお、光走査部3についてのより詳しい一構成例の説明については、図2等を参照して後述する。
図1に戻って、光走査装置50のうち、駆動部5は、第1駆動信号を生成して光走査部3に出力する第1駆動回路51と、第2駆動信号を生成して光走査部3に出力する第2駆動回路52とを備える。すなわち、第1駆動回路51及び第2駆動回路52は、それぞれ光走査制御部4で決定された駆動周波数に基づいて、光走査部3の光反射面36をx軸回りに揺動させる第1駆動信号(振動電流)と、y軸回りに揺動させる第2駆動信号とをそれぞれ生成して光走査部3に出力する。なお、第1駆動信号と第2駆動信号との位相差は一定値に固定されている。ここで、初期状態における第1駆動信号の周波数及び第2駆動信号の周波数は、設計上の光走査部3の第1及び第2共振周波数に合わせられている。これにより、光走査部3に固有の各共振周波数が設計通りであれば、最も効率的に揺動駆動されるものとなる。しかしながら、光走査部3の各共振周波数は、種々の要因により変動(シフト)しうる。
また、第1駆動回路51及び第2駆動回路52は、例えばDDS(Direct Digital Synthesizer)方式又はPLL(Phase Locked Loop)方式の周波数シンセサイザを備えており、基準クロック信号から自由に周波数を発生させることができる。これにより、第1駆動回路51及び第2駆動回路52はそれぞれ高分解能で駆動信号の周波数を変更(設定)することができる。
光走査装置50のうち、ずれ量検出部6は、駆動部5の第1駆動回路51から出力された第1駆動信号の周波数と光走査部3の第1共振周波数とのずれ量である第1ずれ量を検出する第1ずれ量検出部61と、駆動部5の第2駆動回路52から出力された第2駆動信号の周波数と光走査部3の第2共振周波数とのずれ量である第2ずれ量を検出する第2ずれ量検出部62とを備える。
第1ずれ量検出部61は、例えば第1駆動回路51から出力された第1駆動信号と光走査部3のx軸回りの揺動角度信号との位相差に基づいて第1ずれ量を検出する。同様に、第2ずれ量検出部62は、例えば第2駆動回路52から出力された第2駆動信号と光走査部3のy軸回りの揺動角度信号との位相差に基づいて第2ずれ量を検出する。
ここで、上記第1ずれ量及び第2ずれ量の検出方法について簡単に説明する。光走査部3が自己に固有の共振周波数と同一の周波数を有する駆動周波数の信号で構成された駆動信号で駆動された場合、例えば当該駆動信号の振動と光走査部3の光反射面(ミラー)36(図2参照)の揺動との間には-90°の位相差が発生し、この状態が保たれる。逆に、この位相差が-90°でない状態となる場合には、各駆動信号の周波数と光走査部3の各共振周波数とが一致していないことになる。すなわち、駆動信号とミラーの揺動角度信号との位相差を検出することで、駆動信号の周波数と実際のガルバノミラーの共振周波数とのずれ量(あるいは、共振周波数のシフト量)を把握することができる。すなわち、第1ずれ量検出部61及び第2ずれ量検出部62は、光走査部3のx軸回り及びy軸回りの周波数特性に基づいて、第1駆動信号の周波数と第1共振周波数とのずれ量を第1ずれ量として検出し、第2駆動信号の周波数と第2共振周波数とのずれ量を第2ずれ量として検出することができる。以上のことを可能とするため、例えば、第1ずれ量検出部61は、光走査部3のx軸回りについて駆動周波数と位相(差)特性との関係を示すテーブル等として有しており、位相差から第1ずれ量(第1共振周波数のシフト量)を検出する。同様に、第2ずれ量検出部62は、光走査部3のy軸回りについて駆動周波数と位相(差)特性との関係を示すテーブル等として有しており、位相差から第2ずれ量(第2共振周波数のシフト量)を検出する。なお、これらのテーブルについては、例えば後述する光走査制御部4のテーブルデータ部73に格納され、光走査制御部4においてずれ量が検出されるものとしてもよい。
光走査装置50のうち、光走査制御部4は、ずれ量検出部6において上記のように検出された周波数に関するずれ量の情報を入手するとともに、光走査部3を駆動部5により駆動させることで、光走査部3の動作全般を制御する駆動制御部として機能する。第1及び第2駆動信号の周波数について変更を行う場合において、電力消費をより抑えた効率的な駆動制御を行うために、光走査制御部4は、駆動信号の周波数を決定するための周波数決定部71と、周波数決定部71における決定をするための指針となる規定値の算出を行う演算部72と、各種テーブルデータを格納するテーブルデータ部73とを有する。なお、周波数決定部71は、x軸とy軸との走査タイミングを強制的に同期させる強制同期部71aを含んでいる。
ここで、既述のように、初期状態における第1駆動信号の周波数及び第2駆動信号の周波数は、それぞれ設計上固有である光走査部3の第1共振周波数、第2共振周波数に相当する値(例えば、設計値)として予め設定されている。しかしながら、製造バラツキや使用環境(特に、温度)の変化などによって光走査部3の実際の使用時における第1共振周波数及び第2共振周波数が上記設計値とは異なる(周波数特性がシフトする)場合がある。そこで、本実施形態では、光走査装置50のずれ量検出部6において、第1駆動回路51からの第1駆動信号の周波数と光走査部3の実際の第1共振周波数とのずれ、及び/又は、第2駆動回路52からの第2駆動信号の周波数と光走査部3の実際の第2共振周波数とのずれを検出し、光走査制御部4において、その検出結果に応じて第1駆動信号の周波数及び第2駆動信号の周波数を変更している。
特に、本実施形態の光走査装置50は、光走査制御部4での制御において、x軸及びy軸の2軸の駆動周波数比を維持しつつ各軸の駆動周波数を変更するか、2軸の周波数比を各軸の駆動周波数とともに変更するかを、共振周波数と駆動周波数とのずれ量に基づいて判別し、判別した結果に応じて光走査部3の駆動を制御するものとなっている。これにより、共振周波数の変動によって共振周波数と駆動周波数とにずれが生じた場合であっても、電力消費をより抑えた効率的な駆動制御を行うためにより好適なあるいは最適な選択が可能にしている。
以下、図2等を参照して光走査部3の一構成例についてより具体的に説明することにより、光走査の制御を含む動作についての一具体例を説明する。図2に示すように、二次元ガルバノミラーとしての光走査部3は、枠状の固定部31と、固定部31の内側に配置されて一対の第2トーションバー34,34によって揺動可能に支持された外側可動部33と、外側可動部33の内側に配置されて第2トーションバー34,34に軸方向が直交する一対の第1トーションバー32,32によって揺動可能に支持された内側可動部35と、を備える。なお、既述のように、内側の第1トーションバー32,32の中心軸をx軸(第1軸)とし、外側の第2トーションバー34,34の中心軸をy軸(第2軸)とする。
内側可動部35の中央部には光反射面(ミラー)36が形成され、内側可動部35の周縁部には第1駆動コイル37が形成されており、外側可動部33の周縁部には第2駆動コイル38が形成されている。第1駆動コイル37の端部は、固定部31に形成された第1電極端子39,39に接続されている。第2駆動コイル38の端部は、固定部31に形成された第2電極端子40,40に接続されている。
また、第1駆動コイル37に磁界を作用させる一対の第1永久磁石41,41及び第2駆動コイル38に磁界を作用させる一対の第2永久磁石42,42が、固定部31を挟んでそれぞれ対向配置されている。
なお、固定部31、第1トーションバー32,32、外側可動部33、第2トーションバー34,34及び内側可動部35は、半導体基板から一体的に形成される。
第1トーションバー32,32には、内側可動部35のx軸回りの揺動動作、すなわち、第1トーションバー32,32の捩れによって生じる歪み(応力)を検出するための第1~第4ピエゾ抵抗素子R1~R4が設けられている。第1~第4ピエゾ抵抗素子R1~R4は、例えばP型拡散抵抗によって第1トーションバー32,32の固定部31の根元近傍に形成されており、第1トーションバー32,32に生じる引張歪み及び圧縮歪みを検出する。
同様に、第2トーションバー34,34には、外側可動部33のy軸回りの揺動動作、すなわち、第2トーションバー34,34の捩れによって生じる歪み(応力)を検出するための第5~第8ピエゾ抵抗素子R5~R8が配置されている。
そして、第1~第4ピエゾ抵抗素子R1~R4、及び、第5~第8ピエゾ抵抗素子R5~R8は、それぞれ図示省略した配線によって接続されて、図3に示すようなブリッジ回路(入力電圧Vi,出力電圧Vo)を構成している。
光走査部3においては、第1駆動コイル37及び第2駆動コイル38に駆動電流(振動電流)が供給されると、第1駆動コイル37及び第2駆動コイル38に流れる振動電流と第1永久磁石41,41及び第2永久磁石42,42による磁界とによって内側可動部35及び外側可動部33にそれぞれローレンツ力が作用して内側可動部35がx軸回り及びy軸回りに揺動する。このように内側可動部35がx軸回り及びy軸回りに揺動することによって、光反射面36に入射されるパルス光は対象領域内でリサジュー走査される。すなわち、光走査部3は、x軸回り及びy軸回りの二つの固有振動モード(共振周波数)を有しており、第1駆動コイル37及び第2駆動コイル38には、駆動部5からそれぞれ対応する共振周波数又はその近傍の周波数の振動電流が駆動信号として供給される。
また、光走査部3においては、内側可動部35及び外側可動部33がy軸回りの一方に傾斜すると、第1,4ピエゾ抵抗素子R1,R4は引張応力を受けるとともに第2,3ピエゾ抵抗素子R2,R3は圧縮応力を受け、内側可動部35及び外側可動部33がy軸回りの他方に傾斜すると、第1,4ピエゾ抵抗素子R1,R4は圧縮応力を受けるとともに第2,3ピエゾ抵抗素子R2,R3は引張応力を受ける。第1~第4ピエゾ抵抗素子R1~R4はP型拡散抵抗によって形成されており、引張応力を受けると抵抗値が増加し、圧縮応力を受けると抵抗値が減少する。このため、第1~第4ピエゾ抵抗素子R1~R4で構成されたブリッジ回路(図3参照)からは内側可動部35及び外側可動部33のy軸回りの揺動角度(振れ角)に応じた電圧が正弦波として出力される。このブリッジ回路の出力電圧Voをモニタすることで内側可動部35及び外側可動部33のy軸回りの揺動角度(振れ角)を連続的に検出することができる。
同様に、第5~第8ピエゾ抵抗素子R5~R8で構成されたブリッジ回路(図3参照)の出力電圧Voをモニタすることで内側可動部35のx軸回りの揺動角度(振れ角)を連続的に検出することできる。
以下、図1に戻って、光走査装置50のうち、光走査制御部4の構成と動作について説明することで、上記のような本実施形態における光走査の駆動制御について説明する。
光走査制御部4は、既述のように、周波数決定部71と、演算部72と、テーブルデータ部73とを有する。
周波数決定部71は、第1ずれ量検出部61及び第2ずれ量検出部62の検出結果に応じて、第1及び第2駆動信号の周波数を変更する必要があるか否かを判断し、必要があると判断した場合には、各周波数を変更する。すなわち、周波数決定部71は、共振周波数と駆動周波数とのずれ量に基づいて変更の内容を判別する判別部として機能する。ここでは、周波数決定部71は、駆動周波数を変更するか否か及び新たに変更すべき駆動周波数の値を、必要となる駆動エネルギーの大小関係から判別を行う。
演算部72は、周波数決定部71において駆動周波数の変更についての選択を行うために、複数の候補規定値を算出する候補規定値算出部である。ここでは、一例として、下記の式(1)に示される駆動エネルギーの大きさを示す指標について算出を行うものとし、周波数決定部71は、演算部72で算出された複数の候補規定値の大小の比較結果に基づいて、駆動周波数の変更についての選択を行うものとする。
Figure 0007001348000001
ただし、添え字iには、選択可能な第1駆動信号及び第2駆動信号の組合せすなわち選択可能な駆動周波数の組合せのパターンのいずれかを示す文字が入る。値ΔXは、添え字iで示されるパターンにおける第1駆動周波数と第1共振周波数との差を意味し、値ΔYは、同様に、添え字iで示されるパターンにおける第2駆動周波数と第2共振周波数との差を意味する。すなわち、上式(1)で求められる候補規定値Zは、添え字iで示されるパターンでの各駆動周波数の組合せと各共振周波数との差に基づく必要な駆動エネルギーの大きさを示す指標の1つとなっている。
演算部72は、テーブルデータ部73に格納された候補となり得る駆動周波数の組合せのパターンデータを読み出して、ずれ量検出部6での検出結果に基づいて、上式(1)に対応する計算をし、複数の候補規定値Zをそれぞれ算出する。周波数決定部71は、演算部72で式(1)に基づいて算出された候補規定値Zの中から、最小になるものを選択する。以上により、エネルギーの効率性について、より好適なあるいは最適な選択を可能にしている。
以下、図4を参照して、選択可能な第1駆動信号及び第2駆動信号の組合せすなわち選択可能な駆動周波数の組合せのパターンについて説明する。なお、これらのデータについえては、光走査制御部4のテーブルデータ部73に格納されているものとする。
図4は、駆動周波数の組合せの選択について説明するためのグラフであり、横軸は、x軸すなわち高速側周波数(Hz)を示し、縦軸は、y軸すなわち低速側周波数(Hz)を示す。図中の多数の点は、駆動周波数の組合せとして選択可能な点を示している。通常、所望のリサジュー周期となる駆動周波数の組合せは、非常に限られているが、本実施形態では、駆動部5を構成する第1駆動回路51及び第2駆動回路52において、DDS方式又はPLL方式の周波数シンセサイザを備えており、高分解能での周波数の設定が可能となっている。これにより、所望のリサジュー周期となる駆動周波数の組合せを基準として、図中の直線L1~L3で例示するように同じ比率(あるいはほぼ同じ比率)となる多数の周波数の組合せを候補として選択可能な駆動周波数の組合せとしている。すなわち、当該組合せが存在する各直線上の多くの点において、変更された周波数の第1、第2駆動信号を確実に出力することができ、光走査部3を効率的かつ安定して駆動することができる。また、この場合、直線L1等の複数の直線のうち、同一の直線上にある点どうしでは、各駆動周波数は変化してもその比率すなわち周波数比については、変化しない場合の構成であるものとして取り扱える。
以上を踏まえ、設計上の共振周波数に合わせて、初期状態として図中のパターンAにあった駆動信号の周波数を、共振周波数が変動(シフト)することに応じて変化させる場合について考察する。例えば、初期状態においては、設計上の第1及び第2共振周波数に合わせて、パターンAの点(第1駆動信号、第2駆動信号がそれぞれ約1413Hz、約426Hzの規定値)にあったが、図中のパターンA´に示す位置に第1及び第2共振周波数がシフトしたとする。この場合、パターンA´がパターンAから離隔するほど光走査部3での揺動動作におけるエネルギー効率が悪くなる。悪くなってしまったエネルギー効率を良くするには、できるだけパターンA´に近い状態にある駆動周波数の組合せを新たに選択することになる。図示の例では、その候補として、元のパターンAと同一の直線L1上にあるもののうちパターンA´に最も近いパターンBを選択する場合と、別の直線上にあってパターンA´に最も近いパターンCを選択する場合とが考えられる。つまり、パターンBは、駆動周波数比を維持しつつ各軸の駆動周波数を変更するものであり、パターンCは、周波数比を各軸の駆動周波数とともに変更するものである。このような場合に、周波数決定部71は、演算部72において、上式(1)に基づいて、パターンBに基づく下記の式(1b)で示される値Zと、パターンCに基づく下記の式(1c)で示される値Zとを算出させ、これらの値を比較することで、選択すべき駆動周波数の組合せを決定する。
Figure 0007001348000002
ただし、値ΔXは、図4のパターンA´とパターンBとでの第1共振周波数と第1駆動周波数との差であり、値ΔYは、図4のパターンA´とパターンBとでの第2共振周波数と第2駆動周波数との差である。また、値Zは、パターンBを選択した場合に必要な駆動エネルギーの大きさを示す指標となっている。
Figure 0007001348000003
ただし、値ΔXは、図4のパターンA´とパターンCとでの第1共振周波数と第1駆動周波数との差であり、値ΔYは、図4のパターンA´とパターンCとでの第2共振周波数と第2駆動周波数との差である。また、値Zは、パターンCを選択した場合に必要な駆動エネルギーの大きさを示す指標となっている。
なお、上記のようなパターンBとパターンCとの選択において、パターンBを選択した場合には、駆動周波数比が維持されるため、第1及び第2駆動周波数は変更されても、リサジュー走査において走査される位置の順序は変更されず、例えば走査タイミング全般についてのテーブルデータは変更されず同じものが利用される。これに対して、パターンCを選択した場合には、駆動周波数比が変わり、第1及び第2駆動周波数の変更とともにリサジュー走査において走査される位置の順序も変更される。このため、各種テーブルデータの変更が必要になる。この場合、例えば光源部7における投射タイミング等も変更されるため、その旨の信号が、光走査制御部4から光源部7に送信される。
以下、図5のフローチャートを参照して、光走査装置50の光走査制御部4による第1,第2駆動信号の周波数の決定(変更)処理について一例を説明する。
まず、光走査制御部4は、周波数決定部71で決定された第1駆動信号及び第2駆動信号を光走査部3に出力する(ステップS1)。ここで出力される第1駆動信号の周波数及び第2駆動信号の周波数は、前回の決定(変更)処理において更新された周波数であり、全く更新されていない場合にはそれぞれの初期値(すなわち、距離画像装置100の製造時に設定されている値)である。
次に、光走査制御部4は、ずれ量検出部6において検出されたずれ量の情報を取得する。すなわち、第1ずれ量検出部61から第1駆動信号の周波数と第1共振周波数とに関する第1ずれ量を検出し、第2ずれ量検出部62から第2駆動信号の周波数と第2共振周波数とに関する第2ずれ量を検出する(ステップS2)。
次に、光走査制御部4は、ステップS2で検出された第1及び第2ずれ量のうち少なくとも一方が、予め定めた閾値以上であるかを判断し(ステップS3)、どちらも閾値未満である場合には(ステップS3:No)、周波数の変更すなわち信号の変更に関する処理を行うことなく、再びステップS1の光走査部3への出力動作をする。すなわち、共振周波数のシフトが小さければ、図4に示すところの元のパターンAがパターンA´に最も近く、各駆動信号の周波数をパターンAのままの状態にしておくことが最適であると判断する。
一方、ステップS3において、第1及び第2ずれ量のうち少なくとも一方が、予め定めた閾値以上であると判断された場合(ステップS3:Yes)、光走査制御部4は、演算部72において、テーブルデータ部73に格納された駆動周波数の組合せのパターンデータを読み出して候補となり得る候補周波数の検索を行い(ステップS4)、上式(1)に示す計算により複数の候補規定値を算出する(ステップS5)。
次に、光走査制御部4の周波数決定部71は、ステップS5において計算された複数の候補規定値について大小比較を行い、最も値が小さくなる駆動周波数の組合せを選択する(ステップS6)。さらに、周波数決定部71は、直近の駆動周波数の組合せ(図4のパターンA)からステップS6で選択された駆動周波数の組合せに基づく信号への変更処理を行う。ここでは、例えば図4のテーブルデータを参照して説明した場合のように、パターンAにある状態から、2軸の駆動周波数比を維持しつつ各軸の駆動周波数を変更するパターンBへの変更と、2軸の周波数比を各軸の駆動周波数とともに変更するパターンCへの変更とのうちから選択すべきものを判別する、すなわちより最適なものを選ぶものとする。言い換えると、ステップS6においてパターンBを選択した場合には、周波数比を維持しつつ(ステップS7a)、第1及び第2駆動信号の周波数をそれぞれ変更する(ステップS8a)。一方、ステップS6においてパターンCを選択した場合には、周波数比を変更しつつ(ステップS7b)、第1及び第2駆動信号の周波数をそれぞれ変更する(ステップS8b)。なお、ステップS7bを選択した場合、既述のように、全般的にテーブルデータが置き換わり、リサジュー走査において走査される位置の順序も変更されることになるため、例えばこれに対応すべく投射タイミング等も適宜変更される。光走査制御部4は、以上の動作を繰り返すことで、常に適した駆動周波数の組合せの選択を行う。
以上のようにして、光走査制御部4は、ずれ量検出部6において検出された共振周波数と駆動周波数とのずれ量に基づいて、2軸の周波数比を維持しつつ第1及び第2駆動信号の周波数をそれぞれ変更するか、2軸の周波数比を第1及び第2駆動信号の周波数とともに変更するかを判別し、判別した結果に応じて光走査部の駆動を制御している。これにより、周波数の変更に際して電力消費をより抑えた効率的な駆動制御を行うためにより好適なあるいは最適な選択が可能になる。
以下、図6を参照して、光走査制御部4の周波数決定部71における走査タイミングの制御に関するより具体的な一例について説明する。既述のように、第1駆動回路51及び第2駆動回路52において、DDS方式又はPLL方式の周波数シンセサイザを利用することで、多数の駆動周波数の組合せについて選択可能としている。しかしながら、上記多数の駆動周波数の組合せは、あくまで、周波数から換算した離散的なクロック数を用いた処理によってなされる。言い換えると、周波数比が有限の桁数でした表現できず、所望の組合せの場合の周波数比と必ずしも完全には一致させられず、一致しない場合、疑似的に近づけた状態とすることになる。このため、例えば図6(A)に示す所望のリサジュー周期となる駆動周波数の組合せの場合のようにリサジュー周期と各駆動信号とが完全に一致した状態とは必ずしもならず、図6(B)に示すように、x軸とy軸とのタイミングが同期せず、微小なずれが生じてくる可能性がある。そこで、本実施形態では、周波数決定部71は、x軸とy軸との走査タイミングを強制的に同期させる強制同期部71aを有している。すなわち、強制同期部71aは、図6(C)に示すように、所定のタイミングで強制的にx軸とy軸とのタイミングを同期させている。これにより、所望の状態を維持できるものとして想定したリサジュー周期が得られる。なお、強制的にタイミングを同期させる基準としては、例えば上記微小なずれに対して閾値を設けておき、閾値を超えた場合に強制同期を行うことが考えられる。
また、一方で、周波数比をある程度の精度に保つ、すなわちある程度の桁数以上で周波数比を揃えておくことも重要である。例えば、図7(A)に示す周波数比が維持された基準のリサジューパターンに対して、図7(B)に示すように、周波数比(単位Hz)が小数点以下の桁数での一致が不十分な状態であると、基準のリサジューパターンから変わってしまう可能性がある。このように、リサジューパターンが変形してしまうと、要求される精度(例えば解像度の精度)によっては、走査される位置の順序が変更してしまう可能性がある。これに対して、本実施形態では、DDS方式又はPLL方式の周波数シンセサイザを利用することで、周波数比(単位Hz)が小数点以下の桁数について十分な程度まで一致した状態に維持している。これにより、図7(C)に示すようなリサジューパターンが形成され、図7(A)に示す基準のリサジューパターンと遜色のない状態を維持できる。
以上説明したように、本実施形態に係る光走査装置50及びこれを備える距離画像装置100では、駆動制御部としての光走査制御部4が、判別部としての周波数決定部71において、x軸及びy軸の2軸の駆動周波数比を維持しつつ各軸の駆動周波数を変更するか、当該2軸の周波数比を各軸の駆動周波数とともに変更するかを、ずれ量検出部6で検出される共振周波数と駆動周波数とのずれ量に基づいて判別し、判別した結果に応じて光走査部3の駆動を制御する。これにより、共振周波数の変動(シフト)によって共振周波数と駆動周波数とにずれが生じた場合であっても、電力消費をより抑えた効率的な駆動制御を行うためにより好適なあるいは最適な選択が可能になる。
〔その他〕
この発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。
まず、上記実施形態では、判別部としての周波数決定部71において判別を行うために、候補規定値算出部としての演算部72での算出に、上式(1)を適用しているが、これに限らず、種々の数値あるいはベクトル値を判別の指標として利用できる。例えば、駆動エネルギーの大きさについては、特に高速側周波であるx軸の値の変化の影響が大きい。このことを加味して、例えば上式(1)を変形した下記式(2)のように、x軸及びy軸におけるゲインについて各軸のQ値により重み付けされた値を採用してもよい。なお、一般的に高速側周波の方が、低速側周波よりもQ値すなわち半値幅に対するピークの大きさが大きくなると考えられる。
Figure 0007001348000004
ただし、Qは、x軸におけるゲインについてのQ値、Qは、y軸におけるゲインについてのQ値である。
また、影響の大きいx軸に関する値の変化のみで算出を行い判断をするものとしてもよい。すなわち、上式(1)や上式(2)において、y軸に関する値を考慮せずゼロとして取り扱うものとしてもよい。なお、これは、図4を参照して考えると横軸方向の変化の大きさについて考慮し、縦軸の方向の変化については考慮しないことに相当する。なお、逆に、y軸に関する値の変化のみを利用することも考えられる。
上記実施形態では、ピエゾ抵抗素子R1~R8で構成したブリッジ回路(図3参照)の出力電圧を利用した揺動角度信号と駆動信号との位相差に基づいてずれ量を検出しているものを例示したが、これに限らず、例えば、特開2004-78130号公報や特開2004-242488号公報に記載されているように、外側可動部33に形成された第1駆動コイル37及び内側可動部35に形成された第2駆動コイル38に発生する逆起電力を検出し、これをy軸回り及びx軸回りの揺動角度信号とすることができる。
さらに、内側可動部35の揺動角度信号を用いることなく、光走査部3又はその近傍の温度に基づいて第1駆動信号の周波数と第1共振周波数との第1ずれ量及び第2駆動信号の周波数と第2共振周波数との第2ずれ量を検出するようにしてもよい。
また、上記実施形態では、光走査部として電磁駆動式の二次元ガルバノミラーを用いているが、本発明はこれに限定されるものではなく、電磁駆動式、静電方式、圧電方式、熱方式などの各種の駆動方式で光反射面を有する可動部を揺動駆動する構成の光走査部にも適用することができる。
また、上記実施形態では、光走査部として電磁駆動式の二次元ガルバノミラーを用いているが、本発明はこれに限定されるものではなく、二つの一次元ガルバノミラーの回転軸が互いに直交するように配置する構成の光走査部にも適用することが出来る。例えば、1次ミラーと2次ミラーの回転軸を互いに直交させて配置し、1次ミラーで水平方向に走査したレーザ光を、楕円面ミラー等を介して2次ミラーにあて、2次ミラーで垂直方向に走査することで2次元走査が実現できる。
A,B,C…パターン、L1-L3…直線、P…物体、PL…パルス光、R1-R8…ピエゾ抵抗素子、RL…反射光、Vi…入力電圧、Vo…出力電圧、ZB,ZC…値、Zi…候補規定値、ΔXb,ΔXc,ΔXi,ΔYb,ΔYc,ΔYi…値、3…光走査部、3…光走査部、4…光走査制御部、5…駆動部、6…ずれ量検出部、7…光源部、9…受光部、11…測距部、13…画像生成部、15…表示部、31…固定部、32…トーションバー、33…外側可動部、34…トーションバー、35…内側可動部、36…光反射面、37,38…駆動コイル、39,40…電極端子、41,42…永久磁石、50…光走査装置、51…第1駆動回路、52…第2駆動回路、61…第1ずれ量検出部、62…第2ずれ量検出部、71…周波数決定部、71a…強制同期部、72…演算部、73…テーブルデータ部、100…距離画像装置

Claims (6)

  1. 2軸を駆動してリサジュー走査する光走査部と、
    前記光走査部の駆動を制御する駆動制御部と
    を備え、
    前記駆動制御部は、前記光走査部の共振周波数と駆動周波数とにずれが生じた場合に、前記2軸の駆動周波数比を維持しつつ各軸の駆動周波数を変更するか、前記2軸の周波数比を各軸の駆動周波数とともに変更するか、の選択に際して、共振周波数と駆動周波数とのずれ量に基づいて電力消費をより抑えると判別されたものを選択する判別部を有する、光走査装置。
  2. 前記判別部は、必要となる駆動エネルギーの大きさを示す指標についての大小の比較結果に基づいて、駆動周波数の変更についての選択を行う、請求項1に記載の光走査装置。
  3. 前記駆動制御部は、前記光走査部の共振周波数と選択可能な複数の前記2軸の駆動周波数の組合せとの駆動エネルギーの差をそれぞれ示す複数の候補規定値を算出する候補規定値算出部を有し、
    前記判別部は、前記候補規定値算出部で算出された複数の前記候補規定値の比較結果に基づいて、駆動周波数の変更についての選択を行う、請求項1及び2のいずれか一項に記載の光走査装置。
  4. 前記候補規定値算出部において、算出される前記候補規定値は、各軸のQ値により重み付けされている、請求項3に記載の光走査装置。
  5. 前記2軸の走査タイミングを強制的に同期させる強制同期部をさらに備える、請求項1~4のいずれか一項に記載の光走査装置。
  6. 請求項1~5のいずれか一項に記載の光走査装置と、
    前記光走査装置の前記光走査部に光を射出する光源部と、
    前記光走査部から射出された光が物体によって反射された反射光を受光する受光部と、
    前記光源部から射出された光が前記受光部で反射光として受光されるまでの時間に基づいて距離を計測する測距部と
    を備える距離画像センサ。
JP2017026466A 2017-02-15 2017-02-15 光走査装置及び距離画像センサ Active JP7001348B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017026466A JP7001348B2 (ja) 2017-02-15 2017-02-15 光走査装置及び距離画像センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017026466A JP7001348B2 (ja) 2017-02-15 2017-02-15 光走査装置及び距離画像センサ

Publications (2)

Publication Number Publication Date
JP2018132666A JP2018132666A (ja) 2018-08-23
JP7001348B2 true JP7001348B2 (ja) 2022-01-19

Family

ID=63248377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017026466A Active JP7001348B2 (ja) 2017-02-15 2017-02-15 光走査装置及び距離画像センサ

Country Status (1)

Country Link
JP (1) JP7001348B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245809A1 (ja) * 2020-06-02 2021-12-09 富士通株式会社 距離測定装置、ミラー制御方法、及びプログラム
JP2023151550A (ja) * 2022-03-31 2023-10-16 富士フイルム株式会社 光走査装置、光走査装置の駆動方法、及び画像描画システム
DE102022119915B3 (de) * 2022-08-08 2024-02-01 OQmented GmbH Mehrachsiges mikroscannersystem und verfahren und vorrichtung zur steuerung seines antriebs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150286048A1 (en) 2014-04-02 2015-10-08 Industrial Technology Research Institute Lissajous dual-axial scan component and scan frequency generation method thereof
JP5806006B2 (ja) 2011-06-14 2015-11-10 日本信号株式会社 光走査装置
JP5829391B2 (ja) 2010-09-22 2015-12-09 日本信号株式会社 光走査装置及びこれを用いた光測距装置
JP2016184018A (ja) 2015-03-25 2016-10-20 株式会社豊田中央研究所 光偏向装置、光照射装置および距離計測装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845190B1 (en) * 2000-11-27 2005-01-18 University Of Washington Control of an optical fiber scanner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5829391B2 (ja) 2010-09-22 2015-12-09 日本信号株式会社 光走査装置及びこれを用いた光測距装置
JP5806006B2 (ja) 2011-06-14 2015-11-10 日本信号株式会社 光走査装置
US20150286048A1 (en) 2014-04-02 2015-10-08 Industrial Technology Research Institute Lissajous dual-axial scan component and scan frequency generation method thereof
JP2016184018A (ja) 2015-03-25 2016-10-20 株式会社豊田中央研究所 光偏向装置、光照射装置および距離計測装置

Also Published As

Publication number Publication date
JP2018132666A (ja) 2018-08-23

Similar Documents

Publication Publication Date Title
JP5829391B2 (ja) 光走査装置及びこれを用いた光測距装置
JP6513962B2 (ja) 光走査装置
JP7001348B2 (ja) 光走査装置及び距離画像センサ
JP6874321B2 (ja) 距離測定装置、距離測定方法、及び距離測定プログラム
JP5524535B2 (ja) アクチュエータの駆動装置
JP4790875B1 (ja) 二次元光走査装置
JP5585064B2 (ja) 2次元光走査装置及び光走査型画像表示装置
JP5710279B2 (ja) 光測距装置
JP2013210316A (ja) 光学式距離測定装置
JP2009192640A (ja) 揺動体装置及び光偏向装置
JP2020034386A (ja) 走査装置及び測距装置
JP5806006B2 (ja) 光走査装置
US10514292B2 (en) Optical probe and measuring apparatus utilizing resonant scanners driven in synchronization with separate and coaxial drive axes
EP2158512A1 (en) Oscillator device, optical deflecting device and method of controlling the same
JP4212305B2 (ja) レーザ照射装置
JP2009058616A (ja) 揺動体装置、光偏向装置、及びそれを用いた画像形成装置
JP2013003526A (ja) 光走査装置
JP2012242461A (ja) 光走査装置
CN114341702A (zh) 光扫描系统的制造方法、光扫描装置的制造方法及数据获取方法
JPWO2015125190A1 (ja) 画像表示装置および画像表示方法
JP2009101343A (ja) 揺動体装置、光偏向装置、及びそれを用いた光学機器
JP5152074B2 (ja) 駆動信号発生器及びそれを備えた光走査装置並びに画像表示装置
JP2003025629A (ja) 光走査装置、その走査方法、表示装置、レーザプリンタ
JP2010014871A (ja) 揺動体装置、光偏向装置、光学機器、及び共振周波数検出方法
JP5058661B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211013

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7001348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150