JP6990019B2 - Method for producing fatty acids - Google Patents

Method for producing fatty acids Download PDF

Info

Publication number
JP6990019B2
JP6990019B2 JP2016209866A JP2016209866A JP6990019B2 JP 6990019 B2 JP6990019 B2 JP 6990019B2 JP 2016209866 A JP2016209866 A JP 2016209866A JP 2016209866 A JP2016209866 A JP 2016209866A JP 6990019 B2 JP6990019 B2 JP 6990019B2
Authority
JP
Japan
Prior art keywords
oil
mass
fat
water
oils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016209866A
Other languages
Japanese (ja)
Other versions
JP2018068166A (en
Inventor
佑亮 杉浦
実 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2016209866A priority Critical patent/JP6990019B2/en
Publication of JP2018068166A publication Critical patent/JP2018068166A/en
Application granted granted Critical
Publication of JP6990019B2 publication Critical patent/JP6990019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、酵素分解法による脂肪酸類の製造方法に関する。 The present invention relates to a method for producing fatty acids by an enzymatic decomposition method.

脂肪酸類は、食品の中間原料やその他各種の工業製品の添加剤、中間原料として広く利用されている。かかる脂肪酸類は、一般に、菜種油、大豆油等の植物油や牛脂等の動物油を加水分解することにより製造される。
油脂を加水分解する方法としては、高温高圧分解法と酵素分解法がある。前者は、高温及び高圧条件下で反応を行うもので、生産性が高いという利点を有するが、原料油脂として不飽和脂肪酸の多いものを使用すると条件によってはトランス不飽和脂肪酸を多く生成する場合がある。一方、後者はリパーゼ等の酵素を触媒とし、反応は比較的低温で行われるためトランス不飽和脂肪酸を生成することはないが、高温高圧分解法に比べて生産性が低い点が問題とされる。
Fatty acids are widely used as intermediate raw materials for foods, additives for various other industrial products, and intermediate raw materials. Such fatty acids are generally produced by hydrolyzing vegetable oils such as rapeseed oil and soybean oil and animal oils such as beef tallow.
As a method for hydrolyzing fats and oils, there are a high-temperature high-pressure decomposition method and an enzymatic decomposition method. The former reacts under high temperature and high pressure conditions and has the advantage of high productivity. However, if a large amount of unsaturated fatty acids is used as a raw material fat, a large amount of trans-unsaturated fatty acids may be produced depending on the conditions. be. On the other hand, the latter uses an enzyme such as lipase as a catalyst and the reaction is carried out at a relatively low temperature, so that trans-unsaturated fatty acids are not produced, but the problem is that the productivity is lower than that of the high-temperature and high-pressure decomposition method. ..

酵素分解法による脂肪酸類の生産性を高めるためには、例えば、反応系内へ添加する水の量を増やす、水を入れ替える等の操作により、油脂の加水分解反応の方へ平衡反応を進行させることが有効である(例えば、特許文献1)。 In order to increase the productivity of fatty acids by the enzymatic decomposition method, for example, the equilibrium reaction is promoted toward the hydrolysis reaction of fats and oils by increasing the amount of water added into the reaction system or replacing the water. Is effective (for example, Patent Document 1).

特開2009-268414号公報Japanese Unexamined Patent Publication No. 2009-268414

しかしながら、従来の酵素分解法には、工業的観点から依然として改善の余地がある。
また、加水分解後は、反応液の油水分離を容易にして脂肪酸類を簡便に取得できることが求められるが、短時間で油水分離せずに脂肪酸類の回収が難しい場合があった。一般に、油脂を酵素加水分解した後の反応液には脂肪酸、グリセリンの他に未反応の油脂や部分的に加水分解された油脂等が含まれるところ、本発明者の研究によればこのうちのモノグリセリドが反応液の油水分離を困難にする原因になっていた。
従って、本発明の課題は、酵素分解法により油脂から脂肪酸類を製造するにあたり、加水分解反応の効率を向上させ、且つ、反応液中のモノグリセリドを低減できる方法を提供することにある。
However, there is still room for improvement in the conventional enzymatic decomposition method from an industrial point of view.
Further, after hydrolysis, it is required that fatty acids can be easily obtained by facilitating the oil-water separation of the reaction solution, but it may be difficult to recover the fatty acids without oil-water separation in a short time. In general, the reaction solution after enzymatically hydrolyzing fats and oils contains unreacted fats and oils, partially hydrolyzed fats and oils, etc. in addition to fatty acids and glycerin. Monoglyceride was a cause of difficulty in oil-water separation of the reaction solution.
Therefore, an object of the present invention is to provide a method capable of improving the efficiency of the hydrolysis reaction and reducing the monoglyceride in the reaction solution in producing fatty acids from fats and oils by the enzymatic decomposition method.

本発明者は、油脂の酵素分解法について鋭意研究を行ったところ、先ず所定の遊離脂肪酸濃度に到達するまで油脂を加水分解し、かかる特定の時点で反応系の水を入れ替えた後、再び油脂を加水分解することで、短時間に効率良く加水分解反応が進行すること、且つ、反応液におけるモノグリセリド濃度が低下することを見出した。 The present inventor has conducted intensive research on the enzymatic decomposition method of fats and oils. First, the fats and oils are hydrolyzed until a predetermined free fatty acid concentration is reached, the water of the reaction system is replaced at such a specific time point, and then the fats and oils are replaced again. It was found that the hydrolysis reaction proceeds efficiently in a short time and the monoglyceride concentration in the reaction solution is lowered by hydrolyzing.

すなわち、本発明は、次の工程(A)及び(B):
(A)油脂を酵素分解法で遊離脂肪酸濃度が50~84質量%となるまで加水分解した後、水相と油相を分離して、油相を得る工程、
(B)工程(A)で得た油相に新たな水を加えて、再び油脂を酵素分解法で加水分解する工程
を含む、脂肪酸類の製造方法。
That is, the present invention describes the following steps (A) and (B):
(A) A step of hydrolyzing an oil or fat by an enzymatic decomposition method until the free fatty acid concentration reaches 50 to 84% by mass, and then separating the aqueous phase and the oil phase to obtain an oil phase.
(B) A method for producing fatty acids, which comprises a step of adding fresh water to the oil phase obtained in the step (A) and hydrolyzing the fat and oil again by an enzymatic decomposition method.

本発明によれば、油脂の加水分解反応の効率を向上させ、且つ、反応液中のモノグリセリドを低減できるため、脂肪酸類を生産性良く得ることができる。 According to the present invention, the efficiency of the hydrolysis reaction of fats and oils can be improved, and the monoglyceride in the reaction solution can be reduced, so that fatty acids can be obtained with good productivity.

本発明の脂肪酸類の製造方法は、(A)油脂を酵素分解法で遊離脂肪酸濃度が50~84質量%となるまで加水分解した後、水相と油相を分離して、油相を得る工程と、(B)工程(A)で得た油相に新たな水を加えて、再び油脂を酵素分解法で加水分解する工程、とを有する。 In the method for producing fatty acids of the present invention, (A) fats and oils are hydrolyzed by an enzymatic decomposition method until the free fatty acid concentration reaches 50 to 84% by mass, and then the aqueous phase and the oil phase are separated to obtain an oil phase. It has a step (B), a step of adding fresh water to the oil phase obtained in the step (A), and a step of hydrolyzing the fat and oil again by an enzymatic decomposition method.

〔工程(A)〕
本工程は、油脂を酵素分解法で遊離脂肪酸濃度が50~84質量%となるまで加水分解した後、水相と油相を分離して、油相を得る工程である。
本明細書において「酵素分解法」とは、油脂に水を加えて、油脂加水分解酵素を触媒として用い、低温の条件で反応することにより、脂肪酸類とグリセリンを得る方法である。脂肪酸類は、脂肪酸の他、油脂を含んでいてもよい。
本明細書において「油脂」は「油」と同義であり、油脂(油)を構成する物質にはトリグリセリド(TAG)のみならずモノグリセリド(MAG)やジグリセリド(DAG)も含まれる。すなわち、油脂(油)は、モノグリセリド、ジグリセリド及びトリグリセリドのいずれか1種以上を含むものである。
[Step (A)]
This step is a step of hydrolyzing fats and oils by an enzymatic decomposition method until the free fatty acid concentration reaches 50 to 84% by mass, and then separating the aqueous phase and the oil phase to obtain an oil phase.
As used herein, the "enzymatic decomposition method" is a method for obtaining fatty acids and glycerin by adding water to fats and oils, using a fat and oil hydrolase as a catalyst, and reacting under low temperature conditions. Fatty acids may contain fats and oils in addition to fatty acids.
In the present specification, "fat and oil" is synonymous with "oil", and the substances constituting the fat and oil (oil) include not only triglyceride (TAG) but also monoglyceride (MAG) and diglyceride (DAG). That is, the fat (oil) contains any one or more of monoglyceride, diglyceride and triglyceride.

本発明において、加水分解の対象となる油脂は、植物性油脂、動物性油脂のいずれでもよい。例えば、大豆油、菜種油、サフラワー油、米油、コーン油、ヒマワリ油、綿実油、オリーブ油、ゴマ油、落花生油、ハトムギ油、小麦胚芽油、シソ油、アマニ油、エゴマ油、チアシード油、サチャインチ油、クルミ油、キウイ種子油、サルビア種子油、ブドウ種子油、マカデミアナッツ油、ヘーゼルナッツ油、カボチャ種子油、椿油、茶実油、ボラージ油、パーム油、パームオレイン、パームステアリン、やし油、パーム核油、カカオ脂、サル脂、シア脂、藻油等の植物性油脂;魚油、ラード、牛脂、バター脂等の動物性油脂;あるいはそれらのエステル交換油、水素添加油又は分別油等の油脂類を挙げることができる。これらの油脂は、それぞれ単独で用いてもよく、2種以上混合して用いてもよい。 In the present invention, the fats and oils to be hydrolyzed may be either vegetable fats or oils or animal fats and oils. For example, soybean oil, rapeseed oil, safflower oil, rice oil, corn oil, sunflower oil, cottonseed oil, olive oil, sesame oil, peanut oil, honeybee oil, wheat germ oil, perilla oil, flaxseed oil, sesame oil, chia seed oil, sacha inch oil. , Walnut oil, kiwi seed oil, salvia seed oil, grape seed oil, macadamia nut oil, hazelnut oil, pumpkin seed oil, camellia oil, brown seed oil, borage oil, palm oil, palm olein, palm stea, palm oil, palm kernel Vegetable fats and oils such as oils, cacao fats, monkey fats, shea fats and algae oils; animal fats and oils such as fish oils, lard, beef fats and butter fats; or their ester exchange oils, hydrogenated oils or fractionated oils. Can be mentioned. These fats and oils may be used alone or in combination of two or more.

加水分解の対象となる油脂を構成する脂肪酸は特に限定されず、飽和脂肪酸又は不飽和脂肪酸のいずれであってもよいが、油脂を構成する脂肪酸のうち60~100質量%が不飽和脂肪酸であることが好ましく、より好ましくは70~99質量%、更に75~97質量%、更に80~95質量%が不飽和脂肪酸であるのが外観、油脂の工業的生産性の点で好ましい。不飽和脂肪酸の炭素数は14~24、更に16~22であるのが生理効果の点から好ましい。なお、本明細書における脂肪酸量は遊離脂肪酸換算量である。 The fatty acids constituting the fats and oils to be hydrolyzed are not particularly limited and may be either saturated fatty acids or unsaturated fatty acids, but 60 to 100% by mass of the fatty acids constituting the fats and oils are unsaturated fatty acids. It is preferable, more preferably 70 to 99% by mass, further 75 to 97% by mass, and further preferably 80 to 95% by mass as unsaturated fatty acids in terms of appearance and industrial productivity of fats and oils. The unsaturated fatty acid has 14 to 24 carbon atoms, and more preferably 16 to 22 carbon atoms from the viewpoint of physiological effects. The amount of fatty acid in the present specification is a free fatty acid equivalent.

また、加水分解の対象となる油脂を構成する脂肪酸のうち、飽和脂肪酸の含有量は、低温での結晶析出抑制の点で、30質量%以下であることが好ましく、20質量%以下、更に15質量%以下、更に10質量%以下であるのがより好ましい。また、油脂の工業的生産性の点で、0.5質量%以上であることが好ましい。飽和脂肪酸としては、炭素数14~24、更に16~22のものが好ましい。 Further, among the fatty acids constituting the fats and oils to be hydrolyzed, the content of saturated fatty acids is preferably 30% by mass or less, more preferably 20% by mass or less, and further 15 in terms of suppressing crystal precipitation at low temperatures. It is more preferably 10% by mass or less, and more preferably 10% by mass or less. Further, in terms of the industrial productivity of fats and oils, it is preferably 0.5% by mass or more. As the saturated fatty acid, those having 14 to 24 carbon atoms and further 16 to 22 carbon atoms are preferable.

油脂は、それぞれの原料となる植物、又は動物から搾油後、油分以外の固形分をろ過や遠心分離等により除去するのが好ましい。次いで、水、場合によっては更に酸を添加混合した後、遠心分離等によってガム分を分離することにより脱ガムすることが好ましい。また、油脂は、アルカリを添加混合した後、水洗し脱水することにより脱酸を行うことが好ましい。更に、油脂は、活性白土等の吸着剤と接触させた後、吸着剤をろ過等により分離することにより脱色を行うことが好ましい。更に、脱臭は、不快な臭いや呈味物質を除去し、風味・色相・保存安定性の良好な精製油を得る工程であり、高温・減圧条件下で水蒸気を吹き込みながら有臭成分を除去する水蒸気脱臭を行うことが好ましい。これらの処理は、以上の順序で行うことが好ましいが、順序を変更しても良い。また、この他に、油脂は、ろう分の除去のために、低温で固形分を分離するウインタリングを行っても良い。 It is preferable that the fats and oils are extracted from the plants or animals that are the raw materials thereof, and then the solids other than the oils are removed by filtration, centrifugation or the like. Then, it is preferable to add and mix water and, in some cases, an acid, and then degumming by separating the gum component by centrifugation or the like. Further, it is preferable that the fats and oils are deoxidized by adding and mixing an alkali, washing with water and dehydrating. Further, it is preferable that the fats and oils are decolorized by contacting them with an adsorbent such as activated clay and then separating the adsorbent by filtration or the like. Further, deodorization is a process of removing unpleasant odors and taste substances to obtain refined oil having good flavor, hue and storage stability, and removes odorous components while blowing steam under high temperature and reduced pressure conditions. It is preferable to perform steam deodorization. These processes are preferably performed in the above order, but the order may be changed. In addition to this, the fat and oil may be wintered to separate the solid content at a low temperature in order to remove the wax content.

油脂加水分解酵素としては、リパーゼが好ましい。リパーゼは、特に制限されず、動物由来、植物由来、又は微生物由来のリパーゼを用いることができる。例えば、リゾプス(Rhizopus)属、アスペルギルス(Aspergillus)属、ムコール(Mucor)属、リゾムコール(Rhizomucor)属、シュードモナス(Pseudomonas)属、ジオトリケム(Geotrichum)属、ペニシリウム(Penicillium)属、キャンディダ(Candida)属等の起源のリパーゼが挙げられる。
なかでも、加水分解効率の点から、位置・鎖長選択性のない、所謂非選択性リパーゼを用いるのが好ましく、更にキャンディダ・シリンドラセア(Candida cylindracea)によって生産される非選択性リパーゼを用いるのが好ましい。
Lipase is preferable as the fat hydrolase. The lipase is not particularly limited, and a lipase derived from an animal, a plant, or a microorganism can be used. For example, the genus Rhizopus, the genus Aspergillus, the genus Mucor, the genus Rhizomucor, the genus Pseudomonas, the genus Geotrichum, the genus Geotrichum, the genus Penicilium. Examples include lipases of origin.
Among them, from the viewpoint of hydrolysis efficiency, it is preferable to use a so-called non-selective lipase having no position / chain length selectivity, and further, a non-selective lipase produced by Candida cylindracea is used. Is preferable.

油脂加水分解酵素は、当該酵素を担体に固定化した固定化油脂加水分解酵素を用いることが酵素活性を有効利用できる点から好ましい。
固定化担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられる。なかでも、保水力が高い点からイオン交換樹脂が好ましい。また、イオン交換樹脂の中でも、大きな表面積を有することにより酵素の吸着量を高くできるという点から、多孔質であることが好ましい。
As the oil / fat hydrolase, it is preferable to use an immobilized oil / fat hydrolase in which the enzyme is immobilized on a carrier, because the enzyme activity can be effectively utilized.
The immobilized carrier includes inorganic carriers such as Celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, and ceramics, ceramic powder, polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, and hydrophobic adsorption. Examples thereof include organic polymers such as resins, chelate resins, and synthetic adsorption resins. Of these, an ion exchange resin is preferable because of its high water retention capacity. Further, among the ion exchange resins, the porous one is preferable from the viewpoint that the adsorption amount of the enzyme can be increased by having a large surface area.

固定化担体として用いる樹脂の粒子径は50~2000μmが好ましく、更に100~1000μmが好ましい。細孔径は10~150nmが好ましく、更に10~100nmが好ましい。材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、更にフェノールホルムアルデヒド系樹脂(例えば、Rohm and Haas社製Duolite A-568)が酵素吸着性向上の点から好ましい。
このとき、用いる油脂加水分解酵素量は、担体質量に対して0.1~300質量%、更に0.5~200質量%、更に1~150質量%が工業的生産性の点から好ましい。固定化の際、酵素を溶液状態にするが、緩衝剤を用いてpH3~7に調整して用いることが好ましい。固定化時の温度は0~60℃、更に3~40℃が好ましい。
The particle size of the resin used as the immobilized carrier is preferably 50 to 2000 μm, more preferably 100 to 1000 μm. The pore diameter is preferably 10 to 150 nm, more preferably 10 to 100 nm. Examples of the material include phenol formaldehyde, polystyrene, acrylamide, divinylbenzene and the like, and a phenol formaldehyde resin (for example, Duolite A-568 manufactured by Rohman and Haas) is preferable from the viewpoint of improving enzyme adsorption.
At this time, the amount of the oil-and-fat hydrolase used is preferably 0.1 to 300% by mass, further 0.5 to 200% by mass, and further preferably 1 to 150% by mass with respect to the carrier mass from the viewpoint of industrial productivity. At the time of immobilization, the enzyme is put into a solution state, and it is preferable to adjust the pH to 3 to 7 with a buffer. The temperature at the time of immobilization is preferably 0 to 60 ° C, more preferably 3 to 40 ° C.

固定化油脂加水分解酵素の活性を高めるために、油脂加水分解酵素の固定化前に予め脂溶性脂肪酸又はその誘導体を担体に吸着させる処理を施しても良い。処理を施す方法としては、例えば、クロロホルム、ヘキサン、エタノール等の有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加える方法が挙げられる。
使用する脂溶性脂肪酸としては、炭素数8~18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基が置換していても良い脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミリスチン酸、オレイン酸、リノール酸、α-リノレン酸、リシノール酸等が挙げられる。またその誘導体としては、これらの脂肪酸と一価又は多価アルコールとのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加した誘導体が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノグリセリド、ジグリセリド、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これらの脂溶性脂肪酸又はその誘導体は2種以上を併用しても良い。
In order to enhance the activity of the immobilized oil-and-fat hydrolase, a treatment of adsorbing the fat-soluble fatty acid or its derivative on the carrier may be performed in advance before the immobilization of the oil-and-fat hydrolase. Examples of the method for performing the treatment include a method in which a fat-soluble fatty acid or a derivative thereof is once dispersed and dissolved in an organic solvent such as chloroform, hexane and ethanol, and then added to a carrier dispersed in water.
Examples of the fat-soluble fatty acid used include saturated or unsaturated, linear or branched-chain fatty acids having 8 to 18 carbon atoms, which may be substituted with hydroxyl groups. Specific examples thereof include capric acid, lauric acid, myristic acid, oleic acid, linoleic acid, α-linolenic acid, and ricinoleic acid. Examples of the derivative include an ester of these fatty acids and a monohydric or polyhydric alcohol, a phospholipid, and a derivative obtained by adding ethylene oxide to these esters. Specific examples thereof include methyl esters, ethyl esters, monoglycerides, diglycerides of the above fatty acids, ethylene oxide adducts thereof, polyglycerin esters, sorbitan esters, sucrose esters and the like. Two or more of these fat-soluble fatty acids or derivatives thereof may be used in combination.

油脂加水分解酵素の加水分解活性は、後述する方法により測定した力価が20U/g(乾燥質量)以上、更に100~10000U/g(乾燥質量)、更に500~5000U/g(乾燥質量)の範囲であることが好ましい。 The hydrolyzing activity of the fat hydrolase has a titer of 20 U / g (dry mass) or more, further 100 to 10,000 U / g (dry mass), and further 500 to 5000 U / g (dry mass) measured by the method described later. It is preferably in the range.

酵素分解法に用いる油脂加水分解酵素の使用量(乾燥質量)は、酵素の活性を考慮して適宜決定することができるが、油脂に対して、0.1~20質量%、更に0.2~15質量%使用するのが工業的生産性の点から好ましい。固定化油脂加水分解酵素の場合は、油脂に対して、1~20質量%、更に2~15質量%使用するのが工業的生産性の点から好ましい。 The amount (dry mass) of the fat hydrolase used in the enzymatic decomposition method can be appropriately determined in consideration of the activity of the enzyme, but is 0.1 to 20% by mass, further 0.2, based on the fat and oil. It is preferable to use ~ 15% by mass from the viewpoint of industrial productivity. In the case of the immobilized fat-and-fat hydrolase, it is preferable to use 1 to 20% by mass and further 2 to 15% by mass with respect to the fat and oil from the viewpoint of industrial productivity.

油脂に油脂加水分解酵素を作用させるには、当該油脂と油脂加水分解酵素とを接触させればよく、接触手段としては、浸漬、攪拌、該固定化酵素を充填したカラムにポンプ等で通液すること等が挙げられる。攪拌する場合には、反応槽径によって異なるが、固定化油脂加水分解酵素が沈降せず、破砕を抑制し、効率的に加水分解反応を進行させる点から、10~1000r/minが好ましく、更には20~700r/min、更には30~500r/minが好ましい。 In order to cause the oil / fat hydrolase to act on the oil / fat, the oil / fat may be brought into contact with the oil / fat hydrolase. To do, etc. In the case of stirring, although it depends on the diameter of the reaction tank, 10 to 1000 r / min is preferable, and 10 to 1000 r / min is preferable from the viewpoint that the immobilized oil-and-fat hydrolase does not settle, crushing is suppressed, and the hydrolysis reaction proceeds efficiently. Is preferably 20 to 700 r / min, more preferably 30 to 500 r / min.

本発明において、油脂の加水分解は、回分式、連続式、又は半連続式で行うことができる。油脂と水の装置内への供給は、並流式、向流式どちらでもよい。加水分解反応装置に供給される油脂及び水は、必要により予め脱気又は脱酸素した油脂及び水を用いてもよい。 In the present invention, the hydrolysis of fats and oils can be carried out in a batch system, a continuous system, or a semi-continuous system. The oil and fat and water may be supplied into the device by either a parallel flow type or a countercurrent type. As the fat and oil and water supplied to the hydrolysis reaction apparatus, fat and oil and water that have been degassed or deoxidized in advance may be used, if necessary.

加水分解反応において、反応系内の水分量は、工業的な生産性の観点から、油脂に対して、5~500質量%、更に10~300質量%、更に20~200質量%とすることが好ましい。
反応系内の水の量をコントロールする方法としては、(i)あらかじめ、各成分の水分量をカールフィッシャー法等により測定しておき、合計の水分量をコントロールする方法、(ii)反応成分を完全に脱水して、後で所定量の水を加える方法等がある。
なお、本発明において、反応系内の水は、油脂及び油脂加水分解酵素に含まれるものも前記水分量に含めるものとする。
本発明において、反応系内に加える水は、蒸留水、イオン交換水、脱気水、水道水、井戸水等いずれのものでもよい。グリセリン等その他の水溶性成分が混合されていても良い。必要に応じて、酵素の安定性が維持できるようにpH3~9の緩衝液を用いてもよい。
In the hydrolysis reaction, the water content in the reaction system may be 5 to 500% by mass, further 10 to 300% by mass, and further 20 to 200% by mass with respect to the fat and oil from the viewpoint of industrial productivity. preferable.
As a method of controlling the amount of water in the reaction system, (i) the method of measuring the water content of each component in advance by the Karl Fischer method or the like and controlling the total water content, (ii) the reaction component. There is a method of completely dehydrating and adding a predetermined amount of water later.
In the present invention, the water in the reaction system includes the water contained in the fat and oil and the fat and oil hydrolase in the water content.
In the present invention, the water added to the reaction system may be distilled water, ion-exchanged water, degassed water, tap water, well water or the like. Other water-soluble components such as glycerin may be mixed. If necessary, a buffer solution having a pH of 3 to 9 may be used so that the stability of the enzyme can be maintained.

加水分解の反応温度は、酵素の特性によって決定することができるが、反応速度を向上する点、酵素の失活を抑制する点から、0~80℃、更に10~70℃、更に20~60℃が好ましい。 The reaction temperature of hydrolysis can be determined by the characteristics of the enzyme, but from the viewpoint of improving the reaction rate and suppressing the inactivation of the enzyme, it is 0 to 80 ° C, further 10 to 70 ° C, and further 20 to 60. ° C is preferred.

本工程における油脂の加水分解反応は、遊離脂肪酸濃度50~84質量%の範囲で行う。加水分解反応を遊離脂肪酸濃度によって管理し、かかる所定の遊離脂肪酸濃度に到達した時点で一旦反応をとめて反応系の水を入れ替えることで、短時間に効率良く油脂の加水分解反応が進行し、且つ、反応液におけるモノグリセリド濃度が低下する。
遊離脂肪酸濃度は、油相の酸価及び脂肪酸組成から以下の式(1)で示される。
遊離脂肪酸濃度(質量%)=x×y/56.11/10 (1)
(x=油相の酸価[mgKOH/g]、y=脂肪酸組成から求めた平均分子量)
なお、油相の酸価は、日本油化学会編「基準油脂分析試験法2003年版」中の「酸価(2.3.1-1996)」により測定できる。
本工程における油脂の加水分解反応は、反応液中のモノグリセリドを低減できる点、反応時間を短縮できる点から、遊離脂肪酸濃度が55質量%以上、更に60質量%以上、また、83質量%以下、更に82質量%以下、更に81質量%以下、更に80質量%以下で行うことが好ましい。
The hydrolysis reaction of fats and oils in this step is carried out in the range of free fatty acid concentration of 50 to 84% by mass. The hydrolysis reaction is controlled by the free fatty acid concentration, and when the predetermined free fatty acid concentration is reached, the reaction is temporarily stopped and the water of the reaction system is replaced, so that the hydrolysis reaction of fats and oils proceeds efficiently in a short time. Moreover, the monoglyceride concentration in the reaction solution decreases.
The free fatty acid concentration is represented by the following formula (1) from the acid value and fatty acid composition of the oil phase.
Free fatty acid concentration (% by mass) = xxy / 56.11 / 10 (1)
(X = acid value of oil phase [mgKOH / g], y = average molecular weight obtained from fatty acid composition)
The acid value of the oil phase can be measured by "acid value (23.1-1996)" in "Standard Oil and Fat Analysis Test Method 2003" edited by the Japan Oil Chemists' Society.
In the hydrolysis reaction of fats and oils in this step, the free fatty acid concentration is 55% by mass or more, 60% by mass or more, and 83% by mass or less because the monoglyceride in the reaction solution can be reduced and the reaction time can be shortened. Further, it is preferably carried out at 82% by mass or less, further 81% by mass or less, and further preferably 80% by mass or less.

加水分解の反応時間は油脂加水分解酵素の使用量や酵素活性を考慮して適宜決定することができるが、工業的な生産性の点から、好ましくは1~24時間であり、より好ましくは2~12時間、更に好ましくは2.5~6時間、更に好ましくは3~4.5時間である。 The reaction time for hydrolysis can be appropriately determined in consideration of the amount of oil and fat hydrolase used and the enzyme activity, but is preferably 1 to 24 hours, more preferably 2 from the viewpoint of industrial productivity. It is from 12 hours, more preferably 2.5 to 6 hours, still more preferably 3 to 4.5 hours.

加水分解反応は、空気との接触が出来るだけ回避されるように、窒素等の不活性ガス存在下で行うことが好ましい。 The hydrolysis reaction is preferably carried out in the presence of an inert gas such as nitrogen so that contact with air is avoided as much as possible.

加水分解後、水相と油相を分離して、油相を得る。一方、水相は反応系外に除く。水相と油相の分離は、例えば、静置分離、遠心分離等の方法により行うことができる。
静置分離、遠心分離の条件は、分離の状態により適宜設定できる。水相を分離除去した後の油相は、必要に応じて、減圧脱水してもよい。
尚、加水分解に使用した油脂加水分解酵素は、分離、回収後、再び油脂の加水分解に再利用することができる。
After hydrolysis, the aqueous phase and the oil phase are separated to obtain an oil phase. On the other hand, the aqueous phase is excluded from the reaction system. The aqueous phase and the oil phase can be separated by, for example, a static separation method, a centrifugal separation method, or the like.
The conditions for static separation and centrifugation can be set as appropriate depending on the state of separation. The oil phase after separating and removing the aqueous phase may be dehydrated under reduced pressure, if necessary.
The fat hydrolase used for hydrolysis can be reused for hydrolysis of fats and oils after separation and recovery.

〔工程(B)〕
本工程は、工程(A)で得た油相に新たな水を加えて、再び油脂を酵素分解法で加水分解する工程である。
新たに加える水の量は、反応系内の水分量が、油脂に対して、10~120質量%、更に20~100質量%となるように加えることが好ましい。
[Step (B)]
This step is a step of adding fresh water to the oil phase obtained in the step (A) and hydrolyzing the fat and oil again by the enzymatic decomposition method.
The amount of water to be newly added is preferably such that the amount of water in the reaction system is 10 to 120% by mass and further 20 to 100% by mass with respect to the fat and oil.

本工程における油脂の酵素分解は、前記と同様の方法で行うことができる。
油脂加水分解酵素は、新たな酵素を使用してもよく、また、工程(A)で使用したものを再利用してもよいが、工業的な生産性の観点から、工程(A)で使用したものを再利用することが好ましい。
本工程における油脂加水分解酵素の加水分解活性は、前記と同様、後述する方法により測定した力価が20U/g(乾燥質量)以上、更に100~10000U/g(乾燥質量)、更に500~5000U/g(乾燥質量)の範囲であることが好ましい。また、油脂加水分解酵素の使用量(乾燥質量)は、酵素の活性を考慮して適宜決定することができるが、油脂に対して、0.1~20質量%、更に0.2~15質量%使用するのが工業的生産性の点から好ましい。固定化油脂加水分解酵素の場合は、油脂に対して、1~20質量%、更に2~15質量%使用するのが工業的生産性の点から好ましい。
The enzymatic decomposition of fats and oils in this step can be carried out by the same method as described above.
As the oil / fat hydrolase, a new enzyme may be used, or the one used in the step (A) may be reused, but from the viewpoint of industrial productivity, it is used in the step (A). It is preferable to reuse the product.
As for the hydrolyzing activity of the oil and fat hydrolase in this step, the titer measured by the method described later is 20 U / g (dry mass) or more, further 100 to 10000 U / g (dry mass), and further 500 to 5000 U. It is preferably in the range of / g (dry mass). The amount of the fat hydrolase used (dry mass) can be appropriately determined in consideration of the activity of the enzyme, but is 0.1 to 20% by mass and further 0.2 to 15% by mass with respect to the fat and oil. % It is preferable to use it from the viewpoint of industrial productivity. In the case of the immobilized fat-and-fat hydrolase, it is preferable to use 1 to 20% by mass and further 2 to 15% by mass with respect to the fat and oil from the viewpoint of industrial productivity.

反応系の水を入れ替えることで、本工程における油脂の酵素分解は短時間で進行する。 本工程における油脂の加水分解反応は、遊離脂肪酸濃度・収率を高くできる点から、遊離脂肪酸濃度が85質量%以上、更に86~98質量%、更に91~97質量%となるまで行うことが好ましい。このような遊離脂肪酸濃度に至る加水分解の反応時間は油脂加水分解酵素の使用量や酵素活性を考慮して適宜決定することができるが、好ましくは3~6時間であり、更に好ましくは4~5時間である。 By replacing the water in the reaction system, the enzymatic decomposition of fats and oils in this step proceeds in a short time. The hydrolysis reaction of fats and oils in this step may be carried out until the free fatty acid concentration is 85% by mass or more, further 86 to 98% by mass, and further 91 to 97% by mass because the free fatty acid concentration and yield can be increased. preferable. The reaction time for hydrolysis to reach such a free fatty acid concentration can be appropriately determined in consideration of the amount of fat hydrolase used and the enzyme activity, but is preferably 3 to 6 hours, more preferably 4 to 4 hours. 5 hours.

加水分解後、反応液から油相として脂肪酸類を得るには、前記と同様、水相と油相を分離して、油相から水相、さらに油脂加水分解酵素を除去すればよい。
反応液には、脂肪酸、グリセリンの他に未反応の油脂や部分的に加水分解された油脂等が含まれるが、本発明においては、モノグリセリドが少ない。そのため、油水分離を容易とすることができる。
反応液におけるモノグリセリド濃度は、反応液の油水分離を容易にして脂肪酸類を簡便に回収する点から、好ましくは8.5質量%以下であり、より好ましくは8質量%以下、更に好ましくは2~8質量%である。ここで、本明細書において、反応液におけるモノグリセリドの濃度は、反応液の油相のグリセリド組成を求め、次式(2)で算出される。
モノグリセリド濃度[質量%]
=モノグリセリド濃度[質量%]/(モノグリセリド濃度[質量%]+ジグリセリド濃度[質量%]+トリグリセリド濃度[質量%])×100 (2)
In order to obtain fatty acids as an oil phase from the reaction solution after hydrolysis, the aqueous phase and the oil phase may be separated from each other, and the aqueous phase and the oil / fat hydrolyzing enzyme may be removed from the oil phase.
The reaction solution contains unreacted fats and oils, partially hydrolyzed fats and oils, and the like in addition to fatty acids and glycerin, but in the present invention, monoglyceride is low. Therefore, oil-water separation can be facilitated.
The monoglyceride concentration in the reaction solution is preferably 8.5% by mass or less, more preferably 8% by mass or less, still more preferably 2 to 2 to 2, from the viewpoint of facilitating oil-water separation of the reaction solution and easily recovering fatty acids. It is 8% by mass. Here, in the present specification, the concentration of monoglyceride in the reaction solution is calculated by the following formula (2) by determining the glyceride composition of the oil phase of the reaction solution.
Monoglyceride concentration [mass%]
= Monoglyceride concentration [mass%] / (monoglyceride concentration [mass%] + diglyceride concentration [mass%] + triglyceride concentration [mass%]) x 100 (2)

〔分析方法〕
(i)グリセリド組成の測定
「グリセリド組成」は、ガラス製サンプル瓶に、サンプル10mgとトリメチルシリル化剤(「シリル化剤TH」、関東化学製)0.5mLとを加え、密栓した後、70℃で15分間加熱した。これに蒸留水1.0mL、ヘキサン2.0mLを加えて、混合後、ヘキサン層をガスクロマトグラフィー(GLC)にて測定した。
装置;Hewlett Packard製 6890型
カラム;DB-1HT(J&W Scientific製) 7m
カラム温度;initial=80℃、final=340℃
昇温速度=10℃/分、340℃にて20分間保持
検出器;FID、温度=350℃
注入部;スプリット比=50:1、温度=320℃
サンプル注入量;1μL
キャリアガス;ヘリウム、流量=1.0mL/分
[Analysis method]
(I) Measurement of glyceride composition The "glyceride composition" is prepared by adding 10 mg of a sample and 0.5 mL of a trimethylsilylating agent ("silylating agent TH", manufactured by Kanto Chemical Co., Inc.) to a glass sample bottle, sealing the bottle, and then sealing at 70 ° C. Was heated for 15 minutes. Distilled water (1.0 mL) and hexane (2.0 mL) were added thereto, and after mixing, the hexane layer was measured by gas chromatography (GLC).
Equipment: Hewlett-Packard 6890 type column; DB-1HT (J & W Scientific) 7m
Column temperature; initial = 80 ° C, final = 340 ° C
Temperature rise rate = 10 ° C / min, held at 340 ° C for 20 minutes Detector; FID, temperature = 350 ° C
Injection part; split ratio = 50: 1, temperature = 320 ° C
Sample injection volume; 1 μL
Carrier gas; helium, flow rate = 1.0 mL / min

(ii)遊離脂肪酸濃度の算出
遊離脂肪酸濃度は、反応液を遠心分離(3000r/min、1分)後、油相の酸価及び脂肪酸組成を測定し、次式(1)で求めた。
遊離脂肪酸濃度(質量%)=x×y/56.11/10 (1)
(x=油相の酸価[mgKOH/g]、y=脂肪酸組成から求めた平均分子量)
(Ii) Calculation of Free Fatty Acid Concentration The free fatty acid concentration was determined by the following formula (1) after centrifuging the reaction solution (3000 r / min, 1 minute) and then measuring the acid value and fatty acid composition of the oil phase.
Free fatty acid concentration (% by mass) = xxy / 56.11 / 10 (1)
(X = acid value of oil phase [mgKOH / g], y = average molecular weight obtained from fatty acid composition)

(iii)酸価の測定
日本油化学会編「基準油脂分析試験法2003年版」中の「酸価(2.3.1-1996)」に従って測定した。
(Iii) Measurement of acid value The acid value was measured according to "Acid value (23.1-1996)" in "Standard Oil and Fat Analysis Test Method 2003" edited by Japan Oil Chemists' Society.

(iv)脂肪酸組成の測定
日本油化学会編「基準油脂分析試験法2003年版」中の「メチルエステル化法(三フッ化ホウ素メタノール法)(2.4.1.2-1996)」に従って脂肪酸メチルエステルを調製し、得られたサンプルを、ガスクロマトグラフィー(GLC)に供して、構成脂肪酸の分析を行った。
(Iv) Measurement of fatty acid composition Fatty acids according to "Methyl esterification method (boron trifluoromethanol method) (2.4.1.2-1996)" in "Standard Fatty Acid Analysis Test Method 2003" edited by Japan Oil Chemists' Society. Methyl esters were prepared and the obtained samples were subjected to gas chromatography (GLC) for analysis of constituent fatty acids.

(v)乾燥質量比の測定
固定化酵素を1g程度、20mLのサンプル瓶に計り取り、アセトン及びヘキサンで2回ずつ交互に洗浄した。さらにアセトンで洗浄し、窒素ブローによって溶剤を揮発させた後、60℃の恒温槽にて12時間以上乾燥を行った。乾燥後の重量を測定し、以下の式(2)から乾燥質量比を求めた。
乾燥質量比[-]=(洗浄後樹脂重量[g])/(洗浄前固定化酵素重量[g]) (2)
(V) Measurement of dry mass ratio About 1 g of the immobilized enzyme was weighed in a 20 mL sample bottle, and washed twice with acetone and hexane alternately. Further, it was washed with acetone, the solvent was volatilized by blowing nitrogen, and then it was dried in a constant temperature bath at 60 ° C. for 12 hours or more. The weight after drying was measured, and the dry mass ratio was obtained from the following formula (2).
Dry mass ratio [-] = (weight of resin after washing [g]) / (weight of immobilized enzyme before washing [g]) (2)

(vi)発現活性の測定
100mLの三つ口フラスコに固定化酵素5g及び菜種油50gを加え、三日月羽根(幅50mm×高さ20mm)で430r/minで撹拌しながら、ウォーターバスにて40℃に加温した。これに蒸留水30gを加え反応を開始した。継時でサンプリングを行い、遠心分離(3000r/min、1分)により油水分離した後、油相の酸価の測定を行った。酸価が175mgKOH/gに到達する時間を求め、以下の式(3)から発現活性を求めた。
発現活性[U/g(乾燥質量)]
=(酸価175到達時間[hr]/523.12)^(-1/1.0919)
×菜種油[g]/(固定化酵素[g]×乾燥質量比[-]) (3)
(Vi) Measurement of expression activity Add 5 g of immobilized enzyme and 50 g of rapeseed oil to a 100 mL three-necked flask, and stir at 430 r / min with a crescent blade (width 50 mm x height 20 mm) to 40 ° C in a water bath. It was heated. 30 g of distilled water was added thereto to start the reaction. Sampling was performed at the time of passage, oil and water were separated by centrifugation (3000 r / min, 1 minute), and then the acid value of the oil phase was measured. The time required for the acid value to reach 175 mgKOH / g was determined, and the expression activity was determined from the following formula (3).
Expression activity [U / g (dry mass)]
= (Acid value 175 arrival time [hr] /523.12) ^ (-1 / 1.0919)
× Canola oil [g] / (immobilized enzyme [g] × dry mass ratio [-]) (3)

〔固定化酵素の調製〕
アニオン交換樹脂Duolite A-568(Rohm and Haas社製、粒径分布150~850μmの粒子が96質量%)を粉砕して分級し、粒度150~425μmの粒子が97質量%である樹脂1質量部をN/10のNaOH溶液10質量部中で1時間攪拌した。ろ過した後10質量部のイオン交換水で洗浄し、500mMのリン酸緩衝液(pH7)10質量部でpHの平衡化を行った。ろ過後、50mMのリン酸緩衝液(pH7)10質量部で2時間ずつ2回pHの平衡化を行った。この後ろ過を行い、担体を回収した後エタノール4質量部でエタノール置換を30分行った。ろ過した後、大豆脂肪酸を1質量部含むエタノール4.22質量部を加え30分間、大豆脂肪酸を担体に吸着させた。ろ過によって担体を回収した後、50mMのリン酸緩衝液(pH7)5質量部で30分ずつ4回洗浄し、ろ過して担体を回収した。
次いで、市販のCandida cylindracea属由来のリパーゼAY「アマノ」30SD-K(天野エンザイム製)0.388質量部を50mMのリン酸緩衝液(pH7)18質量部に溶解した酵素液と2時間接触させ、固定化を行った。ろ過し、固定化酵素を回収して50mMのリン酸緩衝液(pH7)5質量部で洗浄を行うことにより、固定化していない酵素やタンパクを除去した。以上の操作はいずれも20℃で行った。その後菜種油を4質量部加え40℃で2時間攪拌した。その後ろ過して油脂と分離し、固定化酵素とした。
固定化酵素の加水分解活性(発現すべき活性)は2680U/g(乾燥質量)であった。
[Preparation of immobilized enzyme]
Anion exchange resin Duolite A-568 (manufactured by Rohman and Haas, 96% by mass of particles having a particle size distribution of 150 to 850 μm) is crushed and classified, and 1 part by mass of a resin having 97% by mass of particles having a particle size of 150 to 425 μm. Was stirred in 10 parts by mass of N / 10 NaOH solution for 1 hour. After filtration, the mixture was washed with 10 parts by mass of ion-exchanged water, and pH was equilibrated with 10 parts by mass of 500 mM phosphate buffer (pH 7). After filtration, pH equilibration was performed twice for 2 hours with 10 parts by mass of 50 mM phosphate buffer (pH 7). After that, filtration was performed, the carrier was recovered, and then ethanol substitution was performed with 4 parts by mass of ethanol for 30 minutes. After filtration, 4.22 parts by mass of ethanol containing 1 part by mass of soybean fatty acid was added, and the soybean fatty acid was adsorbed on the carrier for 30 minutes. After recovering the carrier by filtration, the carrier was washed 4 times with 5 parts by mass of 50 mM phosphate buffer (pH 7) for 30 minutes each, and the carrier was recovered by filtration.
Next, 0.388 parts by mass of a commercially available lipase AY "Amano" (manufactured by Amano Enzyme) derived from the genus Candida cylindracea was contacted with an enzyme solution dissolved in 18 parts by mass of 50 mM phosphate buffer (pH 7) for 2 hours. , Immobilization was performed. After filtration, the immobilized enzyme was recovered and washed with 5 parts by mass of 50 mM phosphate buffer (pH 7) to remove the non-immobilized enzyme and protein. All of the above operations were performed at 20 ° C. Then, 4 parts by mass of rapeseed oil was added, and the mixture was stirred at 40 ° C. for 2 hours. After that, it was filtered and separated from fats and oils to obtain an immobilized enzyme.
The hydrolytic activity (activity to be expressed) of the immobilized enzyme was 2680 U / g (dry mass).

〔実施例1〕
固定化酵素を乾燥重量で25g計量し、1000mL容の四つ口フラスコに仕込んだ。そこへアマニ油を500gと蒸留水を300g添加し、窒素気流下で攪拌しながら40℃ で加水分解反応を行った。反応系内の水分量は油脂に対して62質量%であった。反応中は、反応液を経時的にサンプリングしながら遊離脂肪酸濃度を算出した。
遊離脂肪酸濃度が61質量%となった時に、水の入れ替えを行った。詳細には、ろ過により固定化酵素を分離し、遠心分離(6000r/min、10分)により、油相と水相を分離した。次いで、水相を除いた油相に、先に分離、回収した固定化酵素と、新たな蒸留水300gを加え、窒素気流下で撹拌しながら40℃で遊離脂肪酸濃度が90質量%になるまで再び加水分解反応を行った。このとき、反応系内の水分量は油脂に対して66質量%であった。
反応液は、遠心分離により油水分離し、油相として脂肪酸類を得た。モノグリセリド濃度は、遊離脂肪酸濃度が90質量%に到達した時点で油相のグリセリド組成を求めて算出した。
[Example 1]
25 g of the immobilized enzyme was weighed by dry weight and placed in a 1000 mL four-necked flask. 500 g of flaxseed oil and 300 g of distilled water were added thereto, and a hydrolysis reaction was carried out at 40 ° C. while stirring under a nitrogen stream. The water content in the reaction system was 62% by mass with respect to the fat and oil. During the reaction, the free fatty acid concentration was calculated while sampling the reaction solution over time.
Water was replaced when the free fatty acid concentration reached 61% by mass. Specifically, the immobilized enzyme was separated by filtration, and the oil phase and the aqueous phase were separated by centrifugation (6000 r / min, 10 minutes). Next, to the oil phase excluding the aqueous phase, the previously separated and recovered immobilized enzyme and 300 g of fresh distilled water were added, and the mixture was stirred under a nitrogen stream until the free fatty acid concentration reached 90% by mass at 40 ° C. The hydrolysis reaction was carried out again. At this time, the water content in the reaction system was 66% by mass with respect to the fat and oil.
The reaction solution was separated into oil and water by centrifugation to obtain fatty acids as an oil phase. The monoglyceride concentration was calculated by determining the glyceride composition of the oil phase when the free fatty acid concentration reached 90% by mass.

〔実施例2〕
遊離肪酸濃度が80質量%の時点で水の入れ替えを行った以外は、実施例1に記載した方法に準じ脂肪酸類を得た。
[Example 2]
Fatty acids were obtained according to the method described in Example 1 except that water was replaced when the free fatty acid concentration was 80% by mass.

〔比較例1〕
実施例1に記載した方法に準じ、水の入れ替えを行うことなく、遊離脂肪酸濃度が90質量%になるまで加水分解反応を行い、脂肪酸類を得た。
[Comparative Example 1]
According to the method described in Example 1, a hydrolysis reaction was carried out until the free fatty acid concentration reached 90% by mass without replacing water to obtain fatty acids.

〔比較例2〕
遊離脂肪酸濃度が32質量%の時点で水の入れ替えを行った以外は、実施例1に記載した方法に準じ脂肪酸類を得た。
[Comparative Example 2]
Fatty acids were obtained according to the method described in Example 1 except that water was replaced when the free fatty acid concentration was 32% by mass.

〔比較例3〕
遊離脂肪酸濃度が88質量%の時点で水の入れ替えを行った以外は、実施例1に記載した方法に準じ脂肪酸類を得た。
[Comparative Example 3]
Fatty acids were obtained according to the method described in Example 1 except that water was replaced when the free fatty acid concentration was 88% by mass.

表1に、水入れ替え時の遊離脂肪酸濃度、遊離脂肪酸濃度が90質量%に到達するまでの反応時間、及びモノグリセリド濃度を示す。 Table 1 shows the free fatty acid concentration at the time of water replacement, the reaction time until the free fatty acid concentration reaches 90% by mass, and the monoglyceride concentration.

Figure 0006990019000001
Figure 0006990019000001

表1より明らかなように、特定の時点で反応系の水を入れ替えることで、短時間で効率良く加水分解反応が進行し、且つ、反応液中のモノグリセリドが大幅に低減した。
これに対して、水の入れ替えを行わなかった比較例1、水の入れ替えを行っても遊離脂肪酸濃度が低い時点で実施した比較例2は、反応時間が長くなり、モノグリセリドの濃度も高かった。また、遊離脂肪酸濃度が高い時点で水の入れ替えを実施した比較例3は、かえって反応時間が長くなる傾向が見られた。
As is clear from Table 1, by replacing the water in the reaction system at a specific time point, the hydrolysis reaction proceeded efficiently in a short time, and the monoglyceride in the reaction solution was significantly reduced.
On the other hand, in Comparative Example 1 in which the water was not replaced and Comparative Example 2 in which the free fatty acid concentration was low even after the water was replaced, the reaction time was long and the monoglyceride concentration was also high. Further, in Comparative Example 3 in which water was replaced when the free fatty acid concentration was high, the reaction time tended to be longer.

Claims (3)

次の工程(A)及び(B):
(A)油脂に水(グリセリンを含むものを除く)を加えて、固定化油脂加水分解酵素を用いた酵素分解法で遊離脂肪酸濃度が60~82質量%となるまで加水分解した後、水相と油相を分離して、油相を得る工程、
(B)工程(A)で得た油相に新たな水(グリセリンを含むものを除く)を加えて、再び油脂を固定化油脂加水分解酵素を用いた酵素分解法で加水分解し、モノグリセリドの濃度が8質量%以下の反応液を得る工程
を含む、脂肪酸類の製造方法。
Next steps (A) and (B):
(A) Water (excluding those containing glycerin) is added to fats and oils, hydrolyzed to a free fatty acid concentration of 60 to 82 % by mass by an enzymatic decomposition method using an immobilized fat and oil hydrolase, and then the aqueous phase. And the process of separating the oil phase and obtaining the oil phase,
(B) Fresh water (excluding those containing glycerin) is added to the oil phase obtained in step (A), and the oil and fat are hydrolyzed again by an enzymatic decomposition method using an immobilized oil and fat hydrolase to obtain monoglyceride. A method for producing fatty acids, which comprises a step of obtaining a reaction solution having a concentration of 8% by mass or less .
工程(B)において、酵素分解法による加水分解反応を遊離脂肪酸濃度が85質量%以上となるまで行う請求項1記載の脂肪酸類の製造方法。 The method for producing fatty acids according to claim 1, wherein in the step (B), a hydrolysis reaction by an enzymatic decomposition method is carried out until the free fatty acid concentration becomes 85% by mass or more. 工程(B)において、酵素分解法による加水分解反応によりモノグリセリドの濃度が2~8質量%の反応液を得る請求項1又は2記載の脂肪酸類の製造方法。 The method for producing a fatty acid according to claim 1 or 2, wherein in the step (B), a reaction solution having a monoglyceride concentration of 2 to 8% by mass is obtained by a hydrolysis reaction by an enzymatic decomposition method.
JP2016209866A 2016-10-26 2016-10-26 Method for producing fatty acids Active JP6990019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016209866A JP6990019B2 (en) 2016-10-26 2016-10-26 Method for producing fatty acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016209866A JP6990019B2 (en) 2016-10-26 2016-10-26 Method for producing fatty acids

Publications (2)

Publication Number Publication Date
JP2018068166A JP2018068166A (en) 2018-05-10
JP6990019B2 true JP6990019B2 (en) 2022-01-12

Family

ID=62111402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209866A Active JP6990019B2 (en) 2016-10-26 2016-10-26 Method for producing fatty acids

Country Status (1)

Country Link
JP (1) JP6990019B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064394A (en) 2001-06-21 2003-03-05 Dr Frische Gmbh Method for enzymatic splitting of oil and fat
JP2004208546A (en) 2002-12-27 2004-07-29 Kao Corp Method for producing fatty acid
JP2007099959A (en) 2005-10-06 2007-04-19 Kao Corp Method for producing fatty acids
JP2008253196A (en) 2007-04-05 2008-10-23 Kao Corp Method for producing fatty acids
JP2009268414A (en) 2008-05-08 2009-11-19 Kao Corp Method for producing fatty acids
JP2011078328A (en) 2009-10-05 2011-04-21 Kao Corp Method for producing unsaturated fatty acids

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416593A (en) * 1987-07-09 1989-01-20 Itoh Oil Mfg Production of castor oil fatty acid
JPH0213389A (en) * 1988-06-30 1990-01-17 Ito Seiyu Kk High hydrolysis of castor oil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064394A (en) 2001-06-21 2003-03-05 Dr Frische Gmbh Method for enzymatic splitting of oil and fat
JP2004535821A (en) 2001-06-21 2004-12-02 テー プルス テー オレオヒェミー ゲーエムベーハー Method and apparatus for obtaining fatty acids from natural oils and fats by their enzymatic degradation.
JP2004208546A (en) 2002-12-27 2004-07-29 Kao Corp Method for producing fatty acid
JP2007099959A (en) 2005-10-06 2007-04-19 Kao Corp Method for producing fatty acids
JP2008253196A (en) 2007-04-05 2008-10-23 Kao Corp Method for producing fatty acids
JP2009268414A (en) 2008-05-08 2009-11-19 Kao Corp Method for producing fatty acids
JP2011078328A (en) 2009-10-05 2011-04-21 Kao Corp Method for producing unsaturated fatty acids

Also Published As

Publication number Publication date
JP2018068166A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
EP2175030B1 (en) Method for producing diacylglycerol-rich fat and/or oil
JP5586914B2 (en) Process for producing fats and oils with high diacylglycerol content
US8415124B2 (en) Method for producing an immobilized enzyme for hydrolyzing fats and oils
JP4694939B2 (en) Method for producing fatty acids
JP6715586B2 (en) Method for producing highly unsaturated fatty acid
KR20110018878A (en) Method for producing fat or oil containing large amount of diacylglycerol
JP6990076B2 (en) Method for producing fatty acids
JP6645804B2 (en) Manufacturing method of structural fats and oils
JP6990019B2 (en) Method for producing fatty acids
JP7365202B2 (en) Method for producing fats and oils with high diacylglycerol content
US8323934B2 (en) Process for producing fatty acids
JP4849967B2 (en) Method for producing fatty acids
JP4694938B2 (en) Method for producing fatty acids
JP5178888B2 (en) Method for producing transesterified oil
JP2008253196A (en) Method for producing fatty acids
JP5527983B2 (en) Process for producing docosahexaenoic acid-rich oil
JP6859212B2 (en) Method for producing fats and oils containing high diacylglycerol
JP2011078328A (en) Method for producing unsaturated fatty acids
JP7092460B2 (en) Manufacturing method of structural fats and oils

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211203

R151 Written notification of patent or utility model registration

Ref document number: 6990019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151