JP6715586B2 - Method for producing highly unsaturated fatty acid - Google Patents

Method for producing highly unsaturated fatty acid Download PDF

Info

Publication number
JP6715586B2
JP6715586B2 JP2015201819A JP2015201819A JP6715586B2 JP 6715586 B2 JP6715586 B2 JP 6715586B2 JP 2015201819 A JP2015201819 A JP 2015201819A JP 2015201819 A JP2015201819 A JP 2015201819A JP 6715586 B2 JP6715586 B2 JP 6715586B2
Authority
JP
Japan
Prior art keywords
fatty acid
lipase
oil
mass
highly unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015201819A
Other languages
Japanese (ja)
Other versions
JP2017073980A (en
Inventor
勇樹 松井
勇樹 松井
加瀬 実
実 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2015201819A priority Critical patent/JP6715586B2/en
Publication of JP2017073980A publication Critical patent/JP2017073980A/en
Application granted granted Critical
Publication of JP6715586B2 publication Critical patent/JP6715586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高度不飽和脂肪酸を製造する方法に関する。 The present invention relates to a method for producing highly unsaturated fatty acids.

近年の健康指向の高まりを受けて、油脂中の脂肪酸の機能について多数の研究がなされている。なかでも、魚油の構成成分であるエイコサペンタエン酸(C20:5、EPA)やドコサヘキサエン酸(C22:6、DHA)等の高度不飽和脂肪酸(PUFA)の生理活性が注目され、高度不飽和脂肪酸は、医薬品や健康食品の原料等として活発に利用されている。 With the recent increase in health orientation, many studies have been conducted on the function of fatty acids in fats and oils. Above all, the physiological activity of polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (C20:5, EPA) and docosahexaenoic acid (C22:6, DHA), which are the constituents of fish oil, has been attracting attention. , Is actively used as a raw material for medicines and health foods.

工業的に利用される高度不飽和脂肪酸の多くはこれを豊富に含む油脂、例えば魚油から酵素反応を利用して製造される。一般的には、先ず、リパーゼの脂肪酸選択性を利用して高度不飽和脂肪酸を含む油脂から炭素数の少ない脂肪酸を遊離させ、高度不飽和脂肪酸を濃縮したグリセリド画分を得た後に、更に加水分解を行って、高度不飽和脂肪酸を高濃度に含有する脂肪酸を分取する。
そのため、加水分解率や高度不飽和脂肪酸の濃度を高める技術が種々検討され、例えば、高度不飽和脂肪酸を含む油脂をキャンディダ(Candida)属由来のリパーゼを用いて加水分解することにより高度不飽和脂肪酸の濃縮油脂を得た後、ペニシリウム(Penicillium)属由来のリパーゼを用いて加水分解し、高度不飽和脂肪酸を高濃度に含有する脂肪酸を分取する方法(特許文献1)、リパーゼを用いて高度不飽和脂肪酸を含む油脂を加水分解して高度不飽和脂肪酸の濃縮油脂を得た後、これを特定の2種のリパーゼを同時に作用させて加水分解することにより高度不飽和脂肪酸を高濃度に含有する脂肪酸を得る方法(特許文献2)等が報告されている。
Most of the industrially used highly unsaturated fatty acids are produced from fats and oils rich in them, such as fish oil, by utilizing an enzymatic reaction. Generally, first, the fatty acid selectivity of lipase is used to release a fatty acid having a small number of carbon atoms from a fat or oil containing a polyunsaturated fatty acid, and a glyceride fraction enriched with the polyunsaturated fatty acid is obtained, followed by further hydrolysis. Degradation is performed to separate out fatty acids containing a high concentration of highly unsaturated fatty acids.
Therefore, various techniques for increasing the hydrolysis rate and the concentration of highly unsaturated fatty acids have been studied, and for example, fats and oils containing highly unsaturated fatty acids are hydrolyzed using a lipase derived from the genus Candida to produce highly unsaturated fatty acids. After obtaining a fatty acid-concentrated oil and fat, it is hydrolyzed using a lipase derived from the genus Penicillium, and a method for collecting a fatty acid containing a high concentration of highly unsaturated fatty acid (Patent Document 1), using a lipase. After hydrolyzing fats and oils containing polyunsaturated fatty acids to obtain concentrated fats and oils of polyunsaturated fatty acids, two specific lipases are simultaneously acted on to hydrolyze them to increase the concentration of polyunsaturated fatty acids. A method for obtaining the contained fatty acid (Patent Document 2) and the like have been reported.

特開平7−51075号広報Publication of JP-A-7-51075 特開2004−208546号公報JP 2004-208546 A

前記特許文献2では、高度不飽和脂肪酸を濃縮した油脂に対して、トリグリセリドに作用するリパーゼと部分グリセリドリパーゼを同時に作用させるため、油脂中のトリグリセリド、ジグリセリド及びモノグリセリド全ての上に濃縮された高度不飽和脂肪酸を利用することができ、特許文献1に比べて高い収率で高度不飽和脂肪酸を得ることができる。
しかしながら、特許文献2で使用されるリパーゼにおいては高度不飽和脂肪酸を濃縮した油脂を加水分解するために長時間を要するという問題があった。
従って、本発明は、高度不飽和脂肪酸を短時間で且つ高い収率で製造する新たな方法を提供しようとするものである。
In the said patent document 2, since the lipase which acts on triglyceride and partial glyceride lipase are made to act simultaneously with respect to the fats and oils which concentrated the polyunsaturated fatty acid, the highly unsaturated fatty acids concentrated on all the triglyceride, diglyceride, and monoglyceride in fats and oils. Saturated fatty acids can be used, and highly unsaturated fatty acids can be obtained in a higher yield than in Patent Document 1.
However, the lipase used in Patent Document 2 has a problem that it takes a long time to hydrolyze the fats and oils in which the highly unsaturated fatty acid is concentrated.
Therefore, the present invention seeks to provide a new method for producing a highly unsaturated fatty acid in a short time and in a high yield.

本発明者は、上記課題に鑑み鋭意研究を行ったところ、高度不飽和脂肪酸を構成脂肪酸として含む油脂を、アルカリゲネス(Alcaligenes)属由来の1,3位を優先的に分解するリパーゼと部分グリセリドリパーゼとを併用して加水分解すれば、短い時間で反応が進行し、しかも高い収率で、高度不飽和脂肪酸を得られることを見出した。 The present inventor has conducted diligent research in view of the above problems and found that fats and oils containing highly unsaturated fatty acids as constituent fatty acids are lipases and partial glyceride lipases that preferentially decompose the 1,3-position derived from the genus Alcaligenes. It was found that the hydrolysis proceeds in combination with and the reaction proceeds in a short time, and highly unsaturated fatty acid can be obtained in a high yield.

すなわち、本発明は、高度不飽和脂肪酸を構成脂肪酸として含有する油脂に対し、アルカリゲネス(Alcaligenes)属由来の1,3位を優先的に分解するリパーゼと部分グリセリドリパーゼとを同時に作用させて加水分解し、高度不飽和脂肪酸を含有する脂肪酸を得る工程、を含む高度不飽和脂肪酸の製造方法を提供するものである。 That is, the present invention hydrolyzes fats and oils containing a polyunsaturated fatty acid as a constituent fatty acid by simultaneously acting a lipase and a partial glyceride lipase that preferentially decompose the 1,3 position derived from the genus Alcaligenes. And a step of obtaining a fatty acid containing a highly unsaturated fatty acid, the method for producing a highly unsaturated fatty acid is provided.

本発明によれば、高度不飽和脂肪酸を含む油脂を短時間で効率的に加水分解することができ、高度不飽和脂肪酸を高い収率で得ることができる。 According to the present invention, oils and fats containing highly unsaturated fatty acids can be efficiently hydrolyzed in a short time, and highly unsaturated fatty acids can be obtained in high yield.

本発明の高度不飽和脂肪酸の製造方法は、高度不飽和脂肪酸を構成脂肪酸として含有する油脂に対し、アルカリゲネス(Alcaligenes)属由来の1,3位を優先的に分解するリパーゼと部分グリセリドリパーゼとを同時に作用させて加水分解し、高度不飽和脂肪酸を含有する脂肪酸を得る工程、を含む。 The method for producing a polyunsaturated fatty acid of the present invention comprises a lipase and a partial glyceride lipase that preferentially decompose the 1,3-position derived from the genus Alcaligenes with respect to an oil or fat containing a polyunsaturated fatty acid as a constituent fatty acid. A step of simultaneously acting and hydrolyzing to obtain a fatty acid containing a polyunsaturated fatty acid.

本発明において、高度不飽和脂肪酸(PUFA)とは、二重結合を3個以上有する炭素数20以上の脂肪酸を意味する。具体的には、エイコサペンタエン酸(C20:5、EPA)、ドコサヘキサエン酸(C22:6、DHA)、アラキドン酸(C20:4、AA)等が挙げられ、ω3系高度不飽和脂肪酸であるエイコサペンタエン酸及びドコサヘキサエン酸が好ましい。 In the present invention, a polyunsaturated fatty acid (PUFA) means a fatty acid having 3 or more double bonds and having 20 or more carbon atoms. Specific examples thereof include eicosapentaenoic acid (C20:5, EPA), docosahexaenoic acid (C22:6, DHA), arachidonic acid (C20:4, AA), and the like. Acids and docosahexaenoic acid are preferred.

高度不飽和脂肪酸を構成脂肪酸として含有する油脂とは、少なくとも1つ以上の高度不飽和脂肪酸がグリセリンにエステル結合で付加しているグリセリドであり、トリグリセリド、モノグリセリド、ジグリセリド又はこれら2種以上の混合物である。尚、構成脂肪酸として高度不飽和脂肪酸が結合していないグリセリドが含まれていてもよい。
高度不飽和脂肪酸を構成脂肪酸として含有する油脂としては、一般的には、魚油、藻油等の微生物油が挙げられ、これらは単独で又は2種以上を組み合わせて用いてもよい。魚油とは、水産動物油脂であり、例えば、イワシ、ニシン、サンマ、サバ、カツオ、マグロ、クジラ、イカ、たら肝臓等の原料から採取することができる。また、藻油は、緑藻綱、珪藻綱等に属する藻類から採取することができる。これらは、酵素反応前に、不純物を除くために、適宜、液−液分液、濾過、遠心分離等公知の分離手段や精製手段を行なうのが好ましい。
また、油脂を構成する脂肪酸中の高度不飽和脂肪酸の比率を高めた所謂高度不飽和脂肪酸濃縮油を用いてもよい。構成脂肪酸中の高度不飽和脂肪酸の比率を高める方法としては、従来公知の方法、例えば、リパーゼを用いて高度不飽和脂肪酸以外の脂肪酸を優先的に遊離・除去する方法や溶剤分別法等が挙げられ、いずれの方法も使用できる。
また、市販されている高度不飽和脂肪酸含有油脂、高度不飽和脂肪酸濃縮油を用いてもよい。
The oil or fat containing a polyunsaturated fatty acid as a constituent fatty acid is a glyceride in which at least one polyunsaturated fatty acid is added to glycerin through an ester bond, and is triglyceride, monoglyceride, diglyceride or a mixture of two or more thereof. is there. Incidentally, glycerides to which polyunsaturated fatty acids are not bound may be included as constituent fatty acids.
Examples of oils and fats containing highly unsaturated fatty acids as constituent fatty acids generally include microbial oils such as fish oil and algae oil, and these may be used alone or in combination of two or more kinds. Fish oil is a marine animal oil and fat, and can be collected from raw materials such as sardines, herring, saury, mackerel, bonito, tuna, whale, squid, cod liver and the like. Further, algal oil can be collected from algae belonging to the classes Chlorophyta, Diatoms, and the like. Prior to the enzymatic reaction, it is preferable to appropriately perform known separation means and purification means such as liquid-liquid separation, filtration, and centrifugation in order to remove impurities.
Further, a so-called highly unsaturated fatty acid concentrated oil in which the ratio of highly unsaturated fatty acids in the fatty acids constituting the fats and oils is increased may be used. Examples of the method for increasing the ratio of highly unsaturated fatty acids in the constituent fatty acids include conventionally known methods, for example, a method of preferentially releasing and removing fatty acids other than highly unsaturated fatty acids using lipase, a solvent fractionation method, and the like. And either method can be used.
Further, commercially available fats and oils containing highly unsaturated fatty acids and highly unsaturated fatty acid concentrated oils may be used.

高度不飽和脂肪酸を構成脂肪酸として含有する油脂中、油脂を構成する全脂肪酸に対するDHAの含有量は、グリセリド中のDHA濃度を高くできる点から、10〜75質量%であることが好ましく、更に15〜65質量%、更に20〜55質量%であることが好ましい。なお、本明細書における脂肪酸量は遊離脂肪酸換算量である。 In fats and oils containing a polyunsaturated fatty acid as a constituent fatty acid, the content of DHA with respect to the total fatty acids constituting the fats and oils is preferably 10 to 75% by mass from the viewpoint of increasing the DHA concentration in the glyceride, and further 15 It is preferably -65% by mass, more preferably 20-55% by mass. In addition, the fatty acid amount in this specification is a free fatty acid conversion amount.

高度不飽和脂肪酸を構成脂肪酸として含有する油脂は、ジグリセリドを0.1〜75質量%、更に0.5〜65質量%、更に1〜60質量%含有する油脂であるのが、DHAを濃縮しやすくする点から好ましい。
また、高度不飽和脂肪酸を構成脂肪酸として含有する油脂中、トリグリセリドの含有量は、25〜99.8質量%、更に35〜99.5質量%、更に40〜99質量%であるのが、同様の点から好ましい。
また、高度不飽和脂肪酸を構成脂肪酸として含有する油脂中、モノグリセリドの含有量は、0.01〜10質量%、更に0.1〜7質量%、更に0.5〜5質量%であるのが、同様の点から好ましい。
また、遊離脂肪酸又はその塩の含有量は、油脂の工業的生産性、劣化抑制の点から、高度不飽和脂肪酸を構成脂肪酸として含有する油脂中に0.01〜10質量%が好ましく、更に0.02〜5質量%が好ましい。
Oils and fats containing highly unsaturated fatty acids as constituent fatty acids are oils and fats containing 0.1 to 75% by mass, further 0.5 to 65% by mass, and further 1 to 60% by mass of diglyceride. It is preferable from the viewpoint of making it easier.
In addition, in fats and oils containing a polyunsaturated fatty acid as a constituent fatty acid, the content of triglyceride is 25 to 99.8% by mass, further 35 to 99.5% by mass, and further 40 to 99% by mass. From the viewpoint of.
In addition, the content of monoglyceride in the oil and fat containing highly unsaturated fatty acid as a constituent fatty acid is 0.01 to 10% by mass, further 0.1 to 7% by mass, and further 0.5 to 5% by mass. , Are preferable from the same point.
Further, the content of the free fatty acid or its salt is preferably 0.01 to 10% by mass in the oil and fat containing the highly unsaturated fatty acid as a constituent fatty acid, and further 0 from the viewpoint of industrial productivity of the oil and fat and suppression of deterioration. 0.02 to 5 mass% is preferable.

本発明で用いられる1,3−位を優先的に分解するリパーゼは、アルカリゲネス(Alcaligenes)属を起源とするリパーゼで、トリグリセリドのsn−1位とsn−3位に特異性を示す。
アルカリゲネス(Alcaligenes)属由来の1,3位を優先的に分解するリパーゼの市販品としては、例えば、リパーゼQLM(名糖産業(株)製)がある。
The lipase that preferentially decomposes the 1,3-position used in the present invention is a lipase originating from the genus Alcaligenes, and shows specificity at the sn-1 position and the sn-3 position of triglycerides.
Examples of commercially available lipases that preferentially decompose the 1,3-position derived from the genus Alcaligenes include Lipase QLM (manufactured by Meito Sangyo Co., Ltd.).

アルカリゲネス(Alcaligenes)属由来の1,3位を優先的に分解するリパーゼは、当該リパーゼを担体に固定化した固定化リパーゼを用いることが、リパーゼ活性を有効利用できる点、コストの点から好ましい。リパーゼを固定化する固定化担体、固定化方法については後述する部分グリセリドリパーゼと共通である。 As the lipase from the genus Alcaligenes that preferentially decomposes at the 1- and 3-positions, it is preferable to use an immobilized lipase in which the lipase is immobilized on a carrier, from the viewpoint of effective use of lipase activity and cost. The immobilization carrier for immobilizing lipase and the immobilization method are the same as those for the partial glyceride lipase described later.

本発明で用いられる部分グリセリドリパーゼは、モノグリセリド及びジグリセリドを加水分解するが、トリグリセリドを加水分解し難いリパーゼである。したがって、高度不飽和脂肪酸を構成脂肪酸として含有する油脂に部分グリセリドリパーゼを作用させることで、主に油脂中の部分グリセリドが分解される。
部分グリセリドリパーゼとしては、ラット小腸、ブタ脂肪組織等の動物臓器由来のモノグリセリドリパーゼ又はジグリセリドリパーゼ;バチルス・スピーシーズ(Bacillus sp.)H−257由来モノグリセリドリパーゼ(J.Biochem.,127,419−425,2000)、シュードモナス・スピーシーズ(Pseudomonas sp.)LP7315由来モノグリセリドリパーゼ(Journal of Bioscience and Bioengineering,91(1),27−32,2001)、ペニシリウム・サイロピウム由来リパーゼ(J.Biochem,87(1),205−211,1980)、ペニシリウム・カメンベルティ(Penicillium camemberti)U−150由来リパーゼ(J.Fermentation and Bioengineering,72(3),162−167,1991)等が挙げられる。なかでも、ペニシリウム・カメンベルティ(Penicillium camemberti)由来の部分グリセリドリパーゼが好ましい。
市販品としては、例えば「モノグリセライドリパーゼ(MGLPII)」(旭化成社)、「リパーゼG「アマノ」50」(天野エンザイム社)等がある。
The partial glyceride lipase used in the present invention is a lipase which hydrolyzes monoglyceride and diglyceride but hardly hydrolyzes triglyceride. Therefore, by allowing a partial glyceride lipase to act on an oil or fat containing a highly unsaturated fatty acid as a constituent fatty acid, the partial glyceride in the oil or fat is mainly decomposed.
Examples of the partial glyceride lipase include monoglyceride lipase or diglyceride lipase derived from animal organs such as rat small intestine and porcine adipose tissue; Bacillus sp. H-257 derived monoglyceride lipase (J. Biochem., 127, 419-425, 2000), Pseudomonas sp. LP7315-derived monoglyceride lipase (Journal of Bioscience and Bioengineering, 91(1), 27-32, 2001), Penicillium syropium-derived lipase (J. Bim. -211, 1980), Penicillium camemberti (Penicillium camemberti) U-150-derived lipase (J. Fermentation and Bioengineering, 72(3), 162-167, 1991) and the like. Among them, a partial glyceride lipase derived from Penicillium camemberti is preferable.
Examples of commercially available products include "Monoglyceride lipase (MGLPII)" (Asahi Kasei Corp.), "Lipase G "Amano"50" (Amano Enzyme Corp.) and the like.

部分グリセリドリパーゼは、当該リパーゼを担体に固定化した固定化部分グリセリドリパーゼを用いることがリパーゼ活性を有効利用できる点から好ましい。
固定化担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられる。なかでも、保水力が高い点からイオン交換樹脂が好ましい。また、イオン交換樹脂の中でも、大きな表面積を有することにより酵素の吸着量を高くできるという点から、多孔質であることが好ましい。
As the partial glyceride lipase, it is preferable to use an immobilized partial glyceride lipase obtained by immobilizing the lipase on a carrier, because the lipase activity can be effectively used.
As the immobilizing carrier, Celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, inorganic carriers such as ceramics, ceramic powder, polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption Examples thereof include organic polymers such as resins, chelate resins, and synthetic adsorption resins. Of these, ion exchange resins are preferable because of their high water retention capacity. Further, among the ion exchange resins, the ion exchange resin is preferably porous because it has a large surface area so that the adsorption amount of the enzyme can be increased.

固定化担体として用いる樹脂の粒子径は50〜2000μmが好ましく、更に100〜1000μmが好ましい。細孔径は10〜150nmが好ましく、更に10〜100nmが好ましい。材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、更にフェノールホルムアルデヒド系樹脂(例えば、Rohm and Haas社製Duolite A−568)がリパーゼ吸着性向上の点から好ましい。
このとき、用いるリパーゼ量は、担体質量に対して10〜300質量%、更に30〜200質量%、更に50〜150質量%が工業的生産性の点から好ましい。固定化の際、リパーゼを溶液状態にするが、緩衝剤を用いてpH3〜7に調整して用いることが好ましい。固定化時の温度は0〜60℃、更に3〜40℃が好ましい。
The particle size of the resin used as the immobilization carrier is preferably 50 to 2000 μm, more preferably 100 to 1000 μm. The pore size is preferably 10 to 150 nm, more preferably 10 to 100 nm. Examples of the material include phenol formaldehyde-based, polystyrene-based, acrylamide-based, divinylbenzene-based, and the like, and phenol-formaldehyde-based resin (for example, Duolite A-568 manufactured by Rohm and Haas) is preferable from the viewpoint of improving lipase adsorption.
At this time, the amount of lipase used is preferably 10 to 300% by mass, more preferably 30 to 200% by mass, and further preferably 50 to 150% by mass based on the mass of the carrier from the viewpoint of industrial productivity. At the time of immobilization, the lipase is brought into a solution state, but it is preferable to use it after adjusting the pH to 3 to 7 using a buffer. The temperature at the time of immobilization is preferably 0 to 60°C, more preferably 3 to 40°C.

固定化リパーゼの活性を高めるために、リパーゼの固定化前に予め脂溶性脂肪酸又はその誘導体を担体に吸着させる処理を施しても良い。処理を施す方法としては、例えば、クロロホルム、ヘキサン、エタノール等の有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加える方法が挙げられる。
使用する脂溶性脂肪酸としては、炭素数8〜18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基が置換していても良い脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミリスチン酸、オレイン酸、リノール酸、α-リノレン酸、リシノール酸等が挙げられる。またその誘導体としては、これらの脂肪酸と一価又は多価アルコールとのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加した誘導体が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノグリセリド、ジグリセリド、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これらの脂溶性脂肪酸又はその誘導体は、2種以上を併用しても良い。
In order to enhance the activity of the immobilized lipase, a treatment for adsorbing the fat-soluble fatty acid or its derivative on the carrier may be performed before the immobilization of the lipase. Examples of the treatment method include a method in which the fat-soluble fatty acid or its derivative is once dispersed and dissolved in an organic solvent such as chloroform, hexane, and ethanol, and then added to a carrier dispersed in water.
Examples of the fat-soluble fatty acid used include saturated or unsaturated, linear or branched, fatty acids having 8 to 18 carbon atoms, which may be substituted with a hydroxyl group. Specific examples include capric acid, lauric acid, myristic acid, oleic acid, linoleic acid, α-linolenic acid, and ricinoleic acid. Examples of the derivatives include esters of these fatty acids with monohydric or polyhydric alcohols, phospholipids, and derivatives obtained by adding ethylene oxide to these esters. Specific examples thereof include methyl ester, ethyl ester, monoglyceride, diglyceride of the above fatty acids, ethylene oxide adducts thereof, polyglycerin ester, sorbitan ester, sucrose ester and the like. Two or more kinds of these fat-soluble fatty acids or derivatives thereof may be used in combination.

アルカリゲネス(Alcaligenes)属由来の1,3位を優先的に分解するリパーゼは、Dole法により測定した力価が100U/g以上、更に1,000〜1,000,000U/g、更に10,000〜500,000U/gの範囲であることが好ましい。
部分グリセリドリパーゼはLV乳化法により測定した脂肪消化力が100U/g以上、更に1,000〜1,000,000U/g、更に10,000〜500,000U/gの範囲であることが好ましい。
The lipase that preferentially decomposes the 1,3 position derived from the genus Alcaligenes has a titer of 100 U/g or more, further 1,000 to 1,000,000 U/g, further 10,000 as measured by the Dole method. It is preferably in the range of up to 500,000 U/g.
The partial glyceride lipase preferably has a fat digestion power measured by the LV emulsification method of 100 U/g or more, more preferably 1,000 to 1,000,000 U/g, and further preferably 10,000 to 500,000 U/g.

アルカリゲネス(Alcaligenes)属由来の1,3位を優先的に分解するリパーゼと部分グリセリドリパーゼの使用量(乾燥質量)は、リパーゼの活性を考慮して適宜決定することができるが、アルカリゲネス(Alcaligenes)属由来の1,3位を優先的に分解するリパーゼは、高度不飽和脂肪酸を構成脂肪酸として含有する油脂に対して、0.01〜20質量%、更に0.02〜10質量%、更に0.05〜5質量%使用するのが工業的生産性の点から好ましい。固定化リパーゼの場合は、高度不飽和脂肪酸を構成脂肪酸として含有する油脂に対して、0.1〜35質量%、更に1〜25質量%、更に3〜15質量%使用するのが工業的生産性の点から好ましい。
また、部分グリセリドリパーゼは、高度不飽和脂肪酸を構成脂肪酸として含有する油脂に対して、0.01〜20質量%、更に0.02〜10質量%、更に0.05〜5質量%使用するのが工業的生産性の点から好ましい。固定化部分グリセリドリパーゼの場合は、高度不飽和脂肪酸を構成脂肪酸として含有する油脂に対して、0.1〜35質量%、更に1〜25質量%、更に3〜15質量%使用するのが工業的生産性の点から好ましい。
The amount (dry mass) of the lipase and the partial glyceride lipase that preferentially decomposes the 1,3-position derived from the genus Alcaligenes can be appropriately determined in consideration of the activity of the lipase, but Alcaligenes The lipase that preferentially decomposes the 1,3-position derived from the genus is 0.01 to 20% by mass, further 0.02 to 10% by mass, and further 0% with respect to the fat or oil containing a highly unsaturated fatty acid as a constituent fatty acid. It is preferable to use 0.05 to 5 mass% from the viewpoint of industrial productivity. In the case of immobilized lipase, industrial production is performed by using 0.1 to 35% by mass, 1 to 25% by mass, and further 3 to 15% by mass based on the fat or oil containing highly unsaturated fatty acid as a constituent fatty acid. It is preferable from the viewpoint of sex.
Further, the partial glyceride lipase is used in an amount of 0.01 to 20% by mass, further 0.02 to 10% by mass, and further 0.05 to 5% by mass based on the fat or oil containing the polyunsaturated fatty acid as a constituent fatty acid. Is preferable from the viewpoint of industrial productivity. In the case of the immobilized partial glyceride lipase, it is industrially used in an amount of 0.1 to 35% by mass, further 1 to 25% by mass, and further 3 to 15% by mass based on the fat or oil containing a highly unsaturated fatty acid as a constituent fatty acid. It is preferable from the viewpoint of productivity.

高度不飽和脂肪酸を構成脂肪酸として含有する油脂に前記リパーゼを作用させるには、当該油脂とリパーゼとを接触させればよく、接触手段としては、浸漬、攪拌、該固定化酵素を充填したカラムにポンプ等で通液すること等が挙げられる。攪拌する場合には、反応槽径によって異なるが、固定化リパーゼが沈降せず、破砕を抑制し、効率的に加水分解反応を進行させる点から、10〜1000r/minが好ましく、更には20〜700r/min、更には30〜500r/minが好ましい。 In order to allow the lipase to act on the fat or oil containing a polyunsaturated fatty acid as a constituent fatty acid, it is sufficient to bring the fat and oil into contact with the lipase. As the contact means, dipping, stirring, a column filled with the immobilized enzyme is used. For example, passing a liquid through a pump or the like. In the case of stirring, the immobilized lipase does not settle, the crushing is suppressed, and the hydrolysis reaction proceeds efficiently, although it depends on the diameter of the reaction tank, 10 to 1000 r/min is preferable, and further 20 to It is preferably 700 r/min, more preferably 30 to 500 r/min.

本発明において、油脂の加水分解は、回分式、連続式、又は半連続式で行うことができる。油脂と水の装置内への供給は、並流式、向流式どちらでもよい。加水分解反応装置に供給される油脂及び水は、必要により予め脱気又は脱酸素した油脂及び水を用いてもよい。 In the present invention, the hydrolysis of fats and oils can be carried out batchwise, continuously or semi-continuously. The supply of oil and water into the device may be either a parallel flow type or a counter flow type. As the oil and fat and water supplied to the hydrolysis reaction device, oil and fat that have been degassed or deoxygenated in advance may be used as necessary.

油脂の加水分解反応は、得られる加水分解油中の脂肪酸濃度によって管理し、所定の脂肪酸濃度に到達した時点で終了することができる。なお、本発明における「遊離脂肪酸濃度」は、後述の〔分析方法〕(iii)に記載した方法に従って求めた値をいう。
本発明において、高度不飽和脂肪酸を構成脂肪酸として含有する油脂の加水分解反応は、DHA濃度・収率を高くできる点から、遊離脂肪酸濃度が82〜99質量%、更に86〜98質量%、更に91〜97質量%となるまで行うことが好ましい。
The hydrolysis reaction of fats and oils is controlled by the fatty acid concentration in the obtained hydrolyzed oil, and can be terminated when a predetermined fatty acid concentration is reached. The "free fatty acid concentration" in the present invention refers to a value obtained according to the method described in [Analysis Method] (iii) described below.
In the present invention, the hydrolysis reaction of fats and oils containing a polyunsaturated fatty acid as a constituent fatty acid has a free fatty acid concentration of 82 to 99% by mass, further 86 to 98% by mass, since the DHA concentration and yield can be increased. It is preferable to carry out until it becomes 91 to 97 mass %.

加水分解反応において、反応系内の水分量は、工業的な生産性の観点から、高度不飽和脂肪酸を構成脂肪酸として含有する油脂に対して、5〜500質量%、更に10〜300質量%、更に20〜200質量%とすることが好ましい。 In the hydrolysis reaction, the amount of water in the reaction system is 5 to 500% by mass, and further 10 to 300% by mass with respect to the fat or oil containing the highly unsaturated fatty acid as a constituent fatty acid, from the viewpoint of industrial productivity. Furthermore, it is preferable to set it to 20 to 200 mass %.

加水分解の反応温度は、リパーゼの特性によって決定することができるが、反応速度を向上する点、酵素の失活を抑制する点から、0〜80℃、更に10〜70℃、更に20〜60℃が好ましい。 The reaction temperature of hydrolysis can be determined by the characteristics of lipase, but from the viewpoint of improving the reaction rate and suppressing the inactivation of the enzyme, it is 0 to 80°C, further 10 to 70°C, and further 20 to 60. C is preferred.

また、反応時間は、工業的な生産性の点から、1〜200時間が好ましく、更に2〜100時間、更に2.5〜50時間が好ましい。本発明の方法では、前記2種のリパーゼを同時に使用することにより短時間で効率的に加水分解することができる。 From the viewpoint of industrial productivity, the reaction time is preferably 1 to 200 hours, more preferably 2 to 100 hours, and further preferably 2.5 to 50 hours. In the method of the present invention, it is possible to efficiently hydrolyze in a short time by using the two types of lipases at the same time.

加水分解反応は、空気との接触が出来るだけ回避されるように、窒素等の不活性ガス存在下で行うことが好ましい。 The hydrolysis reaction is preferably carried out in the presence of an inert gas such as nitrogen so that contact with air is avoided as much as possible.

加水分解反応により得られる加水分解油には、高度不飽和脂肪酸を含む遊離した脂肪酸の他に、未反応の油脂、すなわちトリグリセリド、ジグリセリド、モノグリセリドが含まれる。したがって、加水分解反応物から、リパーゼ、グリセリン等を含む水層を除去した後、例えば、クロマトグラフィー、分子蒸留、液液分配、結晶分別、脱酸法等の分別手段、好ましくは蒸留により高度不飽和脂肪酸を含有する遊離脂肪酸画分を分取するのが好ましい。蒸留条件は特に制限されない。次いで、更に吸着剤処理、ろ過等を行うこともできる。 The hydrolyzed oil obtained by the hydrolysis reaction contains unreacted oils and fats, that is, triglycerides, diglycerides, and monoglycerides, in addition to free fatty acids including highly unsaturated fatty acids. Therefore, after removing the aqueous layer containing lipase, glycerin, etc. from the hydrolysis reaction product, for example, chromatography, molecular distillation, liquid-liquid partitioning, crystal fractionation, deoxidation, etc. It is preferable to separate the free fatty acid fraction containing saturated fatty acids. The distillation conditions are not particularly limited. Next, adsorbent treatment, filtration and the like can be further performed.

以上の処理により得られる脂肪酸は、高度不飽和脂肪酸の含有量が高いものである。脂肪酸中の高度不飽和脂肪酸のDHA含有量は、10〜75質量%が好ましく、更に20〜65質量%、更に30〜55質量%、更に45〜55質量%が品質の点から好ましい。 The fatty acid obtained by the above treatment has a high content of highly unsaturated fatty acid. The DHA content of the highly unsaturated fatty acid in the fatty acid is preferably 10 to 75% by mass, more preferably 20 to 65% by mass, further 30 to 55% by mass, and further preferably 45 to 55% by mass from the viewpoint of quality.

高度不飽和脂肪酸を構成脂肪酸として含有する油脂からの高度不飽和脂肪酸の収率は、84〜99.9質量%、更に87〜99質量%、更に91〜98質量%であることが製造効率の点から好ましい。 The yield of highly unsaturated fatty acids from fats and oils containing highly unsaturated fatty acids as constituent fatty acids is 84 to 99.9% by mass, further 87 to 99% by mass, and further 91 to 98% by mass. It is preferable from the point of view.

〔原料油脂〕
原料油脂として、表1に示す高度不飽和脂肪酸を構成脂肪酸として含有する油脂(DDオイル DHA-46、日本水産(株)製)を用いた。
[Raw oils and fats]
As the raw material fat and oil, the fat and oil containing the highly unsaturated fatty acid shown in Table 1 as a constituent fatty acid (DD Oil DHA-46, manufactured by Nippon Suisan Kaisha, Ltd.) was used.

〔分析方法〕
(i)構成脂肪酸組成の測定
日本油化学会編「基準油脂分析試験法2003年版」中の「メチルエステル化法(三フッ化ホウ素メタノール法)(2.4.1.2−1996)」に従って測定した。
トリヘンイコサノイン(和光純薬工業製)を内部標準として、試料から脂肪酸メチルエステルを調製し、得られたサンプルをガスクロマトグラフィー(GLC)に供して、構成脂肪酸の分析を行った。
[Analysis method]
(I) Measurement of constituent fatty acid composition According to "Methyl esterification method (boron trifluoride methanol method) (2.4.1.2-1996)" in "Standard Oil and Fat Analysis Test Method 2003 Edition" edited by Japan Oil Chemists' Society. It was measured.
A fatty acid methyl ester was prepared from a sample using trihenicosanoin (manufactured by Wako Pure Chemical Industries, Ltd.) as an internal standard, and the obtained sample was subjected to gas chromatography (GLC) to analyze the constituent fatty acids.

(ii)グリセリド組成の測定
「グリセリド組成」は、ガラス製サンプル瓶に、サンプル10mgとトリメチルシリル化剤(「シリル化剤TH」、関東化学製)0.5mLを加え、密栓した後、70℃で15分間加熱した。これに蒸留水1.0mL、ヘキサン2.0mLを加えて、混合後、ヘキサン層をガスクロマトグラフィー(GLC)に供して、グリセリド組成の分析を行った。
(Ii) Measurement of glyceride composition The “glyceride composition” was measured by adding 10 mg of a sample and 0.5 mL of trimethylsilylating agent (“silylating agent TH”, manufactured by Kanto Kagaku) to a glass sample bottle and sealing the bottle at 70° C. Heated for 15 minutes. Distilled water (1.0 mL) and hexane (2.0 mL) were added to this, and after mixing, the hexane layer was subjected to gas chromatography (GLC) to analyze the glyceride composition.

(iii)遊離脂肪酸濃度の算出
遊離脂肪酸濃度は、加水分解油の酸価及び脂肪酸組成を測定し、油脂製品の知識((株) 幸書房)に従って、次の式(1)で求めた。
遊離脂肪酸濃度(質量%)=x×y/56.1/10 (1)
(x=酸価[mg-KOH/g]、y=脂肪酸組成から求めた平均分子量)
(Iii) Calculation of Free Fatty Acid Concentration The free fatty acid concentration was obtained by measuring the acid value and fatty acid composition of the hydrolyzed oil and using the following formula (1) in accordance with the knowledge of oil and fat products (Koushobo Co., Ltd.).
Free fatty acid concentration (mass %)=x×y/56.1/10 (1)
(X=acid value [mg-KOH/g], y=average molecular weight determined from fatty acid composition)

(iv)酸価の測定
日本油化学会編「基準油脂分析試験法2003年版」中の「酸価(2.3.1−1996)」に従って測定した。
(Iv) Measurement of Acid Value The acid value was measured according to “Acid Value (2.3.1-1996)” in “Standard Oil and Fat Analysis Test Method 2003 Edition” edited by Japan Oil Chemists' Society.

Figure 0006715586
Figure 0006715586

〔固定化リパーゼQLM〕
まず、アニオン交換樹脂Duolite A−568(Rohm&Haas社製)100gに対して0.1mol/Lの水酸化ナトリウム水溶液1000mLを加え、1時間攪拌し、アルカリ洗浄した。その後、固定化担体を1000mLの蒸留水で1時間洗浄し、500mMのリン緩衝液(pH7)1000mLで2時間pHの平衡化を行った。続いて、50mMのリン緩衝液(pH7)1000mLで2時間ずつ2回、pHの平衡化を行った。終了後、エタノール500mLでエタノール置換を30分間行った。濾過した後、大豆脂肪酸から飽和脂肪酸を除いた低融点脂肪酸を100g含むエタノール500mLを加え、30分間吸着操作を行った。その後、担体を回収した後、50mMのリン緩衝液(pH7)500mLで4回洗浄し、エタノールを除去し、濾過して担体を回収した。
次いで、回収した担体と、市販のアルカリゲネス(Alcaligenes)属由来の1,3位を優先的に分解するリパーゼ(リパーゼQLM,名糖産業製、力価103000U/g)100gを50mMの酢酸緩衝液(pH7)1800mLに溶解させた酵素溶液1900mLとを2時間接触させ、固定化を行った。1,3位を優先的に分解するリパーゼは担体質量に対して100質量%用いた。回収した固定化酵素を、50mMの酢酸緩衝液(pH7)500mLで洗浄し、吸着しなかった酵素や蛋白を除去した。以上の操作はいずれも常圧20℃で行った。その後、菜種油400gを加え、40℃、2時間攪拌した後、濾過して菜種油と分離し、固定化酵素とした。
こうして得られた固定化リパーゼQLMを、使用前に実際に反応を行う基質である原料油脂で洗浄した。
[Immobilized lipase QLM]
First, to 100 g of anion exchange resin Duolite A-568 (manufactured by Rohm & Haas), 1000 mL of 0.1 mol/L sodium hydroxide aqueous solution was added, and the mixture was stirred for 1 hour and washed with an alkali. Then, the immobilized carrier was washed with 1000 mL of distilled water for 1 hour, and the pH was equilibrated with 1000 mL of 500 mM phosphorus buffer solution (pH 7) for 2 hours. Subsequently, the pH was equilibrated twice with 1000 mL of 50 mM phosphorus buffer (pH 7) for 2 hours each. After the completion, ethanol replacement was performed with 500 mL of ethanol for 30 minutes. After filtering, 500 mL of ethanol containing 100 g of low-melting fatty acid obtained by removing saturated fatty acid from soybean fatty acid was added, and adsorption operation was performed for 30 minutes. Then, after recovering the carrier, the carrier was recovered by washing with 500 mL of 50 mM phosphorus buffer (pH 7) four times to remove ethanol and filtering.
Then, 100 g of the recovered carrier and 100 g of lipase (lipase QLM, manufactured by Meito Sangyo Co., Ltd., titer 103000 U/g) that preferentially decomposes the 1,3-position derived from a commercially available genus Alcaligenes is added to a 50 mM acetate buffer ( Immobilization was performed by contacting with 1900 mL of the enzyme solution dissolved in 1800 mL of pH 7) for 2 hours. The lipase that preferentially decomposes the 1,3 position was used in 100% by mass based on the mass of the carrier. The recovered immobilized enzyme was washed with 500 mL of 50 mM acetate buffer (pH 7) to remove the enzyme and protein that were not adsorbed. All of the above operations were performed at normal pressure of 20°C. Then, 400 g of rapeseed oil was added, and the mixture was stirred at 40° C. for 2 hours, filtered and separated from the rapeseed oil to obtain an immobilized enzyme.
The immobilized lipase QLM thus obtained was washed with a raw material fat which is a substrate on which an actual reaction was carried out before use.

〔固定化リパーゼAYの製造方法〕
リパーゼQLMを、キャンディダ(Candida)属由来のリパーゼAY「アマノ」30−SD(天野エンザイム製、脂肪消化力37900U/g)に変えた以外は、固定化リパーゼQLMと同じ製造法で固定化リパーゼAYを得た。
[Method for producing immobilized lipase AY]
Immobilized lipase by the same production method as immobilized lipase QLM except that lipase QLM was changed to lipase AY "Amano" 30-SD (manufactured by Amano Enzyme, fat digestion power 37900 U/g) derived from the genus Candida. I got AY.

〔固定化リパーゼGの製造方法〕
リパーゼQLMを、ペニシリウム・カメンベルティ(Penicillium camemberti)由来のリパーゼG「アマノ」50(天野エンザイム製、脂肪消化力54300U/g)に、リン酸緩衝液(pH7)を酢酸緩衝液(pH5)に変更した以外は、固定化リパーゼQLMと同じ製造法で固定化リパーゼGを得た。
[Method for producing immobilized lipase G]
Lipase QLM was changed to Lipase G "Amano" 50 (Amano Enzyme, fat digestion 54300 U/g) derived from Penicillium camemberti, and phosphate buffer (pH 7) was changed to acetate buffer (pH 5). Immobilized lipase G was obtained by the same production method as that of immobilized lipase QLM except for the above.

〔蒸留方法〕
加水分解反応により得られた加水分解油をワイプトフィルム蒸発装置(2−03型:神鋼環境ソリューション製)により、遊離脂肪酸(FFA)及びモノグリセリド(MG)から成る留分とトリグリセリド(TG)及びジグリセリド(DG)から成る残渣に分画した。蒸留条件は、温度230℃、圧力2Pa以下、油供給流量100mL/hrで処理した。
[Distillation method]
The hydrolyzed oil obtained by the hydrolysis reaction was subjected to a fraction of free fatty acid (FFA) and monoglyceride (MG) and a triglyceride (TG) and diglyceride ( Fractionation into a residue consisting of DG). The distillation conditions were a temperature of 230° C., a pressure of 2 Pa or less, and an oil supply flow rate of 100 mL/hr.

〔実施例1〕
表1に示す高度不飽和脂肪酸を構成脂肪酸として含有する油脂(以下、原料油脂と記する)に対して、酵素加水分解反応を行った。酵素は、リパーゼQLM(QLM、名糖産業製、力価103000U/g)及びリパーゼG「アマノ」50(G、天野エンザイム製、脂肪消化力54300U/g)の粉体を併用した。仕込み条件は、200mLの4つ口フラスコに原料油脂30g、水30g、酵素量は各0.3gを仕込んだ。加水分解反応条件は、常圧、温度40℃、撹拌速度300r/min、反応時間48hrとした。
反応終了後、加水分解油の酸価及びグリセリド組成を分析した。その後、上述した蒸留方法により分離した(DG+TG)画分(=残渣)および(FFA+MG)画分(=留分)中のDHA濃度を、ガスクロマトグラフィーにより分析した。ここで、本系においては、加水分解油中のMG濃度はいずれも6質量%以下となった。従って、蒸留操作により得た留分は全て遊離脂肪酸とみなした。留分のDHA収率(%)は式(2)より求めた。
[Example 1]
An enzyme hydrolysis reaction was performed on fats and oils containing the highly unsaturated fatty acids shown in Table 1 as constituent fatty acids (hereinafter referred to as raw fats and oils). As the enzyme, a powder of lipase QLM (QLM, manufactured by Meito Sangyo Co., Ltd., titer 103000 U/g) and lipase G “Amano” 50 (G, manufactured by Amano Enzyme, fat digestion 54300 U/g) were used in combination. Regarding the charging conditions, 30 g of raw material oil and fat, 30 g of water, and 0.3 g of each enzyme were charged in a 200 mL four-necked flask. The hydrolysis reaction conditions were normal pressure, temperature 40° C., stirring speed 300 r/min, and reaction time 48 hr.
After the reaction was completed, the acid value and glyceride composition of the hydrolyzed oil were analyzed. Then, the DHA concentration in the (DG+TG) fraction (=residue) and the (FFA+MG) fraction (=distillate) separated by the above-mentioned distillation method was analyzed by gas chromatography. Here, in this system, the MG concentration in the hydrolyzed oil was 6% by mass or less. Therefore, all the fractions obtained by the distillation operation were regarded as free fatty acids. The DHA yield (%) of the fraction was obtained from the formula (2).

留分のDHA収率(%)={留分のDHA濃度×留分重量}/{[留分のDHA濃度×留分重量]+[残渣のDHA濃度×残渣重量]}・・・・(2) Fraction DHA yield (%) = {fraction DHA concentration x fraction weight}/{[fraction DHA concentration x fraction weight] + [residue DHA concentration x residue weight]} ... ( 2)

表2に示す結果より、遊離脂肪酸濃度は89.3質量%に達し、原料油脂からの加水分解が進行した。また、留分のDHA濃度は、原料油脂中のDHA濃度45.6%に対して、45.2質量%を示した。その際のDHA収率は、90.1%となった。 From the results shown in Table 2, the free fatty acid concentration reached 89.3% by mass, and the hydrolysis from the raw material fat proceeded. Further, the DHA concentration of the fraction was 45.2 mass% with respect to the DHA concentration of 45.6% in the raw material oil and fat. At that time, the DHA yield was 90.1%.

〔実施例2〕
酵素は、固定化リパーゼQLMと固定化リパーゼGを併用した。仕込み条件は、原料油脂200gに対して水200g、固定化酵素量は各20gとした。加水分解反応条件は、常圧、温度40℃、撹拌速度300r/min、反応時間48hrとした。
反応終了後、加水分解油の酸価及びグリセリド組成を定量した。その後、蒸留により分離した各画分中のDHA濃度をガスクロマトグラフィーにより定量した。
その結果、遊離脂肪酸濃度は94.5質量%に達し、QLM単用時に比べ加水分解が進行したことが明らかになった。また、留分のDHA濃度は、47.3質量%を示し、原料油脂中のDHA濃度よりも高くなり、DHAが選択的に分解された。その際のDHA収率は、96.8%となり、DHAをほぼ遊離できることが示された。
[Example 2]
As the enzyme, immobilized lipase QLM and immobilized lipase G were used in combination. The charging conditions were 200 g of water and 200 g of immobilized enzyme for each 200 g of raw material oil and fat. The hydrolysis reaction conditions were normal pressure, temperature 40° C., stirring speed 300 r/min, and reaction time 48 hr.
After the reaction was completed, the acid value and glyceride composition of the hydrolyzed oil were quantified. Then, the DHA concentration in each fraction separated by distillation was quantified by gas chromatography.
As a result, the free fatty acid concentration reached 94.5% by mass, and it was revealed that the hydrolysis proceeded as compared to when the QLM was used alone. Further, the DHA concentration of the fraction was 47.3% by mass, which was higher than the DHA concentration in the raw material fat and oil, and DHA was selectively decomposed. The DHA yield at that time was 96.8%, indicating that DHA can be almost released.

〔比較例1〕
酵素は、リパーゼQLM(名糖産業製)の粉体を使用した。仕込み条件は、原料油脂30gに対して水30g、酵素量は0.3gとした。加水分解反応条件は、常圧、温度40℃、撹拌速度300rpm、反応時間48hrとした。
反応終了後、酸価及びグリセリド組成を定量した。その後、カラムにより分離した各画分中のDHA濃度をガスクロマトグラフィーにより定量した。遊離脂肪酸濃度は76.51質量%であった。留分のDHA濃度は、42.7質量%を示した。その際のDHA収率は、76.4%となった。
[Comparative Example 1]
As the enzyme, powder of lipase QLM (manufactured by Meito Sangyo) was used. The charging conditions were 30 g of water and 30 g of enzyme with respect to 30 g of raw material oil and fat. The hydrolysis reaction conditions were normal pressure, temperature 40° C., stirring speed 300 rpm, and reaction time 48 hr.
After the reaction was completed, the acid value and glyceride composition were quantified. Then, the DHA concentration in each fraction separated by the column was quantified by gas chromatography. The free fatty acid concentration was 76.51% by mass. The DHA concentration of the fraction was 42.7% by mass. At that time, the DHA yield was 76.4%.

〔比較例2〕
酵素は、固定化リパーゼQLMを使用した。仕込み条件は、原料油脂200gに対して水200g、酵素量は20gとした。加水分解反応条件は、常圧、温度40℃、撹拌速度300r/min、反応時間48hrとした。
反応終了後、加水分解油の酸価及びグリセリド組成を定量した。その後、蒸留により分離した各画分中のDHA濃度をガスクロマトグラフィーにより定量した。遊離脂肪酸濃度は73.8質量%となった。また、留分のDHA濃度は、44.5質量%を示した。その際のDHA収率は、75.9%となった。
[Comparative Example 2]
The enzyme used was immobilized lipase QLM. The charging conditions were 200 g of water and 200 g of enzyme with respect to 200 g of raw material oil and fat. The hydrolysis reaction conditions were normal pressure, temperature 40° C., stirring speed 300 r/min, and reaction time 48 hr.
After the reaction was completed, the acid value and glyceride composition of the hydrolyzed oil were quantified. Then, the DHA concentration in each fraction separated by distillation was quantified by gas chromatography. The free fatty acid concentration was 73.8% by mass. The DHA concentration of the fraction was 44.5% by mass. At that time, the DHA yield was 75.9%.

〔比較例3〕
酵素は、固定化リパーゼAYを使用した。仕込み条件は、原料油脂200gに対して水200g、酵素量は20gとした。加水分解反応条件は、常圧、温度40℃、撹拌速度300r/min、反応時間48hrとした。
反応終了後、加水分解油の酸価及びグリセリド組成を定量した。その後、カラムにより分離した各画分中のDHA濃度をガスクロマトグラフィーにより定量した。遊離脂肪酸濃度は45.8質量%となり、加水分解はリパーゼQLMに比べて進行しなかった。留分のDHA濃度については、28.0質量%と比較的低い値を示した。その際のDHA収率は、31.1%となった。
[Comparative Example 3]
The enzyme used was immobilized lipase AY. The charging conditions were 200 g of water and 200 g of enzyme with respect to 200 g of raw material oil and fat. The hydrolysis reaction conditions were normal pressure, temperature 40° C., stirring speed 300 r/min, and reaction time 48 hr.
After the reaction was completed, the acid value and glyceride composition of the hydrolyzed oil were quantified. Then, the DHA concentration in each fraction separated by the column was quantified by gas chromatography. The free fatty acid concentration was 45.8% by mass, and hydrolysis did not proceed as compared with Lipase QLM. The DHA concentration of the fraction was a relatively low value of 28.0% by mass. The DHA yield at that time was 31.1%.

〔比較例4〕
酵素は、固定化リパーゼAY及び固定化リパーゼGを併用した。仕込み条件は、原料油脂200gに対して水200g、各酵素量は20gとした。加水分解反応条件は、常圧、温度40℃、撹拌速度300r/pm、反応時間48hrとした。
反応終了後、加水分解油の酸価及びグリセリド組成を定量した。その後、カラムにより分離した各画分中のDHA濃度をガスクロマトグラフィーにより定量した。遊離脂肪酸濃度は81.1質量%に達した。また、留分のDHA濃度は、43.0質量%を示した。その際のDHA収率は、83.4%となった。
[Comparative Example 4]
As the enzyme, immobilized lipase AY and immobilized lipase G were used in combination. Regarding the charging conditions, 200 g of water was used for 200 g of raw material oil and fat, and the amount of each enzyme was 20 g. The hydrolysis reaction conditions were atmospheric pressure, a temperature of 40° C., a stirring speed of 300 r/pm, and a reaction time of 48 hours.
After the reaction was completed, the acid value and glyceride composition of the hydrolyzed oil were quantified. Then, the DHA concentration in each fraction separated by the column was quantified by gas chromatography. The free fatty acid concentration reached 81.1% by mass. The DHA concentration of the fraction was 43.0% by mass. At that time, the DHA yield was 83.4%.

実施例及び比較例の結果を表2に示す。 The results of Examples and Comparative Examples are shown in Table 2.

Figure 0006715586
Figure 0006715586

表2より明らかなように、アルカリゲネス(Alcaligenes)属由来の1,3位を優先的に分解するリパーゼと部分グリセリドリパーゼとを同時に作用させた実施例1は、遊離脂肪酸濃度が高く、短時間で収率良くDHAを得ることができた。更に、実施例2に示す通り、上記のリパーゼを固定化することにより、遊離脂肪酸濃度を向上させ、DHAを高収率で得ることができた。 As is clear from Table 2, Example 1 in which a lipase that preferentially decomposes the 1,3 position derived from the genus Alcaligenes and a partial glyceride lipase were simultaneously acted on had a high free fatty acid concentration and a short time. DHA could be obtained in good yield. Furthermore, as shown in Example 2, by immobilizing the above lipase, the free fatty acid concentration was improved and DHA could be obtained in a high yield.

Claims (4)

高度不飽和脂肪酸を構成脂肪酸として含有する油脂に対し、アルカリゲネス(Alcaligenes)属由来の1,3位を優先的に分解するリパーゼと部分グリセリドリパーゼとを、それぞれ担体に固定化した固定化リパーゼとして同時に作用させて2.5〜50時間加水分解し、高度不飽和脂肪酸を含有する脂肪酸を得る工程、を含む高度不飽和脂肪酸の製造方法。 For fats and oils containing polyunsaturated fatty acids as constituent fatty acids, lipases that preferentially decompose the 1,3-position derived from the genus Alcaligenes and partial glyceride lipases are simultaneously immobilized as immobilized lipases on a carrier. A method for producing a highly unsaturated fatty acid, which comprises a step of acting to hydrolyze for 2.5 to 50 hours to obtain a fatty acid containing a highly unsaturated fatty acid. 部分グリセリドリパーゼがペニシリウム・カメンベルティ(Penicillium camemberti)由来の部分グリセリドリパーゼである請求項1記載の高度不飽和脂肪酸の製造方法。 The method for producing a polyunsaturated fatty acid according to claim 1, wherein the partial glyceride lipase is a partial glyceride lipase derived from Penicillium camemberti. 高度不飽和脂肪酸を構成脂肪酸として含有する油脂が、その油脂を構成する全脂肪酸中にドコサヘキサエン酸を10〜75質量%含む油脂である請求項1又は2記載の高度不飽和脂肪酸の製造方法。 The method for producing a highly unsaturated fatty acid according to claim 1 or 2 , wherein the oil or fat containing a highly unsaturated fatty acid as a constituent fatty acid is an oil or fat containing 10 to 75% by mass of docosahexaenoic acid in all the fatty acids constituting the oil or fat. 高度不飽和脂肪酸を構成脂肪酸として含有する油脂がジグリセリドを0.1〜75質量%含む油脂である請求項1〜3のいずれか1項記載の高度不飽和脂肪酸の製造方法。 The method for producing a highly unsaturated fatty acid according to claim 1, wherein the oil or fat containing a highly unsaturated fatty acid as a constituent fatty acid is an oil or fat containing 0.1 to 75% by mass of diglyceride.
JP2015201819A 2015-10-13 2015-10-13 Method for producing highly unsaturated fatty acid Active JP6715586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201819A JP6715586B2 (en) 2015-10-13 2015-10-13 Method for producing highly unsaturated fatty acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201819A JP6715586B2 (en) 2015-10-13 2015-10-13 Method for producing highly unsaturated fatty acid

Publications (2)

Publication Number Publication Date
JP2017073980A JP2017073980A (en) 2017-04-20
JP6715586B2 true JP6715586B2 (en) 2020-07-01

Family

ID=58550428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201819A Active JP6715586B2 (en) 2015-10-13 2015-10-13 Method for producing highly unsaturated fatty acid

Country Status (1)

Country Link
JP (1) JP6715586B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4282960A3 (en) 2017-09-01 2024-01-24 Amano Enzyme Inc. Modified lipase and use thereof
US11840714B2 (en) 2018-09-04 2023-12-12 Nissui Corporation Enriching DHA in glyceride fractions
JP7358067B2 (en) * 2019-04-18 2023-10-10 株式会社Adeka fat and oil decomposition product

Also Published As

Publication number Publication date
JP2017073980A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP7213184B2 (en) Enzymatic enrichment of n-3 fatty acids in the form of glycerides
JP5204776B2 (en) Method for producing EPA concentrated oil and DHA concentrated oil
JP5111363B2 (en) Method for producing highly unsaturated fatty acid concentrated oil
US9476008B2 (en) Process for separating polyunsaturated fatty acids from long chain unsaturated or less saturated fatty acids
JPH09510091A (en) Essential oil composition
JP5416861B2 (en) Method for producing highly unsaturated fatty acid-containing fat with lipase
JP6715586B2 (en) Method for producing highly unsaturated fatty acid
JP4079516B2 (en) Method for producing triglyceride
JP5242230B2 (en) Method for producing immobilized enzyme
JP6645804B2 (en) Manufacturing method of structural fats and oils
JP2020174570A (en) Method for producing polyunsaturated fatty acid and medium chain fatty acid-containing triglyceride
JP3929890B2 (en) Method for producing diglyceride
JP7365202B2 (en) Method for producing fats and oils with high diacylglycerol content
JP3813585B2 (en) Method for producing diglyceride
JP3893107B2 (en) Method for producing fatty acid
JP2012034622A (en) Method for producing fat and oil with high diacylglycerol content
JP6990076B2 (en) Method for producing fatty acids
JP5782130B2 (en) Process for producing diacylglycerol-enriched oil or fat
JP4220957B2 (en) Method for producing immobilized enzyme
JP3813584B2 (en) Method for producing diglyceride
JP7092460B2 (en) Manufacturing method of structural fats and oils
JP5527983B2 (en) Process for producing docosahexaenoic acid-rich oil
JP6859212B2 (en) Method for producing fats and oils containing high diacylglycerol
JP6990019B2 (en) Method for producing fatty acids
JP2004041188A (en) Method for manufacturing oil highly containing docosahexaenoic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200609

R151 Written notification of patent or utility model registration

Ref document number: 6715586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250