JP2008253196A - Method for producing fatty acids - Google Patents

Method for producing fatty acids Download PDF

Info

Publication number
JP2008253196A
JP2008253196A JP2007099538A JP2007099538A JP2008253196A JP 2008253196 A JP2008253196 A JP 2008253196A JP 2007099538 A JP2007099538 A JP 2007099538A JP 2007099538 A JP2007099538 A JP 2007099538A JP 2008253196 A JP2008253196 A JP 2008253196A
Authority
JP
Japan
Prior art keywords
fatty acids
fatty acid
enzyme
mass
oils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007099538A
Other languages
Japanese (ja)
Inventor
Minoru Kase
実 加瀬
Toshiteru Komatsu
利照 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007099538A priority Critical patent/JP2008253196A/en
Publication of JP2008253196A publication Critical patent/JP2008253196A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing fatty acids, having slight color and proper appearance by which both of low-trans unsaturated fatty acids and low-saturated fatty acids are produced by hydrolyzing oils and fats and carrying out natural classification. <P>SOLUTION: The method for producing the fatty acids, by hydrolyzing the oils and fats and subjecting the product to the natural classification includes partially hydrolyzing the oils and fats by using an immobilized enzyme obtained by immobilizing the enzyme on a carrier, further, hydrolyzing the product by high-temperature and high-pressure hydrolysis, and subjecting the product to natural classification. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、油脂を加水分解後に自然分別することによる脂肪酸類の製造方法に関する。   The present invention relates to a method for producing fatty acids by natural separation of fats and oils after hydrolysis.

脂肪酸類は、モノグリセリド、ジグリセリド等の食品の中間原料や、その他各種の工業製品の添加剤、中間原料として広く利用されている。かかる脂肪酸類は、一般に、菜種油、大豆油等の植物油や牛脂等の動物油を高圧法や酵素分解法により加水分解することにより製造されている。   Fatty acids are widely used as intermediate raw materials for foods such as monoglycerides and diglycerides, additives for various other industrial products, and intermediate raw materials. Such fatty acids are generally produced by hydrolyzing vegetable oils such as rapeseed oil and soybean oil and animal oils such as beef tallow by a high pressure method or an enzymatic decomposition method.

ところが、上記のように動植物油を単に加水分解して製造された脂肪酸類は、そのままの脂肪酸組成では産業上の素原料として必ずしも好適なものではない。すなわち、利用の目的によって、低トランス不飽和脂肪酸、かつ、所望の色相、脂肪酸組成にすることが必要となる。   However, the fatty acids produced by simply hydrolyzing animal and vegetable oils as described above are not necessarily suitable as industrial raw materials with the same fatty acid composition. That is, depending on the purpose of use, it is necessary to have a low trans unsaturated fatty acid, a desired hue, and a fatty acid composition.

脂肪酸類の製造は、油脂を加水分解することにより行われている。油脂を加水分解する方法は、高温高圧分解法と(特許文献1)、酵素分解法(特許文献2)が行われている。前者は、高温及び高圧条件下で行うもので、生産性が高いという利点を有するが、原料に不飽和脂肪酸の多いものを使用すると、条件によってはトランス不飽和脂肪酸を多く生成する場合がある。一方、後者はリパーゼ等の酵素を触媒とし、反応は0〜70℃という低温で行われるため、トランス不飽和脂肪酸を生成することはないが、高温高圧分解法に比べて生産性が低い。   Fatty acids are produced by hydrolyzing fats and oils. As a method for hydrolyzing fats and oils, a high-temperature and high-pressure decomposition method (Patent Document 1) and an enzymatic decomposition method (Patent Document 2) are performed. The former is carried out under high temperature and high pressure conditions, and has the advantage of high productivity. However, if a raw material having a lot of unsaturated fatty acids is used, a large amount of trans unsaturated fatty acids may be produced depending on the conditions. On the other hand, the latter uses an enzyme such as lipase as a catalyst, and the reaction is carried out at a low temperature of 0 to 70 ° C., so that it does not produce a trans-unsaturated fatty acid, but is less productive than the high-temperature and high-pressure decomposition method.

また、高温高圧分解法においては、反応当初に分解が開始されるまでの誘導期間が存在するが、当該誘導時間をなくす又は短縮するために、まずグリセリドを1,3位特異性リパーゼを用い、酵素分解法により部分加水分解して部分分解グリセリドを調製し、その後、高温高圧分解法を行うという技術も存在する(特許文献3)。   Further, in the high-temperature and high-pressure decomposition method, there is an induction period until decomposition starts at the beginning of the reaction, but in order to eliminate or shorten the induction time, first, glyceride is used with a 1,3-position specific lipase, There is also a technique in which a partially hydrolyzed glyceride is prepared by partial hydrolysis by an enzymatic decomposition method, and then a high temperature high pressure decomposition method is performed (Patent Document 3).

更に、所望の脂肪酸組成を得るためには調整が必要となる。一般に、脂肪酸類の分別には、溶剤分別法、湿潤剤分別法が採用されているが、これらの方法は分離効率(収率)は高いものの、設備投資、溶剤や水溶液の回収等のランニングコストがかかるという問題を有している。これに対し、溶剤を使用しない自然分別法(無溶剤法)は、安価な分別法であり、問題点とされていた濾過速度の低下等についても、ポリグリセリン脂肪酸エステル等の乳化剤を使用することにより解決が図られている(特許文献4)。   Furthermore, adjustment is required to obtain the desired fatty acid composition. Generally, solvent fractionation and wetting agent fractionation methods are used for the separation of fatty acids, but these methods have high separation efficiency (yield), but they require running costs such as capital investment and recovery of solvents and aqueous solutions. Has the problem of taking. On the other hand, the natural separation method (solvent-free method) without using a solvent is an inexpensive separation method, and an emulsifier such as polyglycerin fatty acid ester should be used for a decrease in filtration speed, which has been regarded as a problem. (Patent Document 4).

特開2003−113395号公報JP 2003-113395 A 特開2000−160188号公報JP 2000-160188 A 特表平8−507917号公報Japanese National Patent Publication No. 8-507917 特開平11−106782号公報JP-A-11-106782

近年、世界的に食用油について、健康面に及ぼす影響が着目されており、トランス不飽和脂肪酸、飽和脂肪酸は、LDL(悪玉)コレステロール値を上昇させ、冠状動脈性心臓疾患のリスクを増大させることが、科学的に裏付けられている。アメリカでは、約1300万人が冠状動脈性心臓疾患にかかっており、毎年、50万人以上が冠状動脈性心臓疾患関連で死亡している。このような状況下で、米国では“Nutrition Facts”(栄養表示)に、従来の脂質、飽和脂肪酸、コレステロールに加え、トランス不飽和脂肪酸含量の表示を義務化することとなった。また、デンマークでは、2004年より食用油のトランス不飽和脂肪酸濃度を2.0質量%以下とすることを法制化し、EU諸国全体へ波及することは必至である。このように、食用油のトランス不飽和脂肪酸、飽和脂肪酸の低減が世界的に望まれている。   In recent years, the effects of edible oils on health have attracted attention worldwide, and trans-unsaturated fatty acids and saturated fatty acids increase LDL (bad) cholesterol levels and increase the risk of coronary heart disease. But it is scientifically supported. In the United States, approximately 13 million people suffer from coronary heart disease, and more than 500,000 die from coronary heart disease each year. Under these circumstances, in the United States, “Nutrition Facts” (nutritional labeling) is required to label the content of trans-unsaturated fatty acids in addition to conventional lipids, saturated fatty acids and cholesterol. In Denmark, it is inevitable that the trans-unsaturated fatty acid concentration of edible oil will be 2.0% by mass or less from 2004, and that it will spread throughout the EU countries. As described above, reduction of trans-unsaturated fatty acids and saturated fatty acids in edible oil is desired worldwide.

脱臭工程を省略した未脱臭の原料油脂は、構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下であり、これを酵素分解法により加水分解を行えば、トランス不飽和脂肪酸の含量が上昇することはない。しかし、原料由来の色がそのまま残るため、得られる脂肪酸類としては外観が悪い。また、得られた脂肪酸類を自然分別すると、飽和脂肪酸が除去され、液体部の不飽和脂肪酸の濃度が高まる。しかし、酵素分解法のみによる加水分解だと、炭素数18以下のパルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸などの脂肪酸は加水分解され易いが、炭素数20以上のアラキジン酸、ベヘン酸、リグノセリン酸等の長鎖脂肪酸は加水分解され難く、グリセリドとして残存するため、自然分別を行っても液体部中に飽和脂肪酸であるアラキジン酸、ベヘン酸、リグノセリン酸を含有したグリセリドが多く残ることが判明した。   Undeodorized raw material fat and oil that omits the deodorizing step has a trans-unsaturated fatty acid content in the constituent fatty acid of 1.5% by mass or less. It will not rise. However, since the color derived from the raw material remains as it is, the appearance of the fatty acids obtained is poor. Moreover, when the obtained fatty acids are fractionated naturally, saturated fatty acids are removed and the concentration of unsaturated fatty acids in the liquid part increases. However, in the case of hydrolysis only by the enzymatic decomposition method, fatty acids such as palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid having 18 or less carbon atoms are easily hydrolyzed, but arachidic acid and behen having 20 or more carbon atoms are easily hydrolyzed. Since long-chain fatty acids such as acids and lignoceric acid are hardly hydrolyzed and remain as glycerides, many glycerides containing arachidic acid, behenic acid, and lignoceric acid that are saturated fatty acids remain in the liquid portion even after natural fractionation. It has been found.

一方、高温高圧分解法のみにより加水分解して得た脂肪酸類は、着色成分が分解されることにより良好な外観となり、また、酵素分解法ほど脂肪酸に対する基質選択性はなく、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキジン酸、ベヘン酸、リグノセリン酸等が万遍なく加水分解されるため、自然分別を行うことにより液体部中のアラキジン酸、ベヘン酸、リグノセリン酸は減少する。しかし、構成脂肪酸中のトランス不飽和脂肪酸含量が高くなる。   On the other hand, the fatty acids obtained by hydrolysis only by the high-temperature and high-pressure decomposition method have a good appearance due to the decomposition of the coloring components, and are not as selective for fatty acids as the enzymatic decomposition method, and palmitic acid, stearic acid Since oleic acid, linoleic acid, linolenic acid, arachidic acid, behenic acid, lignoceric acid, etc. are hydrolyzed uniformly, arachidic acid, behenic acid, lignoceric acid in the liquid part is reduced by natural fractionation. . However, the content of trans-unsaturated fatty acids in the constituent fatty acids increases.

また、前記特許文献3に記載されている方法によれば、高温高圧分解法の反応時間を短縮することができ、脂肪酸類の効率的な製造が可能であるとともに、結果的に構成脂肪酸中のトランス不飽和脂肪酸含量が低い脂肪酸類を製造できるということが分かったが、酵素分解法により部分加水分解を行った後に高温高圧分解法で加水分解した場合、必ずしも良好な色相の脂肪酸類を製造できないことが判明した。
従って、本発明の目的は、油脂を加水分解により、構成脂肪酸中のトランス不飽和脂肪酸含量及び飽和脂肪酸含量が低い脂肪酸類を効率的に製造でき、かつ色相の良好な外観を有する脂肪酸類とする製造方法を提供することにある。
In addition, according to the method described in Patent Document 3, the reaction time of the high-temperature and high-pressure decomposition method can be shortened, and the fatty acids can be efficiently produced. It was found that fatty acids with low trans-unsaturated fatty acid content can be produced, but fatty acids with good hue cannot always be produced when hydrolyzed by high-temperature and high-pressure decomposition method after partial hydrolysis by enzymatic decomposition method It has been found.
Accordingly, an object of the present invention is to make fatty acids having a good appearance with a good hue by efficiently producing fatty acids having a low content of trans-unsaturated fatty acids and saturated fatty acids in the constituent fatty acids by hydrolysis of fats and oils. It is to provide a manufacturing method.

そこで、本発明者は、油脂の加水分解反応において、酵素分解法と高温高圧分解法の組合せ、及び自然分別法について種々検討したところ、まず、酵素を担体に固定化した固定化酵素を用いて酵素分解法により油脂を部分的に加水分解し、その後、高温高圧分解法により加水分解した脂肪酸類を、自然分別した場合に、低トランス不飽和脂肪酸及び低飽和脂肪酸を両立し、かつ色相の良好な外観を有する脂肪酸類を効率的に製造できることを見出した。   Therefore, the present inventor conducted various studies on the combination of the enzymatic decomposition method and the high-temperature high-pressure decomposition method and the natural fractionation method in the hydrolysis reaction of fats and oils. First, using an immobilized enzyme in which the enzyme was immobilized on a carrier. Fatty acids that have been partially hydrolyzed by enzymatic digestion and then hydrolyzed by high-temperature and high-pressure digestion are naturally separated, and both low trans-unsaturated fatty acids and low-saturated fatty acids are compatible, and hue is good The present inventors have found that fatty acids having a good appearance can be produced efficiently.

すなわち、本発明は、油脂を加水分解することにより脂肪酸類を製造する方法であって、酵素を担体に固定化した固定化酵素を用いて、油脂を酵素分解法で部分的に加水分解した後、高温高圧分解法により加水分解し、次いで自然分別する脂肪酸類の製造法を提供するものである。   That is, the present invention is a method for producing fatty acids by hydrolyzing fats and oils, wherein the fats and oils are partially hydrolyzed by an enzymatic decomposition method using an immobilized enzyme in which the enzyme is immobilized on a carrier. The present invention provides a method for producing fatty acids which is hydrolyzed by a high-temperature high-pressure decomposition method and then naturally separated.

本発明によれば、油脂を加水分解し、更に自然分別することにより、低トランス不飽和脂肪酸と低飽和脂肪酸とを両立した脂肪酸類を効率的に製造でき、かつ良好な外観を有する脂肪酸類を製造することができる。   According to the present invention, fatty acids having a good appearance can be efficiently produced by hydrolyzing fats and oils and further naturally separating to efficiently produce fatty acids compatible with low trans unsaturated fatty acids and low saturated fatty acids. Can be manufactured.

本発明における「酵素分解法」とは、原料油脂に水を加えて、リパーゼ等の酵素を担体に固定化した固定化酵素を触媒として用い、低温の条件で反応することにより、脂肪酸類を得る方法をいう。また、本発明における「高温高圧分解法」とは、原料油脂に水を加えて、高温、高圧の条件で反応することにより、脂肪酸類を得る方法をいう。更に、本発明における「脂肪酸類」とは、脂肪酸のみならず、グリセリン、モノアシルグリセロール、ジアシルグリセロール又はトリアシルグリセロールが存在するものも含む。   In the present invention, the “enzymatic degradation method” means that fatty acids are obtained by adding water to a raw material fat and oil, using an immobilized enzyme in which an enzyme such as lipase is immobilized on a carrier as a catalyst, and reacting under low temperature conditions. Say the method. Further, the “high temperature and high pressure decomposition method” in the present invention refers to a method of obtaining fatty acids by adding water to raw oil and fat and reacting under conditions of high temperature and high pressure. Furthermore, the “fatty acids” in the present invention include not only fatty acids but also those in which glycerin, monoacylglycerol, diacylglycerol or triacylglycerol is present.

本発明において、加水分解の対象となる原料油脂は、植物性油脂、動物性油脂のいずれでもよい。具体的な原料としては、菜種油、ひまわり油、とうもろこし油、大豆油、あまに油、米油、紅花油、綿実油、牛脂、魚油等を挙げることができる。また、これらの油脂を分別、混合したもの、水素添加や、エステル交換反応などにより脂肪酸組成を調整したものも原料として利用できるが、水素添加していないものであることが、原料油脂中の構成脂肪酸中のトランス不飽和脂肪酸含量を低減させる点から好ましい。   In the present invention, the raw oil / fat to be hydrolyzed may be a vegetable oil / animal fat / oil. Specific examples of the raw material include rapeseed oil, sunflower oil, corn oil, soybean oil, linseed oil, rice oil, safflower oil, cottonseed oil, beef tallow, fish oil and the like. In addition, those obtained by separating and mixing these fats and oils, those obtained by adjusting the fatty acid composition by hydrogenation, transesterification, etc. can be used as raw materials. It is preferable from the viewpoint of reducing the content of trans-unsaturated fatty acid in the fatty acid.

本発明の態様において、原料油脂は、それぞれの原料となる植物、又は動物から搾油後、油分以外の固形分を濾過や遠心分離等により除去するのが好ましい。次いで、水、場合によっては更に酸を添加混合した後、遠心分離等によってガム分を分離することにより脱ガムすることが好ましい。また、原料油脂は、アルカリを添加混合した後、水洗し脱水することにより脱酸を行うことが好ましい。更に、原料油脂は、活性白土等の吸着剤と接触させた後、吸着剤を濾過等により分離することにより脱色を行うことが好ましい。これらの処理は、以上の順序で行うことが好ましいが、順序を変更しても良い。また、この他に、原料油脂は、ろう分の除去のために、低温で固形分を分離するウインタリングを行っても良い。   In the embodiment of the present invention, it is preferable to remove the solid content other than the oil by filtration, centrifugation, or the like after squeezing the raw material fat from the plant or animal as the respective raw material. Next, it is preferable to degum by separating the gum by centrifugation or the like after adding water and optionally further acid and mixing. Moreover, after adding and mixing an alkali, it is preferable to deoxidize raw material fats by washing with water and dehydrating. Furthermore, it is preferable to decolorize raw material fat by contacting the adsorbent such as activated clay and separating the adsorbent by filtration or the like. These processes are preferably performed in the above order, but the order may be changed. In addition to this, the raw oil and fat may be subjected to wintering for separating the solid content at a low temperature in order to remove the wax content.

本発明においては、原料油脂は、構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下、更に1質量%以下、特に0.5質量%以下のものを用いることが、加水分解後の脂肪酸類の構成脂肪酸中のトランス不飽和脂肪酸含量を低減させる点から好ましい。例えば、原料油脂は、原料の全部又は一部に、未脱臭油脂を使用するのが、脂肪酸類の構成脂肪酸中のトランス不飽和脂肪酸を低減できるので好ましい。ここで、構成脂肪酸中のトランス不飽和脂肪酸含量は、油脂を2種以上使用する場合は、それらの合計量中の含有量である。   In the present invention, the raw fats and oils have a trans-unsaturated fatty acid content in the constituent fatty acids of 1.5% by mass or less, more preferably 1% by mass or less, particularly 0.5% by mass or less. It is preferable from the viewpoint of reducing the content of trans-unsaturated fatty acids in the constituent fatty acids of the fatty acids. For example, as raw material fats and oils, it is preferable to use undeodorized fats and oils for all or part of the raw materials because trans unsaturated fatty acids in fatty acids constituting fatty acids can be reduced. Here, the trans-unsaturated fatty acid content in the constituent fatty acid is the content in the total amount when two or more fats and oils are used.

高温高圧分解法による加水分解では、原料油脂の構成脂肪酸の不飽和度が高いものほど、加熱によるトランス化が起こり易い。特に、不飽和度が1であるオレイン酸の場合は、加熱によってはほとんどトランス化が起こらず、不飽和度が2以上である脂肪酸、例えばリノール酸やリノレン酸の場合は、トランス化が顕著となる。   In the hydrolysis by the high-temperature and high-pressure decomposition method, the higher the degree of unsaturation of the constituent fatty acids of the raw material fats and oils, the easier it is to convert to heat. In particular, in the case of oleic acid having an unsaturation degree of 1, almost no trans-transformation occurs upon heating, and in the case of fatty acids having an unsaturation degree of 2 or more, such as linoleic acid or linolenic acid, trans-translation is remarkable. Become.

本発明の製造方法で用いる原料油脂は、構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下、更に0.01〜1質量%、特に0.1〜1質量%であることが、生理効果の点から好ましい。色相Cは20以上、更に35以上であることが、本発明による外観の向上効果が顕著である点から好ましい。   The raw fat and oil used in the production method of the present invention has a trans-unsaturated fatty acid content in the constituent fatty acid of 1.5% by mass or less, more preferably 0.01 to 1% by mass, and particularly 0.1 to 1% by mass. It is preferable from the viewpoint of physiological effects. The hue C is preferably 20 or more and more preferably 35 or more from the viewpoint that the effect of improving the appearance according to the present invention is remarkable.

本発明において、油脂の酵素分解法による部分的な加水分解を行うには、酵素を担体に固定化した固定化酵素を用いる。固定化酵素を用いることによって、高温高圧分解法で加水分解した際の着色を抑制できる。本発明の態様において、酵素分解法で使用する油脂分解用酵素としては、リパーゼが好ましい。リパーゼは、動物由来、植物由来のものはもとより、微生物由来の市販リパーゼ、更にリパーゼを固定化した固定化酵素を使用することもできる。例えば、油脂分解用酵素は、リゾプス(Rizopus) 属、アスペルギルス(Aspergillus) 属、クロモバクテリウム(Chromobacterium) 属、ムコール(Mucor)属、シュードモナス(Pseudomonas) 属、ジオトリケム(Geotrichum)属、ペニシリウム(Penicillium) 属、キャンディダ(Candida) 属等の微生物起源のリパーゼ及び膵臓リパーゼ等の動物リパーゼが挙げられる。高分解率を得るためには位置特異性のない(ランダム型)のリパーゼが良く、微生物起源ではシュードモナス(Pseudomonas) 属、及びキャンディダ(Candida) 属等が良い。固定化担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられるが、保水力の点からイオン交換樹脂が好ましい。また、イオン交換樹脂の中でも、大きな表面積を有することにより多量のリパーゼを吸着できるという点から、多孔質であることが好ましい。   In the present invention, in order to perform partial hydrolysis by the enzymatic decomposition method of fats and oils, an immobilized enzyme in which an enzyme is immobilized on a carrier is used. By using the immobilized enzyme, coloring at the time of hydrolysis by a high-temperature and high-pressure decomposition method can be suppressed. In the embodiment of the present invention, lipase is preferable as the fat and oil-decomposing enzyme used in the enzymatic decomposition method. As the lipase, not only animal-derived and plant-derived lipases but also commercially available lipases derived from microorganisms, and also immobilized enzymes on which lipases are immobilized can be used. For example, the enzymes for decomposing fats are Rizopus genus, Aspergillus genus, Chromobacterium genus, Mucor genus, Pseudomonas genus, Geotrichum genus, Penicillium (Penicillium) Examples include lipases originating from microorganisms such as the genus and Candida, and animal lipases such as pancreatic lipase. In order to obtain a high decomposition rate, a lipase having no position specificity (random type) is good, and the genus Pseudomonas, Candida and the like are good. As immobilization carriers, Celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics and other inorganic carriers, ceramic powder, polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption Examples include organic polymers such as resins, chelate resins, and synthetic adsorption resins, and ion exchange resins are preferred from the viewpoint of water retention. Of the ion exchange resins, a porous surface is preferable from the viewpoint that a large amount of lipase can be adsorbed by having a large surface area.

固定化担体として用いる樹脂の粒子径は100〜1000μmが好ましく、特に250〜750μmが好ましい。細孔径は10〜150nmが好ましい。材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、特にフェノールホルムアルデヒド系樹脂(例えば、Rohm and Hass社製Duolite A-568)が好ましい。   The particle diameter of the resin used as the immobilization carrier is preferably 100 to 1000 μm, particularly preferably 250 to 750 μm. The pore diameter is preferably 10 to 150 nm. Examples of the material include phenol formaldehyde, polystyrene, acrylamide, divinylbenzene, and the like, and phenol formaldehyde resin (for example, Duolite A-568 manufactured by Rohm and Hass) is particularly preferable.

酵素を固定化する場合、酵素を担体に直接吸着してもよいが、高活性を発現するような吸着状態にするため、酵素吸着前にあらかじめ担体を脂溶性脂肪酸又はその誘導体で処理して使用してもよい。使用する脂溶性脂肪酸としては、炭素数8〜18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基が置換していてもよい脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミスチリン酸、オレイン酸、リノール酸、α−リノレン酸、リシノール酸、イソステアリン酸等が挙げられる。またその誘導体としては、これらの脂肪酸と一価又は多価アルコールとのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加した誘導体が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノグリセライド、ジグリセライド、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これらの脂溶性脂肪酸又はその誘導体は、2種以上を併用してもよい。   When immobilizing an enzyme, the enzyme may be directly adsorbed on a carrier. However, in order to achieve an adsorption state that expresses high activity, the carrier is treated with a fat-soluble fatty acid or its derivative before the enzyme adsorption. May be. Examples of the fat-soluble fatty acid to be used include saturated or unsaturated, linear or branched fatty acids having 8 to 18 carbon atoms, which may be substituted with a hydroxyl group. Specific examples include capric acid, lauric acid, myristylic acid, oleic acid, linoleic acid, α-linolenic acid, ricinoleic acid, isostearic acid and the like. Examples of the derivatives include esters of these fatty acids with mono- or polyhydric alcohols, phospholipids, and derivatives obtained by adding ethylene oxide to these esters. Specific examples include methyl esters, ethyl esters, monoglycerides, diglycerides, ethylene oxide adducts thereof, polyglycerin esters, sorbitan esters, and sucrose esters of the above fatty acids. Two or more of these fat-soluble fatty acids or derivatives thereof may be used in combination.

これらの脂溶性脂肪酸又はその誘導体と担体の接触法としては、水又は有機溶剤中の担体にこれらを直接加えてもよいが、分散性を良くするため、有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加えてもよい。この有機溶剤としては、クロロホルム、ヘキサン、エタノール等が挙げられる。脂溶性脂肪酸又はその誘導体の使用量は、担体100質量部に対して1〜500質量部、更に10〜200質量部が好ましい。接触温度は0〜100℃、更に20〜60℃が好ましく、接触時間は5分〜5時間程度が好ましい。この処理を終えた担体は、濾過して回収するが、乾燥してもよい。乾燥温度は室温〜100℃が好ましく、減圧乾燥を行ってもよい。   As a method for contacting these fat-soluble fatty acids or derivatives thereof with a carrier, these may be added directly to a carrier in water or an organic solvent, but in order to improve dispersibility, a fat-soluble fatty acid or derivative thereof is added to an organic solvent. Once dispersed and dissolved, it may be added to a carrier dispersed in water. Examples of the organic solvent include chloroform, hexane, ethanol, and the like. The amount of the fat-soluble fatty acid or derivative thereof used is preferably 1 to 500 parts by mass, more preferably 10 to 200 parts by mass with respect to 100 parts by mass of the carrier. The contact temperature is preferably 0 to 100 ° C., more preferably 20 to 60 ° C., and the contact time is preferably about 5 minutes to 5 hours. The carrier after this treatment is recovered by filtration, but may be dried. The drying temperature is preferably room temperature to 100 ° C., and drying under reduced pressure may be performed.

酵素の固定化を行う温度は、酵素の特性によって決定することができるが、酵素の失活が起きない温度、すなわち0〜60℃、更に5〜40℃が好ましい。また固定化時に使用する酵素溶液のpHは、酵素の変性が起きない範囲であればよく、温度同様酵素の特性によって決定することができるが、pH3〜9が好ましい。このpHを維持するためには緩衝液を使用するが、緩衝液としては、酢酸緩衝液、リン酸緩衝液、トリス塩酸緩衝液等が挙げられる。上記酵素溶液中の酵素濃度は、固定化効率の点から酵素の飽和溶解度以下で、かつ十分な濃度であることが好ましい。また酵素溶液は、必要に応じて不溶部を遠心分離で除去した上澄や、限外濾過等によって精製したものを使用することもできる。また用いる酵素質量はその酵素活性によっても異なるが、担体100質量部に対して5〜1000質量部、更に10〜500質量部が好ましい。   The temperature at which the enzyme is immobilized can be determined depending on the characteristics of the enzyme, but is preferably a temperature at which the enzyme is not deactivated, that is, 0 to 60 ° C., more preferably 5 to 40 ° C. Moreover, the pH of the enzyme solution used at the time of immobilization may be in a range where no denaturation of the enzyme occurs and can be determined by the enzyme characteristics as well as the temperature, but is preferably pH 3-9. In order to maintain this pH, a buffer solution is used. Examples of the buffer solution include an acetate buffer solution, a phosphate buffer solution, and a Tris-HCl buffer solution. The enzyme concentration in the enzyme solution is preferably not more than the saturation solubility of the enzyme and sufficient from the viewpoint of immobilization efficiency. Moreover, the enzyme solution can also use what was refine | purified by the supernatant which removed the insoluble part by centrifugation as needed, or ultrafiltration. Moreover, although the enzyme mass to be used varies depending on the enzyme activity, it is preferably 5 to 1000 parts by mass, more preferably 10 to 500 parts by mass with respect to 100 parts by mass of the carrier.

酵素の固定化後に加水分解反応に適した状態にする点から、酵素溶液から濾過により、固定化酵素を回収し、余分な水分を除去したのち、乾燥することなしに反応基質となる大豆油等の油脂に接触させることが好ましい。接触後の固定化酵素中の水分は、用いる担体の種類によっても異なるが、固定化担体100質量部に対し0.1〜100質量部、更に1〜50質量部、特に5〜50質量部であることが好ましい。このときカラム等の充填容器に封入して、ポンプ等により油脂を循環しても良いし、油脂中に固定化酵素を分散させても良い。接触させる温度は20℃〜60℃が良く、酵素の特性によって選ぶことができる。さらに、接触する時間は1〜48時間程度で良く、この接触が終わったところで濾過し、固定化酵素を回収することが、工業的生産性の点から好ましい。   Soybean oil that becomes a reaction substrate without drying after recovering the immobilized enzyme by removing it from the enzyme solution by filtration from the point of making it suitable for the hydrolysis reaction after immobilization of the enzyme It is preferable to contact the oil and fat. The water content in the immobilized enzyme after contact varies depending on the type of carrier used, but is 0.1 to 100 parts by weight, more preferably 1 to 50 parts by weight, particularly 5 to 50 parts by weight, based on 100 parts by weight of the immobilized carrier. Preferably there is. At this time, it may be sealed in a packed container such as a column and the oil and fat may be circulated by a pump or the like, or the immobilized enzyme may be dispersed in the oil and fat. The contact temperature is preferably 20 ° C. to 60 ° C., and can be selected according to the characteristics of the enzyme. Furthermore, the contact time may be about 1 to 48 hours, and it is preferable from the viewpoint of industrial productivity that the immobilized enzyme is recovered by filtration after the contact.

固定化酵素の加水分解活性は20U/g以上、更に100〜10000U/g、特に500〜5000U/gの範囲であることが好ましい。ここで酵素の1Uは、40℃において、油脂:水=100:25(質量比)の混合液を攪拌混合しながら30分間加水分解をさせたとき、1分間に1μmolの遊離脂肪酸を生成する酵素の分解能を示す。   The hydrolysis activity of the immobilized enzyme is preferably 20 U / g or more, more preferably 100 to 10,000 U / g, and particularly preferably 500 to 5000 U / g. Here, 1 U of the enzyme is an enzyme that produces 1 μmol of free fatty acid per minute when hydrolyzed for 30 minutes at 40 ° C. while stirring and mixing a mixture of oil: water = 100: 25 (mass ratio). Shows the resolution.

本発明において、油脂の酵素分解法による部分的な加水分解は、回分式、連続式、又は半連続式で行うことができる。固定化酵素は充填塔に充填した状態での使用や攪拌槽での使用のどちらでもよいが、固定化酵素の破砕抑制の点から充填塔に充填した状態で使用することが好ましい。部分的に加水分解した脂肪酸類と水の装置内への供給は、並流式、向流式どちらでもよい。加水分解反応装置に供給される原料油脂及び水は、予め脱気又は脱酸素を行うことが脂肪酸類の酸化抑制の点から好ましい。   In the present invention, the partial hydrolysis of fats and oils by the enzymatic decomposition method can be carried out batchwise, continuously or semi-continuously. The immobilized enzyme may be used in a state where it is packed in a packed column or in a stirring tank, but it is preferably used in a state where it is packed in a packed column from the viewpoint of suppressing crushing of the immobilized enzyme. The supply of partially hydrolyzed fatty acids and water into the apparatus may be either cocurrent or countercurrent. From the viewpoint of suppressing oxidation of fatty acids, it is preferable to degas or deoxygenate the raw oil and water supplied to the hydrolysis reaction apparatus in advance.

酵素分解法の反応に用いる固定化酵素量は、酵素の活性を考慮して適宜決定することができるが、分解する原料油脂100質量部に対して0.01〜30質量部、更に0.1〜20質量部、特に1〜10質量部が好ましい。また水の量は、分解する脂肪酸類100質量部に対して10〜200質量部、更に20〜100質量部、特に30〜80質量部が好ましい。水は、蒸留水、イオン交換水、脱気水、水道水、井戸水等いずれのものでも構わない。グリセリン等その他の水溶性成分が混合されていても良い。必要に応じて、酵素の安定性が維持できるようにpH3〜9の緩衝液を用いてもよい。   The amount of the immobilized enzyme used for the reaction of the enzymatic decomposition method can be appropriately determined in consideration of the activity of the enzyme, but is 0.01 to 30 parts by mass, and further 0.1 to 100 parts by mass of the raw oil and fat to be decomposed. -20 mass parts, and especially 1-10 mass parts are preferable. The amount of water is preferably 10 to 200 parts by mass, more preferably 20 to 100 parts by mass, and particularly preferably 30 to 80 parts by mass with respect to 100 parts by mass of fatty acids to be decomposed. The water may be any of distilled water, ion exchange water, deaerated water, tap water, well water and the like. Other water-soluble components such as glycerin may be mixed. If necessary, a buffer solution having a pH of 3 to 9 may be used so that the stability of the enzyme can be maintained.

反応温度は、酵素の活性をより有効に引き出し、分解により生じた遊離脂肪酸が結晶とならない温度である0〜70℃、更に20〜50℃とすることが好ましい。また反応は、空気との接触が出来るだけ回避されるように、不活性ガス存在下で行うことが好ましい。   The reaction temperature is preferably 0 to 70 ° C., more preferably 20 to 50 ° C., which is a temperature at which the activity of the enzyme is more effectively extracted and free fatty acids generated by decomposition do not become crystals. The reaction is preferably carried out in the presence of an inert gas so that contact with air is avoided as much as possible.

油脂の酵素分解法の加水分解反応は脂肪酸濃度によって管理し、所定の脂肪酸濃度に到達した時点で終了すればよい。なお、本発明における「脂肪酸濃度」は、脂肪酸類の酸価及び脂肪酸組成を測定し、油脂製品の知識(株式会社 幸書房)に従って、次式(1)で求めた値をいう。なお、酸価は、American Oil Chemists. Society Official Method Ca 5a-40により測定する。
脂肪酸濃度(質量%)=x×y/56.1/10 (1)
(x=酸価[mgKOH/g]、y=脂肪酸組成から求めた平均分子量)
The hydrolysis reaction of the enzymatic decomposition method of fats and oils is controlled by the fatty acid concentration, and may be terminated when a predetermined fatty acid concentration is reached. The “fatty acid concentration” in the present invention refers to a value obtained by the following equation (1) by measuring the acid value and fatty acid composition of fatty acids and according to the knowledge of fats and oils products (Yukishobo Co., Ltd.). The acid value is measured by American Oil Chemists. Society Official Method Ca 5a-40.
Fatty acid concentration (mass%) = xxy / 56.1 / 10 (1)
(X = acid value [mg KOH / g], y = average molecular weight determined from fatty acid composition)

油脂の酵素分解法による部分的な加水分解は、工業的生産性、良好な外観、トランス不飽和脂肪酸の生成を抑制する点から脂肪酸濃度が20〜90質量%、更に25〜85質量%、特に30〜80質量%となるまで行うことが好ましい。部分的な加水分解の結果、構成脂肪酸中のトランス不飽和脂肪酸含量は0〜1.5質量%、更に0〜1質量%、特に0〜0.7質量%であることが好ましい。高温高圧分解法による加水分解に用いる部分的に加水分解した脂肪酸類は、高温高圧分解法で加水分解した脂肪酸類の色相を良好とする点から、脂肪酸類中の全窒素量は低いほうが好ましく、2ppm以下、更に1.5ppm以下、特に0.1〜1.5ppmであることが好ましい。また、同様の点から、酵素分解原料中の全窒素量に対する酵素分解油中の全窒素量の増加量は50質量%以下が好ましく、更に20質量%以下、特に0〜15質量%であることが好ましい。   The partial hydrolysis of fats and oils by the enzymatic decomposition method has a fatty acid concentration of 20 to 90% by mass, particularly 25 to 85% by mass, particularly from the viewpoint of suppressing industrial production, good appearance, and the production of trans-unsaturated fatty acids. It is preferable to carry out until it becomes 30-80 mass%. As a result of partial hydrolysis, the content of the trans-unsaturated fatty acid in the constituent fatty acid is preferably 0 to 1.5% by mass, more preferably 0 to 1% by mass, and particularly preferably 0 to 0.7% by mass. The partially hydrolyzed fatty acids used for hydrolysis by the high-temperature and high-pressure decomposition method preferably have a low total nitrogen content in the fatty acids from the viewpoint of improving the hue of the fatty acids hydrolyzed by the high-temperature and high-pressure decomposition method. It is preferably 2 ppm or less, more preferably 1.5 ppm or less, and particularly preferably 0.1 to 1.5 ppm. From the same point, the increase amount of the total nitrogen amount in the enzymatic decomposition oil relative to the total nitrogen amount in the enzymatic decomposition raw material is preferably 50% by mass or less, more preferably 20% by mass or less, especially 0 to 15% by mass. Is preferred.

本発明においては、油脂を酵素分解法により部分的な加水分解を行った後に、高温高圧分解法により加水分解を行う。本発明において、高温高圧分解法による加水分解は、回分式、連続式、又は半連続式で行うことができ、部分的に加水分解した脂肪酸類と水の装置内への供給は、並流式、向流式どちらでもよく、次の反応条件で行われる。加水分解反応装置に供給される部分的に加水分解した脂肪酸類及び水は、必要により予め脱気又は脱酸素したものを用いることが得られる脂肪酸類の酸化抑制の点から好ましい。   In the present invention, fats and oils are partially hydrolyzed by an enzymatic decomposition method, and then hydrolyzed by a high temperature and high pressure decomposition method. In the present invention, the hydrolysis by the high-temperature and high-pressure decomposition method can be carried out batchwise, continuously or semi-continuously, and the partially hydrolyzed fatty acids and water are supplied into the apparatus in a cocurrent flow manner. Either of the countercurrent type and the following reaction conditions may be used. The partially hydrolyzed fatty acids and water supplied to the hydrolysis reaction apparatus are preferable from the viewpoint of inhibiting oxidation of fatty acids that can be obtained by degassing or deoxygenating in advance if necessary.

高温高圧分解法による加水分解においては、部分的に加水分解した脂肪酸類100質量部に対し、水を10〜250質量部となるように加え、温度190〜270℃、圧力2〜8MPaの条件下で0.1〜6時間かけて加水分解するのが好ましい。脂肪酸類の工業的生産性、脱色、トランス不飽和脂肪酸の生成を抑制する点から、温度は195〜265℃、更に200〜260℃とすることが好ましい。部分的に加水分解した脂肪酸類100質量部に対する水の量は、同様の点から、更に15〜150質量部、特に20〜120質量部とすることが好ましい。また、圧力は同様の点から、更に2〜7MPa、特に2.5〜6MPaとすることが好ましい。更に、反応時間は同様の点から、更に0.2〜5時間、特に0.3〜4時間とすることが好ましい。   In the hydrolysis by the high-temperature and high-pressure decomposition method, water is added so as to be 10 to 250 parts by mass with respect to 100 parts by mass of partially hydrolyzed fatty acids, and the temperature is 190 to 270 ° C. and the pressure is 2 to 8 MPa. It is preferable to hydrolyze for 0.1 to 6 hours. The temperature is preferably 195 to 265 ° C., more preferably 200 to 260 ° C., from the viewpoint of suppressing industrial productivity of fatty acids, decolorization, and production of trans-unsaturated fatty acids. From the same point, the amount of water relative to 100 parts by mass of partially hydrolyzed fatty acids is preferably 15 to 150 parts by mass, particularly 20 to 120 parts by mass. Further, from the same point, the pressure is preferably 2 to 7 MPa, particularly preferably 2.5 to 6 MPa. Further, from the same point, the reaction time is further preferably 0.2 to 5 hours, particularly 0.3 to 4 hours.

好ましい反応装置としては、7〜40m3の容量の加水分解反応槽を備えた向流式のColgate−Emery法油脂分解塔(例えばIHI社)を挙げることができる。また、少量分解には実験室規模の市販のオートクレーブ装置(例えば日東高圧(株))を加水分解反応槽として用いてもよい。 As a preferable reaction apparatus, there can be mentioned a counter-current Colgate-Emery method oil and fat decomposition tower (for example, IHI) equipped with a hydrolysis reaction tank having a capacity of 7 to 40 m 3 . For small-scale decomposition, a laboratory-scale commercially available autoclave apparatus (for example, Nitto High Pressure Co., Ltd.) may be used as the hydrolysis reaction tank.

油脂の高温高圧分解法による加水分解に用いる部分的に加水分解した脂肪酸類は、そのまま用いてもよいが、必要により静置分離、遠心分離等の方法で脂肪酸類と水相を分離してもよい。更に、必要に応じて、油相中に分配されたグリセリンは、遠心分離、水洗等により除去して精製してもよい。   The partially hydrolyzed fatty acids used for the hydrolysis of fats and oils by the high-temperature and high-pressure decomposition method may be used as they are, but if necessary, the fatty acids and the aqueous phase may be separated by a method such as static separation or centrifugation. Good. Furthermore, if necessary, the glycerin distributed in the oil phase may be removed and purified by centrifugation, washing with water or the like.

加水分解反応は、前記の式(1)で示される脂肪酸濃度によって管理し、所定の脂肪酸濃度に到達した時点で終了すればよい。加水分解反応終了後は、静置分離、遠心分離等の方法により脂肪酸類と水相を分離することが好ましい。必要に応じて、油相中に分配されたグリセリンは、遠心分離、水洗等により除去して精製してもよい。   The hydrolysis reaction is managed by the fatty acid concentration represented by the above formula (1), and may be terminated when a predetermined fatty acid concentration is reached. After completion of the hydrolysis reaction, the fatty acids and the aqueous phase are preferably separated by a method such as stationary separation or centrifugation. If necessary, the glycerin distributed in the oil phase may be removed and purified by centrifugation, washing with water or the like.

本発明では、上記の如く、油脂の加水分解反応において、原料油脂100質量部に対して、固定化酵素量0.01〜30質量部、水10〜200質量部をそれぞれ加え、温度0〜70℃の条件下で酵素分解法による部分的な加水分解を行った後、部分的に加水分解した脂肪酸類100質量部に対して、10〜250質量部の水を加えて、温度190〜270℃、圧力2〜8MPaの条件下で0.1〜6時間かけて加水分解することにより、工業的生産性、良好な外観、トランス不飽和脂肪酸含量の低減された脂肪酸類を得ることができる。   In the present invention, as described above, in the hydrolysis reaction of fats and oils, 0.01 to 30 parts by weight of immobilized enzyme and 10 to 200 parts by weight of water are added to 100 parts by weight of raw oil and fat, respectively, and the temperature is set to 0 to 70. After performing partial hydrolysis by enzymatic decomposition under the condition of ° C., 10 to 250 parts by mass of water is added to 100 parts by mass of partially hydrolyzed fatty acids, and the temperature is 190 to 270 ° C. By subjecting to hydrolysis under a pressure of 2 to 8 MPa for 0.1 to 6 hours, fatty acids with reduced industrial productivity, good appearance and trans-unsaturated fatty acid content can be obtained.

本発明において、「自然分別法」とは、処理対象の原料脂肪酸類を、分相する量の水を含まず、かつ溶剤を使用せず、必要に応じ撹拌しながら冷却し、析出した固体成分を濾過、遠心分離、沈降分離等することにより固−液分離を行う方法をいう。   In the present invention, the “natural fractionation method” means that the raw fatty acids to be treated do not contain the amount of water to be phase-separated and do not use a solvent, and are cooled with stirring as necessary, and precipitated solid components Is a method of performing solid-liquid separation by filtering, centrifuging, sedimentation separation or the like.

本発明において、自然分別法の対象となる原料脂肪酸類は、菜種油、大豆油等の植物油や牛脂等の動物油を、酵素を担体に固定化した固定化酵素を用いて酵素分解法により油脂を部分的に加水分解し、その後、高温高圧分解法により加水分解した脂肪酸類を用いる。脂肪酸類中の脂肪酸の量は80質量%以上、特に85質量%以上であるような場合により有効であり、部分グリセリドが存在していてもよい。また、この原料脂肪酸類としては、脂肪酸組成中のパルミチン酸、ステアリン酸等の飽和脂肪酸(C12〜C22)の比率が、8〜70質量%、特に10〜55質量%のものが好ましい。   In the present invention, the raw fatty acids to be subjected to the natural fractionation method include vegetable oils such as rapeseed oil and soybean oil, and animal oils such as beef tallow. The fatty acids are hydrolyzed and then hydrolyzed by a high-temperature and high-pressure decomposition method. The amount of fatty acid in the fatty acids is more effective when it is 80% by mass or more, particularly 85% by mass or more, and partial glycerides may be present. Moreover, as this raw material fatty acid, the ratio of saturated fatty acids (C12-C22), such as a palmitic acid and a stearic acid, in a fatty-acid composition is 8-70 mass%, Especially the thing of 10-55 mass% is preferable.

本発明における自然分別法は、原料脂肪酸類に対し、結晶の析出前に結晶調整剤を添加して行うことが好ましい。結晶調整剤としては、特に限定されないが、多価アルコール脂肪酸エステルが好ましく、食品添加物であるショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、有機酸モノグリセリド、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル等が挙げられ、なかでもポリグリセリン脂肪酸エステルが好ましい。結晶調整剤としてポリグリセリン脂肪酸エステルを用いる場合には、その透明融点が次式(2)で示される範囲にあるものが好ましい。   The natural fractionation method in the present invention is preferably performed by adding a crystal modifier to the raw fatty acids before the precipitation of crystals. The crystal modifier is not particularly limited, but is preferably a polyhydric alcohol fatty acid ester, which is a food additive, sucrose fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, organic acid monoglyceride, glycerin fatty acid ester, polyglycerin fatty acid ester. Among them, polyglycerol fatty acid ester is preferable. When polyglycerin fatty acid ester is used as the crystal modifier, it is preferable that the transparent melting point is in the range represented by the following formula (2).

0.38x+13≦y≦0.54x+44 (2)
〔x:原料脂肪酸類の脂肪酸組成中の飽和脂肪酸(C12〜C22)の質量%
y:ポリグリセリン脂肪酸エステルの透明融点(℃)〕
0.38x + 13 ≦ y ≦ 0.54x + 44 (2)
[X: weight% of the raw material fatty acids fatty saturated fatty acids in the composition (C 12 ~C 22)
y: transparent melting point of polyglycerol fatty acid ester (° C.)]

ポリグリセリン脂肪酸エステルのより好ましい透明融点(y)の範囲は、0.38x+19≦y≦0.54x+40であり、特に好ましい範囲は、0.38x+28≦y≦0.54x+36である。また、ポリグリセリン脂肪酸エステルの透明融点(y)は、原料脂肪酸類の透明融点より高いことが好ましい。   A more preferable range of the transparent melting point (y) of the polyglycerol fatty acid ester is 0.38x + 19 ≦ y ≦ 0.54x + 40, and a particularly preferable range is 0.38x + 28 ≦ y ≦ 0.54x + 36. The transparent melting point (y) of the polyglycerol fatty acid ester is preferably higher than the transparent melting point of the raw fatty acids.

また、ポリグリセリン脂肪酸エステルにおけるグリセリンの平均重合度は、濾過容易な結晶状態を得る点から5以上、特に8〜30が好ましい。また、ポリグリセリン脂肪酸エステルにおける脂肪酸は、ポリグリセリン脂肪酸エステルの透明融点調整の点から、炭素数10〜22、特に炭素数12〜18の飽和又は不飽和の脂肪酸から構成されることが好ましい。当該脂肪酸は、単一脂肪酸で構成されてもよいが、混合脂肪酸で構成されているものが、特に濾過容易な結晶状態を得る点から好ましい。ポリグリセリン脂肪酸エステルは市販品を用いることができ、また、ポリグリセリンと脂肪酸とのエステル化反応で合成してもよい。ポリグリセリンと脂肪酸とのエステル化反応は、これらの混合物に水酸化ナトリウム等のアルカリ触媒を添加し、窒素等の不活性ガス気流下、200〜260℃で直接エステル化させる方法、酵素を使用する方法等のいずれの方法によってもよい。   In addition, the average degree of polymerization of glycerin in the polyglycerin fatty acid ester is preferably 5 or more, particularly preferably 8 to 30 from the viewpoint of obtaining a crystalline state that can be easily filtered. The fatty acid in the polyglycerol fatty acid ester is preferably composed of a saturated or unsaturated fatty acid having 10 to 22 carbon atoms, particularly 12 to 18 carbon atoms, from the viewpoint of adjusting the transparent melting point of the polyglycerol fatty acid ester. Although the said fatty acid may be comprised with a single fatty acid, what is comprised with the mixed fatty acid is preferable from the point of obtaining the crystalline state especially easy to filter. As the polyglycerol fatty acid ester, a commercially available product can be used, or it may be synthesized by an esterification reaction between polyglycerol and a fatty acid. In the esterification reaction of polyglycerin and fatty acid, an alkali catalyst such as sodium hydroxide is added to these mixtures, and esterification is performed directly at 200 to 260 ° C. under an inert gas stream such as nitrogen, and an enzyme is used. Any method such as a method may be used.

結晶調整剤は2種以上を併用してもよく、またその添加量は、原料脂肪酸類に対して0.001〜5質量%、特に0.05〜1質量%程度が好ましい。   Two or more types of crystal modifiers may be used in combination, and the amount added is preferably 0.001 to 5% by mass, particularly about 0.05 to 1% by mass, based on the starting fatty acids.

結晶調整剤としてポリグリセリン脂肪酸エステルを用いる場合は、原料脂肪酸類に完全に溶解できるように、ポリグリセリン脂肪酸エステルの透明融点より高い温度で混合溶解することが好ましい。この混合溶解の後における冷却時間及び冷却温度、保持時間は、原料の量、冷却能力などによって異なり、原料脂肪酸類の組成により適宜選択すればよい。例えば、大豆脂肪酸の場合、−3℃までの冷却時間は1〜30時間、好ましくは3〜20時間程度、保持時間は0〜24時間、好ましくは1〜10時間程度必要である。冷却は、回分式処理でも連続式でもよい。冷却操作は、析出する結晶の平均粒径が100μm以上、特に150μm以上となるような条件で行うことが好ましい。   When using a polyglycerol fatty acid ester as a crystal modifier, it is preferable to mix and dissolve at a temperature higher than the transparent melting point of the polyglycerol fatty acid ester so that it can be completely dissolved in the raw fatty acids. The cooling time, cooling temperature and holding time after this mixing and dissolution vary depending on the amount of raw material, cooling capacity, etc., and may be appropriately selected depending on the composition of the raw fatty acids. For example, in the case of soybean fatty acid, the cooling time to −3 ° C. is 1 to 30 hours, preferably about 3 to 20 hours, and the holding time is 0 to 24 hours, preferably about 1 to 10 hours. The cooling may be a batch process or a continuous process. The cooling operation is preferably performed under the condition that the average particle size of the precipitated crystals is 100 μm or more, particularly 150 μm or more.

生成した結晶の分離法としては、濾過方式、遠心分離方式、沈降分離方式等が適用でき、回分式処理でも連続式処理でもよい。   As a method for separating the produced crystal, a filtration method, a centrifugal separation method, a sedimentation separation method, or the like can be applied, and batch processing or continuous processing may be used.

〔固定化酵素製造法〕
Duolite A−568(Rohm & Hass社製)に対して、0.1Nの水酸化ナトリウム水溶液10倍容量で、1時間攪拌後、濾過して担体を回収した。その後、10倍容量の蒸留水で1時間洗浄し、500mMのリン酸緩衝液(pH7)10倍容量で、2時間pHの平衡化を行った。その後50mMのリン酸緩衝液(pH7)10倍容量で2時間ずつ2回、pHの平衡化を行った。これらの操作後は、濾過して担体を回収した。この後、エタノール5倍容量でエタノール置換を30分間行った。濾過した後、リシノール酸を1倍質量含むエタノール5倍容量を加え30分間、リシノール酸を担体に吸着させた。この後濾過し、担体を回収した後、50mMのリン酸緩衝液(pH7)5倍容量で4回洗浄し、エタノールを除去し、濾過して担体を回収した。その後、油脂に作用する市販のリパーゼ(リパーゼAY「アマノ」30G,天野エンザイム社)の10%溶液20倍容量と4時間接触させ、固定化を行った。濾過し、固定化酵素を回収して、50mMの酢酸緩衝液(pH7)5倍容量で洗浄を行い、固定化していない酵素や蛋白を除去した。以上の操作はいずれも20℃で行った。固定化後の酵素液の残存活性と固定化前の酵素液の活性差より固定化率を求めたところ、95%であった。その後、脱臭大豆油4倍質量を加え、40℃、2時間攪拌した後、濾過して脱臭大豆油と分離し、固定化酵素とした。こうして得られた固定化酵素を、使用前に実際に反応を行う基質である未脱臭大豆油で3回洗浄し濾過した。
[Immobilized enzyme production method]
With respect to Duolite A-568 (manufactured by Rohm & Hass), it was stirred for 1 hour with 10 times volume of 0.1N sodium hydroxide aqueous solution, and then filtered to recover the carrier. Then, it was washed with 10 times the volume of distilled water for 1 hour, and the pH was equilibrated with 10 times the volume of 500 mM phosphate buffer (pH 7) for 2 hours. Thereafter, the pH was equilibrated twice for 2 hours with 10 volumes of 50 mM phosphate buffer (pH 7). After these operations, the carrier was recovered by filtration. Then, ethanol substitution was performed for 30 minutes with 5 volumes of ethanol. After filtration, 5 volumes of ethanol containing 1 mass of ricinoleic acid was added and ricinoleic acid was adsorbed on the carrier for 30 minutes. After filtration, the carrier was recovered, and then washed 4 times with 5 volumes of 50 mM phosphate buffer (pH 7) to remove ethanol and filtered to recover the carrier. Thereafter, the mixture was brought into contact with a 20-fold volume of a 10% solution of a commercially available lipase (lipase AY “Amano” 30G, Amano Enzyme) acting on fats and oils for immobilization. After filtration, the immobilized enzyme was recovered and washed with 5 volumes of 50 mM acetate buffer (pH 7) to remove unimmobilized enzyme and protein. All the above operations were performed at 20 ° C. The immobilization rate was determined to be 95% from the residual activity of the enzyme solution after immobilization and the activity difference between the enzyme solution before immobilization. Thereafter, 4 times mass of deodorized soybean oil was added and stirred at 40 ° C. for 2 hours, followed by filtration and separation from deodorized soybean oil to obtain an immobilized enzyme. The immobilized enzyme thus obtained was washed three times with undeodorized soybean oil, which is a substrate that actually reacts before use, and filtered.

〔原料油脂〕
原料油脂として、表1に示す未脱臭大豆油を用いた。なお、脂肪酸組成、グリセリド組成、色相C、トランス不飽和脂肪酸含有量は、次に示す方法にて測定した。
[Raw oil]
As raw material fats and oils, undeodorized soybean oil shown in Table 1 was used. The fatty acid composition, glyceride composition, hue C, and trans-unsaturated fatty acid content were measured by the following methods.

なお、本発明において、「構成脂肪酸中のトランス不飽和脂肪酸の含有量」及び「脂肪酸組成」は、日本油化学協会編「基準油脂分析試験法」中の「脂肪酸メチルエステルの調製法(2.4.1.2−1996)」に従って脂肪酸メチルエステルを調製し、得られたサンプルを、American Oil Chemists. Society Official Method Ce 1f-96(GLC法)により測定した値をいう。   In the present invention, “content of trans-unsaturated fatty acid in constituent fatty acid” and “fatty acid composition” are “preparation method of fatty acid methyl ester” (2. 4.1.2-1996) "refers to a value obtained by preparing a fatty acid methyl ester according to American Oil Chemists. Society Official Method Ce 1f-96 (GLC method).

本発明において、「色相C」は、American Oil Chemists. Society Official Method Ca 13e-92 (Lovibond法)で5.25インチセルにより測定し、次の式(3)で求めた値をいう。
色相C=10R+Y (3)
(式中、R=Red値、Y=Yellow値)
In the present invention, “hue C” refers to a value determined by the following formula (3), measured by a 5.25 inch cell using American Oil Chemists. Society Official Method Ca 13e-92 (Lovibond method).
Hue C = 10R + Y (3)
(Where R = Red value, Y = Yellow value)

〔グリセリド組成の測定法〕
本発明において、「グリセリド組成」は、ガラス製サンプル瓶に、サンプル10mgとトリメチルシリル化剤(「シリル化剤TH」、関東化学製)0.5mLとを加え、密栓した後、70℃で15分間加熱した。これに蒸留水1.0mL、ヘキサン2.0mLを加えて、混合後、ヘキサン層をガスクロマトグラフィー(GLC)にて測定した。
装置;Hewlett Packard製 6890型
カラム;DB−1HT(J&W Scientific製) 7m
カラム温度;initial=80℃、final=340℃
昇温速度=10℃/分、340℃にて20分間保持
検出器;FID、温度=350℃
注入部;スプリット比=50:1、温度=320℃
サンプル注入量;1μL
キャリアガス;ヘリウム、流量=1.0mL/分
[Method for measuring glyceride composition]
In the present invention, the “glyceride composition” is obtained by adding 10 mg of a sample and 0.5 mL of a trimethylsilylating agent (“silylating agent TH”, manufactured by Kanto Chemical) to a glass sample bottle and sealing the bottle at 70 ° C. for 15 minutes. Heated. Distilled water (1.0 mL) and hexane (2.0 mL) were added thereto, and after mixing, the hexane layer was measured by gas chromatography (GLC).
Apparatus: Hewlett Packard 6890 type column; DB-1HT (manufactured by J & W Scientific) 7m
Column temperature; initial = 80 ° C., final = 340 ° C.
Temperature rising rate = 10 ° C./min, hold at 340 ° C. for 20 minutes Detector; FID, temperature = 350 ° C.
Injection part; split ratio = 50: 1, temperature = 320 ° C.
Sample injection volume: 1 μL
Carrier gas; helium, flow rate = 1.0 mL / min

〔固定化酵素を用いた酵素分解法による加水分解〕
表1に示す未脱臭大豆油について、固定化酵素を用いた酵素分解法による加水分解を行った。加水分解反応は、固定化酵素を用いた酵素塔と原料攪拌槽との間で反応液を循環させる方法で行った。
未脱臭大豆油で洗浄した固定化酵素(加水分解活性3000U/g)を、ジャケット付き酵素塔カラム(酵素充填厚み150mm)に充填した。酵素塔のジャケット温度は40℃に設定した。原料油脂100質量部(以下、「部」という)に対して、固定化酵素の充填量は5部とした。未脱臭大豆油100部とイオン交換水60部を、ジャケット付き原料攪拌槽に投入し、30r/minで攪拌しながら40℃に加温後、ジャケット付き酵素塔とジャケット付き原料攪拌槽との間で反応液を循環しながら、加水分解反応を行った。この間は、ジャケット付き原料攪拌槽内の気相部は窒素に置換し窒素雰囲気下とした。
反応開始から3時間後に、反応液をジャケット付き原料攪拌槽から、1Lビーカーにサンプリングし、窒素雰囲気下で、40℃、120分間静置分離して水層を除去した。さらに遠心分離(5,000×g,10分)し、水層を除去後、部分分解した脂肪酸類を温度110℃、真空度8kPaの条件で完全脱水してから分析を行い、サンプルAを得た。表1にサンプルAの分析値を示した。
サンプルAを得た場合と同じ加水分解反応の装置、条件で反応時間のみを7時間とし、サンプルCを得た。表1にサンプルCの分析値を示した。
[Hydrolysis by enzyme digestion using immobilized enzyme]
Undeodorized soybean oil shown in Table 1 was hydrolyzed by an enzymatic decomposition method using an immobilized enzyme. The hydrolysis reaction was performed by circulating the reaction solution between the enzyme tower using the immobilized enzyme and the raw material stirring tank.
An immobilized enzyme washed with undeodorized soybean oil (hydrolysis activity 3000 U / g) was packed into a jacketed enzyme tower column (enzyme packed thickness 150 mm). The jacket temperature of the enzyme tower was set to 40 ° C. The amount of the immobilized enzyme charged was 5 parts with respect to 100 parts by mass (hereinafter referred to as “parts”) of the raw oil and fat. 100 parts of non-deodorized soybean oil and 60 parts of ion-exchanged water are put into a jacketed raw material stirring tank, heated to 40 ° C. with stirring at 30 r / min, and then between the jacketed enzyme tower and the jacketed raw material stirring tank. The hydrolysis reaction was carried out while circulating the reaction solution. During this period, the gas phase portion in the jacketed raw material stirring vessel was replaced with nitrogen to be in a nitrogen atmosphere.
Three hours after the start of the reaction, the reaction solution was sampled from a jacketed raw material agitation tank into a 1 L beaker, and left and separated in a nitrogen atmosphere at 40 ° C. for 120 minutes to remove the aqueous layer. Furthermore, after centrifugation (5,000 × g, 10 minutes), removing the aqueous layer, the partially decomposed fatty acids are completely dehydrated under the conditions of a temperature of 110 ° C. and a vacuum of 8 kPa to obtain a sample A. It was. Table 1 shows the analysis values of Sample A.
Sample C was obtained by setting the reaction time only to 7 hours under the same hydrolysis reaction apparatus and conditions as when Sample A was obtained. Table 1 shows the analysis values of Sample C.

〔顆粒リパーゼを用いた酵素分解法による加水分解〕
表1に示す未脱臭大豆油について、顆粒リパーゼ(Lipolase 100T,ノボザイム社)を用いた酵素分解法による加水分解を行った。未脱臭大豆油1300gと蒸留水750gを3000mL容量の四つ口フラスコに投入した後、攪拌(半月翼Φ90mm×H25mm:300r/min)しながら、混合して45℃に昇温した。この間は、3000mL容量の四つ口フラスコの気相部は窒素に置換し窒素雰囲気下とした。45℃で、窒素雰囲気下、密閉状態で攪拌(半月翼Φ90mm×H25mm:300r/min)しながら、そこへ顆粒リパーゼ(Lipolase 100T,ノボザイム社)2.0gを蒸留水30gに溶解後全量投入し、バッチ攪拌反応を開始した。反応開始から43時間後に、反応液を3000mL容量の四つ口フラスコから、同容量のビーカーに全量抜き出し、窒素雰囲気下で、40℃、120分間静置分離して水層を除去し、さらに遠心分離(5,000×g,10分)し、水層を除去後、部分分解した脂肪酸類を温度70℃、真空度400Paで10分間、減圧で完全脱水してから分析を行い、サンプルBを得た。表1にサンプルBの分析値を示した。
[Hydrolysis by enzymatic decomposition using granule lipase]
The undeodorized soybean oil shown in Table 1 was hydrolyzed by an enzymatic decomposition method using granular lipase (Lipolase 100T, Novozyme). After putting 1300 g of non-deodorized soybean oil and 750 g of distilled water into a four-necked flask with a capacity of 3000 mL, the mixture was mixed and heated to 45 ° C. with stirring (half moon blade φ90 mm × H25 mm: 300 r / min). During this time, the gas phase part of the 3000 mL capacity four-necked flask was replaced with nitrogen to create a nitrogen atmosphere. While stirring in a closed state in a nitrogen atmosphere at 45 ° C. (half moon blade φ90 mm × H25 mm: 300 r / min), 2.0 g of granule lipase (Lipolase 100T, Novozyme) was dissolved in 30 g of distilled water, and the whole amount was added. The batch stirring reaction was started. 43 hours after the start of the reaction, the entire amount of the reaction solution was extracted from a 3000 mL four-necked flask into a beaker of the same volume, and left and separated in a nitrogen atmosphere at 40 ° C. for 120 minutes to remove the aqueous layer, followed by centrifugation. After separation (5,000 × g, 10 minutes) and removal of the aqueous layer, the partially decomposed fatty acids were completely dehydrated under reduced pressure at a temperature of 70 ° C. and a vacuum of 400 Pa for 10 minutes. Obtained. Table 1 shows the analysis values of Sample B.

〔固定化酵素を使用した酵素分解法により部分分解した脂肪酸類及び未脱臭大豆油の高温高圧分解法による加水分解〕
表1に示す固定化酵素を使用した酵素分解法により部分的に加水分解した脂肪酸類であるサンプルA又は表1に示す未脱臭大豆油を原料として、油水向流式の高圧熱水型分解装置による加水分解を行った。油水向流式の高圧熱水型分解装置に、部分分解脂肪酸類又は未脱臭大豆油を装置の下側から、水を装置の上側からそれぞれ連続的に送液した。送液量は、原料油脂100質量部に対して水50質量部とした。装置の中で原料油脂は高圧熱水により加熱し、5.0MPaの圧力とし、サンプルAの加水分解では220℃、未脱臭大豆油の加水分解では240℃とした。この時、分解塔内の平均滞留時間(hr)(分解塔内での油相容積(m3)/原料油の流量(m3/hr))はいずれも約3hrであった。油水向流式の高圧熱水型分解装置の上部から抜液される反応油は、温度110℃、真空度8kPaの条件で完全脱水後、25℃まで冷却し、それぞれサンプルD(サンプルAを原料としたもの)、F(未脱臭大豆油を原料としたもの)を得た。表1にサンプルD、Fの分析値を示した。
[Hydrolysis of fatty acids partially decomposed by enzymatic decomposition using immobilized enzyme and undeodorized soybean oil by high-temperature high-pressure decomposition method]
Oil-water counter-current type high-pressure hydrothermal decomposition apparatus using, as a raw material, sample A which is a fatty acid partially hydrolyzed by an enzymatic decomposition method using an immobilized enzyme shown in Table 1 or undeodorized soybean oil shown in Table 1 Hydrolysis was carried out. Partially decomposed fatty acids or undeodorized soybean oil was continuously fed from the lower side of the apparatus and water was continuously fed from the upper side of the apparatus to an oil-water countercurrent type high-pressure hydrothermal decomposition apparatus. The liquid feeding amount was 50 parts by mass of water with respect to 100 parts by mass of the raw material fat. In the apparatus, the raw fat / oil was heated with high-pressure hot water to a pressure of 5.0 MPa, and the sample A was hydrolyzed at 220 ° C. and the undeodorized soybean oil was hydrolyzed at 240 ° C. At this time, the average residence time (hr) in the cracking tower (oil phase volume (m 3 ) / flow rate of raw material oil (m 3 / hr) in the cracking tower) was about 3 hr. The reaction oil drained from the upper part of the oil-water countercurrent type high-pressure hydrothermal cracker is completely dehydrated under the conditions of a temperature of 110 ° C. and a vacuum degree of 8 kPa, and then cooled to 25 ° C., respectively. And F (made from undeodorized soybean oil as a raw material). Table 1 shows the analysis values of Samples D and F.

〔顆粒リパーゼを使用した酵素分解法により部分分解した脂肪酸類の高温高圧分解法による加水分解〕
表1に示す顆粒リパーゼを使用した酵素分解法により部分的に加水分解した脂肪酸類であるサンプルBを原料として、日東高圧社のバッチ式のオートクレーブ装置(容量2.2L、設計圧力10MPa、設計温度300℃、材質TB480H)で高温高圧分解法による加水分解を行った。サンプルB700gと蒸留水350gをオートクレーブ装置に投入し、密閉した。次に、水素を用いて5.0MPaの圧力で気密テストをして、オートクレーブ装置内の漏れがないことを確認後、窒素置換した。その後、600r/minで攪拌しながら、反応温度である240℃まで昇温した。240℃までの昇温時間は40分であり、到達圧力は3.2MPaであった。240℃に到達後、サンプリング口から反応液を適宜採取し、窒素シールし、遮光状態で25℃まで急激に冷却した。その後、遠心分離(5,000g,5分)し、水層を除去後、脂肪酸層を温度70℃、真空度400Paで5分間減圧脱水し、酸価を測定して脂肪酸濃度を算出した。反応を1.0時間行い、脂肪酸濃度が85質量%に達した時点で、加水分解を終了し、50℃まで冷却した。50℃までの冷却時間は50分であった。加水分解した脂肪酸類をオートクレーブ装置から、2Lビーカーに全量抜き出し、窒素雰囲気下で、40℃、120分間静置分離して水層を除去した。さらに、遠心分離(5,000×g,30分)し、水層を除去後、2000mL容量の四つ口フラスコに投入し、攪拌(半月翼Φ90mm×H25mm:300r/min)しながら、脂肪酸類を温度70℃、真空度400Paで30分間、減圧で完全脱水した後に分析を行い、サンプルEを得た。表1にサンプルEの分析値を示した。
[Hydrolysis of fatty acids partially decomposed by enzymatic decomposition using granular lipase by high-temperature high-pressure decomposition method]
Sample B, which is a fatty acid partially hydrolyzed by an enzymatic decomposition method using granule lipase shown in Table 1, is used as a raw material, and a batch-type autoclave apparatus (capacity 2.2 L, design pressure 10 MPa, design temperature) 300 ° C., material TB480H) was subjected to hydrolysis by a high-temperature high-pressure decomposition method. 700 g of sample B and 350 g of distilled water were put into an autoclave and sealed. Next, an airtight test was performed using hydrogen at a pressure of 5.0 MPa, and after confirming that there was no leakage in the autoclave apparatus, the atmosphere was replaced with nitrogen. Then, it heated up to 240 degreeC which is reaction temperature, stirring at 600 r / min. The temperature raising time to 240 ° C. was 40 minutes, and the ultimate pressure was 3.2 MPa. After reaching 240 ° C., the reaction solution was appropriately collected from the sampling port, sealed with nitrogen, and rapidly cooled to 25 ° C. in a light-shielded state. Thereafter, the mixture was centrifuged (5,000 g, 5 minutes), the aqueous layer was removed, the fatty acid layer was dehydrated under reduced pressure for 5 minutes at a temperature of 70 ° C. and a vacuum degree of 400 Pa, and the acid value was measured to calculate the fatty acid concentration. The reaction was performed for 1.0 hour, and when the fatty acid concentration reached 85% by mass, the hydrolysis was terminated and the mixture was cooled to 50 ° C. The cooling time to 50 ° C. was 50 minutes. All the hydrolyzed fatty acids were extracted from the autoclave apparatus into a 2 L beaker, and left and separated at 40 ° C. for 120 minutes under a nitrogen atmosphere to remove the aqueous layer. Further, after centrifugation (5,000 × g, 30 minutes) and removing the aqueous layer, the mixture was put into a 2000 mL four-necked flask and stirred (half moon blade Φ90 mm × H25 mm: 300 r / min) while fatty acids The sample was dehydrated under reduced pressure at a temperature of 70 ° C. and a vacuum degree of 400 Pa for 30 minutes, and then analyzed to obtain a sample E. Table 1 shows the analysis value of Sample E.

〔自然分別〕
表1に示すサンプルC、D及びFを原料として、表2に示すポリグリセリン脂肪酸エステルを0.2質量%対原料脂肪酸加え、ポリグリセリン脂肪酸エステルの透明融点より高い温度60℃で均一に溶解した。次いで、攪拌所要動力0.24kW/m3で攪拌しながら、2℃/hの速度で冷却し、−3℃に達してから2時間保持した。次いで、スラリーを1Lサンプリングし、ナイロン製濾布NY1260D(中尾フィルター工業(株))(濾過面積39cm2)を用い0.03MPaで加圧濾過して、液体部(不飽和脂肪酸)のサンプルG(サンプルDを原料としたもの)、H(サンプルCを原料としたもの)及びI(サンプルFを原料としたもの)を得た。表1にサンプルG、H及びIの分析値を示した。
[Natural separation]
Using samples C, D and F shown in Table 1 as raw materials, 0.2% by weight of the polyglycerol fatty acid ester shown in Table 2 was added to the raw material fatty acid, and dissolved uniformly at a temperature of 60 ° C. higher than the transparent melting point of the polyglycerol fatty acid ester. . Next, while stirring at a required power of stirring of 0.24 kW / m 3 , the mixture was cooled at a rate of 2 ° C./h, and kept at −3 ° C. for 2 hours. Next, 1 L of the slurry was sampled and subjected to pressure filtration at 0.03 MPa using a nylon filter cloth NY1260D (Nakao Filter Industry Co., Ltd.) (filtration area 39 cm 2 ) to obtain a sample G of a liquid part (unsaturated fatty acid) ( Sample D was used as a raw material), H (sample C was used as a raw material), and I (sample F was used as a raw material). Table 1 shows the analytical values of samples G, H and I.

Figure 2008253196
Figure 2008253196

Figure 2008253196
Figure 2008253196

表1から明らかなように、未脱臭油脂を、顆粒リパーゼを用いて部分分解後、高温高圧分解した場合(サンプルE)は、トランス不飽和脂肪酸は低くなるが、色相Cは高くなる。また、未脱臭油脂を高温高圧分解後、自然分別した場合(サンプルI)は、色相Cは低く、C炭素数20以上の飽和脂肪酸は低くなるが、トランス不飽和脂肪酸は高くなる。また、未脱臭油脂を、固定化酵素を用いて部分分解後、自然分別した場合(サンプルH)は、トランス不飽和脂肪酸は低くなるが、C炭素数20以上の飽和脂肪酸は高く、色相Cは高くなる。これに対し、未脱臭大豆油を、固定化酵素を用いて部分分解し、高温高圧分解後、自然分別した場合(サンプルG)のみ、C炭素数20以上の飽和脂肪酸は低く、トランス不飽和脂肪酸は低く、色相Cが低いことが分かった。   As is clear from Table 1, when the non-deodorized fat and oil is partially decomposed using granular lipase and then decomposed at high temperature and high pressure (sample E), the trans unsaturated fatty acid is decreased, but the hue C is increased. When undeodorized fats and oils are naturally separated after high-temperature and high-pressure decomposition (sample I), hue C is low and saturated fatty acids having 20 or more carbon atoms are low, but trans-unsaturated fatty acids are high. In addition, when undeodorized fats and oils are naturally separated after partial decomposition using an immobilized enzyme (sample H), trans unsaturated fatty acids are low, but saturated fatty acids having 20 or more carbon atoms are high, and hue C is Get higher. In contrast, only when undeodorized soybean oil is partially decomposed using an immobilized enzyme and then naturally separated after high-temperature and high-pressure decomposition (sample G), saturated fatty acids having 20 or more carbon atoms are low and trans-unsaturated fatty acids. Was low and the hue C was found to be low.

Claims (4)

油脂を加水分解することにより脂肪酸類を製造する方法であって、酵素を担体に固定化した固定化酵素を用いて、油脂を酵素分解法で部分的に加水分解した後、高温高圧分解法により加水分解し、次いで自然分別する脂肪酸類の製造法。   A method for producing fatty acids by hydrolyzing fats and oils, using an immobilized enzyme in which an enzyme is immobilized on a carrier, partially hydrolyzing fats and oils by an enzymatic decomposition method, and then by a high-temperature and high-pressure decomposition method. A method for producing fatty acids which is hydrolyzed and then fractionated naturally. 酵素分解法による加水分解を、脂肪酸濃度が20〜90質量%となるまで行う請求項1記載の脂肪酸類の製造方法。   The method for producing fatty acids according to claim 1, wherein hydrolysis by an enzymatic decomposition method is performed until the fatty acid concentration becomes 20 to 90% by mass. 酵素分解法で加水分解反応に供する油脂の構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下である請求項1又は2に記載の脂肪酸類の製造方法。   The method for producing fatty acids according to claim 1 or 2, wherein the content of trans-unsaturated fatty acids in the constituent fatty acids of the fats and oils subjected to a hydrolysis reaction by an enzymatic decomposition method is 1.5% by mass or less. 前記自然分別が、加水分解後の脂肪酸類に結晶調整剤を添加混合し、冷却することにより結晶を析出させ、液体部を分別する方法である請求項1〜3のいずれか1項に記載の製造方法。   4. The method according to claim 1, wherein the natural fractionation is a method in which a crystal modifier is added to and mixed with the fatty acids after hydrolysis, and the crystals are precipitated by cooling to separate the liquid part. Production method.
JP2007099538A 2007-04-05 2007-04-05 Method for producing fatty acids Pending JP2008253196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099538A JP2008253196A (en) 2007-04-05 2007-04-05 Method for producing fatty acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099538A JP2008253196A (en) 2007-04-05 2007-04-05 Method for producing fatty acids

Publications (1)

Publication Number Publication Date
JP2008253196A true JP2008253196A (en) 2008-10-23

Family

ID=39977484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099538A Pending JP2008253196A (en) 2007-04-05 2007-04-05 Method for producing fatty acids

Country Status (1)

Country Link
JP (1) JP2008253196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078328A (en) * 2009-10-05 2011-04-21 Kao Corp Method for producing unsaturated fatty acids
JP2018068166A (en) * 2016-10-26 2018-05-10 花王株式会社 Methods for producing fatty acids

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507917A (en) * 1993-03-30 1996-08-27 ヘンケル コーポレーション Improved lipolysis method
JPH11106782A (en) * 1997-08-07 1999-04-20 Kao Corp Method for decreasing saturated fatty acid contained in fatty acids
JP2000023688A (en) * 1998-07-09 2000-01-25 Kao Corp Production of partial glyceride
JP2006328383A (en) * 2005-04-28 2006-12-07 Kao Corp Production process of oil and fat
JP2007099958A (en) * 2005-10-06 2007-04-19 Kao Corp Method for producing fatty acids
JP2007099959A (en) * 2005-10-06 2007-04-19 Kao Corp Method for producing fatty acids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507917A (en) * 1993-03-30 1996-08-27 ヘンケル コーポレーション Improved lipolysis method
JPH11106782A (en) * 1997-08-07 1999-04-20 Kao Corp Method for decreasing saturated fatty acid contained in fatty acids
JP2000023688A (en) * 1998-07-09 2000-01-25 Kao Corp Production of partial glyceride
JP2006328383A (en) * 2005-04-28 2006-12-07 Kao Corp Production process of oil and fat
JP2007099958A (en) * 2005-10-06 2007-04-19 Kao Corp Method for producing fatty acids
JP2007099959A (en) * 2005-10-06 2007-04-19 Kao Corp Method for producing fatty acids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
オレオサイエンス, vol. 1, no. 8, JPN6011009287, 2001, pages 871 - 875, ISSN: 0001932339 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078328A (en) * 2009-10-05 2011-04-21 Kao Corp Method for producing unsaturated fatty acids
JP2018068166A (en) * 2016-10-26 2018-05-10 花王株式会社 Methods for producing fatty acids
JP6990019B2 (en) 2016-10-26 2022-01-12 花王株式会社 Method for producing fatty acids

Similar Documents

Publication Publication Date Title
EP2175030B1 (en) Method for producing diacylglycerol-rich fat and/or oil
JP5586914B2 (en) Process for producing fats and oils with high diacylglycerol content
JP7213184B2 (en) Enzymatic enrichment of n-3 fatty acids in the form of glycerides
JP4694939B2 (en) Method for producing fatty acids
KR20110018878A (en) Method for producing fat or oil containing large amount of diacylglycerol
JP2008253196A (en) Method for producing fatty acids
JP4694938B2 (en) Method for producing fatty acids
US8323934B2 (en) Process for producing fatty acids
JP2017073980A (en) Method for producing highly unsaturated fatty acid
JP6645804B2 (en) Manufacturing method of structural fats and oils
JP6990076B2 (en) Method for producing fatty acids
JP4849967B2 (en) Method for producing fatty acids
JP5178888B2 (en) Method for producing transesterified oil
JP2011078328A (en) Method for producing unsaturated fatty acids
Belur et al. Refining technologies for edible oils
JP6990019B2 (en) Method for producing fatty acids
JP5527983B2 (en) Process for producing docosahexaenoic acid-rich oil
US9296977B2 (en) Method for producing fatty acid composition
JP6859212B2 (en) Method for producing fats and oils containing high diacylglycerol
JP3847729B2 (en) Method for producing docosahexaenoic acid-rich oil
EP2090661A1 (en) Process for producing useful substance using immobilized enzyme
US9896703B2 (en) Method for producing transesterified fat and/or oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025