JP3893107B2 - Method for producing fatty acid - Google Patents

Method for producing fatty acid Download PDF

Info

Publication number
JP3893107B2
JP3893107B2 JP2002380545A JP2002380545A JP3893107B2 JP 3893107 B2 JP3893107 B2 JP 3893107B2 JP 2002380545 A JP2002380545 A JP 2002380545A JP 2002380545 A JP2002380545 A JP 2002380545A JP 3893107 B2 JP3893107 B2 JP 3893107B2
Authority
JP
Japan
Prior art keywords
lipase
fatty acid
pufa
oil
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002380545A
Other languages
Japanese (ja)
Other versions
JP2004208546A (en
Inventor
学 佐藤
高明 渡邉
和洋 小野塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002380545A priority Critical patent/JP3893107B2/en
Publication of JP2004208546A publication Critical patent/JP2004208546A/en
Application granted granted Critical
Publication of JP3893107B2 publication Critical patent/JP3893107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高度不飽和脂肪酸を高濃度に含有する脂肪酸を、短時間に高分解率で、かつ高収率で製造する方法に関する。
【0002】
【従来の技術】
近年、アラキドン酸、エイコサペンタエン酸、ドコサヘキサエン酸(DHA)等の高度不飽和脂肪酸(PUFA)の生理活性が注目されており、特にDHAは、血小板凝集抑制作用、血中中性脂肪低下作用、血中コレステロール低下作用、制癌作用、脳機能向上効果等を有することが知られている。このため、PUFAを豊富に含む油脂の工業的製造法が精力的に研究開発されている。代表的方法として、リパーゼの脂肪酸選択性を利用してPUFA以外の脂肪酸を切断することにより、PUFAをグリセリド側に濃縮する方法が多数報告されている。
【0003】
一方、PUFA高含有グリセリドとしてではなく、遊離酸としてのPUFA自体又はこれを高濃度に含有する脂肪酸を製造することも、医薬品開発での利用などにおいて重要な意義がある。この場合にも、PUFA含有油脂のリパーゼによる加水分解が行われるが、通常の手段では分解率やPUFA濃度の点で限界がある。このため、2種類のリパーゼを利用することにより、高分解率や高PUFA濃度を達成しようとする技術が提案されている。例えば、PUFAの加水分解にトリグリセリド位置選択性を有するリパーゼとトリグリセリド位置選択性を有しないリパーゼを併用することにより、その加水分解率を高め、高収率で中和価の高い脂肪酸を得るという方法(特許文献1参照)、DHA含有油脂をキャンディダ(Candida)属由来のリパーゼを用いて加水分解することによりDHA高含有油脂を得た後、ペニシリウム(Penicillium)属由来のリパーゼを用いて加水分解し、DHAを高濃度に含有する脂肪酸を分取するという方法がある(特許文献2参照)。
【0004】
しかし、特許文献1の方法は、原料油脂のPUFA含有量が低く、分解率を高めても脂肪酸中のPUFA濃度が低いままであるという問題がある。また、特許文献2の方法は、第2の加水分解の際に使用するリパーゼが、モノグリセリド又はジグリセリドには作用するが、トリグリセリドに作用しない、いわゆる部分グリセリドリパーゼであるため、トリグリセリド上に濃縮されたDHAを利用できず、高い収率が得られないという問題がある。
【0005】
【特許文献1】
特開昭60-130396号公報
【特許文献2】
特開平07-51075号公報
【0006】
【発明が解決しようとする課題】
したがって、本発明の目的は、高度不飽和脂肪酸を高濃度に含有する脂肪酸を、短時間に高分解率で、かつ高収率で製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、PUFA含有油脂をリパーゼを用いて加水分解し、遊離脂肪酸を分離してPUFA高含有油脂を得た後、更に、これを特定の2種のリパーゼを同時に作用させて加水分解することにより、PUFAを高濃度に含有する脂肪酸が、極めて効率良く高い収率で得られることを見出した。
【0008】
すなわち本発明は、次の第一工程及び第二工程を含むPUFA高含有脂肪酸の製造方法を提供するものである。
【0009】
第一工程:トリグリセリドに作用するリパーゼをPUFA含有油脂に作用させて加水分解した後、遊離脂肪酸を分離し、PUFAの比率を高めた油脂を得る工程
【0010】
第二工程:第一工程で得られたPUFA高含有油脂に対し、トリグリセリドに作用するリパーゼと、部分グリセリドリパーゼを同時に作用させて加水分解することにより、PUFAを高濃度に含有する脂肪酸を得る工程
【0011】
なお、本発明でいう高度不飽和脂肪酸(PUFA)とは、二重結合を3個以上有する炭素数20以上の脂肪酸を意味する。具体的には、ドコサヘキサエン酸(DHA)、エイコサペンタエン酸(EPA)、アラキドン酸(AA)等が好ましいものとして挙げられる。
【0012】
【発明の実施の形態】
〔第一工程〕
本発明方法の第一工程において用いられるリパーゼは、通常市販されているものを使用することができるが、固定化することにより、PUFA含有油脂の濃縮率を更に高めることができ、またリパーゼの使用量を低減することもできる。固定化リパーゼは、以下のようにして製造される。
【0013】
リパーゼの固定化に使用される固定化用担体は、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体;セルロースパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられ、陰イオン交換樹脂、特に多孔性の陰イオン交換樹脂が好ましい。このような多孔質担体は、大きな表面積を有するため、酵素のより大きな吸着量を得ることができる。樹脂の粒子径は100〜1000μmが好ましく、細孔径は100〜1500Åが好ましい。材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、特にフェノールホルムアルデヒド系樹脂(例えば、Rohm and Hass社のDuolite A-568)が好ましい。
【0014】
トリグリセリドに作用するリパーゼとしては、キャンディダ(Candida)属、ムコール(Mucor)属、リゾプス(Rhizopus)属、アスペルギルス(Aspergillus)属、シュードモナス(Pseudomonas)属、アルカリゲネス(Alcaligenes)属などが挙げられるが、特にキャンディダ(Candida)属由来のものが好ましい。また用いるリパーゼ量は、担体重量に対して5〜100%、特に10〜50%が望ましい。固定化の際、リパーゼは溶液状態にするが、酵素の変性が起きないような範囲であればよく、緩衝液でpH3〜9に調整して使用することが望ましい。また、固定化時の温度は0〜60℃、特に5〜45℃が好ましい。
【0015】
リパーゼの固定化後、脂肪酸トリグリセリド又は脂肪酸部分グリセリドと接触させる。固定化リパーゼと接触させる脂肪酸トリグリセリド及び脂肪酸部分グリセリドとしては、菜種油、大豆油、ひまわり油等の植物性の液状油脂、イワシ油、マグロ油、カツオ油等の魚油、鯨油等の海獣油、これらから誘導されるモノグリセリド及びジグリセリド、更にはこれらの混合物、またこれらの油脂から得られるエステル交換油脂等も使用できる。これらは、2種以上併用してもよい。使用される脂肪酸グリセリドの量は、固定化リパーゼとの接触を十分なものとし、かつ過剰量の使用による無駄を回避する観点から、担体重量に対して100〜3000%、特に250〜2000%が好ましい。接触方法は、浸漬、攪拌、固定化酵素を充填したカラムにポンプ等で通液する等いずれの方法でもよい。接触温度は5〜40℃、接触時間は2〜48時間が好ましい。この接触が終わったところで濾過し、固定化リパーゼを回収する。このような処理により、脂肪酸グリセリドの加水分解が起こるため固定化リパーゼ中の残存水分が消費され、酵素水分量を低減させることができる。これによりリパーゼの構造を維持しうる水分を保持したまま、過剰水分を除去し、リパーゼ近傍が反応に適した状態になるものと考えられる。上記処理は、濾過・回収後の固定化リパーゼの水分量は、担体重量に対して20〜100%、特に40〜70%の範囲となるように行うのが好ましい。
【0016】
この固定化リパーゼは、真空又は減圧乾燥を経る通常の調製法により得られた固定化リパーゼと異なり、失活を招くこともないが、油脂の到達分解率の高さは、酵素活性の高さとは無関係であるため、本発明のような高い分解率が得られることは、驚異的である。これにより、魚油自体のようにPUFA含有率が低い油脂を原料にした場合であっても、あらかじめウィンタリング等によってある程度PUFA含有率を高める前処理を行わなくても、直接加水分解に付することで、グリセリド中に蓄積されるPUFAの含有率を、従来不可能であった程度まで高めることができる。
【0017】
また、固定化リパーゼの活性を高めるために、リパーゼの固定化前にあらかじめ脂溶性脂肪酸又はその誘導体を担体に吸着させる処理を施してもよい。使用する脂溶性脂肪酸としては、炭素数8〜18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基が置換していてもよい脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミスチリン酸、オレイン酸、リノール酸、α-リノレン酸、リシノール酸、イソステアリン酸等が挙げられる。またその誘導体としては、これらの脂肪酸と一価又は多価アルコールとのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加した誘導体が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノグリセリド、ジグリセリド、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これらの脂溶性脂肪酸又はその誘導体は、2種以上を併用してもよい。
【0018】
これらの脂溶性脂肪酸又はその誘導体と担体の接触法としては、水又は有機溶剤中にこれらを直接加えてもよいが、分散性を良くするため、有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加えてもよい。この有機溶剤としては、クロロホルム、ヘキサン、エタノール等が挙げられる。脂溶性脂肪酸又はその誘導体の使用量は、担体重量に対して1〜500%、特に10〜200%が好ましい。接触温度は0〜100℃、特に20〜60℃が好ましく、接触時間は5分〜5時間程度が好ましい。この処理を終えた担体は、乾燥してもよい。乾燥温度は室温〜100℃が好ましく、減圧乾燥を行ってもよい。
【0019】
第一工程においては、PUFA含有油脂にリパーゼ、あるいは前記固定化リパーゼを作用させて加水分解した後、遊離脂肪酸を分離し、PUFA高含有油脂を製造する。反応の具体的態様としては、PUFA含有油脂にリパーゼ、あるいは固定化リパーゼを添加し、更に水を添加して、一定温度で攪拌しながら加水分解反応を行う方法、固定化リパーゼをカラム(固定床)に充填し、そこへPUFA含有油脂と水の混合液を通液循環させる方法等がある。
【0020】
加水分解に使用するPUFA含有油脂としては、DHA等のPUFAを構成脂肪酸の一部に含んだトリグリセリド、ジグリセリド、モノグリセリド及びこれらの混合物のいずれでもよい。一般的にはイワシ油、マグロ油、カツオ油等の魚油、鯨油等の海獣油が挙げられる。また市販されているDHA含有油脂を用いてもよい。
【0021】
反応に用いるリパーゼ量は、リパーゼの活性を考慮して適宜決定することができるが、分解する油脂重量に対して0.3〜30%、特に2〜15%が好ましい。また水の量は、分解する油脂重量に対して、10〜200%、特に20〜100%が好ましい。水は、蒸留水、イオン交換水、水道水、井戸水等いずれのものでも構わない。必要に応じて、リパーゼの安定性が維持できるようにpH3〜9の緩衝液を用いてもよい。
【0022】
反応温度は、リパーゼが失活せず、分解により生じた遊離脂肪酸が結晶とならない温度である20〜70℃、特に30〜50℃が好ましい。また反応は、空気との接触が出来るだけ回避されるように、不活性ガス存在下で行うことが望ましい。
【0023】
加水分解反応は、以下の式(1)で示される分解率によって管理し、所定の分解率に到達した時点で終了すればよい。分解率の上昇と共に、未分解のグリセリド中に蓄積されるPUFAの含有率が増大する。
【0024】
式(1): 分解率(%)=反応油の酸価(AV)/原料油のケン化価(SV)×100
【0025】
以上の分解反応で得られた反応油は、遊離脂肪酸、未分解のモノグリセリド、ジグリセリド及びトリグリセリドを含んでいる。これらの混合物から遊離脂肪酸を分離することで、PUFA高含有油脂を製造することができる。
【0026】
〔第二工程〕
第二工程においては、第一工程で得られたPUFA高含有油脂に対し、トリグリセリドに作用するリパーゼと部分グリセリドリパーゼの2種のリパーゼを作用させて加水分解を行う。これら2種のリパーゼは、同時にPUFA高含有油脂に作用させる必要があり、これにより、PUFA高含有脂肪酸が短時間に高分解率で、かつ高い収率で得られる。
【0027】
第二工程に使用するトリグリセリドに作用するリパーゼとしては、第一工程に用いたものと同様のものが挙げられる。
【0028】
第二工程に用いる他のリパーゼである部分グリセリドリパーゼは、モノグリセリド及びジグリセリドの部分グリセリドを加水分解するが、トリグリセリドを加水分解しないリパーゼである。部分グリセリドリパーゼとしては、ラット小腸、ブタ脂肪組織などの動物臓器由来のモノグリセリドリパーゼ又はジグリセリドリパーゼ;バチルス・スピーシーズ(Bacillus sp.)H-257由来モノグリセリドリパーゼ(J. Biochem., 127, 419-425, 2000)、シュードモナス・スピーシーズ(Pseudomonas sp.)LP7315由来モノグリセリドリパーゼ(Journal of Bioscience and Bioengineering, 91(1), 27-32, 2001)、ペニシリウム・サイクロピウム由来リパーゼ(J. Biochem, 87(1), 205-211, 1980)、ペニシリウム・カメンベルティ(Penicillium camembertii)U-150由来リパーゼ(J. Fermentation and Bioengineering, 72(3), 162-167, 1991)等が挙げられ、中でもペニシリウム(Penicillium)属由来のリパーゼが好ましい。市販品としては、例えば「リパーゼG「アマノ」50」(天野エンザイム社)等がある。
【0029】
これら2種のリパーゼとして、固定化リパーゼを使用することにより、PUFA高含有油脂の分解率を更に高めることができ、またリパーゼの使用量を低減することもできる。
【0030】
リパーゼの固定化に使用される固定化用担体は、第一工程で使用する固定化リパーゼと同様のものが好ましく、また、脂溶性脂肪酸又はその誘導体で前処理された固定化担体を使用することが好ましいのも、第一工程の固定化リパーゼと同様である。その他、トリグリセリドに作用するリパーゼの固定化条件は第一工程の固定化リパーゼと同様である。
【0031】
部分グリセリドリパーゼの固定化温度は、酵素の失活の起きない温度であればよく、0〜60℃、特に5〜45℃が好ましい。また固定化に用いる酵素水溶液のpHは、酵素の変性が起きないような範囲であればよく、pH3〜9が好ましい。特に至適pHが酸性とされているリパーゼを用いる場合に最大の活性を得るには、pH4〜6とするのがよい。また酵素水溶液に用いる緩衝液としては、一般的な酢酸緩衝液、リン酸緩衝液、トリス塩酸緩衝液等を用いることができる。酵素水溶液中の部分グリセリドリパーゼの濃度は、固定化効率の点から、該酵素の溶解度以下で、かつ十分な濃度であることが望ましい。また必要に応じて不溶部を遠心分離により除去し、上清を使用してもよい。また部分グリセリドリパーゼと固定化担体の使用割合は、固定化担体1重量部に対して、部分グリセリドリパーゼ0.05〜10重量部、特に0.1〜5重量部が好ましい。
【0032】
また、2種のリパーゼともに、固定化担体に吸着後、第一工程の固定化リパーゼと同様の方法により酵素水分量を低減させることが好ましい。
【0033】
第二工程の加水分解反応に用いるリパーゼ量は、それらの活性を考慮して適宜決定することができるが、トリグリセリドに作用するリパーゼ、部分グリセリドリパーゼのいずれも、PUFA高含有油脂重量に対して1〜30%、特に5〜15%が好ましい。また水の量は、PUFA高含有油脂重量に対して、10〜200%、特に20〜100%が好ましい。水は、蒸留水、イオン交換水、水道水、井戸水等いずれのものでも構わない。必要に応じて、リパーゼの安定性が維持できるようにpH3〜9の緩衝液を用いてもよい。
【0034】
反応温度は、リパーゼが失活せず、分解により生じた遊離脂肪酸が結晶とならない温度である20〜60℃、特に30〜50℃が好ましい。また反応は、空気との接触が出来るだけ回避されるように、不活性ガス存在下で行うことが望ましい。
【0035】
第二工程の加水分解反応も、前述の式(1)で示される分解率によって管理し、所定の分解率に到達した時点で終了すればよい。分解率の上昇と共に、PUFAを高濃度に含有する脂肪酸の生成が増大する。
【0036】
以上の分解反応で得られた反応油は、PUFA高含有油脂を含む脂肪酸混合物のほか、未分解のグリセリドを含んでいる。これらの混合物から脂肪酸成分を分取することで、PUFA高含有脂肪酸を得ることができる。すなわち、反応混合物からリパーゼ、グリセリン等を含む水相を除去した後、クロマトグラフィー、分子蒸留、液液分配、結晶分別、脱酸法等の公知の分別手段により、遊離脂肪酸画分を分取することにより、PUFA高含有脂肪酸が得られる。
【0037】
【実施例】
〔固定化酵素製造法〕
Duolite A-568(Rohm & Hass社製)10gを0.1mol/Lの水酸化ナトリウム水溶液100mL中で1時間攪拌した。その後、100mLの蒸留水で1時間洗浄し、500mMのリン緩衝液(pH7)100mLで2時間pHの平衡化を行った。その後50mMのリン緩衝液(pH7)100mLで2時間ずつ2回、pHの平衡化を行った。この後濾過を行い担体を回収した後、エタノール50mLでエタノール置換を30分間行った。濾過した後、リシノール酸を10g含むエタノール50mLを加え30分間、リシノール酸を担体に吸着させた。この後濾過し、担体を回収した後、50mMのリン緩衝液(pH7)50mLで4回洗浄し、エタノールを除去し、濾過して担体を回収した。その後市販のトリグリセリドに作用するリパーゼ(リパーゼAY「アマノ」30G,天野エンザイム社)の10%溶液200mLと4時間接触させ、固定化を行った。濾過し、固定化酵素を回収して、50mMの酢酸緩衝液(pH7)50mLで洗浄を行い、固定化していない酵素や蛋白を除去した。以上の操作はいずれも20℃で行った。固定化後の酵素液の残存活性と固定化前の酵素液の活性差より固定化率を求めたところ、95%であった。その後、菜種油40gを加え、40℃、2時間攪拌した後、濾過して菜種油と分離し、固定化酵素とした。こうして得られた固定化酵素を、使用前に実際に反応を行う基質であるPUFA含有油脂で洗浄した。
また、部分グリセリドリパーゼを固定化する場合には、上記リン緩衝液(pH7)の代わりに酢酸緩衝液(pH5)を用い、同様に担体の前処理を行った。処理後、市販の部分グリセリドリパーゼ(リパーゼG「アマノ」50,天野エンザイム社)の10%溶液と2時間接触させ、固定化を行った。洗浄後、大豆脂肪酸40gを加え、40℃下で減圧脱水を行った。その後、濾過して大豆脂肪酸と分離し、固定化酵素とした。こうして得られた固定化酵素を、使用前に実際に反応を行う基質であるPUFA含有油脂で洗浄した。
【0038】
〔第一工程〕
洗浄した固定化リパーゼAY(トリグリセリドに作用するリパーゼ)5g(乾燥重量)を100mL容の四つ口フラスコに秤量した。そこへマグロ脱酸油(DHA含有率22%)50gと蒸留水30gを添加し、窒素気流下で攪拌しながら40℃で78時間、反応を行った。反応液を遠心分離(5,000×g,30分)し、油相部の酸価(AV)を測定し、式(1)より分解率を算出した。分解率は73%であった。その後、油相部を分子蒸留して遊離脂肪酸を分離し、PUFA高含有油脂を得た。GCで脂肪酸分析を行ったところDHA含有率は46%であり、PUFAの比率が高められていた。
【0039】
実施例1
トリグリセリドに作用するリパーゼ(リパーゼAY「アマノ」30G,天野エンザイム社)と部分グリセリドリパーゼ(リパーゼG「アマノ」50,天野エンザイム社)各2gを100mL容の四つ口フラスコに秤量した。そこへ第一工程で得られたPUFA高含有油脂(DHA含有率46%)50gと蒸留水30gを添加し、窒素気流下で攪拌しながら40℃で71時間、反応を行った。その後、反応液を遠心分離(1,000×g,5分)し、油相部をTLCプレートに展開(展開溶媒:クロロホルム/アセトン/メタノール=93.5/4.5/2.0vol%)して各グリセリドに分画、酢酸エチルで溶離させ、脱溶剤後、GCで脂肪酸組成分析を行った。結果を表1に示す。
到達分解率は81.3%と高く、脂肪酸中のDHA含有率も45%と高かった。
【0040】
実施例2
洗浄した固定化リパーゼAY(トリグリセリドに作用するリパーゼ)と洗浄した固定化リパーゼG(部分グリセリドリパーゼ)各5g(乾燥重量)を100mL容の四つ口フラスコに秤量した。そこへ第一工程で得られたPUFA高含有油脂(DHA含有率46%)50gと蒸留水30gを添加し、窒素気流下で攪拌しながら40℃で68時間、反応を行った。
到達分解率は90.1%と高く、脂肪酸中のDHA含有率も46%と高かった。
【0041】
比較例1
トリグリセリドに作用するリパーゼ(リパーゼAY)2gを100mL容の四つ口フラスコに秤量した。そこへ第一工程で得られたPUFA高含有油脂(DHA含有率46%)50gと蒸留水30gを添加し、攪拌しながら40℃で71時間、反応を行った。
到達分解率は44.2%と低く、高分解率を達成できなかった。
【0042】
比較例2
部分グリセリドリパーゼ(リパーゼG)2gを100mL容の四つ口フラスコに秤量した。そこへ第一工程で得られたPUFA高含有油脂(DHA含有率46%)50gと蒸留水30gを添加し、窒素気流下で攪拌しながら40℃で71時間、反応を行った。
到達分解率は24.3%と低く、高分解率を達成できなかった。
【0043】
比較例3
トリグリセリドに作用するリパーゼ(リパーゼAY)2gを100mL容の四つ口フラスコに秤量した。そこへ第一工程で得られたPUFA高含有油脂(DHA含有率46%)50gと蒸留水30gを添加し、窒素気流下で攪拌しながら40℃で47時間、反応を行った。その後、部分グリセリドリパーゼ(リパーゼG)を2g添加し、さらに24時間(計71時間)反応を行った。
到達分解率は73.9%と低く、高分解率を達成できなかった。
【0044】
【表1】

Figure 0003893107
【0045】
【発明の効果】
本発明の製造方法によれば、PUFAを高濃度に含有する脂肪酸が、極めて効率よく高い収率で得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a fatty acid containing a highly unsaturated fatty acid at a high concentration in a short time with a high decomposition rate and a high yield.
[0002]
[Prior art]
In recent years, bioactivity of polyunsaturated fatty acids (PUFA) such as arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid (DHA) has attracted attention. In particular, DHA has the effect of inhibiting platelet aggregation, lowering blood triglycerides, It is known to have an effect of lowering mid-cholesterol, an anticancer effect, an improvement of brain function, and the like. For this reason, the industrial production method of fats and oils rich in PUFA has been energetically researched and developed. As a representative method, many methods for concentrating PUFA to the glyceride side by cleaving fatty acids other than PUFA using the fatty acid selectivity of lipase have been reported.
[0003]
On the other hand, producing PUFA itself as a free acid or a fatty acid containing this in a high concentration, not as a PUFA-rich glyceride, is also important for use in drug development. In this case as well, PUFA-containing fats and oils are hydrolyzed by lipase, but there are limitations in terms of degradation rate and PUFA concentration by ordinary means. For this reason, a technique for achieving a high decomposition rate and a high PUFA concentration by using two kinds of lipases has been proposed. For example, by using a lipase having triglyceride position selectivity and a lipase not having triglyceride position selectivity for the hydrolysis of PUFA, the hydrolysis rate is increased, and a fatty acid having a high yield and a high neutralization value is obtained. (See Patent Document 1), DHA-containing fats and oils are hydrolyzed using lipases derived from the genus Candida to obtain fats and oils with high DHA content, and then hydrolyzed using lipases derived from the genus Penicillium. However, there is a method of fractionating fatty acids containing DHA at a high concentration (see Patent Document 2).
[0004]
However, the method of Patent Document 1 has a problem that the PUFA content in the raw oil and fat is low, and the PUFA concentration in the fatty acid remains low even when the decomposition rate is increased. In the method of Patent Document 2, since the lipase used in the second hydrolysis is a so-called partial glyceride lipase that acts on monoglyceride or diglyceride but does not act on triglyceride, it is concentrated on triglyceride. There is a problem that DHA cannot be used and a high yield cannot be obtained.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 60-130396 [Patent Document 2]
Japanese Patent Laid-Open No. 07-51075 [0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for producing a fatty acid containing a highly unsaturated fatty acid at a high concentration in a short time with a high decomposition rate and a high yield.
[0007]
[Means for Solving the Problems]
The present inventor hydrolyzes PUFA-containing fats and oils using lipase, separates free fatty acids to obtain high-PUFA-containing fats and oils, and further hydrolyzes them by simultaneously acting two specific lipases. As a result, it has been found that fatty acids containing PUFA in high concentration can be obtained very efficiently and in high yield.
[0008]
That is, the present invention provides a method for producing a PUFA-rich fatty acid comprising the following first step and second step.
[0009]
First step: A step of allowing a lipase that acts on triglycerides to act on a PUFA-containing fat and oil to hydrolyze, then separating free fatty acids to obtain a fat having an increased PUFA ratio.
Second step: A step of obtaining a fatty acid containing PUFA at a high concentration by hydrolyzing a lipase acting on triglyceride and a partial glyceride lipase simultaneously on the high fat content of PUFA obtained in the first step. [0011]
The polyunsaturated fatty acid (PUFA) referred to in the present invention means a fatty acid having 20 or more carbon atoms having 3 or more double bonds. Specifically, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), arachidonic acid (AA) and the like are preferable.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
[First step]
As the lipase used in the first step of the method of the present invention, a commercially available product can be used, but by fixing, the concentration rate of the PUFA-containing fat can be further increased, and the use of the lipase. The amount can also be reduced. Immobilized lipase is produced as follows.
[0013]
The carrier for immobilization used for immobilizing lipase is an inorganic carrier such as celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics; cellulose powder, polyvinyl alcohol, polypropylene, Examples thereof include organic polymers such as chitosan, ion exchange resin, hydrophobic adsorption resin, chelate resin, and synthetic adsorption resin. Anion exchange resins, particularly porous anion exchange resins are preferred. Since such a porous carrier has a large surface area, a larger amount of enzyme adsorbed can be obtained. The particle diameter of the resin is preferably 100 to 1000 μm, and the pore diameter is preferably 100 to 1500 mm. Examples of the material include phenol formaldehyde, polystyrene, acrylamide, divinylbenzene, and the like, and phenol formaldehyde resin (for example, Duolite A-568 manufactured by Rohm and Hass) is particularly preferable.
[0014]
Examples of lipases that act on triglycerides include the genus Candida, the genus Mucor, the genus Rhizopus, the genus Aspergillus, the genus Pseudomonas, and the genus Alcaligenes. Those derived from the genus Candida are particularly preferred. The amount of lipase used is 5 to 100%, particularly 10 to 50%, based on the weight of the carrier. At the time of immobilization, the lipase is in a solution state, but may be in a range that does not cause denaturation of the enzyme, and is preferably adjusted to pH 3 to 9 with a buffer solution. Moreover, the temperature at the time of immobilization is 0-60 degreeC, Especially 5-45 degreeC is preferable.
[0015]
After immobilizing the lipase, it is contacted with a fatty acid triglyceride or a fatty acid partial glyceride. Fatty acid triglycerides and fatty acid partial glycerides to be contacted with the immobilized lipase include vegetable liquid oils such as rapeseed oil, soybean oil, sunflower oil, fish oil such as sardine oil, tuna oil, bonito oil, sea animal oil such as whale oil, etc. Derived monoglycerides and diglycerides, mixtures thereof, and transesterified oils and fats obtained from these fats and oils can also be used. Two or more of these may be used in combination. The amount of fatty acid glyceride used is 100 to 3000%, particularly 250 to 2000% with respect to the weight of the carrier from the viewpoint of sufficient contact with the immobilized lipase and avoiding waste due to use of an excessive amount. preferable. The contact method may be any method such as immersion, stirring, or passing through a column filled with the immobilized enzyme with a pump or the like. The contact temperature is preferably 5 to 40 ° C., and the contact time is preferably 2 to 48 hours. When the contact is over, the mixture is filtered to recover the immobilized lipase. By such treatment, hydrolysis of fatty acid glycerides occurs, so that residual moisture in the immobilized lipase is consumed, and the amount of enzyme moisture can be reduced. Thus, it is considered that excess moisture is removed while maintaining moisture capable of maintaining the structure of the lipase, and the vicinity of the lipase is in a state suitable for the reaction. The above treatment is preferably carried out so that the water content of the immobilized lipase after filtration and recovery is in the range of 20 to 100%, particularly 40 to 70%, relative to the weight of the carrier.
[0016]
This immobilized lipase, unlike the immobilized lipase obtained by the usual preparation method through vacuum or reduced pressure drying, does not cause inactivation, but the high ultimate decomposition rate of fats and oils is the same as the high enzyme activity. Since it is irrelevant, it is surprising that a high decomposition rate as in the present invention can be obtained. As a result, even if oil and fat with a low PUFA content such as fish oil itself is used as a raw material, it can be directly subjected to hydrolysis without pretreatment to increase the PUFA content to some extent by wintering etc. Thus, the content of PUFA accumulated in glycerides can be increased to a level that has not been possible in the past.
[0017]
In order to increase the activity of the immobilized lipase, a treatment for adsorbing a fat-soluble fatty acid or a derivative thereof to a carrier in advance may be performed before the lipase is immobilized. Examples of the fat-soluble fatty acid to be used include saturated or unsaturated, linear or branched fatty acids having 8 to 18 carbon atoms, which may be substituted with a hydroxyl group. Specifically, capric acid, lauric acid, myristylic acid, oleic acid, linoleic acid, α-linolenic acid, ricinoleic acid, isostearic acid and the like can be mentioned. Examples of the derivatives include esters of these fatty acids with mono- or polyhydric alcohols, phospholipids, and derivatives obtained by adding ethylene oxide to these esters. Specific examples include methyl esters, ethyl esters, monoglycerides, diglycerides, ethylene oxide adducts thereof, polyglycerin esters, sorbitan esters, and sucrose esters of the above fatty acids. Two or more of these fat-soluble fatty acids or derivatives thereof may be used in combination.
[0018]
As a method for contacting these fat-soluble fatty acids or derivatives thereof and the carrier, these may be added directly to water or an organic solvent, but in order to improve dispersibility, the fat-soluble fatty acids or derivatives thereof are once dispersed in the organic solvent. After dissolution, it may be added to a carrier dispersed in water. Examples of the organic solvent include chloroform, hexane, ethanol, and the like. The amount of the fat-soluble fatty acid or derivative thereof used is preferably 1 to 500%, particularly preferably 10 to 200%, based on the weight of the carrier. The contact temperature is preferably 0 to 100 ° C., particularly preferably 20 to 60 ° C., and the contact time is preferably about 5 minutes to 5 hours. The carrier after this treatment may be dried. The drying temperature is preferably room temperature to 100 ° C, and drying under reduced pressure may be performed.
[0019]
In the first step, the lipase or the immobilized lipase is allowed to act on the PUFA-containing fat and oil for hydrolysis, and then free fatty acids are separated to produce a high-PUFA containing fat. As a specific embodiment of the reaction, a method of adding a lipase or an immobilized lipase to a PUFA-containing oil and fat, further adding water, and performing a hydrolysis reaction while stirring at a constant temperature, an immobilized lipase is added to a column (fixed bed). ), And a mixture of PUFA-containing fats and water is circulated through it.
[0020]
The PUFA-containing fat used for the hydrolysis may be any of triglycerides, diglycerides, monoglycerides and mixtures thereof containing PUFA such as DHA as part of the constituent fatty acids. In general, fish oil such as sardine oil, tuna oil and bonito oil, and sea animal oil such as whale oil can be mentioned. Commercially available DHA-containing fats and oils may also be used.
[0021]
The amount of lipase used in the reaction can be appropriately determined in consideration of the activity of lipase, but is preferably 0.3 to 30%, particularly preferably 2 to 15%, based on the weight of fats and oils to be decomposed. The amount of water is preferably 10 to 200%, particularly 20 to 100%, based on the weight of the fats and oils to be decomposed. The water may be any of distilled water, ion exchange water, tap water, well water and the like. If necessary, a buffer solution having a pH of 3 to 9 may be used so that the stability of the lipase can be maintained.
[0022]
The reaction temperature is preferably 20 to 70 ° C., particularly 30 to 50 ° C., which is a temperature at which the lipase is not deactivated and free fatty acids generated by decomposition do not become crystals. The reaction is desirably performed in the presence of an inert gas so that contact with air is avoided as much as possible.
[0023]
The hydrolysis reaction is managed by the decomposition rate represented by the following formula (1), and may be terminated when a predetermined decomposition rate is reached. As the degradation rate increases, the content of PUFA accumulated in undegraded glycerides increases.
[0024]
Formula (1): Decomposition rate (%) = acid value of reaction oil (AV) / saponification value of feedstock (SV) x 100
[0025]
The reaction oil obtained by the above decomposition reaction contains free fatty acids, undecomposed monoglycerides, diglycerides and triglycerides. By separating free fatty acids from these mixtures, it is possible to produce oils with high PUFA content.
[0026]
[Second step]
In the second step, the PUFA-rich oil obtained in the first step is hydrolyzed by acting two types of lipases, lipase acting on triglyceride and partial glyceride lipase. These two kinds of lipases need to act on oils and fats with a high PUFA content at the same time, so that a fatty acid with a high content of PUFA can be obtained in a high yield in a short time with a high decomposition rate.
[0027]
Examples of the lipase acting on the triglyceride used in the second step include the same lipases as those used in the first step.
[0028]
Partial glyceride lipase, which is another lipase used in the second step, is a lipase that hydrolyzes partial glycerides of monoglycerides and diglycerides but does not hydrolyze triglycerides. Partial glyceride lipase includes monoglyceride lipase or diglyceride lipase derived from animal organs such as rat small intestine and porcine adipose tissue; monoglyceride lipase derived from Bacillus sp. H-257 (J. Biochem., 127, 419-425, 2000), monoglyceride lipase derived from Pseudomonas sp. LP7315 (Journal of Bioscience and Bioengineering, 91 (1), 27-32, 2001), lipase derived from Penicillium cyclopium (J. Biochem, 87 (1), 205) -211, 1980), Penicillium camembertii U-150-derived lipase (J. Fermentation and Bioengineering, 72 (3), 162-167, 1991), etc., among which Penicillium (Penicillium) genus Lipase is preferred. Examples of commercially available products include “Lipase G“ Amano ”50” (Amano Enzyme).
[0029]
By using immobilized lipase as these two kinds of lipases, the degradation rate of oils with high PUFA content can be further increased, and the amount of lipase used can be reduced.
[0030]
The immobilization carrier used for immobilizing the lipase is preferably the same as the immobilization lipase used in the first step, and an immobilization carrier pretreated with a fat-soluble fatty acid or a derivative thereof should be used. Is also the same as the immobilized lipase in the first step. In addition, the immobilization conditions for the lipase acting on the triglyceride are the same as the immobilization lipase in the first step.
[0031]
The immobilization temperature of the partial glyceride lipase may be any temperature that does not cause enzyme inactivation, and is preferably 0 to 60 ° C, particularly preferably 5 to 45 ° C. The pH of the aqueous enzyme solution used for immobilization may be in a range that does not cause denaturation of the enzyme, and is preferably pH 3-9. In particular, when using a lipase whose optimum pH is acidic, the pH should be 4 to 6 in order to obtain the maximum activity. Moreover, as a buffer solution used for the enzyme aqueous solution, a general acetate buffer solution, phosphate buffer solution, Tris-HCl buffer solution, or the like can be used. The concentration of the partial glyceride lipase in the enzyme aqueous solution is desirably a sufficient concentration that is not more than the solubility of the enzyme from the viewpoint of immobilization efficiency. If necessary, the insoluble part may be removed by centrifugation, and the supernatant may be used. Moreover, the use ratio of the partial glyceride lipase and the immobilized carrier is preferably 0.05 to 10 parts by weight, particularly preferably 0.1 to 5 parts by weight, with respect to 1 part by weight of the immobilized carrier.
[0032]
In addition, it is preferable to reduce the enzyme water content by the same method as the immobilized lipase in the first step after adsorbing to the immobilized carrier for both of the two lipases.
[0033]
The amount of lipase used for the hydrolysis reaction in the second step can be appropriately determined in consideration of their activities, but both lipase acting on triglycerides and partial glyceride lipase are 1 with respect to the weight of fat with high PUFA content. -30%, especially 5-15% is preferred. Further, the amount of water is preferably 10 to 200%, particularly preferably 20 to 100%, based on the weight of the fat with high PUFA content. The water may be any of distilled water, ion exchange water, tap water, well water and the like. If necessary, a buffer solution having a pH of 3 to 9 may be used so that the stability of the lipase can be maintained.
[0034]
The reaction temperature is preferably 20 to 60 ° C., particularly 30 to 50 ° C., which is a temperature at which the lipase is not deactivated and free fatty acids generated by decomposition do not become crystals. The reaction is desirably performed in the presence of an inert gas so that contact with air is avoided as much as possible.
[0035]
The hydrolysis reaction in the second step is also controlled by the decomposition rate represented by the above formula (1), and may be terminated when the predetermined decomposition rate is reached. As the degradation rate increases, the production of fatty acids containing high concentrations of PUFA increases.
[0036]
The reaction oil obtained by the above decomposition reaction contains undegraded glycerides in addition to a fatty acid mixture containing high PUFA content fats and oils. By separating the fatty acid component from these mixtures, it is possible to obtain a PUFA-rich fatty acid. That is, after removing the aqueous phase containing lipase, glycerin, etc. from the reaction mixture, the free fatty acid fraction is fractionated by known fractionation means such as chromatography, molecular distillation, liquid-liquid distribution, crystal fractionation, deoxidation method and the like. As a result, a PUFA-rich fatty acid can be obtained.
[0037]
【Example】
[Immobilized enzyme production method]
10 g of Duolite A-568 (Rohm & Hass) was stirred in 100 mL of 0.1 mol / L sodium hydroxide aqueous solution for 1 hour. Then, it was washed with 100 mL of distilled water for 1 hour, and equilibrated with 100 mL of 500 mM phosphorus buffer (pH 7) for 2 hours. Thereafter, the pH was equilibrated with 100 mL of 50 mM phosphorus buffer (pH 7) twice for 2 hours. Thereafter, filtration was performed to recover the carrier, followed by ethanol replacement with 50 mL of ethanol for 30 minutes. After filtration, 50 mL of ethanol containing 10 g of ricinoleic acid was added and ricinoleic acid was adsorbed on the carrier for 30 minutes. Thereafter, the carrier was recovered by filtration, and then washed four times with 50 mL of 50 mM phosphorus buffer (pH 7), ethanol was removed, and the carrier was recovered by filtration. Thereafter, the mixture was contacted with 200 mL of a 10% solution of lipase (Lipase AY “Amano” 30G, Amano Enzyme) acting on a commercially available triglyceride for 4 hours for immobilization. After filtration, the immobilized enzyme was recovered and washed with 50 mL of 50 mM acetate buffer (pH 7) to remove unimmobilized enzyme and protein. All the above operations were performed at 20 ° C. The immobilization rate was found to be 95% from the difference between the residual activity of the enzyme solution after immobilization and the activity difference between the enzyme solution before immobilization. Thereafter, 40 g of rapeseed oil was added and stirred at 40 ° C. for 2 hours, followed by filtration to separate from rapeseed oil to obtain an immobilized enzyme. The immobilized enzyme thus obtained was washed with a PUFA-containing oil and fat which is a substrate that actually performs the reaction before use.
When immobilizing the partial glyceride lipase, the carrier was pretreated in the same manner using an acetate buffer (pH 5) instead of the phosphorus buffer (pH 7). After the treatment, the mixture was contacted with a 10% solution of a commercially available partial glyceride lipase (Lipase G “Amano” 50, Amano Enzyme) for 2 hours for immobilization. After washing, 40 g of soybean fatty acid was added, and dehydration under reduced pressure was performed at 40 ° C. Then, it filtered and isolate | separated from soybean fatty acid, and it was set as the fixed enzyme. The immobilized enzyme thus obtained was washed with a PUFA-containing oil and fat which is a substrate that actually performs the reaction before use.
[0038]
[First step]
5 g (dry weight) of the washed immobilized lipase AY (lipase acting on triglyceride) was weighed into a 100 mL four-necked flask. Thereto, 50 g of tuna deoxidized oil (DHA content 22%) and 30 g of distilled water were added, and the reaction was carried out at 40 ° C. for 78 hours with stirring under a nitrogen stream. The reaction solution was centrifuged (5,000 × g, 30 minutes), the acid value (AV) of the oil phase was measured, and the decomposition rate was calculated from equation (1). The decomposition rate was 73%. Thereafter, the oil phase part was subjected to molecular distillation to separate free fatty acids to obtain oils with high PUFA content. When fatty acid analysis was performed by GC, the DHA content was 46%, and the PUFA ratio was increased.
[0039]
Example 1
2 g each of lipase (lipase AY “Amano” 30G, Amano Enzyme) acting on triglyceride and partial glyceride lipase (Lipase G “Amano” 50, Amano Enzyme) were weighed in a 100 mL four-necked flask. Thereto were added 50 g of PUFA-rich oil (DHA content 46%) obtained in the first step and 30 g of distilled water, and the reaction was carried out at 40 ° C. for 71 hours while stirring under a nitrogen stream. Thereafter, the reaction solution is centrifuged (1,000 × g, 5 minutes), and the oil phase is developed on a TLC plate (developing solvent: chloroform / acetone / methanol = 93.5 / 4.5 / 2.0 vol%) and fractionated into each glyceride. After elution with ethyl acetate, the solvent was removed and the fatty acid composition was analyzed by GC. The results are shown in Table 1.
The ultimate decomposition rate was as high as 81.3%, and the DHA content in the fatty acid was also high as 45%.
[0040]
Example 2
Washed immobilized lipase AY (lipase acting on triglyceride) and washed immobilized lipase G (partial glyceride lipase) 5 g (dry weight) each were weighed into a 100 mL four-necked flask. Thereto were added 50 g of PUFA-rich oil (DHA content 46%) obtained in the first step and 30 g of distilled water, and the reaction was carried out at 40 ° C. for 68 hours with stirring under a nitrogen stream.
The ultimate degradation rate was as high as 90.1%, and the DHA content in fatty acids was also as high as 46%.
[0041]
Comparative Example 1
2 g of lipase (lipase AY) acting on triglyceride was weighed into a 100 mL four-necked flask. Thereto were added 50 g of PUFA-rich oil (DHA content 46%) obtained in the first step and 30 g of distilled water, and the reaction was carried out at 40 ° C. for 71 hours while stirring.
The ultimate decomposition rate was as low as 44.2%, and a high decomposition rate could not be achieved.
[0042]
Comparative Example 2
2 g of partial glyceride lipase (Lipase G) was weighed into a 100 mL four-necked flask. Thereto were added 50 g of PUFA-rich oil (DHA content 46%) obtained in the first step and 30 g of distilled water, and the reaction was carried out at 40 ° C. for 71 hours while stirring under a nitrogen stream.
The ultimate decomposition rate was as low as 24.3%, and a high decomposition rate could not be achieved.
[0043]
Comparative Example 3
2 g of lipase (lipase AY) acting on triglyceride was weighed into a 100 mL four-necked flask. Thereto were added 50 g of PUFA-rich oil (DHA content 46%) obtained in the first step and 30 g of distilled water, and the reaction was carried out at 40 ° C. for 47 hours with stirring under a nitrogen stream. Thereafter, 2 g of partial glyceride lipase (lipase G) was added, and the reaction was further carried out for 24 hours (a total of 71 hours).
The ultimate decomposition rate was as low as 73.9%, and a high decomposition rate could not be achieved.
[0044]
[Table 1]
Figure 0003893107
[0045]
【The invention's effect】
According to the production method of the present invention, a fatty acid containing a high concentration of PUFA can be obtained very efficiently and in a high yield.

Claims (4)

次の第一工程及び第二工程を含む高度不飽和脂肪酸高含有脂肪酸の製造方法。
第一工程:トリグリセリドに作用するリパーゼを高度不飽和脂肪酸含有油脂に作用させて加水分解した後、遊離脂肪酸を分離し、高度不飽和脂肪酸の比率を高めた油脂を得る工程
第二工程:第一工程で得られた高度不飽和脂肪酸高含有油脂に対し、トリグリセリドに作用するリパーゼと、部分グリセリドリパーゼを同時に作用させて加水分解することにより、高度不飽和脂肪酸を高濃度に含有する脂肪酸を得る工程
The manufacturing method of the highly unsaturated fatty acid high content fatty acid containing the following 1st process and 2nd process.
1st process: After making lipase which acts on a triglyceride act on highly unsaturated fatty acid fats and oils and hydrolyzing, it isolate | separates a free fatty acid and obtains the fats and oils which raised the ratio of highly unsaturated fatty acids 2nd process: 1st A process for obtaining a fatty acid containing a highly unsaturated fatty acid at a high concentration by hydrolyzing a glyceride lipase that acts on triglycerides and a partial glyceride lipase on the highly unsaturated fatty acid-rich oil obtained in the process.
第一工程で用いるリパーゼが、固定化リパーゼである請求項1記載の製造方法。  The production method according to claim 1, wherein the lipase used in the first step is an immobilized lipase. 第二工程で用いる2種のリパーゼが、固定化リパーゼである請求項1又は2記載の製造方法。Two lipases used in the second step, the manufacturing method of Ah Ru請 Motomeko 1 or 2, wherein an immobilized lipase. 固定化リパーゼが、脂溶性脂肪酸又はその誘導体で前処理された固定化担体にリパーゼを固定化したものである請求項2又は3記載の製造方法。  The production method according to claim 2 or 3, wherein the immobilized lipase is obtained by immobilizing lipase on an immobilization carrier pretreated with a fat-soluble fatty acid or a derivative thereof.
JP2002380545A 2002-12-27 2002-12-27 Method for producing fatty acid Expired - Fee Related JP3893107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380545A JP3893107B2 (en) 2002-12-27 2002-12-27 Method for producing fatty acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380545A JP3893107B2 (en) 2002-12-27 2002-12-27 Method for producing fatty acid

Publications (2)

Publication Number Publication Date
JP2004208546A JP2004208546A (en) 2004-07-29
JP3893107B2 true JP3893107B2 (en) 2007-03-14

Family

ID=32816733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380545A Expired - Fee Related JP3893107B2 (en) 2002-12-27 2002-12-27 Method for producing fatty acid

Country Status (1)

Country Link
JP (1) JP3893107B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719476B2 (en) * 2005-02-04 2011-07-06 花王株式会社 Fat hydrolysis method
KR101546885B1 (en) * 2009-07-17 2015-08-24 한국과학기술원 Method for Preparing Fatty Acid Alkylester Using a Microorganism Capable of Producing Oil
JP6715586B2 (en) * 2015-10-13 2020-07-01 花王株式会社 Method for producing highly unsaturated fatty acid
JP6990019B2 (en) * 2016-10-26 2022-01-12 花王株式会社 Method for producing fatty acids
US11840714B2 (en) 2018-09-04 2023-12-12 Nissui Corporation Enriching DHA in glyceride fractions

Also Published As

Publication number Publication date
JP2004208546A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP6715586B2 (en) Method for producing highly unsaturated fatty acid
JP5242230B2 (en) Method for producing immobilized enzyme
KR100944071B1 (en) Production process of diglycerides
US8415124B2 (en) Method for producing an immobilized enzyme for hydrolyzing fats and oils
JP3893107B2 (en) Method for producing fatty acid
JP3929890B2 (en) Method for producing diglyceride
JP3813585B2 (en) Method for producing diglyceride
JP6645804B2 (en) Manufacturing method of structural fats and oils
JP2012034622A (en) Method for producing fat and oil with high diacylglycerol content
JP4012117B2 (en) Method for producing immobilized enzyme
JP3813584B2 (en) Method for producing diglyceride
JP7092460B2 (en) Manufacturing method of structural fats and oils
JP3847729B2 (en) Method for producing docosahexaenoic acid-rich oil
JP4694938B2 (en) Method for producing fatty acids
JP5527983B2 (en) Process for producing docosahexaenoic acid-rich oil
JP2021073951A (en) Method for producing high-diacylglycerol-content oil and fat
JP2019054738A (en) Production method of fatty acids
JP3037349B2 (en) Enzyme-immobilizing carrier and method for producing immobilized enzyme
JP3893106B2 (en) Method for producing diglyceride
JP4616755B2 (en) Method for producing immobilized enzyme
JP4971018B2 (en) Process for producing diacylglycerol-containing fats and oils having branched fatty acids
JP2019010014A (en) Methods for producing diacylglycerol rich oil or fat
JP2018068166A (en) Methods for producing fatty acids
JP2000166589A (en) Esterification reaction process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061208

R151 Written notification of patent or utility model registration

Ref document number: 3893107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees