JP7365202B2 - Method for producing fats and oils with high diacylglycerol content - Google Patents

Method for producing fats and oils with high diacylglycerol content Download PDF

Info

Publication number
JP7365202B2
JP7365202B2 JP2019205549A JP2019205549A JP7365202B2 JP 7365202 B2 JP7365202 B2 JP 7365202B2 JP 2019205549 A JP2019205549 A JP 2019205549A JP 2019205549 A JP2019205549 A JP 2019205549A JP 7365202 B2 JP7365202 B2 JP 7365202B2
Authority
JP
Japan
Prior art keywords
oil
pressure
reaction
mass
diacylglycerol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019205549A
Other languages
Japanese (ja)
Other versions
JP2021073951A (en
Inventor
実 加瀬
佑亮 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2019205549A priority Critical patent/JP7365202B2/en
Publication of JP2021073951A publication Critical patent/JP2021073951A/en
Application granted granted Critical
Publication of JP7365202B2 publication Critical patent/JP7365202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、ジアシルグリセロール高含有油脂の製造方法に関する。 The present invention relates to a method for producing fats and oils with high diacylglycerol content.

ジアシルグリセロールを高濃度に含む油脂は、食後の血中トリグリセリド(中性脂肪)の増加を抑制し、体内への蓄積性が少ない等の生理作用を有することが知られている(例えば特許文献1参照)。
ジアシルグリセロールの製造は、グリセリンと油脂とのグリセロリシス反応による方法や、グリセリンと脂肪酸とのエステル化反応による方法が一般的である(例えば特許文献2~5参照)。これらの製法は、アルカリ触媒等を用いた化学法と、リパーゼ等の酵素を用いた酵素法に大別されるが、酵素を用いて温和な条件で反応を行うのが風味等の点で好ましいと云われている。
It is known that fats and oils containing diacylglycerol in high concentrations have physiological effects such as suppressing the increase in blood triglycerides (neutral fats) after meals and having a low tendency to accumulate in the body (for example, Patent Document 1) reference).
Diacylglycerol is generally produced by a glycerolysis reaction between glycerin and fat or oil, or an esterification reaction between glycerin and a fatty acid (see, for example, Patent Documents 2 to 5). These manufacturing methods are broadly divided into chemical methods using alkaline catalysts, etc., and enzymatic methods using enzymes such as lipase, but it is preferable to carry out the reaction under mild conditions using enzymes in terms of flavor etc. It is said that

特開平10-176181号公報Japanese Patent Application Publication No. 10-176181 特公平6-65310号公報Special Publication No. 6-65310 特公平6-65311号公報Special Publication No. 6-65311 特開平4-330289号公報Japanese Patent Application Publication No. 4-330289 特表2004-528843号公報Special Publication No. 2004-528843

グリセリンと脂肪酸とのエステル化反応を行う際には、反応系内を真空状態として生成する水を除き、一定値以下とすることによって、反応を効率的に進めることが常套手段である。真空条件は、簡便性の点から操作上一定に保つことが一般的であり、ある程度高い反応率で所望の品質のものが得られる。
しかしながら、固定化酵素を触媒としてグリセリンと脂肪酸とを一定の真空度を保ってエステル化反応させる場合、ジアシルグリセロール純度や反応収率向上の点から高真空条件とすると、酵素の耐久性の点で必ずしも満足するものとはいえず、工業的に課題のあることが判明した。
従って、本発明の課題は、工業的に有利に高純度のジアシルグリセロールを高収率で製造する方法を提供することにある。
When carrying out the esterification reaction between glycerin and fatty acids, it is a common practice to efficiently proceed with the reaction by creating a vacuum in the reaction system, removing generated water, and keeping the pressure below a certain level. For convenience, the vacuum conditions are generally kept constant during operation, and the desired quality can be obtained at a relatively high reaction rate.
However, when performing an esterification reaction between glycerin and fatty acids using an immobilized enzyme as a catalyst while maintaining a constant degree of vacuum, high vacuum conditions are used to improve diacylglycerol purity and reaction yield, which may reduce the durability of the enzyme. It was found that the results were not necessarily satisfactory, and there were problems from an industrial perspective.
Therefore, an object of the present invention is to provide an industrially advantageous method for producing highly purified diacylglycerol in high yield.

本発明者は、上記課題に鑑み鋭意検討したところ、所定の圧力下で、且つ油相水分と圧力が後述する式(i)を満たす条件で酵素エステル化反応を行うことにより、固定化酵素中の水分量の過剰な低下を抑制し、酵素活性の低下を抑えながらエステル化反応を促進し、高純度のジアシルグリセロールを高い収率で得られることを見出した。 After intensive study in view of the above-mentioned problems, the inventors of the present invention found that by carrying out an enzyme esterification reaction under a predetermined pressure and under conditions where the water content of the oil phase and the pressure satisfy the formula (i) described later, It has been found that the esterification reaction can be promoted while suppressing the excessive decrease in the water content of the enzyme, suppressing the decrease in enzyme activity, and producing highly pure diacylglycerol in high yield.

すなわち、本発明は、固定化酵素を用いて、200~1200Paの圧力下でグリセリンと脂肪酸又はその低級アルキルエステルとをエステル化反応させる工程を含み、当該工程の間中、油相水分(x)と圧力(y)の関係が、次式(i);
(i) 10000x+100≧y≧2500x-300
(但し、x≦0.6、200≦y≦1200)
(ここで、xは油相水分(質量%)、yは圧力(Pa)を示す。)
を満たす、ジアシルグリセロール高含有油脂の製造方法を提供するものである。
That is, the present invention includes a step of esterifying glycerin and a fatty acid or a lower alkyl ester thereof under a pressure of 200 to 1200 Pa using an immobilized enzyme, and throughout the step, the oil phase moisture (x) The relationship between and pressure (y) is expressed by the following formula (i);
(i) 10000x+100≧y≧2500x-300
(However, x≦0.6, 200≦y≦1200)
(Here, x indicates oil phase moisture (mass%) and y indicates pressure (Pa).)
The present invention provides a method for producing fats and oils with a high diacylglycerol content, which satisfies the following.

本発明によれば、工業的に有利にジアシルグリセロール純度の高い油脂を高収率で製造することができる。 According to the present invention, fats and oils with high diacylglycerol purity can be industrially advantageously produced in high yield.

本発明のジアシルグリセロール高含有油脂の製造方法は、固定化酵素を用いて、200~1200Paの圧力下でグリセリンと脂肪酸又はその低級アルキルエステルとをエステル化反応させる工程を含み、当該工程の間中、油相水分(x)と圧力(y)の関係が、次式(i);
(i) 10000x+100≧y≧2500x-300
(但し、x≦0.6、200≦y≦1200)
(ここで、xは油相水分(質量%)、yは圧力(Pa)を示す。)
を満たす、製造方法である。
ここで、油相は、脂肪酸、その低級アルキルエステル及び油脂であり、「油相水分」は、当該油相に含まれる水分である。
また、本明細書において「油脂」は「油」と同義であり、油脂(油)を構成する物質にはトリアシルグリセロールのみならずモノアシルグリセロールやジアシルグリセロールも含まれる。すなわち、油脂(油)は、モノアシルグリセロール、ジアシルグリセロール及びトリアシルグリセロールのいずれか1種以上を含むものである。
The method for producing fats and oils with high diacylglycerol content of the present invention includes a step of esterifying glycerin and a fatty acid or a lower alkyl ester thereof under a pressure of 200 to 1200 Pa using an immobilized enzyme, and during this step, , the relationship between oil phase moisture (x) and pressure (y) is expressed by the following equation (i);
(i) 10000x+100≧y≧2500x-300
(However, x≦0.6, 200≦y≦1200)
(Here, x indicates oil phase moisture (mass%) and y indicates pressure (Pa).)
This is a manufacturing method that satisfies the following.
Here, the oil phase is a fatty acid, a lower alkyl ester thereof, and an oil or fat, and the "oil phase moisture" is moisture contained in the oil phase.
Furthermore, in this specification, "oil" is synonymous with "oil", and substances constituting fats and oils (oil) include not only triacylglycerol but also monoacylglycerol and diacylglycerol. That is, the fat (oil) contains one or more of monoacylglycerol, diacylglycerol, and triacylglycerol.

〔固定化酵素〕
本発明で用いられる固定化酵素は、固定化リパーゼが好ましく、リパーゼは、特に制限されず、動物由来、植物由来、微生物由来のリパーゼを用いることができる。例えば、リゾプス(Rhizopus)属、アスペルギルス(Aspergillus)属、ムコール(Mucor)属、リゾムコール(Rhizomucor)属、シュードモナス(Pseudomonas)属、ジオトリケム(Geotrichum)属、ペニシリウム(Penicillium)属、キャンディダ(Candida)属等の起源のリパーゼが挙げられる。
固定化リパーゼの種類は、特に制限されず、グリセロールのsn-1位とsn-3位に特異性を示す1,3位選択リパーゼ、位置特異性のない(ランダム型)のリパーゼ等を用いることができる。なかでも、反応性の点から、1,3位選択リパーゼが好ましい。市販の固定化1,3位選択リパーゼとしては、例えば、Lipozyme RM IM(ノボザイムジャパン製)が挙げられる。
[Immobilized enzyme]
The immobilized enzyme used in the present invention is preferably an immobilized lipase, and the lipase is not particularly limited, and lipases derived from animals, plants, and microorganisms can be used. For example, Rhizopus spp., Aspergillus spp., Mucor spp., Rhizomucor spp., Pseudomonas spp., Geotrichum spp., Penicillium spp. ) genus, Candida genus Examples include lipases originating from.
The type of immobilized lipase is not particularly limited, and a lipase selective for positions 1 and 3 showing specificity for the sn-1 and sn-3 positions of glycerol, a non-position-specific (random type) lipase, etc. may be used. I can do it. Among these, 1,3-position selective lipase is preferred from the viewpoint of reactivity. Examples of commercially available immobilized 1,3 position selective lipases include Lipozyme RM IM (manufactured by Novozyme Japan).

固定化担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられる。
固定化担体の形状は、特に限定されないが、粒子状、粉末状、顆粒状、繊維状、スポンジ状等が挙げられる。
なかでも、生産効率の点、脂肪酸との親和性及び保水力が高い点から、イオン交換樹脂が好ましい。また、イオン交換樹脂の中でも、大きな表面積を有することにより酵素の吸着量を高くできるという点から、多孔質であることが好ましい。
Immobilization carriers include celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, inorganic carriers such as ceramics, ceramic powder, polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption. Examples include organic polymers such as resins, chelate resins, and synthetic adsorption resins.
The shape of the immobilization carrier is not particularly limited, and examples thereof include particles, powder, granules, fibers, sponges, and the like.
Among these, ion exchange resins are preferred from the viewpoint of production efficiency, high affinity with fatty acids, and high water retention capacity. Further, among ion exchange resins, porous resins are preferable because they have a large surface area and can increase the amount of enzyme adsorption.

固定化担体として用いる樹脂の粒子径は50~2000μmが好ましく、更に100~1000μmが好ましい。細孔径は10~150nmが好ましく、更に10~100nmが好ましい。材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、更にフェノールホルムアルデヒド系樹脂(例えば、ダウケミカル社製Duolite A-568)が酵素吸着性向上の点から好ましい。
このとき、用いる酵素量は、担体質量に対して10~300質量%、更に20~250質量%、更に30~200質量%が好ましい。固定化の際、酵素を溶液状態にするが、酵素の特性に合わせて、緩衝剤をpH5~7に調整して用いることが好ましい。固定化時の温度は0~60℃、更に5~40℃が好ましい。
The particle diameter of the resin used as the immobilization carrier is preferably 50 to 2000 μm, more preferably 100 to 1000 μm. The pore diameter is preferably 10 to 150 nm, more preferably 10 to 100 nm. Examples of the material include phenol-formaldehyde-based, polystyrene-based, acrylamide-based, and divinylbenzene-based resins, and phenol-formaldehyde-based resins (eg, Duolite A-568 manufactured by Dow Chemical Company) are preferred from the standpoint of improving enzyme adsorption properties.
At this time, the amount of enzyme used is preferably 10 to 300% by weight, more preferably 20 to 250% by weight, and further preferably 30 to 200% by weight based on the weight of the carrier. During immobilization, the enzyme is put into a solution state, and it is preferable to adjust the pH of the buffer to 5 to 7 depending on the properties of the enzyme. The temperature during immobilization is preferably 0 to 60°C, more preferably 5 to 40°C.

固定化酵素の活性を高めるために、酵素の固定化前に予め脂溶性脂肪酸又はその誘導体を担体に吸着させる処理を施しても良い。処理を施す方法としては、例えば、クロロホルム、ヘキサン、エタノール等の有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加える方法が挙げられる。
使用する脂溶性脂肪酸としては、炭素数8~18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基が置換していても良い脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミリスチン酸、オレイン酸、リノール酸、α-リノレン酸、リシノール酸等が挙げられる。またその誘導体としては、これらの脂肪酸と一価又は多価アルコールとのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加した誘導体が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノグリセリド、ジグリセリド、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これらの脂溶性脂肪酸又はその誘導体は、2種以上を併用しても良い。
In order to enhance the activity of the immobilized enzyme, a treatment may be performed to adsorb fat-soluble fatty acids or derivatives thereof onto the carrier before immobilizing the enzyme. Examples of the method for performing the treatment include a method in which a fat-soluble fatty acid or a derivative thereof is once dispersed and dissolved in an organic solvent such as chloroform, hexane, or ethanol, and then added to a carrier dispersed in water.
The fat-soluble fatty acids to be used include saturated or unsaturated, straight-chain or branched fatty acids having 8 to 18 carbon atoms, which may be substituted with hydroxyl groups. Specific examples include capric acid, lauric acid, myristic acid, oleic acid, linoleic acid, α-linolenic acid, and ricinoleic acid. Examples of the derivatives include esters of these fatty acids and monohydric or polyhydric alcohols, phospholipids, and derivatives obtained by adding ethylene oxide to these esters. Specific examples include methyl esters, ethyl esters, monoglycerides, diglycerides, ethylene oxide adducts thereof, polyglycerin esters, sorbitan esters, sucrose esters, etc. of the above-mentioned fatty acids. Two or more of these fat-soluble fatty acids or derivatives thereof may be used in combination.

〔脂肪酸又はその低級アルキルエステル〕
本発明で用いられる脂肪酸又はその低級アルキルエステルは、直鎖又は分岐鎖の炭素数4~22、好ましくは炭素数8~18の飽和又は不飽和脂肪酸が好ましく、例えば、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ゾーマリン酸、ステアリン酸、オレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸、ガドレン酸、アラキン酸、ベヘン酸、エルカ酸、エイコサペンタエン酸、ドコサヘキサエン酸等を用いることができる。また、上記脂肪酸とエステルを形成する低級アルコールとしては、炭素数1~6のもの、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール又はt-ブタノール等が挙げられる。これらの脂肪酸又はその低級アルキルエステルは、2種以上を併用することもできる。
[Fatty acid or its lower alkyl ester]
The fatty acid or lower alkyl ester thereof used in the present invention is preferably a linear or branched saturated or unsaturated fatty acid having 4 to 22 carbon atoms, preferably 8 to 18 carbon atoms, such as butyric acid, valeric acid, caproic acid. , enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, zomaric acid, stearic acid, oleic acid, elaidic acid, linoleic acid, linolenic acid, arachidonic acid, gadolenic acid, arachine Acids such as behenic acid, erucic acid, eicosapentaenoic acid, docosahexaenoic acid, etc. can be used. Further, examples of lower alcohols that form esters with the fatty acids include those having 1 to 6 carbon atoms, such as methanol, ethanol, 1-propanol, 2-propanol, n-butanol, 2-butanol, and t-butanol. . Two or more types of these fatty acids or lower alkyl esters thereof can also be used in combination.

本発明では、原料油脂を加水分解して得られる脂肪酸を用いてもよい。
ここで、加水分解の対象となる原料油脂は、植物性油脂、動物性油脂のいずれでもよい。例えば、大豆油、菜種油、サフラワー油、米油、コーン油、ヒマワリ油、綿実油、オリーブ油、ゴマ油、落花生油、ハトムギ油、小麦胚芽油、シソ油、アマニ油、エゴマ油、サチャインチ油、クルミ油、キウイ種子油、サルビア種子油、ブドウ種子油、マカデミアナッツ油、ヘーゼルナッツ油、カボチャ種子油、椿油、茶実油、ボラージ油、パーム油、パームオレイン、パームステアリン、やし油、パーム核油、カカオ脂、サル脂、シア脂、藻油等の植物性油脂;魚油、アザラシ油、ラード、牛脂、バター脂等の動物性油脂;あるいはそれらのエステル交換油、水素添加油、分別油等の油脂類を挙げることができる。これらは単独で又は2種以上を組み合わせて用いてもよい。
原料油脂は、油脂を構成する脂肪酸中の飽和脂肪酸が30質量%以下と少ない油脂が好ましい。
油脂を加水分解する方法としては、高温高圧分解法と酵素分解法が挙げられる。
高温高圧分解法とは、油脂に水を加えて、高温、高圧の条件で反応することにより、脂肪酸とグリセリンを得る方法である。また、酵素分解法とは、油脂に水を加えて、油脂加水分解酵素を触媒として用い、低温の条件で反応することにより、脂肪酸とグリセリンを得る方法である。
In the present invention, fatty acids obtained by hydrolyzing raw material fats and oils may be used.
Here, the raw material fat to be hydrolyzed may be either vegetable oil or animal fat. For example, soybean oil, rapeseed oil, safflower oil, rice oil, corn oil, sunflower oil, cottonseed oil, olive oil, sesame oil, peanut oil, pearl barley oil, wheat germ oil, perilla oil, linseed oil, perilla oil, sacha inchi oil, walnut oil. , kiwi seed oil, salvia seed oil, grape seed oil, macadamia nut oil, hazelnut oil, pumpkin seed oil, camellia oil, tea seed oil, borage oil, palm oil, palm olein, palm stearin, coconut oil, palm kernel oil, cacao. vegetable oils such as fat, monkey fat, shea butter, and algae oil; animal fats and oils such as fish oil, seal oil, lard, beef tallow, and butter fat; or their transesterified oils, hydrogenated oils, fractionated oils, etc. can be mentioned. These may be used alone or in combination of two or more.
The raw material oil is preferably an oil with a low content of 30% by mass or less of saturated fatty acids among the fatty acids constituting the oil.
Examples of methods for hydrolyzing fats and oils include high temperature and high pressure decomposition methods and enzymatic decomposition methods.
The high temperature and high pressure decomposition method is a method for obtaining fatty acids and glycerin by adding water to fats and oils and reacting at high temperature and high pressure conditions. Furthermore, the enzymatic decomposition method is a method in which fatty acids and glycerin are obtained by adding water to fats and oils and reacting at low temperatures using fat hydrolase as a catalyst.

油脂加水分解酵素としては、リパーゼが好ましく、特に制限されず、前記の動物由来、植物由来、微生物由来のリパーゼを用いることができる。なかでも、加水分解効率の点から、位置・鎖長選択性のない、所謂非選択性リパーゼを用いるのが好ましく、更にキャンディダ・シリンドラセア(Candida cylindracea)によって生産される非選択性リパーゼを用いるのが好ましい。例えば、リパーゼAY「アマノ」30SD-K(天野エンザイム(株)製)がある。 As the oil-fat hydrolase, lipase is preferable, and there are no particular limitations, and the above-mentioned animal-derived, plant-derived, and microbial-derived lipases can be used. Among them, from the viewpoint of hydrolysis efficiency, it is preferable to use a so-called non-selective lipase that does not have positional or chain length selectivity, and it is more preferable to use a non-selective lipase produced by Candida cylindracea. is preferred. For example, there is lipase AY "Amano" 30SD-K (manufactured by Amano Enzyme Co., Ltd.).

加水分解反応は、常法に従って行うことができる。
加水分解反応は、以下の式(1)で示される遊離脂肪酸濃度によって管理し、所定の分解率に到達した時点で終了すればよい。
遊離脂肪酸濃度(%)=加水分解油の酸価(AV)×(原料油脂の脂肪酸平均分子量/56.1/10)・・・・(1)
油脂を加水分解して得られる脂肪酸の遊離脂肪酸濃度は、ジアシルグリセロールの転移反応抑制の点から、80質量%以上、更に84質量%以上、更に88質量%以上、更には92質量%以上が好ましい。
加水分解後、反応液から脂肪酸を得るには、油脂加水分解酵素と水相を静置分離や遠心分離等で油相と分離すればよい。
加水分解油には、脂肪酸の他に未反応の油脂や部分的に加水分解された油脂等が含まれるが、エステル化反応原料の脂肪酸としてこのまま使用しても良く、蒸留による精製、ウインタリング等により脂肪酸組成の調整等を行った後に使用してもよい。
The hydrolysis reaction can be carried out according to a conventional method.
The hydrolysis reaction may be controlled by the free fatty acid concentration expressed by the following formula (1), and may be terminated when a predetermined decomposition rate is reached.
Free fatty acid concentration (%) = acid value (AV) of hydrolyzed oil × (average fatty acid molecular weight of raw material oil/56.1/10) (1)
The free fatty acid concentration of the fatty acid obtained by hydrolyzing fats and oils is preferably 80% by mass or more, more preferably 84% by mass or more, further 88% by mass or more, and even more preferably 92% by mass or more, from the viewpoint of suppressing the transfer reaction of diacylglycerol. .
To obtain fatty acids from the reaction solution after hydrolysis, the fat/oil hydrolase and the aqueous phase may be separated from the oil phase by static separation, centrifugation, or the like.
In addition to fatty acids, hydrolyzed oils include unreacted fats and fats and partially hydrolyzed fats and oils, but they can be used as they are as fatty acids as raw materials for esterification reactions, and can be purified by distillation, wintering, etc. It may also be used after adjusting the fatty acid composition.

〔グリセリン〕
本発明において使用するグリセリンは、エステル化の反応性の点から、純度95質量%以上のものが好ましい。
[Glycerin]
The glycerin used in the present invention preferably has a purity of 95% by mass or more from the viewpoint of esterification reactivity.

〔原料の仕込み比〕
エステル化反応を行う際のグリセリンのモルに対する脂肪酸のモルの比[FA/GLY]は、反応油の組成が最適になる点(反応油中の脂肪酸等及びグリセリンの残存量、並びにモノアシルグリセロール又はトリアシルグリセロールの生成量が抑制され、蒸留負荷が低減すると共にジアシルグリセロール高含有となり、生産効率が高くなる点)から、5.0以下、更に4.0以下、更に3.0以下、更に2.5以下とするのが好ましく、また、反応速度向上、蒸留残渣比率の向上の点から、0.5以上、更に1.0以上、更に1.2以上、更に1.5以上とするのが好ましい。
グリセリンのモルに対する脂肪酸のモルの比[FA/GLY]は、以下の式(2)で表される。
FA/GLY=(遊離脂肪酸のモル+モノアシルグリセロールのモル+ジアシルグリセロールのモル×2+トリアシルグリセロールのモル×3)/(グリセリンのモル+モノアシルグリセロールのモル+ジアシルグリセロールのモル+トリアシルグリセロールのモル)・・・・(2)
[Raw material preparation ratio]
The ratio of moles of fatty acid to moles of glycerin [FA/GLY] when carrying out the esterification reaction is determined by the point at which the composition of the reaction oil is optimal (the residual amount of fatty acids, etc. and glycerin in the reaction oil, and the amount of monoacylglycerol or 5.0 or less, further 4.0 or less, further 3.0 or less, further 2 It is preferable to set it to .5 or less, and from the viewpoint of improving the reaction rate and distillation residue ratio, it is preferable to set it to 0.5 or more, further 1.0 or more, further 1.2 or more, and even 1.5 or more. preferable.
The ratio of moles of fatty acid to moles of glycerin [FA/GLY] is expressed by the following formula (2).
FA/GLY = (moles of free fatty acids + moles of monoacylglycerols + moles of diacylglycerols x 2 + moles of triacylglycerols x 3) / (moles of glycerin + moles of monoacylglycerols + moles of diacylglycerols + moles of triacylglycerols) moles)...(2)

〔エステル化反応〕
本発明では、200~1200Paの圧力下でグリセリンと脂肪酸又はその低級アルキルエステルとをエステル化反応させる工程を含み、油相水分(x)と圧力(y)の関係は、次式(i);
(i) 10000x+100≧y≧2500x-300
(但し、x≦0.6、200≦y≦1200)
(ここで、xは油相水分(質量%)、yは圧力(Pa)を示す。)
を満たすように操作する。エステル化反応は、反応生成水を反応系外に除去しながら行うことにより反応が進行するが、本発明においては反応生成水の除去を減圧により行う。しかし、エステル化触媒として固定化酵素を用いる場合は、反応系から水分を除去し過ぎると固定化酵素中の水分が低下してしまい、酵素活性が低下することにより、結果としてジアシルグリセロール純度の高い油脂を高い反応収率で得ることができなくなってしまうことが判明した。
本発明においては、反応系の油相水分が0.6質量%以下で、圧力1200Pa以下、200Pa以上の真空度において、油相水分に対して圧力を調整しながら酵素エステル化反応を行うことで、エステル化反応を促進しつつ、固定化酵素中の水分量の過剰な低下を抑制し、酵素活性の低下を抑えることにより、ジアシルグリセロール純度の高い油脂が、高い反応収率で得られる。また、酵素活性の低下を抑えることができる結果、固定化酵素の再利用性にも優れる。なお、反応系の油相水分が0.6質量%を超える場合には、圧力を1200Pa以下とする必要はないが、200Pa以上であることが好ましい。
以下、固定化酵素を用いて、200~1200Paの圧力下でグリセリンと脂肪酸又はその低級アルキルエステルとをエステル化反応させる工程を「エステル化工程」ともいう。
本発明において、エステル化工程の間中、油相水分(x)と圧力(y)の関係は、前記式(i)を満たすが、酵素活性の低下を抑えながらエステル化反応を促進し、ジアシルグリセロール純度の高い油脂を高い反応収率で得る点から、次式(ii);
(ii) 10000x-100≧y≧2500x-175
(但し、x≦0.55、200≦y≦1200)
を満たすことが好ましく、更に次式(iii);
(iii) 10000x-300≧y≧2500x-75
(但し、x≦0.51、200≦y≦1200)
を満たすことがより好ましい。
[Esterification reaction]
The present invention includes a step of esterifying glycerin and a fatty acid or a lower alkyl ester thereof under a pressure of 200 to 1200 Pa, and the relationship between oil phase moisture (x) and pressure (y) is expressed by the following formula (i):
(i) 10000x+100≧y≧2500x-300
(However, x≦0.6, 200≦y≦1200)
(Here, x indicates oil phase moisture (mass%) and y indicates pressure (Pa).)
Operate to satisfy. The esterification reaction progresses by removing reaction product water from the reaction system, but in the present invention, reaction product water is removed under reduced pressure. However, when using an immobilized enzyme as an esterification catalyst, if too much water is removed from the reaction system, the water content in the immobilized enzyme will decrease, resulting in a decrease in enzyme activity, resulting in high diacylglycerol purity. It was found that it became impossible to obtain fats and oils with a high reaction yield.
In the present invention, the enzymatic esterification reaction is carried out when the oil phase moisture in the reaction system is 0.6% by mass or less and at a pressure of 1200 Pa or less and a degree of vacuum of 200 Pa or more while adjusting the pressure with respect to the oil phase moisture. By promoting the esterification reaction, suppressing an excessive decrease in the amount of water in the immobilized enzyme, and suppressing a decrease in enzyme activity, fats and oils with high diacylglycerol purity can be obtained at a high reaction yield. Furthermore, as a result of being able to suppress a decrease in enzyme activity, the immobilized enzyme is also excellent in reusability. Note that when the oil phase water content of the reaction system exceeds 0.6% by mass, the pressure does not need to be 1200 Pa or less, but it is preferably 200 Pa or more.
Hereinafter, the step of esterifying glycerin and a fatty acid or a lower alkyl ester thereof under a pressure of 200 to 1200 Pa using an immobilized enzyme will also be referred to as an "esterification step."
In the present invention, the relationship between oil phase moisture (x) and pressure (y) during the esterification process satisfies the above formula (i), but the esterification reaction is promoted while suppressing the decrease in enzyme activity, and the diacyl From the point of view of obtaining fats and oils with high glycerol purity at a high reaction yield, the following formula (ii);
(ii) 10000x-100≧y≧2500x-175
(However, x≦0.55, 200≦y≦1200)
It is preferable to satisfy the following formula (iii);
(iii) 10000x-300≧y≧2500x-75
(However, x≦0.51, 200≦y≦1200)
It is more preferable to satisfy the following.

本発明では、エステル化工程において、油相水分が0.6質量%以下では、油相水分(x)と圧力(y)の関係が式(i)を満たすのであれば、圧力は一定であってもよいが、エステル化反応の促進と、固定化酵素中の水分量の過剰な低下を抑制することによる酵素活性低下抑制をより高度に両立し、さらに転移反応を抑制して、ジアシルグリセロール純度の高い油脂を高い反応収率で得る点から、圧力を変化させながらエステル化反応を行うことが好ましく、圧力は油相水分の低下と共に低下するように変化させることがより好ましい。
圧力は、低真空度から高真空度となるように変化させることが好ましい。具体的には、エステル化反応を、圧力200~1200Paの範囲内で、かつ油相水分を基に前記式(i)の範囲内となる真空度に調整すればよい。また、真空度の操作は、前記式(i)の範囲内となるように連続的に推移させても、段階的に推移させてもよい。ただ、反応初期は水分量が高いため、油相中の水分量が0.6質量%超の場合は1200Pa超の圧力で反応させてもよく、その後反応が進行して油相中の水分量が0.6質量%以下となった時点では1200Pa以下となっているように調整する。例えば、油相中の水分量が0.3質量%となった時点で、真空度を上げて圧力を1200Pa未満450Pa以上の間に調整することが好ましく、1200Pa未満575Pa以上とすることがより好ましく、1200Pa未満675Pa以上とすることが更に好ましい。更に反応が進行して油相中の水分量が0.2質量%以下となった時点で、より真空度を上げて圧力を1200Pa未満200Pa以上の間に調整することが好ましく、1200Pa未満325Pa以上の間に調整することがより好ましく、1200Pa未満425Pa以上の間に調整することが更に好ましい。更に反応が進行して油相中の水分量が0.1質量%以下となった時点で、更に真空度を上げて圧力を1100Pa以下200Pa以上の間に調整することが好ましく、900Pa以下200Pa以上の間に調整することがより好ましく、700Pa以下200Pa以上の間に調整することが更に好ましい。
なお、一回目のエステル化反応で、圧力とその時の反応時間に対する油相水分の変化の関係を把握しておくと、固定化酵素を繰り返して使う場合には、圧力に対する油相水分は反応時間で想定できるため、水分測定を省略することができる。
In the present invention, in the esterification step, when the oil phase moisture is 0.6% by mass or less, the pressure remains constant as long as the relationship between the oil phase moisture (x) and the pressure (y) satisfies formula (i). However, by promoting the esterification reaction and suppressing the decrease in enzyme activity by suppressing an excessive decrease in the amount of water in the immobilized enzyme, and further suppressing the transfer reaction, the purity of diacylglycerol can be improved. In order to obtain fats and oils with a high reaction yield, it is preferable to carry out the esterification reaction while changing the pressure, and it is more preferable to change the pressure so that it decreases as the water content of the oil phase decreases.
The pressure is preferably changed from a low degree of vacuum to a high degree of vacuum. Specifically, the esterification reaction may be carried out under a pressure of 200 to 1200 Pa, and the degree of vacuum may be adjusted to fall within the range of formula (i) based on the water content of the oil phase. Further, the degree of vacuum may be changed continuously so as to fall within the range of the above formula (i), or may be changed stepwise. However, since the water content is high in the early stage of the reaction, if the water content in the oil phase is more than 0.6% by mass, the reaction may be carried out at a pressure of more than 1200 Pa. Afterwards, as the reaction progresses, the water content in the oil phase increases. When the pressure becomes 0.6% by mass or less, the pressure is adjusted to 1200 Pa or less. For example, when the water content in the oil phase reaches 0.3% by mass, it is preferable to increase the degree of vacuum and adjust the pressure to less than 1200 Pa and 450 Pa or more, more preferably less than 1200 Pa and 575 Pa or more. , more preferably less than 1200 Pa and 675 Pa or more. When the reaction further progresses and the water content in the oil phase becomes 0.2% by mass or less, it is preferable to increase the degree of vacuum and adjust the pressure to a range of less than 1200 Pa and 200 Pa or more, and less than 1200 Pa and 325 Pa or more. It is more preferable to adjust the pressure between 1,200 Pa and 425 Pa or more. When the reaction further progresses and the water content in the oil phase becomes 0.1% by mass or less, it is preferable to further increase the degree of vacuum and adjust the pressure between 1100 Pa and 200 Pa or more, and 900 Pa and 200 Pa or more. It is more preferable to adjust the pressure between 700 Pa and 200 Pa or more.
In addition, if you understand the relationship between the change in oil phase moisture with respect to pressure and reaction time in the first esterification reaction, when using the immobilized enzyme repeatedly, the change in oil phase moisture with respect to pressure will change over reaction time. Therefore, moisture measurement can be omitted.

また、本発明のエステル化反応において、ジアシルグリセロール純度の高い油脂を高い反応収率で得る点から、反応生成水を除去する方法として、減圧の他に、例えば、ゼオライト、モレキュラーシーブス等の吸収剤の利用、反応槽中への乾燥した不活性ガスの通気等の方法を併用してもよい。 In addition, in the esterification reaction of the present invention, from the viewpoint of obtaining fats and oils with high diacylglycerol purity at a high reaction yield, in addition to reducing the pressure, as a method for removing the water produced by the reaction, for example, an absorbent such as zeolite or molecular sieves can be used. Methods such as the use of gas, ventilation of dry inert gas into the reaction tank, etc. may be used in combination.

エステル化工程では、固定化酵素の活性を有効に利用できる点から、油相水分xが0.25質量%以上、好ましくは0.3~0.6質量%で、20分以上、好ましくは60分以上エステル化反応させ、次いで、反応生成水を反応系外に除去しながらエステル化反応を行うことで油相水分を低下させて、油相水分xが0.25質量%未満、好ましくは0.2質量%以下で、15分以上、好ましくは60分以上エステル化反応させることが好ましい。 In the esterification step, the oil phase moisture x is 0.25% by mass or more, preferably 0.3 to 0.6% by mass, and the esterification step is carried out for 20 minutes or more, preferably 60 The esterification reaction is carried out for at least 1 minute, and then the esterification reaction is carried out while removing the reaction product water from the reaction system to lower the oil phase moisture, so that the oil phase moisture x is less than 0.25% by mass, preferably 0. It is preferable to carry out the esterification reaction at .2% by mass or less for 15 minutes or more, preferably 60 minutes or more.

エステル化反応に用いる固定化酵素の量は、酵素の活性を考慮して適宜決定することができるが、反応速度を向上する点から、原料(グリセリンと脂肪酸又はその低級アルキルエステル)の合計質量に対して、1~30質量%、更に2~20質量%が好ましい。 The amount of immobilized enzyme used in the esterification reaction can be determined appropriately taking into account the activity of the enzyme, but from the viewpoint of improving the reaction rate, the amount of immobilized enzyme used in the esterification reaction is On the other hand, 1 to 30% by mass, more preferably 2 to 20% by mass.

固定化酵素と原料(グリセリンと脂肪酸又はその低級アルキルエステル)の接触手段としては、浸漬、攪拌、固定化酵素を充填したカラムにポンプ等で通液する方法等が挙げられる。攪拌する場合、生産効率の点、酵素の破砕抑制の点から、10~1000r/minが好ましく、更に50~700r/min、更に100~600r/minが好ましい。 Examples of methods for contacting the immobilized enzyme with the raw material (glycerin and fatty acid or lower alkyl ester thereof) include immersion, stirring, and passing the solution through a column packed with the immobilized enzyme using a pump or the like. When stirring, the stirring speed is preferably 10 to 1000 r/min, more preferably 50 to 700 r/min, and even more preferably 100 to 600 r/min, from the viewpoint of production efficiency and inhibition of enzyme crushing.

エステル化反応の反応温度は、反応性の点から、20~80℃、更に30~70℃が好ましい。また、反応時間は、トリアシルグリセロールへの転移反応抑制の点、工業的な生産性の点から、10時間以内が好ましく、更に0.1~8時間、更に0.5~5時間が好ましい。 The reaction temperature of the esterification reaction is preferably 20 to 80°C, more preferably 30 to 70°C, from the viewpoint of reactivity. In addition, from the viewpoint of suppressing the transfer reaction to triacylglycerol and industrial productivity, the reaction time is preferably within 10 hours, more preferably 0.1 to 8 hours, and even more preferably 0.5 to 5 hours.

反応系における固定化酵素の水分量は、酵素活性の低下を抑えながらエステル化反応を促進し、高純度のジアシルグリセロールを高い収率で得られる点から、油相水分が0.6質量%超のときは、2.5~10質量%であることが好ましく、3.0~8質量%であることがより好ましく、油相水分が0.6質量%以下のときは、1.5~7質量%であることが好ましく、2.0~6質量%であることがより好ましい。また、エステル化反応終了時の固定化酵素の水分量は、固定化酵素を再利用した際に高純度のジアシルグリセロールの反応収率を高くできる点から、1.0~3.0質量%、更に1.2~2.5質量%が好ましい。 The water content of the immobilized enzyme in the reaction system is determined by setting the water content of the oil phase to more than 0.6% by mass in order to promote the esterification reaction while suppressing a decrease in enzyme activity and obtain a high yield of high-purity diacylglycerol. When the water content is preferably 2.5 to 10% by mass, more preferably 3.0 to 8% by mass, and when the oil phase water content is 0.6% by mass or less, it is 1.5 to 7% by mass. It is preferably 2.0 to 6% by mass, more preferably 2.0 to 6% by mass. In addition, the water content of the immobilized enzyme at the end of the esterification reaction is 1.0 to 3.0% by mass, since the reaction yield of high-purity diacylglycerol can be increased when the immobilized enzyme is reused. Further, 1.2 to 2.5% by mass is preferable.

本発明では、エステル化工程に加えて、設備負荷や工業的な効率性を考慮して、1200Pa超の圧力下で、グリセリンと脂肪酸又はその低級アルキルエステルとをエステル化反応させる工程を含んでいてもよい。 In addition to the esterification step, the present invention includes a step of esterifying glycerin and a fatty acid or a lower alkyl ester thereof under a pressure of more than 1200 Pa in consideration of equipment load and industrial efficiency. Good too.

かくして、ジアシルグリセロール純度の高い油脂が高い反応収率で得られる。また、エステル化反応に使用した固定化酵素は、高い酵素活性が維持されているため、以降のエステル化反応に再使用することができる。固定化酵素を、以降のエステル化反応に再使用する回数は、酵素活性によって相違するものの、1回以上、更に2回以上、更に5回以上、更に10回以上であるのが好ましい。
本発明のジアシルグリセロール高含有油脂において、ジアシルグリセロールの純度は80質量%以上であることが好ましく、更に85~99.5%、更に90~99%、更に90~98%であることが、生理効果、工業的生産性の点から好ましい。ここで、ジアシルグリセロール純度は、[ジアシルグリセロール/(ジアシルグリセロール+トリアシルグリセロール)×100]である。
In this way, fats and oils with high diacylglycerol purity can be obtained with a high reaction yield. In addition, the immobilized enzyme used in the esterification reaction maintains high enzyme activity, so it can be reused in subsequent esterification reactions. Although the number of times the immobilized enzyme is reused in the subsequent esterification reaction varies depending on the enzyme activity, it is preferably one or more times, further two or more times, further five or more times, and further still ten times or more.
In the diacylglycerol-rich oil and fat of the present invention, the purity of diacylglycerol is preferably 80% by mass or more, more preferably 85 to 99.5%, further 90 to 99%, and even 90 to 98%. Preferable from the viewpoint of effectiveness and industrial productivity. Here, the diacylglycerol purity is [diacylglycerol/(diacylglycerol+triacylglycerol)×100].

また、本発明のジアシルグリセロール高含有油脂において、ジアシルグリセロール+トリアシルグリセロール含有量は、70質量%以上であることが好ましく、より好ましくは70~99質量%、更に75~98質量%、更に77~97質量%であることが、生理効果、工業的生産性の点から好ましい。 Furthermore, in the diacylglycerol-rich oil and fat of the present invention, the content of diacylglycerol + triacylglycerol is preferably 70% by mass or more, more preferably 70 to 99% by mass, further preferably 75 to 98% by mass, and even more preferably 77% by mass. The content is preferably 97% by mass from the viewpoint of physiological effects and industrial productivity.

エステル化反応により得られたジアシルグリセロール高含有油脂は、必要に応じて精製工程を行って、一般の食用油脂と同様に使用することができる。 The diacylglycerol-rich fat and oil obtained by the esterification reaction can be used in the same manner as general edible fats and oils by performing a purification step if necessary.

以下の実施例において、「%」は「質量%」を意味する。 In the following examples, "%" means "% by mass".

〔サンプリング方法〕
フラスコ内の真空ラインを遮断し、窒素により常圧に戻してサンプリングした。その後、遠心分離が可能な試験管に反応生成物のサンプルを約3g採取し、3000r/minで5分間遠心分離を行った。沈降した触媒を除去した油相(上層)を分析した。
〔分析方法〕
(i)油相水分の測定
前記〔サンプリング方法〕にて取得した油相(上層)の水分をカールフィッシャーAQ-300(平沼産業製)で測定した。
[Sampling method]
The vacuum line in the flask was shut off, the pressure was returned to normal pressure with nitrogen, and sampling was performed. Thereafter, about 3 g of a sample of the reaction product was collected in a test tube capable of centrifugation, and centrifuged at 3000 r/min for 5 minutes. The oil phase (upper layer) from which the precipitated catalyst was removed was analyzed.
[Analysis method]
(i) Measurement of oil phase water content The water content of the oil phase (upper layer) obtained in the above [sampling method] was measured using Karl Fischer AQ-300 (manufactured by Hiranuma Sangyo).

(ii)酸価の測定
前記〔サンプリング方法〕にて取得した油相(上層)を日本油化学協会編「基準油脂分析試験法」2003年版中の「酸価(2.3.1-1996)」に従って分析した。
以下の式(1)で、油相(上層)の遊離脂肪酸濃度を求めた。アマニ油の脂肪酸平均分子量は280とした。
遊離脂肪酸濃度(%)=油相(上層)の酸価(AV)×(アマニ油の脂肪酸平均分子量/56.1/10)・・・・(1)
(ii) Measurement of acid value The oil phase (upper layer) obtained by the above [sampling method] was measured according to the "Acid value (2.3.1-1996)" in the "Standard oil and fat analysis test method" 2003 edition edited by the Japan Oil Chemists' Association. ”.
The free fatty acid concentration of the oil phase (upper layer) was determined using the following equation (1). The fatty acid average molecular weight of linseed oil was 280.
Free fatty acid concentration (%) = acid value (AV) of oil phase (upper layer) x (average fatty acid molecular weight of linseed oil/56.1/10) (1)

(iii)グリセリド組成の測定
ガラス製サンプル瓶に、前記〔サンプリング方法〕にて取得した油相(上層)を約10mgとトリメチルシリル化剤(「シリル化剤TH」、関東化学製)0.5mLを加え、密栓し、70℃で15分間加熱した。これに水1.5mLとヘキサン1.5mLを加え、振とうした。静置後、油相(上層)をガスクロマトグラフィー(GLC)に供して、グリセリド組成の分析を行った。以下の式(3)で、モノアシルグリセロール+ジアシルグリセロール+トリアシルグリセロールの合計を求め、GC分析により各々の濃度を求めた。
モノアシルグリセロール+ジアシルグリセロール+トリアシルグリセロール=100-遊離脂肪酸濃度(%)・・・・(3)
(iii) Measurement of glyceride composition In a glass sample bottle, add approximately 10 mg of the oil phase (upper layer) obtained in the above [sampling method] and 0.5 mL of a trimethylsilylating agent ("Silylating agent TH", manufactured by Kanto Kagaku). The mixture was then sealed and heated at 70°C for 15 minutes. 1.5 mL of water and 1.5 mL of hexane were added to this, and the mixture was shaken. After standing still, the oil phase (upper layer) was subjected to gas chromatography (GLC) to analyze the glyceride composition. The sum of monoacylglycerol + diacylglycerol + triacylglycerol was determined using the following formula (3), and the respective concentrations were determined by GC analysis.
Monoacylglycerol + diacylglycerol + triacylglycerol = 100 - free fatty acid concentration (%) (3)

(iv)反応収率及びジアシルグリセロール(DAG)純度の算出
反応5時間後のグリセリド組成から、以下の式(4)、(5)で、反応収率とDAG純度を求めた。
反応収率(%)=ジアシルグリセロール+トリアシルグリセロール・・・・(4)
DAG純度(%)=ジアシルグリセロール/ジアシルグリセロール収率×100・・・・(5)
(iv) Calculation of reaction yield and diacylglycerol (DAG) purity From the glyceride composition after 5 hours of reaction, the reaction yield and DAG purity were calculated using the following formulas (4) and (5).
Reaction yield (%) = diacylglycerol + triacylglycerol (4)
DAG purity (%) = diacylglycerol/diacylglycerol yield x 100 (5)

(v)固定化酵素の乾燥質量比率の測定
油分及び水分の付着した固定化酵素a質量部に対し10質量倍のヘキサン及びアセトンで交互に各3回ずつ洗浄後、70℃で15時間放置することにより脱溶剤し、固定化酵素のみの質量を秤量した(b質量部)。以下の式(6)で、固定化酵素の乾燥質量比率を求めた。
固定化酵素の乾燥質量比率=b/a(-)・・・・(6)
(a:油分及び水分の付着した固定化酵素質量、b:固定化酵素質量)
(v) Measurement of dry mass ratio of immobilized enzyme After washing 3 times each with hexane and acetone in an amount of 10 times the mass of the immobilized enzyme a mass part with oil and moisture attached, leave it at 70°C for 15 hours. By doing so, the solvent was removed, and the mass of only the immobilized enzyme was weighed (b parts by mass). The dry mass ratio of the immobilized enzyme was determined using the following equation (6).
Dry mass ratio of immobilized enzyme = b/a (-) (6)
(a: mass of immobilized enzyme with oil and moisture attached, b: mass of immobilized enzyme)

(vi)固定化酵素の水分の測定
油分及び水分の付着した固定化酵素の水分を、カールフィッシャーAQ-300(平沼産業製)で測定した。以下の式(7)で、固定化酵素の水分を求めた。
固定化酵素の水分=(a-b×(1-c))/c(%)・・・・(7)
(a:油分及び水分の付着した固定化酵素の水分(%)、b:油相(上層)の水分(%)、c:固定化酵素の乾燥質量比率(-))
(vi) Measurement of water content of immobilized enzyme The water content of the immobilized enzyme with oil and water attached was measured using Karl Fischer AQ-300 (manufactured by Hiranuma Sangyo). The water content of the immobilized enzyme was determined using the following equation (7).
Moisture of immobilized enzyme = (ab-b x (1-c))/c (%) (7)
(a: Water content (%) of the immobilized enzyme with oil and water attached, b: Water content (%) of the oil phase (upper layer), c: Dry mass ratio of the immobilized enzyme (-))

〔エステル化反応に使用する原料脂肪酸〕
40Lジャケット加温式攪拌槽に、脱色アマニ油20kg、蒸留水12kgを仕込み、温度40℃、100r/minで攪拌した。その後、リパーゼAY「アマノ」30SD(天野エンザイム製)を200g作用させて、加水分解反応を開始した。6時間後、攪拌を停止して静置分離を行い、水相を抜き出した。その後、100r/minで攪拌しながら、蒸留水12kgを仕込み、リパーゼAY「アマノ」30SD(天野エンザイム製)を200g作用させて、再度、加水分解反応を開始した。18時間後、全量を遠心分離して、油相を分離した。油相に対して蒸留水を60wt%加えて混合、遠心分離する操作を2回繰り返し、さらに70℃で減圧脱水して加水分解油を得た。これをアマニ脂肪酸として以下のエステル化反応に用いた。表1にアマニ脂肪酸のグリセリド組成を示した。
[Raw fatty acid used in esterification reaction]
20 kg of decolorized linseed oil and 12 kg of distilled water were placed in a 40 L jacket heated stirring tank, and the mixture was stirred at a temperature of 40° C. and 100 r/min. Thereafter, 200 g of lipase AY "Amano" 30SD (manufactured by Amano Enzyme) was applied to initiate a hydrolysis reaction. After 6 hours, stirring was stopped, static separation was performed, and the aqueous phase was extracted. Thereafter, while stirring at 100 r/min, 12 kg of distilled water was charged, and 200 g of lipase AY "Amano" 30SD (manufactured by Amano Enzyme) was applied to start the hydrolysis reaction again. After 18 hours, the entire volume was centrifuged to separate the oil phase. The operation of adding 60 wt % of distilled water to the oil phase, mixing and centrifuging was repeated twice, followed by dehydration under reduced pressure at 70° C. to obtain a hydrolyzed oil. This was used as a linseed fatty acid in the following esterification reaction. Table 1 shows the glyceride composition of flaxseed fatty acids.

Figure 0007365202000001
Figure 0007365202000001

〔エステル化反応〕
実施例1
アマニ脂肪酸及びグリセリンの合計を500g、脂肪酸/グリセリンのモル比2.0、Lipozyme RM IM(ノボザイムズ ジャパン(株)、水分含有量2.0%)を乾燥質量基準25gの仕込み量とした。三日月羽根をセットした1000mLの4ツ口フラスコに、Lipozyme RM IMとアマニ脂肪酸を入れ、50℃、400r/minで攪拌しながら、グリセリンを添加して反応を開始した。直ちに、真空ポンプで減圧して1800Paに調整し、30分後、60分後に水分を測定し、分析値を基に、圧力を1200Paに調整した。その後は、30分おきに水分を測定して、水分値を基にして圧力を調整した。具体的には、反応開始から120分後に圧力を800Paに調整、180分後に圧力を400Paに調整、240分後に圧力を240Paに調整した。300分後に反応を終了し、グリセリド組成、酸価及び固定化酵素の水分も測定した。
[Esterification reaction]
Example 1
The total amount of flaxseed fatty acids and glycerin was 500 g, the molar ratio of fatty acid/glycerin was 2.0, and the amount of Lipozyme RM IM (manufactured by Novozymes Japan Co., Ltd., water content 2.0%) was 25 g on a dry mass basis. Lipozyme RM IM and linseed fatty acid were placed in a 1000 mL four-necked flask equipped with a crescent blade, and while stirring at 50° C. and 400 r/min, glycerin was added to start the reaction. Immediately, the pressure was reduced to 1,800 Pa using a vacuum pump, and the water content was measured 30 and 60 minutes later, and the pressure was adjusted to 1,200 Pa based on the analytical values. Thereafter, the moisture content was measured every 30 minutes, and the pressure was adjusted based on the moisture content. Specifically, the pressure was adjusted to 800 Pa 120 minutes after the start of the reaction, the pressure was adjusted to 400 Pa after 180 minutes, and the pressure was adjusted to 240 Pa 240 minutes after the start of the reaction. The reaction was terminated after 300 minutes, and the glyceride composition, acid value, and water content of the immobilized enzyme were also measured.

実施例2
表1に示したアマニ脂肪酸及びグリセリンの合計を3000g、脂肪酸/グリセリンのモル比2.0、Lipozyme RM IMを乾燥質量基準150gの仕込み量とした。三日月羽根をセットした5000mLの4ツ口フラスコに、Lipozyme RM IMとアマニ脂肪酸を入れ、50℃、400r/minで攪拌しながら、グリセリンを添加して反応を開始した。その後は、実施例1と同様の圧力調整条件とし、分析を行った。
Example 2
The total amount of flaxseed fatty acids and glycerin shown in Table 1 was 3000 g, the molar ratio of fatty acid/glycerin was 2.0, and the amount of Lipozyme RM IM was 150 g based on dry mass. Lipozyme RM IM and linseed fatty acid were placed in a 5000 mL four-necked flask equipped with a crescent blade, and while stirring at 50° C. and 400 r/min, glycerin was added to start the reaction. Thereafter, the analysis was conducted under the same pressure adjustment conditions as in Example 1.

実施例3
表1に示したアマニ脂肪酸及びグリセリンの合計を500g、脂肪酸/グリセリンのモル比2.0、Lipozyme RM IMを乾燥質量基準25gの仕込み量とした。三日月羽根をセットした1000mLの4ツ口フラスコに、Lipozyme RM IMとアマニ脂肪酸を入れ、50℃、400r/minで攪拌しながら、グリセリンを添加して反応を開始した。直ちに、真空ポンプで減圧して800Paに調整した。圧力を一定とし、30分おきに水分を測定した。300分後に反応を終了し、グリセリド組成、酸価及び固定化酵素の水分も測定した。
Example 3
The total amount of flaxseed fatty acids and glycerin shown in Table 1 was 500 g, the molar ratio of fatty acid/glycerin was 2.0, and the amount of Lipozyme RM IM was 25 g based on dry mass. Lipozyme RM IM and linseed fatty acid were placed in a 1000 mL four-necked flask equipped with a crescent blade, and while stirring at 50° C. and 400 r/min, glycerin was added to start the reaction. Immediately, the pressure was reduced to 800 Pa using a vacuum pump. The pressure was kept constant and moisture was measured every 30 minutes. The reaction was terminated after 300 minutes, and the glyceride composition, acid value, and water content of the immobilized enzyme were also measured.

実施例4
実施例1で使用後のLipozyme RM IMの乾燥質量比率を測定した。乾燥質量比は0.466であった。三日月羽根をセットした1000mLの4ツ口フラスコに、反応油が付着したLipozyme RM IMを43.7g(Lipozyme RM IM20.4g、反応油23.3g)仕込んだ。次に、表1に示したアマニ脂肪酸200gで3回洗浄して、Lipozyme RM IMに付着している油分を、アマニ脂肪酸に置換した。
表1に示したアマニ脂肪酸及びグリセリンの合計を407.4g、脂肪酸/グリセリンのモル比2.0の仕込み量とした。アマニ脂肪酸はLipozyme RM IMに付着しているアマニ脂肪酸と新たに仕込んだアマニ脂肪酸の合計である。また、脂肪酸/グリセリンの合計に対するLipozyme RM IMの質量比率は5%で実施例1と同じである。
1000mLの4ツ口フラスコに、Lipozyme RM IMとアマニ脂肪酸を入れ、50℃、400r/minで攪拌しながら、グリセリンを添加して反応を開始した。その後は、実施例1と同様の圧力調整条件とし、分析を行った。
Example 4
The dry mass ratio of Lipozyme RM IM after use in Example 1 was measured. The dry mass ratio was 0.466. 43.7 g of Lipozyme RM IM with reaction oil attached (20.4 g of Lipozyme RM IM, 23.3 g of reaction oil) was charged into a 1000 mL four-necked flask equipped with a crescent blade. Next, it was washed three times with 200 g of linseed fatty acids shown in Table 1 to replace the oil adhering to Lipozyme RM IM with linseed fatty acids.
The total amount of flaxseed fatty acids and glycerin shown in Table 1 was 407.4 g, and the molar ratio of fatty acid/glycerin was 2.0. The flaxseed fatty acid is the total of the flaxseed fatty acid attached to Lipozyme RM IM and the newly charged flaxseed fatty acid. Furthermore, the mass ratio of Lipozyme RM IM to the total fatty acid/glycerin was 5%, which is the same as in Example 1.
Lipozyme RM IM and linseed fatty acid were placed in a 1000 mL four-necked flask, and while stirring at 50° C. and 400 r/min, glycerin was added to start the reaction. Thereafter, the analysis was conducted under the same pressure adjustment conditions as in Example 1.

比較例1
アマニ脂肪酸及びグリセリンの合計を50g、脂肪酸/グリセリンのモル比2.0、Lipozyme RM IMを乾燥質量基準2.5gの仕込み量とした。三日月羽根をセットした200mLの4ツ口フラスコに、Lipozyme RM IMとアマニ脂肪酸を入れ、50℃、400r/minで攪拌しながら、グリセリンを添加して反応を開始した。直ちに、真空ポンプで減圧して110Paに調整した。圧力を一定とし、30分おきに水分を測定した。300分後に反応を終了し、グリセリド組成、酸価及び固定化酵素の水分も測定した。
Comparative example 1
The total amount of flaxseed fatty acids and glycerin was 50 g, the molar ratio of fatty acid/glycerin was 2.0, and the amount of Lipozyme RM IM was 2.5 g based on dry mass. Lipozyme RM IM and linseed fatty acid were placed in a 200 mL four-necked flask equipped with a crescent blade, and while stirring at 50° C. and 400 r/min, glycerin was added to start the reaction. Immediately, the pressure was reduced to 110 Pa using a vacuum pump. The pressure was kept constant and moisture was measured every 30 minutes. The reaction was terminated after 300 minutes, and the glyceride composition, acid value, and water content of the immobilized enzyme were also measured.

比較例2
アマニ脂肪酸及びグリセリンの合計を500g、脂肪酸/グリセリンのモル比2.0、Lipozyme RM IMを乾燥質量基準25gの仕込み量とした。三日月羽根をセットした1000mLの4ツ口フラスコに、Lipozyme RM IMとアマニ脂肪酸を入れ、50℃、400r/minで攪拌しながら、グリセリンを添加して反応を開始した。直ちに、真空ポンプで減圧して1200Paに調整した。圧力を一定とし、30分おきに水分を測定した。その後は、比較例1と同様の分析を行った。
Comparative example 2
The total amount of flaxseed fatty acids and glycerin was 500 g, the molar ratio of fatty acid/glycerin was 2.0, and the amount of Lipozyme RM IM was 25 g on a dry mass basis. Lipozyme RM IM and linseed fatty acid were placed in a 1000 mL four-necked flask equipped with a crescent blade, and while stirring at 50° C. and 400 r/min, glycerin was added to start the reaction. Immediately, the pressure was reduced to 1200 Pa using a vacuum pump. The pressure was kept constant and moisture was measured every 30 minutes. After that, the same analysis as in Comparative Example 1 was performed.

比較例3
アマニ脂肪酸及びグリセリンの合計を500g、脂肪酸/グリセリンのモル比2.0、Lipozyme RM IMを乾燥質量基準25gの仕込み量とした。三日月羽根をセットした1000mLの4ツ口フラスコに、Lipozyme RM IMとアマニ脂肪酸を入れ、50℃、400r/minで攪拌しながら、グリセリンを添加して反応を開始した。直ちに、真空ポンプで減圧して1500Paに調整した。圧力を一定とし、30分おきに水分を測定した。その後は、比較例1と同様の分析を行った。
Comparative example 3
The total amount of flaxseed fatty acids and glycerin was 500 g, the molar ratio of fatty acid/glycerin was 2.0, and the amount of Lipozyme RM IM was 25 g on a dry mass basis. Lipozyme RM IM and linseed fatty acid were placed in a 1000 mL four-necked flask equipped with a crescent blade, and while stirring at 50° C. and 400 r/min, glycerin was added to start the reaction. Immediately, the pressure was reduced to 1500 Pa using a vacuum pump. The pressure was kept constant and moisture was measured every 30 minutes. After that, the same analysis as in Comparative Example 1 was performed.

比較例4
比較例1で使用後のLipozyme RM IMの乾燥質量比率を測定した。乾燥質量比は0.480であった。三日月羽根をセットした200mLの4ツ口フラスコに、反応油が付着したLipozyme RM IMを2g(Lipozyme RM IM0.96g、反応油1.04g)仕込んだ。次に、表1に示したアマニ脂肪酸50gで3回洗浄して、Lipozyme RM IMに付着している油分を、アマニ脂肪酸に置換した。
表1に示したアマニ脂肪酸及びグリセリンの合計を19.2g、脂肪酸/グリセリンのモル比2.0の仕込み量とした。アマニ脂肪酸はLipozyme RM IMに付着しているアマニ脂肪酸と新たに仕込んだアマニ脂肪酸の合計である。また、脂肪酸/グリセリンの合計に対するLipozyme RM IM比率は5%で実施例1と同じである。
200mLの4ツ口フラスコに、Lipozyme RM IMとアマニ脂肪酸を入れ、50℃、400r/minで攪拌しながら、グリセリンを添加して反応を開始した。直ちに、真空ポンプで減圧して240Paに調整した。圧力を一定とし、30分おきに水分を測定した。その後は、比較例1と同様の分析を行った。
Comparative example 4
The dry mass ratio of Lipozyme RM IM after use in Comparative Example 1 was measured. The dry mass ratio was 0.480. A 200 mL four-necked flask equipped with a crescent blade was charged with 2 g of Lipozyme RM IM to which reaction oil was attached (0.96 g of Lipozyme RM IM, 1.04 g of reaction oil). Next, it was washed three times with 50 g of linseed fatty acids shown in Table 1 to replace the oil adhering to Lipozyme RM IM with linseed fatty acids.
The total amount of linseed fatty acids and glycerin shown in Table 1 was 19.2 g, and the molar ratio of fatty acid/glycerin was 2.0. The flaxseed fatty acid is the total of the flaxseed fatty acid attached to Lipozyme RM IM and the newly charged flaxseed fatty acid. Furthermore, the ratio of Lipozyme RM IM to the total fatty acid/glycerin was 5%, which is the same as in Example 1.
Lipozyme RM IM and linseed fatty acid were placed in a 200 mL four-necked flask, and while stirring at 50° C. and 400 r/min, glycerin was added to start the reaction. Immediately, the pressure was reduced to 240 Pa using a vacuum pump. The pressure was kept constant and moisture was measured every 30 minutes. After that, the same analysis as in Comparative Example 1 was performed.

実施例及び比較例の反応条件及び反応生成物、固定化酵素の水分の分析値を表2に示した。 Table 2 shows the reaction conditions, reaction products, and water content analysis values of the immobilized enzyme in Examples and Comparative Examples.

Figure 0007365202000002
Figure 0007365202000002

また、反応経時で測定した油相(上層)の水分値と圧力条件を表3に示した。 Further, Table 3 shows the moisture value and pressure conditions of the oil phase (upper layer) measured over time of the reaction.

Figure 0007365202000003
Figure 0007365202000003

表2、表3より明らかなように、固定化リパーゼを用いたエステル化反応において、圧力が1200Pa以下、200Pa以上の真空度下、油相水分と圧力が式(i)を満たすようにエステル化反応を進めることにより、ジアシルグリセロール純度の高い反応油が収率よく得られることが確認された(実施例1~4)。実施例1~3では、油相水分が0.25~0.7%で20分以上、油相水分が0.25%未満で20分以上保持され、エステル化反応終了時点の固定化酵素の水分量は3.0%以下となった。
また、実施例4に示すように、固定化リパーゼを繰り返し使用しても、得られた反応油のジアシルグリセロール純度及び反応収率は高かった。反応終了時点の固定化酵素の水分量は3.0%以下であった。
これに対して、圧力が200Pa未満の真空度においてエステル化反応させた比較例1では、得られた反応油のジアシルグリセロール純度及び反応収率を高くできたが、固定化リパーゼを繰り返し使用すると、比較例4に示したように、反応収率が大きく低下することが明らかとなった。比較例4の反応終了時点の固定化酵素の水分量は3.4%であった。
また、比較例2及び3にように、圧力が1200Paを超える真空度においては、得られた反応油は、ジアシルグリセロール純度は高くなるものの反応収率が低いことが明らかとなった。比較例2及び3では、油相水分が0.25%未満で20分以上保持されず、反応終了時点の固定化酵素の水分量は3.0%以上となった。
As is clear from Tables 2 and 3, in the esterification reaction using immobilized lipase, the esterification is carried out under a vacuum of 1200 Pa or less and 200 Pa or more so that the oil phase moisture and pressure satisfy formula (i). It was confirmed that by proceeding with the reaction, a reaction oil with high diacylglycerol purity could be obtained in good yield (Examples 1 to 4). In Examples 1 to 3, the oil phase moisture was maintained at 0.25 to 0.7% for 20 minutes or more, and the oil phase moisture was maintained at less than 0.25% for 20 minutes or more, and the immobilized enzyme at the end of the esterification reaction was The moisture content was 3.0% or less.
Furthermore, as shown in Example 4, even when the immobilized lipase was used repeatedly, the diacylglycerol purity and reaction yield of the resulting reaction oil were high. The water content of the immobilized enzyme at the end of the reaction was 3.0% or less.
On the other hand, in Comparative Example 1, in which the esterification reaction was carried out in a vacuum at a pressure of less than 200 Pa, the diacylglycerol purity and reaction yield of the obtained reaction oil were able to be increased, but when the immobilized lipase was repeatedly used, As shown in Comparative Example 4, it became clear that the reaction yield was significantly reduced. The water content of the immobilized enzyme at the end of the reaction in Comparative Example 4 was 3.4%.
Further, as in Comparative Examples 2 and 3, it was revealed that when the pressure exceeds 1200 Pa in a vacuum degree, the resulting reaction oil had a high diacylglycerol purity but a low reaction yield. In Comparative Examples 2 and 3, the water content of the oil phase was less than 0.25% and was not maintained for more than 20 minutes, and the water content of the immobilized enzyme at the end of the reaction was 3.0% or more.

Claims (8)

固定化酵素を用いて、200~1200Paの圧力下でグリセリンと脂肪酸又はその低級アルキルエステルとをエステル化反応させる工程を含み、当該工程の間中、油相水分(x)と圧力(y)の関係が、次式(i);
(i) 10000x+100≧y≧2500x-300
(但し、x≦0.6、200≦y≦1200)
(ここで、xは油相水分(質量%)、yは圧力(Pa)を示す。)
を満たし、かつ圧力は油相水分の低下と共に低下するように変化させる、ジアシルグリセロール高含有油脂の製造方法。
It includes a step of esterifying glycerin and a fatty acid or its lower alkyl ester under a pressure of 200 to 1200 Pa using an immobilized enzyme, and throughout the step, the oil phase moisture (x) and pressure (y) are The relationship is the following formula (i);
(i) 10000x+100≧y≧2500x-300
(However, x≦0.6, 200≦y≦1200)
(Here, x indicates oil phase moisture (mass%) and y indicates pressure (Pa).)
A method for producing a diacylglycerol-rich fat or oil , which satisfies the following and changes the pressure so that it decreases as the water content of the oil phase decreases .
前記工程において、油相水分xが0.25質量%以上で20分以上エステル化反応させ、次いで、反応生成水を反応系外に除去しながらエステル化反応を行うことで油相水分を低下させて、油相水分xが0.25質量%未満で15分以上エステル化反応させる請求項1記載のジアシルグリセロール高含有油脂の製造方法。 In the step, the esterification reaction is carried out for 20 minutes or more at an oil phase moisture x of 0.25% by mass or more, and then the esterification reaction is carried out while removing the reaction product water from the reaction system to lower the oil phase moisture. The method for producing a diacylglycerol-rich fat or oil according to claim 1, wherein the esterification reaction is carried out for 15 minutes or more at an oil phase water content x of less than 0.25% by mass. 油相水分が0.6質量%超のとき1200Pa超の圧力でエステル化反応させて、油相水分が0.6質量%以下となったときに圧力を1200Pa以下に調整することをさらに含む、請求項1又は2記載のジアシルグリセロール高含有油脂の製造方法。 Further comprising carrying out an esterification reaction at a pressure of more than 1200 Pa when the oil phase moisture is more than 0.6% by mass, and adjusting the pressure to 1200 Pa or less when the oil phase moisture becomes 0.6% by mass or less. The method for producing a diacylglycerol-rich fat or oil according to claim 1 or 2. 前記工程において、油相水分が0.3質量%以下となったときに圧力を1200Pa未満450Pa以上に調整してエステル化反応を行う請求項1~3のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。High diacylglycerol content according to any one of claims 1 to 3, wherein in the step, the esterification reaction is carried out by adjusting the pressure to less than 1200 Pa and 450 Pa or more when the water content of the oil phase becomes 0.3% by mass or less. Method for producing fats and oils. 前記工程において、油相水分が0.2質量%以下となっときに圧力を1200Pa未満200Pa以上に調整してエステル化反応を行う請求項1~4のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。The diacylglycerol-rich fat or oil according to any one of claims 1 to 4, wherein in the step, the esterification reaction is carried out by adjusting the pressure to less than 1200 Pa and 200 Pa or more when the water content of the oil phase becomes 0.2% by mass or less. manufacturing method. 前記工程において、油相水分が0.1質量%以下となったときに圧力を1100Pa以下200Pa以上に調整してエステル化反応を行う請求項1~5のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。High diacylglycerol content according to any one of claims 1 to 5, wherein in the step, the esterification reaction is carried out by adjusting the pressure to 1100 Pa or less and 200 Pa or more when the water content of the oil phase becomes 0.1% by mass or less. Method for producing fats and oils. 固定化酵素が固定化1,3位選択リパーゼである請求項1~のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。 The method for producing a diacylglycerol-rich fat or oil according to any one of claims 1 to 6 , wherein the immobilized enzyme is an immobilized 1,3-position selective lipase. ジアシルグリセロール高含有油脂のジアシルグリセロールの純度が80質量%以上である請求項1~のいずれか1項記載のジアシルグリセロール高含有油脂の製造方法。 The method for producing a diacylglycerol-rich fat or oil according to any one of claims 1 to 7 , wherein the diacylglycerol purity of the diacylglycerol-rich fat or oil is 80% by mass or more.
JP2019205549A 2019-11-13 2019-11-13 Method for producing fats and oils with high diacylglycerol content Active JP7365202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019205549A JP7365202B2 (en) 2019-11-13 2019-11-13 Method for producing fats and oils with high diacylglycerol content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019205549A JP7365202B2 (en) 2019-11-13 2019-11-13 Method for producing fats and oils with high diacylglycerol content

Publications (2)

Publication Number Publication Date
JP2021073951A JP2021073951A (en) 2021-05-20
JP7365202B2 true JP7365202B2 (en) 2023-10-19

Family

ID=75897074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019205549A Active JP7365202B2 (en) 2019-11-13 2019-11-13 Method for producing fats and oils with high diacylglycerol content

Country Status (1)

Country Link
JP (1) JP7365202B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684230A (en) * 2021-08-16 2021-11-23 江南大学 Method for preparing structured fat by enzyme method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034622A (en) 2010-08-06 2012-02-23 Kao Corp Method for producing fat and oil with high diacylglycerol content

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034622A (en) 2010-08-06 2012-02-23 Kao Corp Method for producing fat and oil with high diacylglycerol content

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAOCS,Vol.80, No.12 ,2003年,pp.1201-1207

Also Published As

Publication number Publication date
JP2021073951A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP5586914B2 (en) Process for producing fats and oils with high diacylglycerol content
EP2175030B1 (en) Method for producing diacylglycerol-rich fat and/or oil
EP0882797B1 (en) Preparation of symmetrical triglycerides aba
JP2005287510A (en) Method for enzymatically synthesizing triglyceride of unsaturated fatty acid
Wongsakul et al. Synthesis of 2‐monoglycerides by alcoholysis of palm oil and tuna oil using immobilized lipases
JP7365202B2 (en) Method for producing fats and oils with high diacylglycerol content
US8415124B2 (en) Method for producing an immobilized enzyme for hydrolyzing fats and oils
Long et al. Substrate preference of mycelium-bound lipase from a strain of Aspergillus flavus Link
JP5242230B2 (en) Method for producing immobilized enzyme
JP6715586B2 (en) Method for producing highly unsaturated fatty acid
WO2003060139A1 (en) Process for the production of diglycerides
JP6645804B2 (en) Manufacturing method of structural fats and oils
JP5586855B2 (en) Method for producing monoacylglycerol-rich oil and fat
JP3932788B2 (en) Method for transesterification of fats and oils
JP5782130B2 (en) Process for producing diacylglycerol-enriched oil or fat
JP2012034622A (en) Method for producing fat and oil with high diacylglycerol content
JP6990076B2 (en) Method for producing fatty acids
JP6859212B2 (en) Method for producing fats and oils containing high diacylglycerol
JP2019094445A (en) Method for producing linseed oil
JP6990019B2 (en) Method for producing fatty acids
JP7092460B2 (en) Manufacturing method of structural fats and oils
JP5527983B2 (en) Process for producing docosahexaenoic acid-rich oil
US20040166571A1 (en) Method of transesterification of fats or analogue
JPH04258291A (en) Immobilized enzyme and its production
JP2006158389A (en) Method for producing immobilized enzyme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231006

R151 Written notification of patent or utility model registration

Ref document number: 7365202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151