JP6991874B2 - 撮像装置および制御方法 - Google Patents

撮像装置および制御方法 Download PDF

Info

Publication number
JP6991874B2
JP6991874B2 JP2018017386A JP2018017386A JP6991874B2 JP 6991874 B2 JP6991874 B2 JP 6991874B2 JP 2018017386 A JP2018017386 A JP 2018017386A JP 2018017386 A JP2018017386 A JP 2018017386A JP 6991874 B2 JP6991874 B2 JP 6991874B2
Authority
JP
Japan
Prior art keywords
filter
organic
transmittance
optical path
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018017386A
Other languages
English (en)
Other versions
JP2019133091A (ja
Inventor
潤 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018017386A priority Critical patent/JP6991874B2/ja
Publication of JP2019133091A publication Critical patent/JP2019133091A/ja
Application granted granted Critical
Publication of JP6991874B2 publication Critical patent/JP6991874B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blocking Light For Cameras (AREA)
  • Studio Devices (AREA)

Description

本発明は、撮像装置および制御方法に関する。
エレクトロクロミック現象(EC現象)とは、電圧を加えた時に生ずる可逆的な電気化学反応の誘起により、材料の光吸収域が変化し、材料が着色または消色する現象である。エレクトロクロミック素子(EC素子)は、EC現象を利用し電気化学的に着色/消色を行う素子であり、光透過率を変化させる調光フィルタとして応用が期待されている。低分子系有機材料を溶液状態で着色/消色する有機EC素子は、着色状態において十分なコントラスト比が得られる一方で、消色状態の透過率が高いなどの利点が知られている。
特許文献1は、撮影光学系の焦点面に配設される撮像素子近傍に有機EC素子を配設し、調光ユニットとして利用する例を開示している。
特開2016-170299号公報
しかしながら、特許文献1の撮像装置では、太陽等の高輝度の被写体にピントが合う状態で撮像素子上に集光すると、集光した光により有機EC素子が温度上昇し、温度上昇した領域の着消色特性が変化してしまう恐れがある。
本発明は、有機EC素子の温度上昇を抑制し、有機EC素子による良好な着消色特性が得られる撮像装置を提供することを目的とする。
上記課題を解決するために、本発明は、撮像素子に到達する光量を調整する、光の透過率を変化させることが可能な調光フィルタと、前記撮像素子に到達する光量を調整する、前記撮像素子に到達する光の有効光路に挿抜が可能な光学フィルタと、前記調光フィルタの温度状態を検出する温度検出手段と、前記温度検出手段により検出した前記温度状態に応じて前記調光フィルタの透過率および前記光学フィルタの挿抜を制御する制御手段と、を備え、前記光学フィルタは、前記調光フィルタより被写体側に配置される。
本発明によれば、有機EC素子の温度上昇を抑制し、有機EC素子による良好な着消色特性が得られる撮像装置を提供することができる。
有機EC素子の一例を示す模式図である。 有機EC素子の一例を示す模式図である。 有機EC素子の駆動制御の一例を説明する図である。 有機EC素子の駆動制御の一例を説明する図である。 撮像装置の構成および調光ユニットのフィルタ設定を説明する図である。 撮像装置の構成および調光ユニットのフィルタ設定を説明する図である。 撮像装置の構成を説明するブロック図である。 調光ユニットのフィルタ設定を説明する図である。 調光ユニットのフィルタ設定方法を示すフローチャートである。
<有機EC素子>
図1は、有機EC素子1の一例を示す模式図である。有機EC素子1は、物性変化により光の透過率を変化させることが可能であり、例えば、撮像装置で調光フィルタとして利用される。撮像装置においては、有機EC素子1を透過した光を撮像素子が受光するよう、有機EC素子1は撮像素子よりレンズ側(被写体側)に設けられる。なお、本実施形態では、撮像素子および有機EC素子1の外形が略四角形である場合について説明するが、形状はこれに限られるものではない。
図1(A)は、有機EC素子1を撮像素子側から見た図である。有機EC素子1の長辺方向をX軸、短辺方向をY軸、紙面奥行き方向をZ軸と定義する。Z軸は、光軸方向を示している。図1(B)は、X軸方向から見た図であり、図1(A)のD-D’断面図に、説明のために給電端子9などの構成を加えた図である。本実施形態では、Y軸方向を鉛直方向とし、有機EC素子1はY軸方向に沿って立てて使用されるとする。
有機EC素子1は、電極3、電極5、基板2、基板6、有機EC層7、低抵抗配線8および給電端子9を備える。有機EC素子1は、透明な基板2および基板6に形成された透明な電極3および電極5を対向するようにスペーサ4を介して貼り合せ、一対の電極3および電極5とスペーサ4で形成された空隙を充填するように有機EC層7が存在する構造となっている。基板2と電極3の組み合わせと基板6と電極5の組み合わせは、透明電極基板に相当する。
有効光線領域11は、有効光線が透過する領域であり、有機EC素子1は有効光線領域11を透過する光の光量(光透過率)を調整する。電極3と電極5の間に電圧を印加することで、有機EC層7の有機EC材料が電気化学的反応を起こし、光透過率を変化させることができる。以下では、有機EC素子1の光透過率を有機EC素子の吸光度に置き換えて説明する場合がある。透過率と吸光度は、-LOG(透過率)=(吸光度)の関係を有し、透過率が1/2になる毎に吸光度は約0.3ずつ増大する。
電極3および電極5には、電極自身よりも抵抗値が小さい低抵抗配線8が設けられている。電極3に設けられる低抵抗配線8と電極5に設けられる低抵抗配線8は、有機EC素子1の長辺方向に沿って、有効光線領域11を挟んで対向するように配置される。給電端子9は、端部が低抵抗配線8と接点を有するように設けられ、他端を制御部10に接続している。駆動電圧は、制御部10を介して給電端子9および低抵抗配線8を経て、電極3および電極5にそれぞれ印加される。
有機EC素子1には、制御部10が接続されている。制御部10は、電極3および電極5に加える電圧を制御することで、有機EC素子1を透過する光を調整する。制御部10は、例えば、駆動電圧波形を発生するための任意波形発生回路、端子間の極性を反転させるためのリレーやスイッチ回路を有している。また、制御部10は、電源やレギュレーターなど周辺装置を含んでいても構わない。また、制御部10は、電気化学反応で生じる電流、あるいは、電荷を測定するための回路機構を含んでいても構わない。駆動用の回路や周辺装置は、有機EC素子1に直接接続され一体化されていても、配線を介して間接的に接続されていてもよい。
次に、有機EC素子1を構成する各部について詳細に説明する。
<基板2および基板6>
有機EC素子1を調光フィルタに用いる場合、光学系への影響を小さくするために、消色状態では高い透過率を保つことが好ましい。そのため、基板2および基板6(以下、単に基板ともいう)は可視光を十分に透過させる透明基板であることが好ましく、一般的にはガラス材が用いられる。ガラス材としては、例えば、Corning#7059やBK-7等の光学ガラス基板が用いられる。また、プラスチックやセラミック等の材料であっても十分な透明性があれば、基板として使用が可能である。また、基板は、剛性で歪みを生じることが少ない材料が好ましく、さらに、可撓性が少ないことがより好ましい。基板の厚みは、一般に数十μmから数mmである。
<電極3および電極5>
有機EC素子1を調光フィルタに用いる場合、光学系への影響を小さくするために、消色状態では高い透過率を保つことが好ましい。そのため、電極3および電極5(以下、単に電極ともいう)は、可視光を十分に透過させる透明電極であることが好ましい。さらに、電極は、可視光領域における高い光透過性とともに高い導電性を有した材料からなることがより好ましい。
例えば、酸化インジウムスズ合金(ITO)、酸化スズ(NESA)、酸化インジウム亜鉛(IZO)、酸化銀、酸化バナジウム、酸化モリブデン、金、銀、白金、銅、インジウム、クロムなどの金属や金属酸化物が電極の材料となる。さらに、多結晶シリコン、アモルファスシリコン等のシリコン系材料、カーボンブラック、グラフェン、グラファイト、グラッシーカーボン等の炭素材料なども電極の材料となる。また、ドーピング処理などで導電率を向上させた導電性ポリマー(例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体(PEDOT:PSS)など)も電極の材料となる。
本実施形態の有機EC素子1では、消色状態で高い透過率を有することが好ましいため、例えば、ITO、IZO、NESA、PEDOT:PSS、グラフェンなどが、電極の材料として特に好適である。これらの電極の材料はバルク状、微粒子状など様々な形態で使用できる。なお、電極の材料は、単独で使用してもよく、あるいは複数併用してもよい。
<有機EC層7>
有機EC層7は、電解質と、低分子系有機材料等の有機EC材料とを溶媒に溶解したものであることが好ましい。
まず、溶媒について説明する。溶媒としては、電解質を溶解できるものであれば特に限定されないが、特に極性を有するものが好ましい。具体的には、溶媒として水の他、例えば、メタノール、エタノール、プロピレンカーボネート、エチレンカーボネート、ジメチルスルホキシド、ジメトキシエタン、アセトニトリル、γ-ブチロラクトン、γ-バレロラクトン等の有機極性溶媒が挙げられる。さらに、溶媒として、例えば、スルホラン、ジメチルホルムアミド、ジメトキシエタン、テトラヒドロフラン、アセトニトリル、プロピオンニトリル、ジメチルアセトアミド、メチルピロリジノン、ジオキソラン等の有機極性溶媒が挙げられる。
次に、電解質について説明する。電解質としては、イオン解離性の塩で、良好な溶解性を示し、有機EC材料の着色を確保できる程度に電子供与性を有するカチオンあるいはアニオンを含む塩であれば特に限定されない。電解質として、各種のアルカリ金属塩、アルカリ土類金属塩などの無機イオン塩や4級アンモニウム塩や環状4級アンモニウム塩などが挙げられる。より具体的には、LiClO4、LiSCN、LiBF4、LiAsF6、LiCF3SO3、LiPF6、LiI、NaI、NaSCN、NaClO4、NaBF4、NaAsF6、KSCN、KCl等のLi、Na、Kのアルカリ金属塩等が挙げられる。さらに、電解質として、(CH34NBF4、(C25)4NBF4、(n-C494NBF4、(C254NBr、(C254NClO4、(n-C494NClO4等の4級アンモニウム塩および環状4級アンモニウム塩等が挙げられる。アニオン種としては、ClO 、CFSO 、BF 、PF 、(CFSO、など一般的に知られる構造が用いられる。また、電解質としてイオン液体を用いてもよい。これらの電解質材料は、単独で使用してもよく、あるいは複数併用してもよい。
次に、有機EC材料について説明する。一般に有機EC材料は、電圧が印加されていない状態で中性状態を取り、可視光領域に吸収を持たない。このような消色状態において、有機EC素子1は高い光透過率を示す。電極3と電極5の間に電圧を印加すると、有機EC材料中で電気化学反応が起き、中性状態から酸化状態(カチオン)あるいは還元状態(アニオン)となる。有機EC材料は、カチオンあるいはアニオンの状態で可視光領域に吸収を有すようになり、着色する。このような着色状態において、有機EC素子は低い光透過率を示す。また、有機EC材料として、ビオロゲン系材料のように、初期状態で透明なジカチオン構造を形成し、一電子還元でラジカル種を形成して着色する材料が使用されてもよい。
有機EC材料は、溶媒に対して溶解性を有し、電気化学的な反応で着色と消色を表現できるものであれば、どのようなものであっても構わない。例えば、有機EC材料として、公知の酸化/還元着色性有機EC材料を使用することができる。また、有機EC材料として、複数の材料を併用することも可能である。
有機EC材料の組合せとして、酸化反応で着色を示すアノード性の材料を単材料、あるいは、複材料で用いても良い。また、有機EC材料の組合せとして、還元反応で着色を示すカソード性の材料を単材料、あるいは、複材料で用いても良い。さらに、アノード性の材料とカソード性の材料を単材料同士、あるいは、単材料と複材料、あるいは、複材料と複材料で用いても良く、組合せは任意である。EC特性を示さないアノード性材料、あるいは、カソード性材料を別に含んでいても構わない。本実施形態の有機EC層7の有機EC材料は、1種以上のアノード性の材料と1種以上のカソード性の材料を含むものとする。
有機EC材料として、例えば、ビオロゲン系化合物、スチリル系化合物、フルオラン系化合物、シアニン系化合物、アントラキノン系化合物を使用することができる。また、有機EC材料として、例えば、芳香族アミン系化合物等の有機色素、金属-ビピリジル錯体、金属-フタロシアニン錯体等の有機金属錯体等を使用することができる。なお、ビオロゲン系化合物は、対イオンを伴う安定なジカチオン状態で消色していて、一電子還元反応でカチオン状態になると着色するカソード性の有機EC材料として用いることができる。
アノード性の有機EC材料としては、チオフェン誘導体、フェロセンなどメタロセン誘導体、フェナジン誘導体やトリフェニルアミン誘導体、フェノチアジン誘導体、フェノキサジン誘導体など芳香族アミン誘導体が挙げられる。また、アノード性の有機EC材料としては、ピロール誘導体、ピラゾリン誘導体等も挙げられる。ただし、本実施形態に用いるアノード性の有機EC材料は、これらに限定されるものではない。
カソード性の有機EC材料としては、ビオロゲン系化合物、アントラキノン系化合物、フェロセニウム塩系化合物、スチリル化系化合物などが挙げられる。ただし、本実施形態に用いるカソード性の有機EC材料は、これらに限定されるものではない。
温度変化に対して吸収スペクトルを保持するためには、有機EC材料が会合体を形成しにくいことが好ましい。材料が会合体を形成すると、吸収スペクトルにおいて、単量体の吸収と会合体の吸収が重畳される。会合体の形成のしやすさは温度に対して変化するため、会合体を形成しやすい材料においては、温度の変化で単量体の吸収と会合体の吸収の比が変化してしまう。そこで、会合体形成を避けるために、嵩高い置換基を設け立体障害により会合体形成を抑制する方法が好適に用いられる。
有機EC層7は、液体またはゲルであることが好ましい。有機EC層7は、好適には溶液状態として用いられるが、応答速度を著しく損なわない範囲で、ゲル状もしくは粘稠で用いることも可能である。ゲル化には、溶液にさらにポリマーやゲル化剤を含有させる。ポリマー(ゲル化剤)としては、例えば、ポリアクリロニトリル、カルボキシメチルセルロース、ポリ塩化ビニル、ポリ臭化ビニル、ポリエチレンオキサイド、ポリプロピレンオキサイド、などが挙げられる。さらに、ポリマーとしては、ポリウレタン、ポリアクリレート、ポリメタクリレート、ポリアミド、ポリアクリルアミド、ポリエステル、ポリフッ化ビニリデン、ナフィオンなどが挙げられる。なお、混合状態で使用する他、透明かつ柔軟な網目構造を有した構造体(例えばスポンジ状のもの)にこれら溶液を担持させても良い。
<低抵抗配線8>
低抵抗配線8は、給電端子9から電極3および電極5に供給する電圧の面内分布を低減する。低抵抗配線8を設置しない場合、給電端子9からの距離で電極3および電極5の面内に電位勾配ができると有機EC素子1の面内で電気化学反応量にむらが生じてしまう。なお、給電端子9は、有効光線領域11内における電位分布をできるだけ小さく抑えるために、長辺側で且つ有効光線領域11を挟んで互いに対向する位置に設置するのが好適である。本実施形態では、図1に示されるように、給電端子9は、A1端子とC1端子の位置に設置される。
電位が高い給電端子9側ほど、有機EC材料の電気化学反応が生じやすい。そのため、電位分布の大きな状態で有機EC素子1を駆動していると、アノード性の有機EC材料はアノード給電端子(プラス電極)側に、カソード性の有機EC材料はカソード給電端子(マイナス電極)側に反応が偏在するようになる。この結果、電位分布の影響による有機EC材料のセグリゲーション(分離)が生じてしまう。
長辺方向の電位降下を10mV程度に抑えて長辺方向の電位分布によるセグリゲーションを抑制するために、長辺に沿って低抵抗配線8を設置する必要がある。さらに、低抵抗配線8の面抵抗は電極3および電極5の抵抗の1/100未満、さらに好ましくは1/500未満であることが好ましい。低抵抗配線8としては、例えば、真空成膜によって形成した薄膜銀配線、スクリーン印刷やインクジェット塗布等によって形成した厚膜銀配線などを使用する。
しかし、給電端子9および低抵抗配線8を適切に設置したとしても、一対の給電端子のみ(例えば、A1端子(アノード)とC1端子(カソード))を選択して着色動作を続けた場合には、電位分布の影響によるセグリゲーションを避けることは難しい。この場合、A1端子およびA1端子に接続された低抵抗配線近傍にはアノード材料が強く着色し、C1端子およびC1端子に接続された低抵抗配線近傍にはカソード材料が強く着色する。この電位分布の影響によるセグリゲーションは、有機EC材料の比重の影響による鉛直方向へのセグリゲーションよりも初期的に、かつ、強く生じる傾向がある。
そこで、図2のように、A1、C1端子に加えて、有効光線領域11を挟んで互いに対向する位置にもA2、C2端子を設置する。2組の一対の給電端子間に順繰りに電圧パルスを印加することによって、電極間に同電圧を印加しつつ、給電端子および低抵抗配線近傍セグリゲーションの発生を抑制する。図2は、有機EC素子1の別の一例を示す模式図である。
図2(A)は、有機EC素子1を撮像素子側から見た図である。図2(B)は、X軸方向から見た図であり、図2(A)のE-E’断面図に、説明のために給電端子9などの構成を加えた図である。既設のA1、C1端子に加えて、電位分布の影響によるセグリゲーションを相殺する位置にA2、C2端子を新たに設置して、A1-C1端子間およびA2-C2端子間に順繰りに電圧パルスを印加する。これにより、セグリーションの発生を抑制することができる。
<有機EC素子及び駆動方法>
図3は、有機EC素子の駆動制御の一例を説明する図である。図3の印加電圧波形は、図1で示した有機EC素子1を鉛直方向であるY軸方向に立てて駆動する場合を説明したものである。すなわち、A1端子側が鉛直上方、C1端子側が鉛直下方に定義される。A1端子およびC1端子のうち、C1端子をグランドに接続しているため、印加電圧+V1および-V1はA1端子の極性を表示する。+V1で、A1端子側にはアノード性の反応が、C1端子側にはカソード性の反応が生じて着色する。一方、-V1で、A1端子側にはカソード性の反応が、C1端子側にはアノード性の反応が生じて着色する。
印加電圧として-V1のみを継続して印加した場合、まず電位分布の影響によるセグリゲーションが優勢的に生じ、A1端子側(鉛直上方)でアニオンが、C1端子側(鉛直下方)でカチオンが偏在する。さらに、比重の影響が遅れて加わり、アニオンが鉛直上方に、カチオンが鉛直下方に移動する。そのため、電位分布の影響によるセグリゲーションと比重の影響が重畳して、セグリゲーションがさらに増大してしまう。
一方、印加電圧として+V1のみを継続して印加した場合、まず電位分布の影響によるセグリゲーションで、A1端子側にカチオンが、C1端子側にアニオンが偏在する。さらに、比重の影響が遅れて加わり、アニオンが鉛直上方に、カチオンが鉛直下方に移動する。移動によりカチオンとアニオンが衝突すると、電荷授受でラジカル状態が初期状態に戻るため消色する。
このように、印加電圧として+V1のみを継続して印加した場合には、-V1を継続して印加した場合と比べて有機EC材料の鉛直方向でのセグリゲーションは低下する。しかしながら、比重の影響よりも電位分布の影響によるセグリゲーションが優勢であるため、-V1を印加した場合とは逆に、鉛直上方にはカチオンが、鉛直下方にはアニオンが偏在する。
本実施形態では、電位分布の影響によるセグリゲーションを調整するために、電圧を印加する時間幅や電圧の波高値を制御する。図3(A)は、電圧を印加する時間幅を制御する例を示した図である。絶対値の等しい+V1と-V1を交互に印加し、印加する時間幅を制御することで、電位分布の影響によるセグリゲーションを調整し、かつ、比重によるセグリゲーションとの相殺を調整する。
印加時間t1の間に電圧+V1を印加し、印加時間t2の間に電圧-Vを印加する。印加時間t1とそれに続く印加時間t2を合わせて1周期Tとする。印加時間t1と印加時間t2の時間の比を制御することで、A1端子側(鉛直上方)におけるアノード性の有機EC材料の反応量をカソード性の有機EC材料の反応量よりも相対的に大きくなるよう制御する。言い換えれば、A1端子側(鉛直上方)におけるアノード性の有機EC材料の反応量を、C1端子側(鉛直下方)におけるアノード性の有機EC材料の反応量よりも相対的に大きくなるように制御する。
また、有機EC材料の反応量は電気化学反応で測定される電荷量から見積もることが可能である。そして、A1端子(鉛直上方)とC1端子(鉛直下方)への+V1と-V1の交互の印加は、鉛直上方および鉛直下方の給電端子を交互にプラス極に切り替えていることと同等である。そのため、鉛直方向上方に位置する給電端子をプラス極としたときに生じる電荷量を、鉛直方向下方に位置する給電端子をプラス極としたときに生じる電荷量よりも大きくなるよう制御することで、電位分布の影響によるセグリゲーションを調整することができる。これは、A1端子側(鉛直上方)におけるアノード性の有機EC材料の反応量を、C1端子側(鉛直下方)におけるアノード性の有機EC材料の反応量よりも相対的に大きくなるように制御することと同義である。なお、電荷量の見積は、制御部10が単位時間あたりの電流を測定し、その積算から算出しても良い。
図3(B)は、電圧の波高値を制御する例を示した図である。電気化学反応の反応量は駆動電圧の大きさに依存する。そのため、+V1の印加時間t1と印加時間t2は等しくし、印加時間t2には-V1よりも絶対値の小さい-V2を印加する。印加する電圧を+V1と-V2に制御することで、A1端子側(鉛直上方)におけるアノード性の有機EC材料の反応量を、カソード性の有機EC材料の反応量よりも相対的に大きくなるよう制御することができる。
また、時間幅と電圧波高値の両方を制御することによりセグリゲーションを調整することも可能である。有機EC素子1の着色の吸光度、即ち階調を制御する場合には、t1およびt2の比の調整、あるいは、V1とV2の比の調整、あるいは時間幅と電圧波高値の両方をもって調整することが可能である。また、t1あるいはt2の期間に、印加電圧を間欠的に印加する方法をもって調整することも可能である。
なお、t1およびt2の印加時間が大きい場合には、t1からt2に、および、t2からt1に切り替わるタイミングで有機EC素子1の吸光度が上下に変化してしまう。そのため、着色駆動時において有機EC素子1の吸光度の変化を抑制するためには、1周期Tの時間幅は0.1Hz以下、より好ましくは1Hz以下、さらに好ましくは10Hz以下であることが好ましい。
図4は、有機EC素子の駆動制御の一例を説明する図である。図4の印加電圧波形は、図2で示した有機EC素子1を鉛直方向であるY軸方向に立てて駆動する場合を説明したものである。A1およびC2端子側が鉛直上方、A2およびC1端子側が鉛直下方に定義される。A1-C1端子間ではC1端子を、A2-C2端子間ではC2端子をグランドに接続しているため、印加電圧はA1端子もしくはA2端子の極性を表示する。
図4(A)は、電圧を印加する時間幅を制御する例を示した図である。A1-C1端子間とA2-C2端子間には逆位相の電圧波形が印加される。A1-C1端子間の駆動波形は、時間t1の間に電圧+V1を印加し、時間t2の間には開回路電圧(Open Circuit Voltage(OCV))に保っている。時間t1とそれに続く時間t2を合わせて1周期Tとする。
開回路電圧にするとは、駆動源側とA1-C1端子間で電気的な接点を遮断する、あるいは、高抵抗体の挿入で電流を遮断する、ことを意味する。具体的にはリレーやトランジスタ等のスイッチング素子で時間t1の間に導通とし、時間t2の間に非導通とする。+V1を印加した時間t1の間は着色反応が生じ、OCVである時間t2の間は着色反応が生じない。
A2-C2端子間は、A1-C1端子間とは逆位相の電圧波形であり、時間t1の間にはOCVに保たれ、時間t2の間に電圧+V1を印加される。A1とA2端子間に交互に+V1が印加されることになるため有機EC素子1の電圧を落とすことはなく、また、電位分布の向きが交互に切り替わるため電位分布の影響によるセグリゲーションを小さく抑制することが可能となる。具体的には、時間t1の間には、A1端子側にカチオンが、C1端子側にアニオンが生じ、時間t2の間には、A2端子側にカチオンが、C2端子側にアニオンが生じる。このため、A1端子とC2端子間で偏在するカチオンとアニオンが電荷授受により消色し、また、A2端子とC1端子間で偏在するカチオンとアニオンが同様に電荷授受により消色する。これにより電位分布の影響によるセグリゲーションはさらに抑制される。
時間t1と時間t2の値が等しい場合には、A1端子とC2端子間およびA2端子とC1端子間で生成するカチオンとアニオンの濃度が最も近しいものとなるため、電位分布の影響によるセグリゲーションは最も抑制される。しかし、これに比重の影響が加わってくると、素子面内で形成されたカチオンとアニオンが徐々に移動し、最終的にはアニオンが鉛直上方に、カチオンが鉛直下方に偏在してしまう。
有機EC素子1は鉛直方向に立てているため、A1端子がA2端子よりも鉛直上方に位置する。そこで、A1端子側の着色反応の時間幅t1を、A2端子側の着色反応の時間幅t2よりも相対的に大きく取ることで、電位分布の影響によるカチオンの偏在をA1端子側で優勢になるように制御することが可能である。このように、時間t1と時間t2の時間幅を制御することで電位分布の影響によるセグリゲーションを調整し、かつ、比重によるセグリゲーションとの相殺を調整することができる。
図4(B)は、電圧の波高値を制御する例を示した図である。電気化学反応の反応量は駆動電圧の大きさに依存する。そのため、時間t1と時間t2は等しくし、時間t2でのA2-C2端子間への印加電圧を、時間t1でのA1-C1端子間への印加電圧である+V1よりも絶対値の小さい+V2とする。印加する電圧を+V1と+V2に制御することで、電位分布の影響によるカチオンの偏在をA1端子側で優勢になるように制御することが可能である。
また、時間幅と電圧波高値の両方を制御することによりセグリゲーションを調整することも可能である。また、有機EC素子1の着色の吸光度、即ち階調を制御する場合には、時間t1および時間t2の比の調整、あるいは、印加電圧+V1と+V2の比の調整、あるいは時間幅と電圧波高値の両方をもって調整することが可能である。また、時間t1あるいは時間t2の期間に、印加電圧を間欠的に印加する方法をもって調整することも可能である。
時間t1および時間t2の印加時間が大きい場合、時間t1から時間t2に切り替わるタイミング、および、時間t2から時間t1に切り替わるタイミングで、有機EC素子1の吸光度が上下に変化してしまう。そのため、着色駆動時において有機EC素子1の吸光度の変化を抑制するために、1周期Tの時間幅は0.1Hz以下、より好ましくは1Hz以下、さらに好ましくは10Hz以下であることが好ましい。
このように、印加時間または印加電圧を制御することにより、鉛直方向に立てた有機EC素子1において、鉛直上方に位置する端子側で生じるカチオンの生成量を、鉛直下方に位置する端子側で生じるカチオンの生成量よりも相対的に大きくすることができる。これにより、電位分布の影響によるセグリゲーションを調整し、さらに、電位分布の影響によるセグリゲーションを有効に使うことで、比重の影響によるセグリゲーションを相殺することができる。
<調光ユニット>
調光ユニットは、撮像素子110より被写体側に配置され、撮像素子110に到達する光量を調整する。調光ユニットは、調光フィルタである有機EC素子1と透過濃度が固定の光学フィルタであるNDフィルタ(Neutral Density)を備える。なお、本実施形態の調光ユニットは、調光フィルタである有機EC素子1を駆動する制御部10を有することが好ましい。本実施形態では、有機EC素子1を調光フィルタのうち光量を抑える減光フィルタとして利用する場合について説明する。
減光フィルタは黒色吸収であり、可視光域で均等な光吸収が必要である。有機EC材料を用いた黒色吸収の実現には、可視光域で異なる吸収域を持つ複数の材料を混合し、可視光域での吸収を平坦なものとする必要がある。有機EC材料を混合した場合の吸収スペクトルは、各材料の吸収スペクトルの和で表現されるため、適切な波長域を持つ複数材料の選択とその濃度の調整によって、黒色吸収を実現することが可能である。
低分子系の有機EC材料では、一般に一つの材料でカバーできる波長域は100nm~200nmである。可視光域である380nm~750nmの全般をカバーするためには、少なくとも3種類以上の有機EC材料を用いることが好ましい。例えば、有機EC材料として、アノード性の有機EC材料を3種類以上、カソード性の有機EC材料を3種類以上、あるいは、アノード性の有機EC材料を2種以上かつカソード性の有機EC材料を2種以上用いることが好ましい。
一般的に減光フィルタは、光量を1/2n(nは整数)に減光する。1/2では透過率が100%から50%になり、1/4では100%から25%になる。また、-LOG(透過率)=(吸光度)の関係から、透過率が1/2の場合、吸光度の変化量は0.3となり、透過率が1/4の場合、吸光度の変化量は0.6となる。1/2~1/64までの減光を行うには、吸光度の変化量を0.3刻みで0~1.8まで制御できれば良い。以下、透過率が50%の減光フィルタをND1、透過率が12.5%の減光フィルタをND3、透過率が6.25%の減光フィルタをND4と表す。
<撮像装置>
図5および図6は、撮像装置101の構成および調光ユニットのフィルタ設定を説明する図である。図7は、撮像装置101の構成を説明するブロック図である。本実施形態の撮像装置101は、例えば、デジタルカメラやデジタルビデオカメラである。撮像装置101は、撮影光学系102、撮像素子110および調光ユニットを備える。撮像素子110は、撮影光学系102の予定結像面に配設される。調光ユニットは、撮影光学系102と撮像素子110との間に配設され、撮像素子110に到達する光量を調節する。
撮影光学系102は、例えば、絞りより後でフォーカシングを行うリアフォーカス式のズームレンズである。撮影光学系102は、被写体側(-Z方向)より順に、正の屈折力の第1のレンズ群104、負の屈折力の第2のレンズ群105、正の屈折力の第3のレンズ群106、正の屈折力の第4のレンズ群107の4つのレンズ群を有する。第2のレンズ群105と第3のレンズ群106の間隔を変化させて変倍を行う。第4のレンズ群107の一部のレンズ群を移動させてフォーカスを行う。また、撮影光学系102は、第2のレンズ群105と第3のレンズ群106の間に、開口絞り108を有する。
調光ユニットは、調光フィルタである有機EC素子1と透過濃度固定のNDフィルタ111を備える。NDフィルタ111は、例えば透過率が1/8(12.5%)のND3のフィルタである。そして、NDフィルタ111は、可動手段112によって撮影光学系102の撮影光路に挿抜が可能な構成になっている。具体的には、NDフィルタ111は、撮影光学系102と有機EC素子1との間に挿抜が可能となっていて、有機EC素子1および撮像素子110に到達する光量を制御する。有機EC素子1は、撮影光路中の有効光路域S1に固定されている。
撮像装置101は、さらに、調光ユニットである有機EC素子1とNDフィルタ111の透過率を測定するための投光素子114と受光素子115を備える。投光素子114と受光素子115によって検出された調光ユニットの透過率に基づいて、有機EC素子1の透過率が正しく制御されているかを確認する。投光素子114と受光素子115の有効光路域は、有効光路域S2である。投光素子114は、発光回路203によって発光が制御される。受光素子115は、受光回路202を介して撮像装置101を制御するシステム制御回路200に受光信号を送信する。システム制御回路200は、受光素子115から得られた受光信号に基づいて、調光ユニットの透過率を検出する。また、NDフィルタ111は、可動手段112によって有効光路域S2に対しても挿抜が可能な構成になっている。
撮像装置101は、さらに、調光フィルタである有機EC素子1の表面の温度を測定する温度検出手段である温度計113を備える。温度計113は、例えば、非接触方式の放射温度計である。なお、温度計113は、有機EC素子1の表面の温度のむらを測定してもよい。温度のむらとは、有機EC素子1の中央部と周辺部の温度の差である。また、撮像装置101は、ガラスブロック109を備える。ガラスブロック109は、撮像素子110と調光ユニットの間に配設される。ガラスブロック109は、ローパスフィルタやフェースプレートや色フィルタ等のガラスブロックである。
<フィルタ制御>
撮像装置101の調光ユニットは、被写体の明るさおよび調光フィルタである有機EC素子1の温度状態に応じて制御される。調光ユニットの制御は、調光フィルタの透過率の制御およびNDフィルタ111の位置の制御により行われる。図8は、調光ユニットのフィルタ設定を説明する図である。図9は、調光ユニットのフィルタ設定方法を示すフローチャートである。
S901で、システム制御回路200は、温度計113から有機EC素子1の表面温度Tを取得する。
S902で、システム制御回路200は、S901で取得した温度Tが所定の温度T1未満であるか否か判定する。所定の温度T1は、有機EC素子1が良好な着消色特性を発現する上限温度である。なお、所定の温度T1は、有機EC素子1が良好な着消色特性を発現する上限温度に対して余裕を持った温度設定にすることがより好ましい。温度Tが所定の温度T1未満である場合は、S903に進む。一方、温度Tが所定の温度T1以上である場合は、S909に進む。
S903で、システム制御回路200は、撮像素子駆動回路201を介して撮像素子110にて被写体の明るさLを検出する。なお、ここで検出する被写体の明るさLは、被写体自体の輝度でもよいし、露光時間を考慮した明るさでもよい。
S904で、システム制御回路200は、S903で検出した被写体の明るさLが所定の明るさL1(第1の閾値)未満であるか否か判定する。被写体の明るさLが所定の明るさL1未満である場合は、S906に進む。一方、被写体の明るさLが所定の明るさL1以上(第1の閾値以上)である場合は、S905に進む。
S905で、システム制御回路200は、S903で検出した被写体の明るさLが所定の明るさL2(第2の閾値)より明るいか否か判定する。被写体の明るさLが所定の明るさL2より明るい場合は、S908に進む。一方、被写体の明るさLが所定の明るさL2以下である場合は、S907に進む。所定の明るさL2は、所定の明るさL1より明るい値である。
S906~S909で、システム制御回路200は、調光ユニットの設定をそれぞれ第1のフィルタ設定~第4のフィルタ設定に設定する。図8は、第1のフィルタ設定~第4のフィルタ設定における調光フィルタである有機EC素子1の状態とNDフィルタの状態を表している。本実施形態では、調光フィルタは、透過率と透過率が50%であるND1と透過率が6.25%であるND4のいずれかに制御される。また、本実施形態のNDフィルタ111は、例えば、透過率が12.5%であるND3である。NDフィルタ111は、有効光路域S1および有効光路域S2のそれぞれに
本実施形態では、調光ユニットの透過率をS/Nよく検出するために、投光素子114と受光素子115により検出を行う有効光路域S2の透過率が、大きく変化しないよう、より好ましくは常に一定の値に保たれるようにフィルタを設定する。本実施形態では、有機EC素子1とNDフィルタ111による有効光路域S2の透過率が、例えば、6.25%になるように、有機EC素子1とNDフィルタ111が制御される。
S906で、システム制御回路200は、調光ユニットの設定を第1のフィルタ設定にする。第1のフィルタ設定の状態を示したのが、図5(A)である。システム制御回路200は、所定の明るさL1より明るくない被写体で撮像素子110において適性露出が得られるように、有機EC素子1の透過率を透過率の高いND1に制御する。また、システム制御回路200は、被写体の明るさLが所定の明るさL2より明るくないため、可動手段112によってNDフィルタ111を撮影光路である有効光路域S1から待避した状態に設定する。さらに、システム制御回路200は、可動手段112によって、NDフィルタ111が投光素子114から受光素子115に向かう検出光路である有効光路域S2に含まれるように制御する。そして、システム制御回路200は、有効光路域S2の透過率が有機EC素子1とNDフィルタ111により6.25%になるように、NDフィルタ111の透過率をND3に制御する。これにより、調光ユニットの透過率をS/Nよく検出可能になる。
S907で、システム制御回路200は、調光ユニットの設定を第2のフィルタ設定にする。第2のフィルタ設定の状態を示したのが、図5(B)である。システム制御回路200は、所定の明るさL1より明るい被写体で撮像素子110において適性露出が得られるように、有機EC素子1の透過率を透過率の低いND4に制御する。また、システム制御回路200は、被写体の明るさLが所定の明るさL2より明るくないため、可動手段112によってNDフィルタ111を撮影光路である有効光路域S1から待避した状態に設定する。さらに、システム制御回路200は、可動手段112によって、NDフィルタ111が投光素子114から受光素子115に向かう検出光路である有効光路域S2から待避するように制御する。これにより、有効光路域S2の透過率が有機EC素子1により6.25%になり、調光ユニットの透過率をS/Nよく検出可能になる。
S908で、システム制御回路200は、調光ユニットの設定を第3のフィルタ設定にする。第3のフィルタ設定の状態を示したのが、図6(A)である。システム制御回路200は、所定の明るさL1より明るい被写体で撮像素子110において適性露出が得られるように、有機EC素子1の透過率を透過率の低いND4に制御する。また、システム制御回路200は、被写体の明るさLが所定の明るさL2より明るいため、可動手段112によってNDフィルタ111を撮影光路である有効光路域S1に含まれる状態に設定する。さらに、システム制御回路200は、可動手段112によって、NDフィルタ111が投光素子114から受光素子115に向かう検出光路である有効光路域S2から待避するように制御する。これにより、有効光路域S2の透過率が有機EC素子1により6.25%になり、調光ユニットの透過率をS/Nよく検出可能になる。
S909で、システム制御回路200は、調光ユニットの設定を第4のフィルタ設定にする。第4のフィルタ設定の状態を示したのが、図6(B)である。S909では、有機EC素子1の表面温度Tが、有機EC素子1が良好な着消色特性を発現する上限温度T1より高い状態となっている。そのため、システム制御回路200は、有機EC素子1に到達する光を少なくするために、可動手段112によってNDフィルタ111を撮影光路である有効光路域S1に配置する。NDフィルタ111は透過率が12.5%のND3のため、有機EC素子1に到達する光が減少し、集光に伴う有機EC素子1の温度上昇を抑制する。そして、システム制御回路200は、NDフィルタ111で減光された光で撮像素子110において適性露出が得られるように、有機EC素子1の透過率を透過率の高いND1に制御する。さらに、システム制御回路200は、可動手段112によって、NDフィルタ111が投光素子114から受光素子115に向かう検出光路である有効光路域S2に含まれるように制御する。これにより、有効光路域S2の透過率が有機EC素子1とNDフィルタ111により6.25%になり、調光ユニットの透過率をS/Nよく検出可能になる。
以上のように、有機EC素子1の表面温度を検出して、表面温度が許容値を超えた場合はNDフィルタ111を有機EC素子1の光入射側に配置することにより、有機EC素子1に到達する光を減少させ集光に伴う温度上昇を抑制している。その結果、有機EC素子1の良好な着消色特性を発現することが可能となっている。
また、本実施形態では、有機EC素子1の表面温度に応じて調光フィルタの制御を行う例を示したが、これに限られるものではない。例えば、有機EC素子1の表面温度にむらが生じた場合においても、非接触方式の放射温度計で有機EC素子1の表面温度のむらを測定することにより、表面温度のむらに応じた調光フィルタの制御を行うことが有効である。温度のむらに応じた制御を行う場合、システム制御回路200は、S902で有機EC素子1の中央部の温度と周辺部の温度の差が閾値より大きいと判定した場合に、S909に進み、有効光路域S1にNDフィルタ111を挿入するよう制御する。また、本実施形態では、調光フィルタとして有機EC素子の例を示したが、調光フィルタが液晶素子であっても有効である。このように、本実施形態では、有機EC素子1の温度状態に応じて、NDフィルタ111の挿抜と有機EC素子1の透過率を制御し、有機EC素子1の温度上昇を抑制して、良好な着消色特性を保っている。
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
1 有機EC素子
111 NDフィルタ
113 温度計
114 投光素子
115 受光素子
200 システム制御回路

Claims (11)

  1. 撮像素子に到達する光量を調整する、光の透過率を変化させることが可能な調光フィルタと、
    前記撮像素子に到達する光量を調整する、前記撮像素子に到達する光の有効光路に挿抜が可能な光学フィルタと、
    前記調光フィルタの温度状態を検出する温度検出手段と、
    前記温度検出手段により検出した前記温度状態に応じて前記調光フィルタの透過率および前記光学フィルタの挿抜を制御する制御手段と、を備え、
    前記光学フィルタは、前記調光フィルタより被写体側に配置される
    ことを特徴とする撮像装置。
  2. 前記制御手段は、前記温度状態が予め設定された許容値を超えた場合、前記光学フィルタを前記有効光路に挿入し、前記調光フィルタの透過率を高くすることを特徴とする請求項1に記載の撮像装置。
  3. 前記調光フィルタの透過率を検出するための投光手段および受光手段をさらに備え、
    前記調光フィルタは、前記有効光路および前記投光手段が投光する光の検出光路に重なるよう配置され、
    前記制御手段は、前記温度状態および前記調光フィルタの透過率に応じて、前記光学フィルタの前記有効光路または前記検出光路への挿抜を制御することを特徴とする請求項1または2に記載の撮像装置。
  4. 前記制御手段は、前記検出光路における透過率が常に一定の値に保たれるよう、前記調光フィルタの透過率および前記光学フィルタの挿抜を制御することを特徴とする請求項3に記載の撮像装置。
  5. 前記制御手段は、前記温度状態が予め設定された許容値を超えた場合、前記光学フィルタを前記有効光路および前記検出光路に挿入し、前記調光フィルタの透過率を高くすることを特徴とする請求項3または4に記載の撮像装置。
  6. 前記制御手段は、前記温度状態が予め設定された許容値の範囲内であり、かつ、被写体の明るさが第1の閾値より小さい場合は、前記光学フィルタを前記有効光路から待避させ前記検出光路のみに挿入し、前記調光フィルタの透過率を高くすることを特徴とする請求項3乃至5のいずれか1項に記載の撮像装置。
  7. 前記制御手段は、前記温度状態が予め設定された許容値の範囲内であり、かつ、被写体の明るさが第1の閾値以上でありかつ第2の閾値より小さい場合は、前記光学フィルタを前記有効光路および前記検出光路から待避させ、前記調光フィルタの透過率を低くすることを特徴とする請求項3乃至6のいずれか1項に記載の撮像装置。
  8. 前記制御手段は、前記温度状態が予め設定された許容値の範囲内であり、かつ、被写体の明るさが第2の閾値以上である場合、前記光学フィルタを前記検出光路から待避させ前記有効光路のみに挿入し、前記調光フィルタの透過率を低くすることを特徴とする請求項3乃至7のいずれか1項に記載の撮像装置。
  9. 前記温度状態は、前記調光フィルタの温度もしくは温度のむらであることを特徴とする請求項1乃至8のいずれか1項に記載の撮像装置。
  10. 前記調光フィルタは有機EC素子であり、前記光学フィルタはNDフィルタであることを特徴とする請求項1乃至9のいずれか1項に記載の撮像装置。
  11. 撮像素子に到達する光量を調整する、光の透過率を変化させることが可能な調光フィルタと、
    前記調光フィルタより被写体側に配置され、前記撮像素子に到達する光量を調整する、前記撮像素子に到達する光の有効光路に挿抜が可能な光学フィルタと、を備える撮像装置の制御方法であって、
    前記調光フィルタの温度状態を検出する工程と、
    検出した前記温度状態に応じて前記調光フィルタの透過率および前記光学フィルタの挿抜を制御する工程を有する、
    ことを特徴とする制御方法。
JP2018017386A 2018-02-02 2018-02-02 撮像装置および制御方法 Active JP6991874B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018017386A JP6991874B2 (ja) 2018-02-02 2018-02-02 撮像装置および制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018017386A JP6991874B2 (ja) 2018-02-02 2018-02-02 撮像装置および制御方法

Publications (2)

Publication Number Publication Date
JP2019133091A JP2019133091A (ja) 2019-08-08
JP6991874B2 true JP6991874B2 (ja) 2022-01-13

Family

ID=67546831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017386A Active JP6991874B2 (ja) 2018-02-02 2018-02-02 撮像装置および制御方法

Country Status (1)

Country Link
JP (1) JP6991874B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227618A (ja) 1999-02-04 2000-08-15 Canon Inc 光量調整装置を有する光学系
JP2003043553A (ja) 2001-04-20 2003-02-13 Sony Corp 電気調光素子およびその駆動方法
JP2003215544A (ja) 2002-01-25 2003-07-30 Sony Corp 調光装置及びその駆動方法、並びに撮像装置
JP2005037770A (ja) 2003-07-17 2005-02-10 Sony Corp 調光装置および撮像装置
KR100852720B1 (ko) 2001-04-20 2008-08-19 소니 가부시끼 가이샤 전기조광소자 및 그 구동방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227618A (ja) 1999-02-04 2000-08-15 Canon Inc 光量調整装置を有する光学系
JP2003043553A (ja) 2001-04-20 2003-02-13 Sony Corp 電気調光素子およびその駆動方法
KR100852720B1 (ko) 2001-04-20 2008-08-19 소니 가부시끼 가이샤 전기조광소자 및 그 구동방법
JP2003215544A (ja) 2002-01-25 2003-07-30 Sony Corp 調光装置及びその駆動方法、並びに撮像装置
JP2005037770A (ja) 2003-07-17 2005-02-10 Sony Corp 調光装置および撮像装置

Also Published As

Publication number Publication date
JP2019133091A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
CN107850814B (zh) 电致变色元件、光学滤光器、透镜单元、成像装置和窗构件
JP6727755B2 (ja) エレクトロクロミック装置、光学フィルタ、撮像装置、レンズユニットおよび窓材、エレクトロクロミック装置の駆動方法
US20160041447A1 (en) Method and apparatus for driving an electrochromic element
JP6504753B2 (ja) エレクトロクロミック素子、その駆動方法、光学フィルタ、撮像装置、レンズユニットおよび窓材
JP2015143826A (ja) エレクトロクロミック素子の駆動装置、エレクトロクロミック素子を有する、エレクトロクロミック装置、光学フィルタ、撮像装置、レンズユニット、窓材、およびエレクトロクロミック素子の駆動方法
JP6800600B2 (ja) エレクトロクロミック素子
JP7030538B2 (ja) 撮像装置及びその制御方法及びレンズユニット
US20180136530A1 (en) Electrochromic element, optical filter using the same, lens unit, imaging device, window material, and method for driving electrochromic element
JP2018159727A (ja) エレクトロクロミック装置及びエレクトロクロミック素子の駆動方法
US10599003B2 (en) Electrochromic device and imaging apparatus
JP2020028045A (ja) 撮像装置、画像処理装置、撮像装置の制御方法およびプログラム
WO2017010360A1 (en) Electrochromic element, optical filter, lens unit, imaging apparatus, and window member
JP6884512B2 (ja) エレクトロクロミック素子、光学フィルタ、レンズユニット、撮像装置及び窓材
JP2018084805A (ja) エレクトロクロミック素子、それを用いた光学フィルタ、レンズユニット、撮像装置、窓材、及びエレクトロクロミック素子の駆動方法
JP2016200675A (ja) エレクトロクロミック素子、レンズユニット、撮像装置、窓材
JP6991874B2 (ja) 撮像装置および制御方法
US11796884B2 (en) Electrochromic element
US20200033686A1 (en) Electrochromic device and method of driving the same, lens unit, image pickup apparatus, and window member
JP2019020452A (ja) エレクトロクロミック装置及び撮像装置
JP2020197569A (ja) エレクトロクロミック素子の駆動方法及びエレクトロクロミック装置、撮像装置
JP2020056897A (ja) 調光装置とその駆動方法、窓材、光学フィルタ
JP2020056858A (ja) 撮像装置
JP2017090601A (ja) エレクトロクロミック素子、レンズユニット、撮像装置、窓材
JP2019015938A (ja) エレクトロクロミック装置とその制御方法、及び撮像装置
JP2022124678A (ja) エレクトロクロミック素子、及びそれを有するレンズユニット、撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211208

R151 Written notification of patent or utility model registration

Ref document number: 6991874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151