JP6997945B2 - Laminated wiring film and its manufacturing method and Mo alloy sputtering target material - Google Patents

Laminated wiring film and its manufacturing method and Mo alloy sputtering target material Download PDF

Info

Publication number
JP6997945B2
JP6997945B2 JP2017222537A JP2017222537A JP6997945B2 JP 6997945 B2 JP6997945 B2 JP 6997945B2 JP 2017222537 A JP2017222537 A JP 2017222537A JP 2017222537 A JP2017222537 A JP 2017222537A JP 6997945 B2 JP6997945 B2 JP 6997945B2
Authority
JP
Japan
Prior art keywords
film
alloy
atomic
target material
laminated wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017222537A
Other languages
Japanese (ja)
Other versions
JP2018107432A (en
Inventor
英夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2018107432A publication Critical patent/JP2018107432A/en
Application granted granted Critical
Publication of JP6997945B2 publication Critical patent/JP6997945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0003Apparatus or processes specially adapted for manufacturing conductors or cables for feeding conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]

Description

本発明は、低い反射率という特性が要求される、例えば、平面表示素子用の電極膜または配線膜に用いられる導電膜と中間膜で構成される積層配線膜およびその製造方法ならびに上記中間膜を形成するためのMo合金スパッタリングターゲット材に関するものである。 The present invention provides, for example, a laminated wiring film composed of a conductive film and an interlayer film used for an electrode film or a wiring film for a plane display element, a method for manufacturing the same, and the above-mentioned interlayer film, which are required to have a characteristic of low reflectance. It relates to a Mo alloy sputtering target material for forming.

透明なガラス基板等の上に薄膜デバイスを形成する液晶ディスプレイ(以下、「LCD」という。)、プラズマディスプレイパネル(以下、「PDP」という。)、電子ペーパー等に利用される電気泳動型ディスプレイ等の平面表示装置(フラットパネルディスプレイ、以下、「FPD」という。)は、大画面、高精細、高速応答化に伴い、その配線膜には低い電気抵抗値(以下、「低抵抗」という。)が要求されている。そして、近年、FPDに操作性を加えるタッチパネル、あるいは透明な樹脂基板や極薄ガラス基板を用いたフレキシブルなFPD等、新たな製品が開発されている。 Liquid crystal displays (hereinafter referred to as "LCD") that form thin film devices on a transparent glass substrate, plasma display panels (hereinafter referred to as "PDP"), electrophoretic displays used for electronic paper, etc. The flat-panel display device (flat panel display, hereinafter referred to as "FPD") has a large screen, high definition, and high-speed response, and its wiring film has a low electrical resistance value (hereinafter referred to as "low resistance"). Is required. In recent years, new products such as a touch panel that adds operability to an FPD, or a flexible FPD that uses a transparent resin substrate or an ultrathin glass substrate have been developed.

近年、FPDの駆動素子として用いられている薄膜トランジスタ(Thin FilmTransistor:以下、「TFT」という。)の配線膜は、上記の高性能化を達成するために低い電気抵抗値が必要であり、導電膜の材料としてAlやCuが用いられている。
現在、TFTには、Si半導体膜が用いられており、導電膜材料であるAlやCuは、Siに直接触れると、TFT製造中の加熱工程により熱拡散して、TFTの特性を劣化させる場合がある。このため、AlやCuの導電膜と半導体膜のSiの間には、耐熱性に優れた純MoやMo合金等の金属膜をバリア(中間)膜として設けた積層配線膜が用いられている。
In recent years, the wiring film of a thin film transistor (hereinafter referred to as "TFT") used as a driving element of an FPD requires a low electric resistance value in order to achieve the above-mentioned high performance, and is a conductive film. Al and Cu are used as the material of.
Currently, a Si semiconductor film is used for a TFT, and when Al or Cu, which are conductive materials, come into direct contact with Si, they are thermally diffused by the heating process during the manufacture of the TFT, and the characteristics of the TFT are deteriorated. There is. For this reason, a laminated wiring film provided with a metal film such as pure Mo or Mo alloy having excellent heat resistance as a barrier (intermediate) film is used between the conductive film of Al or Cu and Si of the semiconductor film. ..

FPDの画面を見ながら直接的な操作性を付与するタッチパネル基板画面も大型化が進んでおり、スマートフォンやタブレットPC、さらにデスクトップPC等においてもタッチパネル操作を行う製品が普及しつつある。このタッチパネルの位置検出電極には、一般的に透明導電膜であるインジウム-スズ酸化物(Indium Tin Oxide:以下、「ITO」という。)膜が用いられている。
近年、多点検出が可能な静電容量式のタッチパネルでは、四角形のITO膜を配置した通称ダイヤモンド配置となっており、四角形のITO膜を接続する電極や配線膜にも上記の金属膜が用いられている。この金属膜には、ITO膜とのコンタクト性が得られやすいMo合金やMo合金とAlの積層配線膜が用いられている。
Touch panel board screens that provide direct operability while looking at the FPD screen are also becoming larger in size, and products that perform touch panel operations are becoming widespread in smartphones, tablet PCs, desktop PCs, and the like. An indium-tin oxide (hereinafter referred to as "ITO") film, which is a transparent conductive film, is generally used for the position detection electrode of the touch panel.
In recent years, capacitive touch panels capable of multi-point detection have a so-called diamond arrangement in which a square ITO film is arranged, and the above metal film is also used for electrodes and wiring films connecting the square ITO film. Has been done. For this metal film, a Mo alloy or a laminated wiring film of Mo alloy and Al, which can easily obtain contact with an ITO film, is used.

本発明者は、耐熱性、耐食性や基板との密着性に優れた低抵抗な金属膜として、特許文献1で、Moに3~50原子%のVやNbを含有させ、さらにNiやCuを添加した金属膜を提案している。
一方、低抵抗なCuからなる導電膜の表面を保護するために、例えば、特許文献2や特許文献3では、金属膜としてNi-Cu合金で被覆した積層配線膜が提案されている。
The present inventor has described in Patent Document 1 as a low-resistance metal film having excellent heat resistance, corrosion resistance, and adhesion to a substrate, in which Mo contains 3 to 50 atomic% of V and Nb, and Ni and Cu are further added. We are proposing an added metal film.
On the other hand, in order to protect the surface of a conductive film made of low-resistance Cu, for example, Patent Document 2 and Patent Document 3 propose a laminated wiring film coated with a Ni—Cu alloy as a metal film.

特開2004-140319号公報Japanese Unexamined Patent Publication No. 2004-140319 特開2011-52304号公報Japanese Unexamined Patent Publication No. 2011-52304 特開2006-310814号公報Japanese Unexamined Patent Publication No. 2006-310814

近年主流となっているフルハイビジョンの代替となる、4倍の画素を有する大型の4K-TVや、視点から数10cm程度という近距離で表示画面を操作するスマートフォンでは、高精細化が進んでいる。この高精細化に伴い、入射光による金属膜の反射が表示品質を低下させるという新たな問題が顕在化するようになってきた。このため、金属膜には低い反射率を有するという特性(以下、「低反射」という。)の要求が急速に高まりつつある。 High-definition is progressing in large 4K-TVs with 4 times the pixels and smartphones that operate the display screen at a short distance of several tens of centimeters from the viewpoint, which is an alternative to full high-definition, which has become mainstream in recent years. .. Along with this high definition, a new problem that the reflection of the metal film by the incident light deteriorates the display quality has come to the surface. For this reason, the demand for the property that the metal film has a low reflectance (hereinafter referred to as "low reflection") is rapidly increasing.

また、平面表示素子の導電膜に用いられているAl膜は、可視光域において90%以上の高い反射率を持つ金属である。また、同じく平面表示素子の導電膜に用いられているCu膜は、可視光域で70%の反射率を有し、600nm以上の長波長域ではAg膜と同等の95%以上の高い反射率を有する。
一方、これらの導電膜を保護するために積層される中間膜となるMo膜やMo合金膜は、60%程度の反射率を有している。これらの中間膜は、平面表示素子の製造プロセスを経ても反射率はほとんど変化しないため、中間膜の反射が特に高精細な表示装置においては表示品質を低下させる要因となっている。このため、上記のような高精細化される表示装置においては、反射率が15%以下となる、より低反射な積層配線膜が要求されている。
Further, the Al film used for the conductive film of the flat surface display element is a metal having a high reflectance of 90% or more in the visible light region. The Cu film, which is also used for the conductive film of the flat display element, has a reflectance of 70% in the visible light region and a high reflectance of 95% or more, which is equivalent to that of the Ag film, in the long wavelength region of 600 nm or more. Has.
On the other hand, the Mo film and the Mo alloy film, which are the intermediate films laminated to protect these conductive films, have a reflectance of about 60%. Since the reflectance of these interlayer films hardly changes even after undergoing the manufacturing process of the flat display element, the reflection of the interlayer film is a factor that deteriorates the display quality especially in a high-definition display device. Therefore, in the above-mentioned high-definition display device, there is a demand for a low-reflection laminated wiring film having a reflectance of 15% or less.

以上のように、これまで種々の材質を用いた配線膜や積層配線膜が開発されているところ、これらの特許文献では、導電膜や中間膜としてのバリア性や保護性能に注目して検討されており、今後の高精細な表示装置に対応するために必要な低反射という新たな特性に関しては、何ら検討されていなかった。 As described above, wiring films and laminated wiring films using various materials have been developed so far, and these patent documents have focused on the barrier properties and protective performance as conductive films and interlayer films. However, no consideration has been given to the new characteristic of low reflection required for future high-definition display devices.

本発明の目的は、高精細な平面表示素子の表示品質を向上させるために必要な、電極または配線膜の低反射の要求に対応できる積層配線膜およびその製造方法、ならびに低反射の中間膜を担うMo合金膜を形成するためのMo合金スパッタリングターゲット材を提供することにある。 An object of the present invention is to provide a laminated wiring film and a method for manufacturing the same, which are necessary for improving the display quality of a high-definition flat surface display element and which can meet the demand for low reflection of an electrode or a wiring film, and an intermediate film having low reflection. It is an object of the present invention to provide a Mo alloy sputtering target material for forming a Mo alloy film to be carried.

本発明者は、上記課題に鑑み、平面表示素子やタッチパネルの製造工程において、低反射という新たな特性を得るために、種々の合金膜および積層膜を検討した。その結果、Mo合金からなる中間膜と導電膜とを透明基板の直上または透明膜を形成した透明基板の直上に積層することで、低反射の積層配線膜が得られることを見出し、本発明に到達した。 In view of the above problems, the present inventor has studied various alloy films and laminated films in order to obtain a new characteristic of low reflection in the manufacturing process of a flat surface display element or a touch panel. As a result, they have found that a low-reflection laminated wiring film can be obtained by laminating an interlayer film made of Mo alloy and a conductive film directly on a transparent substrate or directly on a transparent substrate on which a transparent film is formed. Reached.

すなわち、本発明は、透明基板の直上または透明膜が形成された透明基板の直上に、膜厚が30~70nmで、Mo合金からなる中間膜が形成され、該中間膜の直上に比抵抗が15μΩ・cm以下の導電膜が形成された積層構造を有し、前記透明基板側から測定した可視光反射率が15%以下である積層配線膜の発明である。
前記導電膜は、Al、Cu、Agのいずれか一種、またはAl、Cu、Agのいずれか一種に遷移金属および半金属から選択される元素を合計で5原子%以下含有したAl合金、Cu合金、Ag合金のいずれか一種からなり、膜厚が50~500nmであることが好ましい。
前記中間膜は、金属成分として、Ti、V、Nb、Ta、Ni、CoおよびFeから選択される一種以上の元素を合計で5~50原子%含有し、残部がMoおよび不可避的不純物からなることが好ましい。
また、前記中間膜は、TiおよびNbから選択される一種以上の元素を合計で5~20原子%含有することが好ましい。
また、前記中間膜は、Niを1~30原子%含有することが好ましい。
That is, in the present invention, an interlayer film having a film thickness of 30 to 70 nm and made of Mo alloy is formed directly above the transparent substrate or directly above the transparent substrate on which the transparent film is formed, and the specific resistance is directly above the interlayer film. It is an invention of a laminated wiring film having a laminated structure in which a conductive film of 15 μΩ · cm or less is formed and having a visible light reflectance of 15% or less measured from the transparent substrate side.
The conductive film is an Al alloy or Cu alloy containing a total of 5 atomic% or less of an element selected from a transition metal and a semi-metal in any one of Al, Cu, and Ag, or any one of Al, Cu, and Ag. , Ag alloy, preferably having a film thickness of 50 to 500 nm.
The interlayer film contains a total of 5 to 50 atomic% of one or more elements selected from Ti, V, Nb, Ta, Ni, Co and Fe as a metal component, and the balance consists of Mo and unavoidable impurities. Is preferable.
Further, it is preferable that the interlayer film contains 5 to 20 atomic% in total of one or more elements selected from Ti and Nb.
Further, the interlayer film preferably contains 1 to 30 atomic% of Ni.

本発明は、前記中間膜を形成するためのMo合金スパッタリングターゲット材であって、Ti、V、Nb、Ta、Ni、CoおよびFeから選択される一種以上の元素を合計で5~50原子%含有し、残部がMoおよび不可避的不純物からなるMo合金スパッタリングターゲット材の発明である。
前記Mo合金スパッタリングターゲット材は、TiおよびNbから選択される一種以上の元素を合計で5~20原子%含有することが好ましい。
前記Mo合金スパッタリングターゲット材は、Niを1~30原子%含有することが好ましい。
また、前記の中間膜は、酸素および窒素から選択される少なくとも一方を10~90体積%含有する雰囲気で、上記に記載のMo合金スパッタリングターゲット材のいずれかを用いてスパッタリング法により形成することができる。
The present invention is a Mo alloy sputtering target material for forming the interlayer film, and contains a total of 5 to 50 atomic% of one or more elements selected from Ti, V, Nb, Ta, Ni, Co and Fe. It is an invention of a Mo alloy sputtering target material which is contained and the balance is composed of Mo and unavoidable impurities.
The Mo alloy sputtering target material preferably contains 5 to 20 atomic% in total of one or more elements selected from Ti and Nb.
The Mo alloy sputtering target material preferably contains 1 to 30 atomic% of Ni.
Further, the interlayer film may be formed by a sputtering method using any of the Mo alloy sputtering target materials described above in an atmosphere containing at least one selected from oxygen and nitrogen in an atmosphere of 10 to 90% by volume. can.

本発明の積層配線膜は、従来の積層配線膜では得られなかった低い反射率を達成できるため、例えばFPD等の表示品質を向上させることが可能となる。このため、より高精細なFPDとして注目されている、例えば4K-TVやスマートフォン、あるいはタブレットPC等の次世代情報端末や透明樹脂基板を用いるフレキシブルなFPDに対して非常に有用な技術となる。これらの製品では特に積層配線膜の低反射化が非常に重要なためである。 Since the laminated wiring film of the present invention can achieve a low reflectance which cannot be obtained by the conventional laminated wiring film, it is possible to improve the display quality of, for example, FPD. Therefore, it is a very useful technology for next-generation information terminals such as 4K-TVs, smartphones, tablet PCs, and flexible FPDs using transparent resin substrates, which are attracting attention as higher-definition FPDs. This is because it is very important to reduce the reflection of the laminated wiring film in these products.

本発明の積層配線膜の適用例を示す断面模式図。The sectional schematic diagram which shows the application example of the laminated wiring film of this invention.

本発明の積層配線膜の適用例を図1に示す。本発明の積層配線膜は、例えば、透明基板1の直上に中間膜2が形成され、この中間膜2の直上に導電膜3が形成される。
そして、本発明の重要な特徴の一つは、例えば、ガラス基板のような透明基板の直上、または、例えば、透明樹脂フィルム等の透明膜が形成された透明基板の直上に形成する中間膜にMo合金を採用し、その膜厚を30~70nmとした点にある。また、本発明のもう一つの重要な特徴は、上記中間膜の直上に、比抵抗が15μΩ・cm以下の導電膜が形成され、積層構造にする点にある。さらに、本発明のもう一つの重要な特徴は、透明基板側から測定した可視光反射率が15%以下である点にある。以下、本発明の各特徴について詳細に説明する。
なお、以下の説明において、「反射率」とは、可視光域である波長360~740nmの範囲の平均反射率をいう。
FIG. 1 shows an application example of the laminated wiring film of the present invention. In the laminated wiring film of the present invention, for example, the interlayer film 2 is formed directly above the transparent substrate 1, and the conductive film 3 is formed directly above the interlayer film 2.
One of the important features of the present invention is, for example, an interlayer film formed directly above a transparent substrate such as a glass substrate, or directly above a transparent substrate on which a transparent film such as a transparent resin film is formed. The point is that a Mo alloy is used and the film thickness is 30 to 70 nm. Another important feature of the present invention is that a conductive film having a specific resistance of 15 μΩ · cm or less is formed directly above the interlayer film to form a laminated structure. Further, another important feature of the present invention is that the visible light reflectance measured from the transparent substrate side is 15% or less. Hereinafter, each feature of the present invention will be described in detail.
In the following description, the "reflectance" means the average reflectance in the wavelength range of 360 to 740 nm in the visible light region.

本発明の積層配線膜において、中間膜の膜厚が30nm未満では、上層の導電膜で光が反射してしまい、可視光域の長波長側である600nm以上での反射率が十分に低下せず赤っぽい色調となり低反射特性を得にくくなる。また、中間膜の膜厚が70nmを越えると短波長側の500nm以下での反射率が十分に低下せず、青っぽい色調となり低反射特性を得にくくなる。透明基板側から測定した可視光域で反射率を15%以下にするには、中間膜の膜厚は30~70nmとする。さらに、より望ましい可視光域での反射率の変化が少ない青黒い色調とし、10%以下の低反射膜とするには、中間膜の膜厚を40~60nmの範囲にすることが好ましい。 In the laminated wiring film of the present invention, if the thickness of the interlayer film is less than 30 nm, light is reflected by the upper conductive film, and the reflectance at 600 nm or more on the long wavelength side of the visible light region is sufficiently lowered. The color becomes reddish and it becomes difficult to obtain low reflection characteristics. Further, when the film thickness of the interlayer film exceeds 70 nm, the reflectance at 500 nm or less on the short wavelength side does not sufficiently decrease, resulting in a bluish color tone and it becomes difficult to obtain low reflection characteristics. In order to reduce the reflectance to 15% or less in the visible light region measured from the transparent substrate side, the film thickness of the interlayer film should be 30 to 70 nm. Further, in order to obtain a bluish-black color tone in which the change in reflectance in a more desirable visible light region is small and a low-reflection film of 10% or less, the film thickness of the intermediate film is preferably in the range of 40 to 60 nm.

本発明の積層配線膜における中間膜の直上に形成する導電膜の比抵抗は、できるだけ低い方が望ましく、その値を15μΩ・cm以下とする。
本発明は、上記の中間膜と導電膜を最適な膜厚構成で積層することにより、より低反射な特性を有する積層配線膜とすることが可能となる。導電膜としては、低抵抗が得られる例えば、Al、Cu、Agのいずれか一種、またはAl、Cu、Agのいずれか一種に遷移金属および半金属から選択される元素を合計で5原子%以下含有したAl合金、Cu合金、Ag合金のいずれか一種からなることが好ましい。これは、要求される電気抵抗値や製造工程における加熱工程の温度や雰囲気、他の酸化膜や保護膜との密着性、バリア性等を考慮して適宜選択できる。
The specific resistance of the conductive film formed directly above the interlayer film in the laminated wiring film of the present invention is preferably as low as possible, and the value is 15 μΩ · cm or less.
INDUSTRIAL APPLICABILITY The present invention makes it possible to obtain a laminated wiring film having lower reflection characteristics by laminating the above-mentioned interlayer film and the conductive film in an optimum film thickness configuration. As the conductive film, for example, one of Al, Cu, and Ag, or one of Al, Cu, and Ag, which provides low resistance, contains 5 atomic% or less of elements selected from transition metals and semi-metals in total. It is preferably composed of any one of the contained Al alloy, Cu alloy and Ag alloy. This can be appropriately selected in consideration of the required electric resistance value, the temperature and atmosphere of the heating process in the manufacturing process, the adhesion to other oxide films and protective films, the barrier property, and the like.

Alは、透明基板上に透明膜としてITO膜が形成されていて、中間膜を形成しない場合、透明導電膜であるITO膜と積層して加熱工程を経ると、界面にAlの酸化物を生成してしまい、電気的コンタクト性が低下する場合がある。このため、ITO膜とのコンタクト性に優れるMo合金からなる中間膜をAlの導電膜とITO膜との間に形成することが好ましい。
また、Cuは、Alより電気抵抗値が低く好適である。
また、Agは、高価な材料である反面、Cuと同程度の低抵抗を有しながらCuの欠点である耐酸化性、耐湿性に優れ、ITO膜とのコンタクト性も有するため、簡便な導電膜として好適である。
When an ITO film is formed as a transparent film on a transparent substrate and an intermediate film is not formed, Al is laminated with an ITO film which is a transparent conductive film and undergoes a heating step to generate an oxide of Al at the interface. This may result in poor electrical contact. Therefore, it is preferable to form an intermediate film made of a Mo alloy having excellent contact property with the ITO film between the conductive film of Al and the ITO film.
Further, Cu has a lower electric resistance value than Al and is suitable.
In addition, although Ag is an expensive material, it has the same low resistance as Cu, but has excellent oxidation resistance and moisture resistance, which are the drawbacks of Cu, and also has contact properties with an ITO film, so it is easy to conduct. Suitable as a film.

Moは、FPDで適用可能な上述のAl合金等の導電膜に用いるエッチャント等でエッチングされやすい反面、耐湿性と耐酸化性が低い。
Ti、V、Nb、Ta、Ni、CoおよびFeは、Moに含有させてMo合金にすることで、耐湿性や耐酸化性を改善する効果を持つ元素である。この効果は、Moに、Ti、V、Nb、Ta、Ni、CoおよびFeから選択される一種以上の元素を合計で5原子%以上含有させることで明確となり、含有量の増加とともに顕著となる。このため、中間膜は、Moに、Ti、V、Nb、Ta、Ni、CoおよびFeから選択される一種以上の元素を合計で5原子%以上含有することが好ましい。
一方、これら元素の合計の含有量を増加し過ぎると、エッチング性が低下する場合がある。このため、上記のエッチャント等によるエッチング性を考慮すると、中間膜は、Moに、Ti、V、Nb、Ta、Ni、CoおよびFeから選択される一種以上の元素を合計で50原子%以下含有することが好ましい。
Mo is easily etched by an etchant or the like used for a conductive film such as the above-mentioned Al alloy applicable to FPD, but has low moisture resistance and oxidation resistance.
Ti, V, Nb, Ta, Ni, Co and Fe are elements having an effect of improving moisture resistance and oxidation resistance by being contained in Mo to form a Mo alloy. This effect becomes clear when Mo contains at least 5 atomic% of one or more elements selected from Ti, V, Nb, Ta, Ni, Co and Fe in total, and becomes remarkable as the content increases. .. Therefore, it is preferable that the interlayer film contains Mo in a total of 5 atomic% or more of one or more elements selected from Ti, V, Nb, Ta, Ni, Co and Fe.
On the other hand, if the total content of these elements is increased too much, the etchability may decrease. Therefore, considering the etching property of the above-mentioned etchant or the like, the interlayer film contains 50 atomic% or less in total of one or more elements selected from Ti, V, Nb, Ta, Ni, Co and Fe in Mo. It is preferable to do so.

また、中間膜は、TiおよびNbから選択される一種以上の元素を合計で5~20原子%含有することが好ましい。TiおよびNbは、窒素と結合しやすいため、中間膜を容易に半透過着色膜にすることが可能な元素であり、低反射特性および耐湿性の改善と、エッチング性の確保を少ない含有量で実現できる。この改善効果は、TiおよびNbから選択される一種以上の元素の合計が5原子%以上で明確となる。
一方、TiおよびNbから選択される一種以上の元素の合計が20原子%を越えると、エッチング性が低下する場合がある。このため、中間膜は、TiおよびNbから選択される一種以上の元素を合計で5~20原子%の範囲で含有することが好ましい。また、上記と同様の理由から、上記の元素の合計は、10~20原子%の範囲がより好ましい。
Further, the interlayer film preferably contains 5 to 20 atomic% in total of one or more elements selected from Ti and Nb. Ti and Nb are elements that can easily form a semi-transmissive colored film because they easily bind to nitrogen, and improve low reflection characteristics and moisture resistance and ensure etching properties with a small content. realizable. This improving effect becomes clear when the total of one or more elements selected from Ti and Nb is 5 atomic% or more.
On the other hand, if the total of one or more elements selected from Ti and Nb exceeds 20 atomic%, the etchability may decrease. Therefore, it is preferable that the interlayer film contains one or more elements selected from Ti and Nb in the range of 5 to 20 atomic% in total. Further, for the same reason as described above, the total of the above elements is more preferably in the range of 10 to 20 atomic%.

また、中間膜は、Niを1~30原子%含有することが好ましい。Niは、Mo合金のドライエッチング耐性を大きく向上できるとともに、耐酸化性の向上に寄与する元素であることに加え、Cuの導電膜を用いたときのエッチャントに対してエッチング性を改善できる。その反面、中間膜のNiの含有量が多過ぎると、低反射特性を得にくくなるとともに、Alの導電膜を用いて250℃以上に加熱した場合は、NiがAlに熱拡散しやすくなる。
また、Niによるドライエッチング耐性の改善効果は、Niの含有量が1原子%から現れ、耐酸化性の改善効果は、Niの含有量が5原子%から明確となる。
一方、Niの含有量が30原子%を越えると、低反射特性を得にくくなる場合がある。このため、中間膜は、Niを1~30原子%の範囲で含有することが好ましい。また、上記と同様の理由から、より好ましいNiの下限は、5原子%であり、より好ましいNiの上限は20原子%である。
Further, the interlayer film preferably contains 1 to 30 atomic% of Ni. Ni can greatly improve the dry etching resistance of the Mo alloy, and in addition to being an element that contributes to the improvement of the oxidation resistance, it can improve the etching resistance with respect to the etchant when the Cu conductive film is used. On the other hand, if the Ni content of the interlayer film is too large, it becomes difficult to obtain low reflection characteristics, and when the film is heated to 250 ° C. or higher using a conductive film of Al, Ni tends to be thermally diffused into Al.
Further, the effect of improving the dry etching resistance by Ni appears from the Ni content of 1 atomic%, and the effect of improving the oxidation resistance becomes clear from the Ni content of 5 atomic%.
On the other hand, if the Ni content exceeds 30 atomic%, it may be difficult to obtain low reflection characteristics. Therefore, the interlayer film preferably contains Ni in the range of 1 to 30 atomic%. Further, for the same reason as described above, the lower limit of more preferable Ni is 5 atomic%, and the more preferable upper limit of Ni is 20 atomic%.

また、中間膜に含有することができるTaは、中間膜の膜応力を圧縮側に変化できる元素であり、特にフィルム基板等に中間膜を形成した場合に膜面が凹状になる、すなわち引張応力となる場合に、その応力を緩和できる元素である。その効果は、Taの含有量が3原子%から現れる。また、Taは、窒素と結合しやすいため、中間膜を容易に半透過着色膜とすることが可能な元素であるが、重く高価な元素であるため、できる限り少ない含有量とすることが好ましい。
また、中間膜に含有することができるFeは、安価な元素であるが、半導体膜であるSiに拡散すると特性を劣化させる元素である。中間膜にFeを含有させる場合は、タッチパネル等の用途に好適となる。
Further, Ta that can be contained in the interlayer film is an element that can change the film stress of the interlayer film to the compression side, and the film surface becomes concave, that is, tensile stress, especially when the interlayer film is formed on a film substrate or the like. In this case, it is an element that can relieve the stress. The effect is manifested by a Ta content of 3 atomic%. Further, Ta is an element that can easily form a semi-permeable colored film because it easily binds to nitrogen, but it is a heavy and expensive element, so that the content is preferably as small as possible. ..
Further, Fe, which can be contained in the interlayer film, is an inexpensive element, but is an element whose characteristics deteriorate when diffused into Si, which is a semiconductor film. When Fe is contained in the interlayer film, it is suitable for applications such as touch panels.

導電膜の膜厚は、50~500nmであることが好ましい。導電膜の電気導電性や光透過性は選択される材質により異なるところ、膜厚が50nm未満では、導電膜の連続性が低くなってしまい、電子散乱の影響により電気抵抗値が増加しやすくなるとともに、透過光が増加する場合があり、低反射を得にくい。このため、安定した低反射特性を得るには、導電膜の膜厚を透過光が減少する50nm以上にすることがより好ましい。
一方、導電膜の膜厚が500nmを越えると、形成する際に時間が掛かるとともに、透明なフィルム基板等に適用した場合は、膜応力により反りが発生しやすくなる。
また、導電膜の膜表面における電子散乱の影響による電気抵抗値の増加を緩和し、安定した低抵抗を得るには、導電膜の膜厚は100nm以上にすることがより好ましい。
The film thickness of the conductive film is preferably 50 to 500 nm. The electrical conductivity and light transmittance of the conductive film differ depending on the material selected, but if the film thickness is less than 50 nm, the continuity of the conductive film will be low, and the electrical resistance value will likely increase due to the influence of electron scattering. At the same time, transmitted light may increase, making it difficult to obtain low reflection. Therefore, in order to obtain stable low reflection characteristics, it is more preferable that the film thickness of the conductive film is 50 nm or more, which reduces transmitted light.
On the other hand, if the film thickness of the conductive film exceeds 500 nm, it takes time to form the conductive film, and when applied to a transparent film substrate or the like, warpage is likely to occur due to the film stress.
Further, in order to alleviate the increase in the electric resistance value due to the influence of electron scattering on the film surface of the conductive film and obtain a stable low resistance, the film thickness of the conductive film is more preferably 100 nm or more.

上述した中間膜を形成する手法としては、Mo合金スパッタリングターゲット材を用いたスパッタリング法が最適である。スパッタリング法は、物理蒸着法の一つであり、他の真空蒸着やイオンプレーティングに比較して、安定して大面積を形成できる方法であるとともに、組成変動が少ない、優れた薄膜が得られる有効な手法である。 As a method for forming the above-mentioned interlayer film, a sputtering method using a Mo alloy sputtering target material is optimal. The sputtering method is one of the physical vapor deposition methods, and is a method capable of stably forming a large area as compared with other vacuum deposition and ion plating, and an excellent thin film with less composition fluctuation can be obtained. This is an effective method.

また、本発明の積層配線膜の製造方法において、中間膜を形成するために、Mo合金スパッタリングターゲット材を用いてスパッタリングする際、窒素を含有する雰囲気中でスパッタリングすることが好ましい。これによって、中間膜を、導電膜と積層した際に、光を吸収しやすい半透過着色膜とすることができる。
そして、この窒素を含有する雰囲気は、通常スパッタガスに用いる不活性ガスであるAr以外に、窒素を特定量含むスパッタガスを用いた反応性スパッタ法を用いることで形成できる。
Further, in the method for producing a laminated wiring film of the present invention, when sputtering using a Mo alloy sputtering target material in order to form an interlayer film, it is preferable to perform sputtering in an atmosphere containing nitrogen. As a result, the interlayer film can be made into a semi-transmissive colored film that easily absorbs light when laminated with the conductive film.
The nitrogen-containing atmosphere can be formed by using a reactive sputtering method using a sputtering gas containing a specific amount of nitrogen in addition to Ar, which is an inert gas normally used for the sputtering gas.

反応性スパッタ法を用いる場合、スパッタガスを構成するArと窒素の含有比率を合計で100体積%としたときに、スパッタガスの窒素の含有比率は、10~90体積%の範囲とすることが好ましい。この範囲とすることにより、透明基板側から測定した可視光反射率が15%以下の積層配線膜を得やすい。好ましい窒素の含有比率の下限は20体積%であり、さらに好ましい下限は40体積%である。また、好ましい窒素の含有比率の上限は80体積%であり、さらに好ましい上限は60体積%である。
また、スパッタガスを構成する窒素の一部を酸素に置換することで、中間膜の密着性を向上させることも可能であるが、酸素を含有させる場合、酸素の含有量が窒素の含有量を越えると、中間膜が透過してしまい、低反射を得にくくなる場合がある。このため、スパッタガスへの酸素の含有量は、窒素の含有量よりも少なくすることが好ましい。
When the reactive sputtering method is used, the nitrogen content of the sputtering gas may be in the range of 10 to 90% by volume when the total content of Ar and nitrogen constituting the sputtering gas is 100% by volume. preferable. Within this range, it is easy to obtain a laminated wiring film having a visible light reflectance of 15% or less measured from the transparent substrate side. The lower limit of the preferable nitrogen content ratio is 20% by volume, and the more preferable lower limit is 40% by volume. Further, the upper limit of the preferable nitrogen content ratio is 80% by volume, and the more preferable upper limit is 60% by volume.
Further, it is possible to improve the adhesion of the interlayer film by substituting a part of nitrogen constituting the spatter gas with oxygen, but when oxygen is contained, the oxygen content determines the nitrogen content. If it exceeds, the interlayer film will be transmitted, and it may be difficult to obtain low reflection. Therefore, the oxygen content in the sputter gas is preferably lower than the nitrogen content.

また、上記した中間膜の反応性スパッタ法において、投入電力は、スパッタ時に印加する電力の値をスパッタリングターゲットのスパッタ面の面積値で除した値を電力密度とし、これを指標とすることが望ましい。そして、その電力密度は、2~6W/cmの範囲にすることが好ましい。電力密度が2W/cm未満では、成膜速度が遅くなるとともに、放電が不安定となりやすくなり、安定した中間膜の形成が行ない難くなる。
一方、電力密度が6W/cmを越えると、低反射な中間膜を得難くなる。これは、反応性スパッタでは、スパッタリングターゲットの粒子が反応ガスと反応した後にスパッタされると考えられるが、電力密度が高くなると、反応したスパッタリングターゲットの粒子がArで再度分解されてスパッタされ、膜中に取り込まれ難くなるためと考えられる。
Further, in the above-mentioned reactive sputtering method for an interlayer film, it is desirable that the input power is a value obtained by dividing the value of the power applied at the time of sputtering by the area value of the sputtering surface of the sputtering target as the power density and using this as an index. .. The power density is preferably in the range of 2 to 6 W / cm 2 . If the power density is less than 2 W / cm 2 , the film forming speed becomes slow, the discharge tends to be unstable, and it becomes difficult to form a stable interlayer film.
On the other hand, when the power density exceeds 6 W / cm 2 , it becomes difficult to obtain a low-reflection interlayer film. It is considered that in reactive sputtering, the particles of the sputtering target are sputtered after reacting with the reaction gas, but when the power density is high, the particles of the reacted sputtering target are decomposed again by Ar and sputtered to form a film. It is thought that it is difficult to be taken in.

また、本発明の積層配線膜におけるMo合金からなる中間膜は、上記した製造方法によれば、Mo合金に窒素を含有したものとなることが好ましいものと考えられる。ただし、中間膜における窒素の含有量を正確に特定することは容易ではないため、具体的な窒素の含有量を明確に定めることはできない。
しかしながら、発明者の推察によれば、中間膜に含まれる窒素の含有量は、2~60原子%が好ましいと考えられる。更に好ましい下限は3原子%であり、更に好ましい上限は30原子%である。この好ましい範囲とすることにより、透明基板側から測定した可視光反射率が15%以下の積層配線膜を得やすい。
また、中間膜を、導電膜と積層した際に、光を吸収しやすい半透過着色膜とすることが好ましい。
Further, it is considered that the intermediate film made of Mo alloy in the laminated wiring film of the present invention preferably contains nitrogen in Mo alloy according to the above-mentioned manufacturing method. However, since it is not easy to accurately specify the nitrogen content in the interlayer film, it is not possible to clearly determine the specific nitrogen content.
However, according to the inventor's guess, the nitrogen content in the interlayer film is preferably 2 to 60 atomic%. A more preferred lower limit is 3 atomic%, and a more preferred upper limit is 30 atomic%. By setting this in the preferable range, it is easy to obtain a laminated wiring film having a visible light reflectance of 15% or less measured from the transparent substrate side.
Further, it is preferable that the interlayer film is a semi-transmissive colored film that easily absorbs light when laminated with a conductive film.

本発明の積層配線膜を構成する中間膜を形成するためのMo合金スパッタリングターゲット材は、上述した中間膜を形成するために、金属成分としてTi、V、Nb、Ta、Ni、CoおよびFeから選択される一種以上の元素を合計で5~50原子%含有し、残部がMoおよび不可避的不純物からなるMo合金とすることが好ましい。
また、Mo合金スパッタリングターゲット材に含有する元素として、Ti、V、Nb、Taは、周期律表において、Moの周辺元素であり、Moと容易に合金化する元素である。中でも、工業的な元素単価と入手性等を考慮すると、TiおよびNbから選択される一種以上の元素を5~20原子%の範囲で含有することが好ましい。また、上記と同様の理由から、上記の元素の合計は、10~20原子%の範囲がより好ましい。
また、Mo合金スパッタリングターゲット材に含有する元素として、Ni、Co、Feは、単独で磁性体元素である。そして、スパッタリングターゲット材の利用効率を向上させるには、Moとこれら元素を合金化し、キュリー点を低下させて、常温において非磁性とし、Mo合金スパッタリングターゲット材中に存在させることが好ましい。中でも、飽和磁束密度が低く、非磁性化しやすいNiは、1~30原子%の範囲で含有することが好ましい。そして、上記と同様の理由から、Niは、5~20原子%の範囲がより好ましい。
The Mo alloy sputtering target material for forming the interlayer film constituting the laminated wiring film of the present invention is made of Ti, V, Nb, Ta, Ni, Co and Fe as metal components in order to form the above-mentioned interlayer film. It is preferable to use a Mo alloy containing 5 to 50 atomic% of one or more selected elements in total and the balance being Mo and unavoidable impurities.
Further, Ti, V, Nb, and Ta as elements contained in the Mo alloy sputtering target material are peripheral elements of Mo in the periodic table and are elements that are easily alloyed with Mo. Above all, in consideration of industrial element unit price, availability, etc., it is preferable to contain one or more elements selected from Ti and Nb in the range of 5 to 20 atomic%. Further, for the same reason as described above, the total of the above elements is more preferably in the range of 10 to 20 atomic%.
Further, Ni, Co, and Fe are independently magnetic elements as elements contained in the Mo alloy sputtering target material. Then, in order to improve the utilization efficiency of the sputtering target material, it is preferable to alloy Mo and these elements, lower the Curie point, make them non-magnetic at room temperature, and allow them to exist in the Mo alloy sputtering target material. Above all, Ni having a low saturation magnetic flux density and easily demagnetizing is preferably contained in the range of 1 to 30 atomic%. For the same reason as described above, Ni is more preferably in the range of 5 to 20 atomic%.

本発明の積層配線膜を構成する中間膜を形成するためのMo合金スパッタリングターゲット材の製造方法としては、例えば、粉末焼結法が適用可能である。Moは、高融点な金属であるため、Mo粉末と、例えば、ガスアトマイズ法で添加元素を含有する合金粉末を製造して原料粉末とすることや、複数の合金粉末や純金属粉末を本発明の最終組成となるように混合した混合粉末を原料粉末とすることが可能である。
原料粉末の焼結方法としては、熱間静水圧プレス、ホットプレス、放電プラズマ焼結、押し出しプレス焼結等の加圧焼結を用いることが可能である。
本発明の積層配線膜を構成する中間膜を形成するためのMo合金スパッタリングターゲット材において、不可避的不純物の含有量は少ないことが好ましい。そして、本発明のMo合金スパッタリングターゲット材は、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素や炭素、遷移金属であるCu、半金属のAl、Si等の不可避的不純物を含んでもよい。
ここで、各主要構成元素は、主要構成元素全体に対する原子%、主要構成元素以外の不可避的不純物は、Mo合金スパッタリングターゲット材全体における質量ppmで表わす。例えば、炭素は200質量ppm以下、Cuは200質量ppm以下、Al、Siはそれぞれ100質量ppm以下等であり、ガス成分を除いた純度として99.9質量%以上であることが好ましい。
As a method for producing a Mo alloy sputtering target material for forming an intermediate film constituting the laminated wiring film of the present invention, for example, a powder sintering method can be applied. Since Mo is a metal having a high melting point, Mo powder and, for example, an alloy powder containing an additive element by a gas atomizing method can be produced as a raw material powder, or a plurality of alloy powders and pure metal powders can be used in the present invention. It is possible to use a mixed powder mixed so as to have a final composition as a raw material powder.
As a method for sintering the raw material powder, it is possible to use pressure sintering such as hot hydrostatic pressure pressing, hot pressing, discharge plasma sintering, and extrusion press sintering.
In the Mo alloy sputtering target material for forming the intermediate film constituting the laminated wiring film of the present invention, it is preferable that the content of unavoidable impurities is small. The Mo alloy sputtering target material of the present invention contains unavoidable impurities such as oxygen, nitrogen and carbon which are gas components, Cu which is a transition metal, and Al and Si which are metalloids, as long as the action of the present invention is not impaired. It may be included.
Here, each major constituent element is represented by atomic% with respect to the entire major constituent elements, and unavoidable impurities other than the major constituent elements are represented by mass ppm in the entire Mo alloy sputtering target material. For example, carbon is 200 mass ppm or less, Cu is 200 mass ppm or less, Al and Si are 100 mass ppm or less, respectively, and the purity excluding the gas component is preferably 99.9 mass% or more.

まず、中間膜を形成するためスパッタリングターゲット材を作製した。平均粒径が6μmのMo粉末と、平均粒径が85μmのNb粉末と、平均粒径が150μmのTi粉末と、平均粒径が100μmのNi粉末を表1に示す組成となるように混合し、軟鋼製の缶に充填した後、加熱しながら真空排気して、缶内を脱ガスした後に缶を封止した。
次に、封止した缶を熱間静水圧プレス装置に入れて、1000℃、100MPa、5時間の条件で焼結させた後に、機械加工により、直径100mm、厚さ5mmのスパッタリングターゲット材を作製した。
また、比較例となるNi-Cu-Mo合金の中間膜を形成するために、原子比でNi-25%Cu-8%Moとなるように、Ni原料、Cu原料およびMo原料を秤量して、真空溶解炉にて溶解鋳造法によりインゴットを作製した。このインゴットを機械加工により、直径100mm、厚さ5mmのNi合金スパッタリングターゲット材を作製した。
First, a sputtering target material was prepared to form an interlayer film. Mo powder with an average particle size of 6 μm, Nb powder with an average particle size of 85 μm, Ti powder with an average particle size of 150 μm, and Ni powder with an average particle size of 100 μm are mixed so as to have the composition shown in Table 1. After filling the can made of mild steel, the inside of the can was degassed by vacuum exhausting while heating, and then the can was sealed.
Next, the sealed can was placed in a hot hydrostatic press and sintered under the conditions of 1000 ° C., 100 MPa, and 5 hours, and then a sputtering target material having a diameter of 100 mm and a thickness of 5 mm was produced by machining. did.
Further, in order to form an interlayer film of a Ni—Cu—Mo alloy as a comparative example, the Ni raw material, the Cu raw material and the Mo raw material are weighed so that the atomic ratio is Ni-25% Cu-8% Mo. , An ingot was prepared by a melting casting method in a vacuum melting furnace. This ingot was machined to produce a Ni alloy sputtering target material having a diameter of 100 mm and a thickness of 5 mm.

また、中間膜の直上に積層する導電膜としてAl膜およびAg膜を形成するために、直径100mm、厚さ5mmのAlおよびAgのスパッタリングターゲット材を準備した。Alスパッタリングターゲット材は、住友化学株式会社製のものを用い、Agスパッタリングターゲット材は、フルヤ金属株式会社製のものを用いた。また、導電膜としてCu膜を形成するためのCuスパッタリングターゲット材は、日立金属株式会社製の無酸素銅(OFC)の素材から切り出して作製した。また、ITOを形成するためのスパッタリングターゲット材は、JX金属株式会社製のものを用いた。 Further, in order to form an Al film and an Ag film as a conductive film laminated directly on the interlayer film, a sputtering target material of Al and Ag having a diameter of 100 mm and a thickness of 5 mm was prepared. The Al sputtering target material used was manufactured by Sumitomo Chemical Co., Ltd., and the Ag sputtering target material used was manufactured by Furuya Metal Co., Ltd. The Cu sputtering target material for forming a Cu film as a conductive film was produced by cutting out from a material of oxygen-free copper (OFC) manufactured by Hitachi Metals, Ltd. Further, as the sputtering target material for forming ITO, a material manufactured by JX Nippon Mining & Metals Co., Ltd. was used.

上記で準備した各スパッタリングターゲット材を銅製のバッキングプレートにろう付けして、株式会社アルバック製のスパッタリング装置(型式:CS-200)に取付けた。そして、25mm×50mmのガラス基板(製品番号:EagleXG)の直上に、表1に示すスパッタガスを用いて、各膜厚構成の中間膜および導電膜を形成して各試料を作製した。ここで、投入電力を200Wとしたときに、電力密度は2.6W/cmとなる。また、導電膜は、スパッタガスにArを用いて、投入電力500Wの条件で中間膜の直上に形成した。尚、試料No.8は、上記のガラス基板の直上に、厚さが100nmのITO膜を形成した。
得られた各試料について、反射率および比抵抗を測定した結果を表1に示す。尚、反射率の測定は、コニカミノルタ株式会社製の分光測色計(型式番号:CM2500d)を用いて、ガラス基板面側と導電膜面側から測定した。また、比抵抗の測定は、三菱油化株式会社製の薄膜抵抗率計(型式番号:MCP-T400)を用いて導電膜面側から測定した。
Each sputtering target material prepared above was brazed to a copper backing plate and attached to a sputtering apparatus (model: CS-200) manufactured by ULVAC, Inc. Then, on a glass substrate (product number: EagleXG) having a size of 25 mm × 50 mm, the sputtering gas shown in Table 1 was used to form an intermediate film and a conductive film having each film thickness structure, and each sample was prepared. Here, when the input power is 200 W, the power density is 2.6 W / cm 2 . Further, the conductive film was formed directly above the interlayer film under the condition of an input power of 500 W by using Ar as a sputtering gas. In addition, sample No. No. 8 formed an ITO film having a thickness of 100 nm directly above the above glass substrate.
Table 1 shows the results of measuring the reflectance and specific resistance of each of the obtained samples. The reflectance was measured from the glass substrate surface side and the conductive film surface side using a spectrocolorimeter (model number: CM2500d) manufactured by Konica Minolta Co., Ltd. The specific resistance was measured from the conductive film surface side using a thin film resistivity meter (model number: MCP-T400) manufactured by Mitsubishi Yuka Co., Ltd.

Figure 0006997945000001
Figure 0006997945000001

表1に示すように、本発明例となる積層配線膜は、透明なガラス基板側から測定した反射率が15%以下の低い反射率を有していることが確認できた。 As shown in Table 1, it was confirmed that the laminated wiring film as an example of the present invention has a low reflectance of 15% or less measured from the transparent glass substrate side.

次に、表1の試料No.5で作製した原子比でMo-15%Ni-15%TiからなるMo合金スパッタリングターゲット材を用いて、投入電力を200Wとし、スパッタガスのArと窒素の含有比率を表2に示す条件に変更して、各ガラス基板の直上に、膜厚50nmの中間膜を形成した。そして、その中間膜の直上に、導電膜となるAl膜を、スパッタガスにArを用いて、投入電力500Wの条件で形成した。
実施例1と同様の方法で反射率および比抵抗を測定した。その結果を表2に示す。
Next, the sample No. of Table 1 is shown. Using the Mo alloy sputtering target material made of Mo-15% Ni-15% Ti with the atomic ratio prepared in 5, the input power was set to 200 W, and the Ar and nitrogen content ratios of the sputter gas were changed to the conditions shown in Table 2. Then, an interlayer film having a film thickness of 50 nm was formed directly above each glass substrate. Then, an Al film to be a conductive film was formed immediately above the interlayer film by using Ar as a sputtering gas under the condition of an input power of 500 W.
The reflectance and specific resistance were measured by the same method as in Example 1. The results are shown in Table 2.

Figure 0006997945000002
Figure 0006997945000002

表2に示すように、Arと窒素を含んだスパッタガスで形成したMo合金からなる中間膜の直上に導電膜を形成した本発明例となる積層配線膜は、透明なガラス基板側から測定した反射率が15%以下の低い反射率を有していることが確認できた。
また、試料No.5、No.13~No.16に記載した組成の中間膜をそれぞれ200nm形成して、光電子分光装置(ESCA)であるKRATOS ANALYTICAL社製(型式:AXIS-HS)を用いて、中間膜中の窒素濃度を測定した結果、6~28原子%の窒素を含有しており、MoNの解析チャートが確認された。
As shown in Table 2, the laminated wiring film as an example of the present invention in which a conductive film was formed directly on an interlayer film made of a Mo alloy formed of a sputter gas containing Ar and nitrogen was measured from the transparent glass substrate side. It was confirmed that the reflectance was as low as 15% or less.
In addition, sample No. 5, No. 13-No. As a result of forming 200 nm of each interlayer film having the composition described in 16 and measuring the nitrogen concentration in the interlayer film using a photoelectron spectroscope (ESCA) manufactured by KRATOS ANALYTICAL (model: AXIS-HS), 6 It contained ~ 28 atomic% nitrogen, and the analysis chart of Mo 2N was confirmed.

次に、表1のNo.5で作製した原子比でMo-15%Ni-15%TiからなるMo合金スパッタリングターゲット材を用いて、Arと窒素の含有比率が50体積%のスパッタガスを用いて、投入電力を200Wとして、各ガラス基板の直上に、表3に示す膜厚で中間膜を形成した。そして、その中間膜の直上に、導電膜となるAl膜を、スパッタガスにArを用いて、投入電力500Wの条件で形成した。実施例1と同様の方法で反射率および比抵抗を測定した。その結果を表3に示す。 Next, No. 1 in Table 1 Using a Mo alloy sputtering target material made of Mo-15% Ni-15% Ti with an atomic ratio prepared in 5, a sputtering gas having an Ar and nitrogen content ratio of 50% by volume was used, and the input power was 200 W. An interlayer film was formed immediately above each glass substrate with the film thickness shown in Table 3. Then, an Al film to be a conductive film was formed immediately above the interlayer film by using Ar as a sputtering gas under the condition of an input power of 500 W. The reflectance and specific resistance were measured by the same method as in Example 1. The results are shown in Table 3.

Figure 0006997945000003
Figure 0006997945000003

表3の試料No.18に示すように、中間膜の膜厚が20nmになると、15%以下の低い反射率が得られないことが確認された。一方、本発明例となる積層配線膜は、中間膜の膜厚が30~70nmの範囲で、15%以下の低反射であることが確認できた。ここで、最も反射率の低下する中間膜の膜厚は、50nm付近であることがわかる。 Sample No. in Table 3 As shown in 18, it was confirmed that when the film thickness of the interlayer film was 20 nm, a low reflectance of 15% or less could not be obtained. On the other hand, it was confirmed that the laminated wiring film as an example of the present invention has a low reflection of 15% or less in the range of the film thickness of the intermediate film of 30 to 70 nm. Here, it can be seen that the film thickness of the interlayer film having the lowest reflectance is around 50 nm.

次に、表4に示す中間膜の組成となるように、実施例1と同様の製法で試料No.25~試料No.32のスパッタリングターゲット材を作製した。また、導電膜であるAl合金、Cu合金、Ag合金のスパッタリングターゲット材は、真空溶解法にて、原子比でAl-0.6Nd、Cu-3Ti、Ag-0.3Smとなる各合金のインゴットを作製し、このインゴットを直径100mm、厚さ5mmとなるように機械加工してスパッタリングターゲット材を作製した。
これらのスパッタリングターゲット材を用いて、表4に示すスパッタガスの体積比率となるように調整し、投入電力を200Wとし、各基板の直上に、膜厚50nmの中間膜を形成した。そして、この中間膜の直上に、スパッタガスにArを用いて、表4に示す各導電膜を形成した。ここで、基板は、実施例1~実施例3と同様のガラス基板を用いた他、試料No.28は、厚さ0.5mmのPC基板(透明ポリカーボネート:PC)を用い、試料No.29は、厚さ100μmのPETフィルム基板(透明ポリエチレンテレフタレート:PET)を用いた。
上記で得た各試料について、実施例1と同様の方法で反射率および比抵抗を測定した。その結果を表4に示す。
Next, the sample No. was prepared in the same manner as in Example 1 so as to have the composition of the interlayer film shown in Table 4. 25-Sample No. 32 sputtering target materials were prepared. The sputtering target material of Al alloy, Cu alloy, and Ag alloy, which is the conductive film, is an ingot of each alloy having an atomic ratio of Al-0.6Nd, Cu-3Ti, and Ag-0.3Sm by the vacuum melting method. Was prepared, and this ingot was machined to have a diameter of 100 mm and a thickness of 5 mm to prepare a sputtering target material.
Using these sputtering target materials, the volume ratio of the sputtering gas shown in Table 4 was adjusted, the input power was 200 W, and an interlayer film having a film thickness of 50 nm was formed directly above each substrate. Then, each conductive film shown in Table 4 was formed immediately above this interlayer film by using Ar as a sputtering gas. Here, as the substrate, the same glass substrate as in Examples 1 to 3 was used, and the sample No. For No. 28, a PC substrate (transparent polycarbonate: PC) having a thickness of 0.5 mm was used, and the sample No. 28 was used. For 29, a PET film substrate (transparent polyethylene terephthalate: PET) having a thickness of 100 μm was used.
For each sample obtained above, the reflectance and specific resistance were measured by the same method as in Example 1. The results are shown in Table 4.

Figure 0006997945000004
Figure 0006997945000004

表4に示すように、スパッタガスとしてArのみで中間膜を形成した比較例となる試料No.25や、添加元素量が多く、スパッタガスとして酸素のみで中間膜を形成した試料No.32は、低反射率が得られないことが確認された。
これに対して、本発明例となる試料No.26~試料No.31は、低反射と低抵抗を有する積層配線膜であることが確認できた。
As shown in Table 4, the sample No. which is a comparative example in which the interlayer film was formed only with Ar as the sputtering gas. Sample No. 25, which has a large amount of added elements and has an interlayer formed only with oxygen as a sputtering gas. It was confirmed that the low reflectance of 32 could not be obtained.
On the other hand, the sample No. which is an example of the present invention. 26-Sample No. It was confirmed that No. 31 was a laminated wiring film having low reflection and low resistance.

1.透明基板
2.中間膜
3.導電膜
1. 1. Transparent substrate 2. Intermediate membrane 3. Conductive film

Claims (4)

透明基板の直上または透明膜が形成された透明基板の直上に、膜厚が30~70nmで、Mo合金からなる中間膜が形成され、該中間膜の直上に比抵抗が15μΩ・cm以下の導電膜が形成された積層構造を有し、前記透明基板側から測定した可視光反射率が15%以下であり、前記Mo合金が、金属成分として、TiおよびNbから選択される一種以上の元素を合計で5~20原子%、Niを1~30原子%含有し、Ti、V、Nb、Ta、Ni、CoおよびFeから選択される一種以上の元素を合計で5~50原子%含有し、残部がMoおよび不可避的不純物からなることを特徴とする積層配線膜。 An interlayer film having a film thickness of 30 to 70 nm and made of a Mo alloy is formed directly above the transparent substrate or directly above the transparent substrate on which the transparent film is formed, and a conductivity having a specific resistance of 15 μΩ · cm or less is formed directly above the interlayer film. It has a laminated structure in which a film is formed, the visible light resistivity measured from the transparent substrate side is 15% or less, and the Mo alloy is one or more elements selected from Ti and Nb as metal components. Contains 5 to 20 atomic% in total, 1 to 30 atomic% of Ni, and 5 to 50 atomic% in total of one or more elements selected from Ti, V, Nb, Ta, Ni, Co and Fe. , A laminated wiring film characterized in that the balance is composed of Mo and unavoidable impurities . 前記導電膜が、Al、Cu、Agのいずれか一種、またはAl、Cu、Agのいずれか一種に遷移金属および半金属から選択される元素を合計で5原子%以下含有したAl合金、Cu合金、Ag合金のいずれか一種からなり、膜厚が50~500nmであることを特徴とする請求項1に記載の積層配線膜。 The conductive film contains 5 atomic% or less of an element selected from a transition metal and a semi-metal in any one of Al, Cu, and Ag, or any one of Al, Cu, and Ag, and an Al alloy and a Cu alloy. The laminated wiring film according to claim 1, wherein the laminated wiring film is made of any one of Ag alloys and has a film thickness of 50 to 500 nm. 請求項1に記載の中間膜を形成するためのスパッタリングターゲット材であって、TiおよびNbから選択される一種以上の元素を合計で5~20原子%、Niを1~30原子%含有し、Ti、V、Nb、Ta、Ni、CoおよびFeから選択される一種以上の元素を合計で5~50原子%含有し、残部がMoおよび不可避的不純物からなるMo合金スパッタリングターゲット材。 The sputtering target material for forming the interlayer film according to claim 1, which contains 5 to 20 atomic% of one or more elements selected from Ti and Nb in total and 1 to 30 atomic% of Ni. A Mo alloy sputtering target material containing a total of 5 to 50 atomic% of one or more elements selected from Ti, V, Nb, Ta, Ni, Co and Fe, with the balance being Mo and unavoidable impurities. 請求項1に記載の積層配線膜の製造方法であって、前記中間膜は、酸素および窒素から選択される少なくとも一方を10~90体積%含有する雰囲気で、請求項3に記載のMo合金スパッタリングターゲット材を用いてスパッタリング法により形成することを特徴とする積層配線膜の製造方法。 The Mo alloy sputtering according to claim 3 , wherein the interlayer film is an atmosphere containing at least one selected from oxygen and nitrogen in an atmosphere of 10 to 90% by volume in the method for producing a laminated wiring film according to claim 1. A method for manufacturing a laminated wiring film, which comprises forming a target material by a sputtering method.
JP2017222537A 2016-12-27 2017-11-20 Laminated wiring film and its manufacturing method and Mo alloy sputtering target material Active JP6997945B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016252954 2016-12-27
JP2016252954 2016-12-27

Publications (2)

Publication Number Publication Date
JP2018107432A JP2018107432A (en) 2018-07-05
JP6997945B2 true JP6997945B2 (en) 2022-01-18

Family

ID=62700596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017222537A Active JP6997945B2 (en) 2016-12-27 2017-11-20 Laminated wiring film and its manufacturing method and Mo alloy sputtering target material

Country Status (4)

Country Link
JP (1) JP6997945B2 (en)
KR (1) KR102012210B1 (en)
CN (1) CN108242276B (en)
TW (1) TWI654623B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767660B (en) * 2018-07-24 2022-09-16 京东方科技集团股份有限公司 Array substrate, preparation method thereof and display panel
CN110872687B (en) * 2018-09-03 2022-07-19 大同特殊钢株式会社 Laminate and target material
CN109524303B (en) 2018-11-23 2021-03-19 京东方科技集团股份有限公司 Conductive pattern, manufacturing method thereof, display substrate and display device
JP7419885B2 (en) * 2019-03-20 2024-01-23 株式会社プロテリアル Mo alloy target material and its manufacturing method
JP7419886B2 (en) * 2019-03-20 2024-01-23 株式会社プロテリアル Mo alloy target material and its manufacturing method
JP7427576B2 (en) * 2020-04-16 2024-02-05 株式会社神戸製鋼所 Al alloy vapor deposition film, display wiring film, display device and sputtering target
CN112813393B (en) * 2020-12-31 2023-08-01 金堆城钼业股份有限公司 Molybdenum-nickel alloy target and preparation method thereof
CN115637412A (en) * 2022-09-27 2023-01-24 芜湖映日科技股份有限公司 Molybdenum alloy target material and manufacturing process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214309A (en) 1999-01-25 2000-08-04 Asahi Glass Co Ltd Substrate with black matrix thin film, color filter substrate, target for formation of black matrix thin film and production of substrate
JP2016502592A (en) 2012-10-23 2016-01-28 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテルハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG Layer system for absorbing light, its production and sputter target suitable therefor
JP2016027195A (en) 2014-06-27 2016-02-18 三菱マテリアル株式会社 Sputtering target, optical function film, and multilayer wiring film
JP2016522317A (en) 2013-04-11 2016-07-28 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG LIGHT ABSORBING LAYER, LAYER SYSTEM HAVING THIS LAYER, LAYER SYSTEM MANUFACTURING METHOD, AND SPUTTER TARGET MATERIAL

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496518B2 (en) 2002-08-19 2010-07-07 日立金属株式会社 Thin film wiring
JP4655281B2 (en) 2005-03-29 2011-03-23 日立金属株式会社 Thin film wiring layer
JP5532767B2 (en) 2009-09-04 2014-06-25 大同特殊鋼株式会社 NiCu alloy target material for Cu electrode protection film
JP6016083B2 (en) * 2011-08-19 2016-10-26 日立金属株式会社 Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP6292466B2 (en) * 2013-02-20 2018-03-14 日立金属株式会社 Metal thin film and Mo alloy sputtering target material for metal thin film formation
JP6361957B2 (en) * 2013-03-22 2018-07-25 日立金属株式会社 Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP6369750B2 (en) * 2013-09-10 2018-08-08 日立金属株式会社 LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL
KR20160069823A (en) * 2014-12-09 2016-06-17 주식회사 엘지화학 Conductive structure body and method for manufacturing the same
JP6681019B2 (en) * 2015-02-25 2020-04-15 日立金属株式会社 Sputtering target material for forming laminated wiring film and coating layer for electronic parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214309A (en) 1999-01-25 2000-08-04 Asahi Glass Co Ltd Substrate with black matrix thin film, color filter substrate, target for formation of black matrix thin film and production of substrate
JP2016502592A (en) 2012-10-23 2016-01-28 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテルハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG Layer system for absorbing light, its production and sputter target suitable therefor
JP2016522317A (en) 2013-04-11 2016-07-28 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG LIGHT ABSORBING LAYER, LAYER SYSTEM HAVING THIS LAYER, LAYER SYSTEM MANUFACTURING METHOD, AND SPUTTER TARGET MATERIAL
JP2016027195A (en) 2014-06-27 2016-02-18 三菱マテリアル株式会社 Sputtering target, optical function film, and multilayer wiring film

Also Published As

Publication number Publication date
JP2018107432A (en) 2018-07-05
TW201842514A (en) 2018-12-01
CN108242276B (en) 2020-08-25
KR102012210B1 (en) 2019-08-21
CN108242276A (en) 2018-07-03
TWI654623B (en) 2019-03-21
KR20180076316A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6997945B2 (en) Laminated wiring film and its manufacturing method and Mo alloy sputtering target material
JP6369750B2 (en) LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL
KR101613001B1 (en) METHOD OF MANUFACTURING Mo ALLOY SPUTTERING TARGET MATERIAL AND Mo ALLOY SPUTTERING TARGET MATERIAL
JP6016083B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP6292471B2 (en) Metal thin film for electronic parts and Mo alloy sputtering target material for metal thin film formation
JP2016157925A (en) Multilayer wiring film for electronic component, and sputtering target material for coating layer formation
KR101609453B1 (en) Cu-Mn ALLOY FILM AND Cu-Mn ALLOY SPUTTERING TARGET MATERIAL AND FILM FORMING METHOD OF Cu-Mn ALLOY FILM
JP2017066519A (en) Laminate wiring film for electronic component and sputtering target material for forming coating layer
JP2016178286A (en) Multilayered wiring film for electronic component, and sputtering target material for coating layer formation
KR101597018B1 (en) METAL THIN FILM AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM
JP6380837B2 (en) Sputtering target material for forming coating layer and method for producing the same
JP6361957B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP6037208B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
KR101337141B1 (en) Layered interconnection for a electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211201

R150 Certificate of patent or registration of utility model

Ref document number: 6997945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350