JP4694939B2 - Method for producing fatty acids - Google Patents

Method for producing fatty acids Download PDF

Info

Publication number
JP4694939B2
JP4694939B2 JP2005293278A JP2005293278A JP4694939B2 JP 4694939 B2 JP4694939 B2 JP 4694939B2 JP 2005293278 A JP2005293278 A JP 2005293278A JP 2005293278 A JP2005293278 A JP 2005293278A JP 4694939 B2 JP4694939 B2 JP 4694939B2
Authority
JP
Japan
Prior art keywords
fatty acids
enzyme
temperature
mass
fats
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005293278A
Other languages
Japanese (ja)
Other versions
JP2007099959A (en
Inventor
実 加瀬
利照 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005293278A priority Critical patent/JP4694939B2/en
Application filed by Kao Corp filed Critical Kao Corp
Priority to EP06811713A priority patent/EP1931794B1/en
Priority to US12/067,245 priority patent/US8323934B2/en
Priority to DE602006014845T priority patent/DE602006014845D1/en
Priority to KR1020087005502A priority patent/KR101297957B1/en
Priority to PCT/JP2006/320425 priority patent/WO2007043631A2/en
Priority to CN2006800367033A priority patent/CN101278054B/en
Publication of JP2007099959A publication Critical patent/JP2007099959A/en
Application granted granted Critical
Publication of JP4694939B2 publication Critical patent/JP4694939B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、油脂を加水分解することによる脂肪酸類の製造方法に関する。   The present invention relates to a method for producing fatty acids by hydrolyzing fats and oils.

脂肪酸類の製造は、油脂を加水分解することにより行われている。油脂を加水分解する方法は、高温高圧分解法と(特許文献1)、酵素分解法(特許文献2)が行われている。前者は、高温及び高圧条件下で行うもので、生産性が高いという利点を有するが、原料に不飽和脂肪酸の多いものを使用すると、条件によってはトランス不飽和脂肪酸を多く生成する場合がある。一方、後者はリパーゼ等の酵素を触媒とし、反応は0〜70℃という低温で行われるため、トランス不飽和脂肪酸を生成することはないが、高温高圧分解法に比べて生産性が低い。   Fatty acids are produced by hydrolyzing fats and oils. As a method for hydrolyzing fats and oils, a high-temperature and high-pressure decomposition method (Patent Document 1) and an enzymatic decomposition method (Patent Document 2) are performed. The former is carried out under high temperature and high pressure conditions, and has the advantage of high productivity. However, if a raw material having a lot of unsaturated fatty acids is used, a large amount of trans unsaturated fatty acids may be produced depending on the conditions. On the other hand, the latter uses an enzyme such as lipase as a catalyst, and the reaction is carried out at a low temperature of 0 to 70 ° C., so that it does not produce a trans-unsaturated fatty acid, but is less productive than the high-temperature and high-pressure decomposition method.

また、高温高圧分解法においては、反応当初に分解が開始されるまでの誘導期間が存在するが、当該誘導時間をなくす又は短縮するために、まずグリセリドを1,3位特異性リパーゼを用い、酵素分解法により部分加水分解して部分分解グリセリドを調製し、その後、高温高圧分解法を行うという技術も存在する(特許文献3)。   In the high-temperature and high-pressure decomposition method, there is an induction period until decomposition starts at the beginning of the reaction. In order to eliminate or shorten the induction time, glycerides are first used with a 1,3-specific lipase, There is also a technique in which a partially hydrolyzed glyceride is prepared by partial hydrolysis by an enzymatic decomposition method, and then a high temperature high pressure decomposition method is performed (Patent Document 3).

特開2003−113395号公報JP 2003-113395 A 特開2000−160188号公報JP 2000-160188 A 特表平8−507917号公報Japanese National Patent Publication No. 8-507917

近年、世界的に食用油について、健康面に及ぼす影響が着目されており、トランス不飽和脂肪酸は、飽和脂肪酸、コレステロールとともにLDL(悪玉)コレステロール値を上昇させ、冠状動脈性心臓疾患のリスクを増大させることが、科学的に裏付けられている。アメリカでは、約1300万人が冠状動脈性心臓疾患にかかっており、毎年、50万人以上が冠状動脈性心臓疾患関連で死亡している。このような状況下で、米国では“Nutrition Facts”(栄養表示)に、従来の脂質、飽和脂肪酸、コレステロール表示に加え、2006年1月1日よりトランス不飽和脂肪酸含量の表示を義務化することとなった。また、デンマークでは、2004年より食用油のトランス不飽和脂肪酸濃度を2.0質量%以下とすることを法制化し、EU諸国全体へ波及することは必至である。このように、食用油のトランス不飽和脂肪酸の低減が世界的に望まれている。   In recent years, the effects of edible oils on health have attracted attention worldwide, and trans-unsaturated fatty acids increase LDL (bad) cholesterol levels along with saturated fatty acids and cholesterol, increasing the risk of coronary heart disease It is scientifically supported that In the United States, approximately 13 million people suffer from coronary heart disease, and more than 500,000 die from coronary heart disease each year. Under these circumstances, in the United States, “Nutrition Facts” (nutritional labeling), in addition to the conventional lipid, saturated fatty acid and cholesterol labeling, will be required to label the content of trans-unsaturated fatty acids from January 1, 2006. It became. In Denmark, it is inevitable that the trans-unsaturated fatty acid concentration of edible oil will be 2.0% by mass or less from 2004, and that it will spread throughout the EU countries. Thus, reduction of the trans unsaturated fatty acid of edible oil is desired worldwide.

脱臭工程を省略した未精製の原料油脂は、構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下であり、これを酵素分解法により加水分解を行えば、トランス不飽和脂肪酸の含量が上昇することはない。しかし、原料由来の色がそのまま残るため、得られる脂肪酸類としては外観が悪い。一方、高温高圧分解法のみにより加水分解して得た脂肪酸類は、着色成分が分解されることにより良好な外観になるが、構成脂肪酸中のトランス不飽和脂肪酸含量が高くなる。
また、前記特許文献3に記載されている方法によれば、高温高圧分解法の反応時間を短縮することができ、脂肪酸類の効率的な製造が可能であるとともに、結果的に構成脂肪酸中のトランス不飽和脂肪含量が低い脂肪酸類を製造できるということが分かったが、酵素分解法により部分加水分解を行った後に高温高圧分解法で加水分解した場合、必ずしも良好な色相の脂肪酸類を製造できないことが判明した。
従って、本発明の目的は、油脂の加水分解により、構成脂肪酸中のトランス不飽和脂肪酸含量が低い脂肪酸類を効率的に製造でき、かつ色の低減された良好な外観を有する脂肪酸類とする製造方法を提供することにある。
Unrefined raw material fat and oil that omits the deodorizing step has a trans-unsaturated fatty acid content in the constituent fatty acid of 1.5% by mass or less, and if this is hydrolyzed by an enzymatic decomposition method, the content of trans-unsaturated fatty acid is It will not rise. However, since the color derived from the raw material remains as it is, the appearance of the fatty acids obtained is poor. On the other hand, fatty acids obtained by hydrolysis only by the high-temperature and high-pressure decomposition method have a good appearance when the colored components are decomposed, but the content of trans-unsaturated fatty acids in the constituent fatty acids is high.
In addition, according to the method described in Patent Document 3, the reaction time of the high-temperature and high-pressure decomposition method can be shortened, and the fatty acids can be efficiently produced. It was found that fatty acids with low trans-unsaturated fat content can be produced, but fatty acids with good hue cannot always be produced when hydrolyzed by high-temperature and high-pressure decomposition method after partial hydrolysis by enzymatic decomposition method It has been found.
Accordingly, an object of the present invention is to produce fatty acids having a good appearance with reduced color, which can efficiently produce fatty acids having a low content of trans-unsaturated fatty acids in the constituent fatty acids by hydrolysis of fats and oils. It is to provide a method.

そこで、本発明者は、油脂の加水分解反応において、酵素分解法と高温高圧分解法の組合せについて種々検討したところ、まず、酵素を担体に固定化した固定化酵素を用いて酵素分解法により油脂を部分的に加水分解し、その後、高温高圧分解法により加水分解した場合に、構成脂肪酸中のトランス不飽和脂肪酸含量が低い脂肪酸類を効率的に製造でき、かつ良好な外観を有するものができることを見出した。   Therefore, the present inventor conducted various studies on the combination of the enzymatic decomposition method and the high-temperature high-pressure decomposition method in the hydrolysis reaction of fats and oils. First, the fats and oils were obtained by enzymatic decomposition using an immobilized enzyme in which the enzyme was immobilized on a carrier. When fatty acids are partially hydrolyzed and then hydrolyzed by a high-temperature and high-pressure decomposition method, fatty acids having a low content of trans-unsaturated fatty acids in the constituent fatty acids can be efficiently produced and have good appearance. I found.

すなわち、本発明は、油脂を加水分解することにより脂肪酸類を製造する方法であって、酵素を担体に固定化した固定化酵素を用いて、油脂を酵素分解法で部分的に加水分解した後、高温高圧分解法により加水分解する脂肪酸類の製造方法を提供するものである。   That is, the present invention is a method for producing fatty acids by hydrolyzing fats and oils, wherein the fats and oils are partially hydrolyzed by an enzymatic decomposition method using an immobilized enzyme in which the enzyme is immobilized on a carrier. The present invention provides a method for producing fatty acids that are hydrolyzed by a high-temperature and high-pressure decomposition method.

本発明によれば、油脂の加水分解により、構成脂肪酸中のトランス不飽和脂肪酸含量が低い脂肪酸類を効率的に製造でき、かつ良好な外観を有する脂肪酸類を製造することができる。   According to the present invention, fatty acids having a low content of trans-unsaturated fatty acids in constituent fatty acids can be efficiently produced by hydrolysis of fats and oils, and fatty acids having a good appearance can be produced.

本発明における「酵素分解法」とは、原料油脂に水を加えて、リパーゼ等の酵素を担体に固定化した固定化酵素を触媒として用い、低温の条件で反応することにより、脂肪酸類とグリセリンを得る方法をいう。また、本発明における「高温高圧分解法」とは、原料油脂に水を加えて、高温、高圧の条件で反応することにより、脂肪酸類とグリセリンを得る方法をいう。更に、本発明における「脂肪酸類」とは、脂肪酸のみならず、グリセリン、モノアシルグリセロール、ジアシルグリセロール、トリアシルグリセロールが存在するものも含む。   In the present invention, the “enzymatic degradation method” means that fatty acids and glycerin are added by reacting under low temperature conditions using an immobilized enzyme obtained by adding water to raw oil and fat and immobilizing an enzyme such as lipase on a carrier. The method of obtaining. Further, the “high temperature and high pressure decomposition method” in the present invention refers to a method of obtaining fatty acids and glycerin by adding water to raw material fats and reacting under conditions of high temperature and high pressure. Furthermore, “fatty acids” in the present invention include not only fatty acids but also those in which glycerin, monoacylglycerol, diacylglycerol, and triacylglycerol are present.

本発明において、加水分解の対象となる原料油脂は、植物性油脂、動物性油脂のいずれでもよい。具体的な原料としては、菜種油、ひまわり油、とうもろこし油、大豆油、あまに油、米油、紅花油、綿実油、牛脂、魚油等を挙げることができる。また、これらの油脂を分別、混合したもの、水素添加や、エステル交換反応などにより脂肪酸組成を調整したものも原料として利用できるが、水素添加していないものであることが、原料油脂中の構成脂肪酸中のトランス不飽和脂肪酸含量を低減させる点から好ましい。   In the present invention, the raw oil / fat to be hydrolyzed may be a vegetable oil / animal fat / oil. Specific examples of the raw material include rapeseed oil, sunflower oil, corn oil, soybean oil, linseed oil, rice oil, safflower oil, cottonseed oil, beef tallow, fish oil and the like. In addition, those obtained by separating and mixing these fats and oils, those obtained by adjusting the fatty acid composition by hydrogenation, transesterification, etc. can be used as raw materials. It is preferable from the viewpoint of reducing the content of trans-unsaturated fatty acid in the fatty acid.

本発明の態様において、原料油脂は、それぞれの原料となる植物、又は動物から搾油後、油分以外の固形分を濾過や遠心分離等により除去するのが好ましい。次いで、水、場合によっては更に酸を添加混合した後、遠心分離等によってガム分を分離することにより脱ガムすることが好ましい。また、原料油脂は、アルカリを添加混合した後、水洗し脱水することにより脱酸を行うことが好ましい。更に、原料油脂は、活性白土等の吸着剤と接触させた後、吸着剤を濾過等により分離することにより脱色を行うことが好ましい。これらの処理は、以上の順序で行うことが好ましいが、順序を変更しても良い。また、この他に、原料油脂は、ろう分の除去のために、低温で固形分を分離するウインタリングを行っても良い。更に、原料油脂は、必要に応じて、減圧下で水蒸気と接触させることにより、脱臭を行っても良い。この際、熱履歴を極力低くすることが油脂の構成脂肪酸中のトランス不飽和脂肪酸含量を低減する点から好ましい。脱臭工程の条件については、温度は300℃以下、特に270℃以下にコントロールすることが好ましく、また、時間は10時間以下、特に5時間以下とすることが好ましい。   In the embodiment of the present invention, it is preferable to remove the solid content other than the oil by filtration, centrifugation, or the like after squeezing the raw material fat from the plant or animal as the respective raw material. Next, it is preferable to degum by separating the gum by centrifugation or the like after adding water and optionally further acid and mixing. Moreover, after adding and mixing an alkali, it is preferable to deoxidize raw material fats by washing with water and dehydrating. Furthermore, it is preferable to decolorize raw material fat by contacting the adsorbent such as activated clay and separating the adsorbent by filtration or the like. These processes are preferably performed in the above order, but the order may be changed. In addition to this, the raw oil and fat may be subjected to wintering for separating the solid content at a low temperature in order to remove the wax content. Furthermore, you may deodorize raw material fats and oils by making it contact with water vapor | steam under reduced pressure as needed. At this time, it is preferable to make the heat history as low as possible from the viewpoint of reducing the content of trans-unsaturated fatty acids in the fatty acids constituting the fats and oils. As for the conditions of the deodorizing step, the temperature is preferably controlled to 300 ° C. or less, particularly 270 ° C. or less, and the time is preferably 10 hours or less, particularly 5 hours or less.

本発明においては、原料油脂は、構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下、更に1質量%以下、特に0.5質量%以下のものを用いることが、加水分解後の脂肪酸類の構成脂肪酸中のトランス不飽和脂肪酸含量を低減させる点から好ましい。例えば、原料油脂は、原料の全部又は一部に、未脱臭油脂を使用するのが、脂肪酸類の構成脂肪酸中のトランス不飽和脂肪酸を低減できるので好ましい。ここで、構成脂肪酸中のトランス不飽和脂肪酸含量は、油脂を2種以上使用する場合は、それらの合計量中の含有量である。   In the present invention, the raw fats and oils have a trans-unsaturated fatty acid content in the constituent fatty acids of 1.5% by mass or less, more preferably 1% by mass or less, particularly 0.5% by mass or less. It is preferable from the viewpoint of reducing the content of trans-unsaturated fatty acids in the constituent fatty acids of the fatty acids. For example, as raw material fats and oils, it is preferable to use undeodorized fats and oils for all or part of the raw materials because trans unsaturated fatty acids in fatty acids constituting fatty acids can be reduced. Here, the trans-unsaturated fatty acid content in the constituent fatty acid is the content in the total amount when two or more fats and oils are used.

高温高圧分解法による加水分解では、原料油脂の構成脂肪酸の不飽和度が高いものほど、加熱によるトランス化が起こり易い。特に、不飽和度が1であるオレイン酸の場合は、加熱によってはほとんどトランス化が起こらず、不飽和度が2以上である脂肪酸、例えばリノール酸やリノレン酸の場合は、トランス化が顕著となる。   In the hydrolysis by the high-temperature and high-pressure decomposition method, the higher the degree of unsaturation of the constituent fatty acids of the raw material fats and oils, the easier it is to convert to heat. In particular, in the case of oleic acid having an unsaturation degree of 1, almost no trans-transformation occurs upon heating, and in the case of fatty acids having an unsaturation degree of 2 or more, such as linoleic acid or linolenic acid, trans-translation is remarkable. Become.

本発明の製造方法で用いる原料油脂は、構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下、更に0.01〜1質量%、特に0.1〜1質量%であることが、生理効果の点から好ましい。色相Cは20以上、更に35以上であることが、本発明による外観の向上効果が顕著である点から好ましい。
なお、本発明における「構成脂肪酸中のトランス不飽和脂肪酸の含有量」及び「脂肪酸組成」は、日本油化学協会編「基準油脂分析試験法」中の「脂肪酸メチルエステルの調製法(2.4.1.2−1996)」に従って脂肪酸メチルエステルを調製し、得られたサンプルを、American Oil Chemists. Society Official Method Ce 1f-96(GLC法)により測定した値をいう。また、原料油脂又は脂肪酸類の「色相C」は、American Oil Chemists. Society Official Method Ca 13e-92 (Lovibond法)で5.25インチセルにより測定し、次の式(1)で求めた値をいう。
色相C=10R+Y (1)
(式中、R=Red値、Y=Yellow値)
The raw fat and oil used in the production method of the present invention has a trans-unsaturated fatty acid content in the constituent fatty acid of 1.5% by mass or less, more preferably 0.01 to 1% by mass, and particularly 0.1 to 1% by mass. It is preferable from the viewpoint of physiological effects. The hue C is preferably 20 or more and more preferably 35 or more from the viewpoint that the effect of improving the appearance according to the present invention is remarkable.
The “content of trans-unsaturated fatty acid in the constituent fatty acid” and the “fatty acid composition” in the present invention are the “preparation method of fatty acid methyl ester” (2.4 1.2-1996) ”refers to a value obtained by preparing a fatty acid methyl ester according to American Oil Chemists. Society Official Method Ce 1f-96 (GLC method). The “hue C” of the raw oil or fatty acid is a value obtained by the following formula (1), measured by a 5.25 inch cell according to American Oil Chemists. Society Official Method Ca 13e-92 (Lovibond method). .
Hue C = 10R + Y (1)
(Where R = Red value, Y = Yellow value)

本発明において、油脂の酵素分解法による部分的な加水分解は、酵素を担体に固定化した固定化酵素を用いることが必要である。固定化酵素を用いることによって、高温高圧分解法で加水分解した際の着色を抑制できる。本発明の態様において、酵素分解法で使用する油脂分解用酵素としては、リパーゼが好ましい。リパーゼは、動物由来、植物由来のものはもとより、微生物由来の市販リパーゼ、更にリパーゼを固定化した固定化酵素を使用することもできる。例えば、油脂分解用酵素は、リゾプス(Rizopus) 属、アスペルギルス(Aspergillus) 属、クロモバクテリウム(Chromobacterium) 属、ムコール(Mucor)属、シュードモナス(Pseudomonas) 属、ジオトリケム(Geotrichum)属、ペニシリウム(Penicillium) 属、キャンディダ(Candida) 属等の微生物起源のリパーゼ及び膵臓リパーゼ等の動物リパーゼが挙げられる。高分解率を得るためには位置特異性のない(ランダム型)のリパーゼが良く、微生物起源ではシュードモナス(Pseudomonas) 属、及びキャンディダ(Candida) 属等が良い。固定化担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられるが、保水力の点からイオン交換樹脂が好ましい。また、イオン交換樹脂の中でも、大きな表面積を有することにより多量のリパーゼを吸着できるという点から、多孔質であることが好ましい。 In the present invention, partial hydrolysis by the enzymatic degradation method of fats and oils requires the use of an immobilized enzyme in which the enzyme is immobilized on a carrier. By using the immobilized enzyme, coloring at the time of hydrolysis by a high-temperature and high-pressure decomposition method can be suppressed. In the embodiment of the present invention, lipase is preferable as the fat and oil-decomposing enzyme used in the enzymatic decomposition method. As the lipase, not only animal-derived and plant-derived lipases but also commercially available lipases derived from microorganisms, and also immobilized enzymes on which lipases are immobilized can be used. For example, the enzymes for decomposing fats are Rizopus genus, Aspergillus genus, Chromobacterium genus, Mucor genus, Pseudomonas genus, Geotrichum genus, Penicillium (Penicillium) Examples include lipases originating from microorganisms such as the genus and Candida, and animal lipases such as pancreatic lipase. In order to obtain a high decomposition rate, a lipase having no position specificity (random type) is good, and the genus Pseudomonas, Candida and the like are good. Immobilization carriers include celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics and other inorganic carriers, ceramic powder, polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption Examples include organic polymers such as resins, chelate resins, and synthetic adsorption resins, and ion exchange resins are preferred from the viewpoint of water retention. Of the ion exchange resins, a porous surface is preferable from the viewpoint that a large amount of lipase can be adsorbed by having a large surface area.

固定化担体として用いる樹脂の粒子径は100〜1000μmが好ましく、特に250〜750μmが好ましい。細孔径は10〜150nmが好ましい。材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、特にフェノールホルムアルデヒド系樹脂(例えば、Rohm and Hass社製Duolite A-568)が好ましい。   The particle diameter of the resin used as the immobilization carrier is preferably 100 to 1000 μm, particularly preferably 250 to 750 μm. The pore diameter is preferably 10 to 150 nm. Examples of the material include phenol formaldehyde, polystyrene, acrylamide, divinylbenzene, and the like, and phenol formaldehyde resin (for example, Duolite A-568 manufactured by Rohm and Hass) is particularly preferable.

酵素を固定化する場合、酵素を担体に直接吸着してもよいが、高活性を発現するような吸着状態にするため、酵素吸着前にあらかじめ担体を脂溶性脂肪酸又はその誘導体で処理して使用してもよい。使用する脂溶性脂肪酸としては、炭素数8〜18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基が置換していてもよい脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミスチリン酸、オレイン酸、リノール酸、α−リノレン酸、リシノール酸、イソステアリン酸等が挙げられる。またその誘導体としては、これらの脂肪酸と一価又は多価アルコールとのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加した誘導体が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノグリセライド、ジグリセライド、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これらの脂溶性脂肪酸又はその誘導体は、2種以上を併用してもよい。   When immobilizing an enzyme, the enzyme may be directly adsorbed on a carrier. However, in order to achieve an adsorption state that expresses high activity, the carrier is treated with a fat-soluble fatty acid or its derivative before the enzyme adsorption. May be. Examples of the fat-soluble fatty acid to be used include saturated or unsaturated, linear or branched fatty acids having 8 to 18 carbon atoms, which may be substituted with a hydroxyl group. Specific examples include capric acid, lauric acid, myristylic acid, oleic acid, linoleic acid, α-linolenic acid, ricinoleic acid, isostearic acid and the like. Examples of the derivatives include esters of these fatty acids with mono- or polyhydric alcohols, phospholipids, and derivatives obtained by adding ethylene oxide to these esters. Specific examples include methyl esters, ethyl esters, monoglycerides, diglycerides, ethylene oxide adducts thereof, polyglycerin esters, sorbitan esters, and sucrose esters of the above fatty acids. Two or more of these fat-soluble fatty acids or derivatives thereof may be used in combination.

これらの脂溶性脂肪酸又はその誘導体と担体の接触法としては、水又は有機溶剤中の担体にこれらを直接加えてもよいが、分散性を良くするため、有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加えてもよい。この有機溶剤としては、クロロホルム、ヘキサン、エタノール等が挙げられる。脂溶性脂肪酸又はその誘導体の使用量は、担体100質量部に対して1〜500質量部、更に10〜200質量部が好ましい。接触温度は0〜100℃、更に20〜60℃が好ましく、接触時間は5分〜5時間程度が好ましい。この処理を終えた担体は、ろ過して回収するが、乾燥してもよい。乾燥温度は室温〜100℃が好ましく、減圧乾燥を行ってもよい。   As a method for contacting these fat-soluble fatty acids or derivatives thereof with a carrier, these may be added directly to a carrier in water or an organic solvent, but in order to improve dispersibility, a fat-soluble fatty acid or derivative thereof is added to an organic solvent. Once dispersed and dissolved, it may be added to a carrier dispersed in water. Examples of the organic solvent include chloroform, hexane, ethanol, and the like. The amount of the fat-soluble fatty acid or derivative thereof used is preferably 1 to 500 parts by mass, more preferably 10 to 200 parts by mass with respect to 100 parts by mass of the carrier. The contact temperature is preferably 0 to 100 ° C., more preferably 20 to 60 ° C., and the contact time is preferably about 5 minutes to 5 hours. The carrier after this treatment is collected by filtration, but may be dried. The drying temperature is preferably room temperature to 100 ° C., and drying under reduced pressure may be performed.

酵素の固定化を行う温度は、酵素の特性によって決定することができるが、酵素の失活が起きない温度、すなわち0〜60℃、更に5〜40℃が好ましい。また固定化時に使用する酵素溶液のpHは、酵素の変性が起きない範囲であればよく、温度同様酵素の特性によって決定することができるが、pH3〜9が好ましい。このpHを維持するためには緩衝液を使用するが、緩衝液としては、酢酸緩衝液、リン酸緩衝液、トリス塩酸緩衝液等が挙げられる。上記酵素溶液中の酵素濃度は、固定化効率の点から酵素の飽和溶解度以下で、かつ十分な濃度であることが好ましい。また酵素溶液は、必要に応じて不溶部を遠心分離で除去した上澄や、限外濾過等によって精製したものを使用することもできる。また用いる酵素質量はその酵素活性によっても異なるが、担体100質量部に対して5〜1000質量部、更に10〜500質量部が好ましい。   The temperature at which the enzyme is immobilized can be determined depending on the characteristics of the enzyme, but is preferably a temperature at which the enzyme is not deactivated, that is, 0 to 60 ° C., more preferably 5 to 40 ° C. Moreover, the pH of the enzyme solution used at the time of immobilization may be in a range where no denaturation of the enzyme occurs, and can be determined by the characteristics of the enzyme as well as the temperature, but is preferably pH 3-9. In order to maintain this pH, a buffer solution is used. Examples of the buffer solution include an acetate buffer solution, a phosphate buffer solution, and a Tris-HCl buffer solution. The enzyme concentration in the enzyme solution is preferably not more than the saturation solubility of the enzyme and sufficient from the viewpoint of immobilization efficiency. Moreover, the enzyme solution can also use what was refine | purified by the supernatant obtained by removing the insoluble part by centrifugation, ultrafiltration, etc. as needed. Moreover, although the enzyme mass to be used varies depending on the enzyme activity, it is preferably 5 to 1000 parts by mass, more preferably 10 to 500 parts by mass with respect to 100 parts by mass of the carrier.

酵素の固定化後に加水分解反応に適した状態にする点から、酵素溶液から濾過により、固定化酵素を回収し、余分な水分を除去したのち、乾燥することなしに反応基質となる大豆油等の油脂に接触させることが好ましい。接触後の固定化酵素中の水分は、用いる担体の種類によっても異なるが、固定化担体100質量部に対し0.1〜100質量部、更に1〜50質量部、特に5〜50質量部であることが好ましい。このときカラム等の充填容器に封入して、ポンプ等により油脂を循環しても良いし、油脂中に固定化酵素を分散させても良い。接触させる温度は20℃〜60℃が良く、酵素の特性によって選ぶことができる。さらに、接触する時間は1〜48時間程度で良く、この接触が終わったところで濾過し、固定化酵素を回収することが、工業的生産性の点から好ましい。   Soybean oil that becomes a reaction substrate without drying after recovering the immobilized enzyme by removing it from the enzyme solution by filtration from the point of making it suitable for the hydrolysis reaction after immobilization of the enzyme It is preferable to contact the oil and fat. The water content in the immobilized enzyme after contact varies depending on the type of carrier used, but is 0.1 to 100 parts by weight, more preferably 1 to 50 parts by weight, particularly 5 to 50 parts by weight, based on 100 parts by weight of the immobilized carrier. Preferably there is. At this time, it may be sealed in a packed container such as a column and the oil and fat may be circulated by a pump or the like, or the immobilized enzyme may be dispersed in the oil and fat. The contact temperature is preferably 20 ° C. to 60 ° C., and can be selected according to the characteristics of the enzyme. Furthermore, the contact time may be about 1 to 48 hours, and it is preferable from the viewpoint of industrial productivity that the immobilized enzyme is recovered by filtration after the contact.

固定化酵素の加水分解活性は20U/g以上、更に100〜10000U/g、特に500〜5000U/gの範囲であることが好ましい。ここで酵素の1Uは、40℃において、油脂:水=100:25(質量比)の混合液を攪拌混合しながら30分間加水分解をさせたとき、1分間に1μmolの遊離脂肪酸を生成する酵素の分解能を示す。   The hydrolysis activity of the immobilized enzyme is preferably 20 U / g or more, more preferably 100 to 10,000 U / g, and particularly preferably 500 to 5000 U / g. Here, 1 U of the enzyme is an enzyme that produces 1 μmol of free fatty acid per minute when hydrolyzed for 30 minutes at 40 ° C. while stirring and mixing a mixture of oil: water = 100: 25 (mass ratio). Shows the resolution.

本発明において、油脂の酵素分解法による部分的な加水分解は、回分式、連続式、又は半連続式で行うことができる。固定化酵素は充填塔に充填した状態での使用や攪拌槽での使用のどちらでもよいが、固定化酵素の破砕抑制の点から充填塔に充填した状態で使用することが好ましい。部分的に加水分解した脂肪酸類と水の装置内への供給は、並流式、向流式どちらでもよい。加水分解反応装置に供給される原料油脂及び水は、予め脱気又は脱酸素を行うことが脂肪酸類の酸化抑制の点から好ましい。   In the present invention, the partial hydrolysis of fats and oils by the enzymatic decomposition method can be carried out batchwise, continuously or semi-continuously. The immobilized enzyme may be used in a state where it is packed in a packed column or in a stirring tank, but it is preferably used in a state where it is packed in a packed column from the viewpoint of suppressing crushing of the immobilized enzyme. The supply of partially hydrolyzed fatty acids and water into the apparatus may be either cocurrent or countercurrent. From the viewpoint of suppressing oxidation of fatty acids, it is preferable to degas or deoxygenate the raw oil and water supplied to the hydrolysis reaction apparatus in advance.

酵素分解法の反応に用いる固定化酵素量は、酵素の活性を考慮して適宜決定することができるが、分解する原料油脂100質量部に対して0.01〜30質量部、更に0.1〜20質量部、特に1〜10質量部が好ましい。また水の量は、分解する脂肪酸類100質量部に対して10〜200質量部、更に20〜100質量部、特に30〜80質量部が好ましい。水は、蒸留水、イオン交換水、脱気水、水道水、井戸水等いずれのものでも構わない。グリセリン等その他の水溶性成分が混合されていても良い。必要に応じて、酵素の安定性が維持できるようにpH3〜9の緩衝液を用いてもよい。   The amount of the immobilized enzyme used for the reaction of the enzymatic decomposition method can be appropriately determined in consideration of the activity of the enzyme, but is 0.01 to 30 parts by mass, and further 0.1 -20 mass parts, and especially 1-10 mass parts are preferable. The amount of water is preferably 10 to 200 parts by mass, more preferably 20 to 100 parts by mass, and particularly preferably 30 to 80 parts by mass with respect to 100 parts by mass of fatty acids to be decomposed. The water may be any of distilled water, ion exchange water, deaerated water, tap water, well water and the like. Other water-soluble components such as glycerin may be mixed. If necessary, a buffer solution having a pH of 3 to 9 may be used so that the stability of the enzyme can be maintained.

反応温度は、酵素の活性をより有効に引き出し、分解により生じた遊離脂肪酸が結晶とならない温度である0〜70℃、更に20〜50℃とすることが好ましい。また反応は、空気との接触が出来るだけ回避されるように、不活性ガス存在下で行うことが好ましい。   The reaction temperature is preferably 0 to 70 ° C., more preferably 20 to 50 ° C., which is a temperature at which the activity of the enzyme is more effectively extracted and free fatty acids generated by decomposition do not become crystals. The reaction is preferably carried out in the presence of an inert gas so that contact with air is avoided as much as possible.

油脂の酵素分解法の加水分解反応は脂肪酸濃度によって管理し、所定の脂肪酸濃度に到達した時点で終了すればよい。なお、本発明における「脂肪酸濃度」は、脂肪酸類の酸価及び脂肪酸組成を測定し、油脂製品の知識(株式会社 幸書房)に従って、次式(2)で求めた値をいう。なお、酸価は、American Oil Chemists. Society Official Method Ca 5a-40により測定する。
脂肪酸濃度(質量%)=x×y/56.1/10 (2)
(x=酸価[mgKOH/g]、y=脂肪酸組成から求めた平均分子量)
The hydrolysis reaction of the enzymatic decomposition method of fats and oils is controlled by the fatty acid concentration, and may be terminated when a predetermined fatty acid concentration is reached. The “fatty acid concentration” in the present invention refers to a value obtained by the following formula (2) by measuring the acid value and fatty acid composition of fatty acids and according to the knowledge of fats and oil products (Shoshobo Co., Ltd.). The acid value is measured by American Oil Chemists. Society Official Method Ca 5a-40.
Fatty acid concentration (mass%) = xxy / 56.1 / 10 (2)
(X = acid value [mg KOH / g], y = average molecular weight determined from fatty acid composition)

油脂の酵素分解法による部分的な加水分解は、工業的生産性、良好な外観、トランス不飽和脂肪酸の生成を抑制する点から脂肪酸濃度が20〜90質量%、更に25〜85質量%、特に30〜80質量%となるまで行うことが好ましい。部分的な加水分解の結果、構成脂肪酸中のトランス不飽和脂肪酸含量は0〜1.5質量%、更に0〜1質量%、特に0〜0.7質量%であることが好ましい。高温高圧分解法による加水分解に用いる部分的に加水分解した脂肪酸類は、高温高圧分解法で加水分解した脂肪酸類の色相を良好とする点から、脂肪酸類中の全窒素量は低いほうが好ましく、2ppm以下、更に1.5ppm以下、特に0.1〜1.5ppmであることが好ましい。また、同様の点から、酵素分解原料中の全窒素量に対する酵素分解油中の全窒素量の増加量は50質量%以下が好ましく、更に20質量%以下、特に0〜15質量%であることが好ましい。   The partial hydrolysis of fats and oils by the enzymatic decomposition method has a fatty acid concentration of 20 to 90% by mass, particularly 25 to 85% by mass, particularly from the viewpoint of suppressing industrial production, good appearance, and the production of trans-unsaturated fatty acids. It is preferable to carry out until it becomes 30-80 mass%. As a result of partial hydrolysis, the content of the trans-unsaturated fatty acid in the constituent fatty acid is preferably 0 to 1.5% by mass, more preferably 0 to 1% by mass, and particularly preferably 0 to 0.7% by mass. The partially hydrolyzed fatty acids used for hydrolysis by the high-temperature and high-pressure decomposition method preferably have a low total nitrogen content in the fatty acids from the viewpoint of improving the hue of the fatty acids hydrolyzed by the high-temperature and high-pressure decomposition method. It is preferably 2 ppm or less, more preferably 1.5 ppm or less, and particularly preferably 0.1 to 1.5 ppm. From the same point, the increase amount of the total nitrogen amount in the enzymatic decomposition oil relative to the total nitrogen amount in the enzymatic decomposition raw material is preferably 50% by mass or less, more preferably 20% by mass or less, especially 0 to 15% by mass. Is preferred.

本発明においては、油脂を酵素分解法により部分的な加水分解を行った後に、高温高圧分解法により加水分解を行うことが必要である。本発明において、高温高圧分解法による加水分解は、回分式、連続式、又は半連続式で行うことができ、部分的に加水分解した脂肪酸類と水の装置内への供給は、並流式、向流式どちらでもよく、次の反応条件で行われる。加水分解反応装置に供給される部分的に加水分解した脂肪酸類及び水は、必要により予め脱気又は脱酸素した原料油脂及び水を用いることが得られる脂肪酸類の酸化抑制の点から好ましい。   In the present invention, it is necessary to hydrolyze fats and oils by a high-temperature and high-pressure decomposition method after partial hydrolysis by an enzymatic decomposition method. In the present invention, the hydrolysis by the high-temperature and high-pressure decomposition method can be carried out batchwise, continuously or semi-continuously, and the partially hydrolyzed fatty acids and water are supplied into the apparatus in a cocurrent flow manner. Either of the countercurrent type and the following reaction conditions may be used. The partially hydrolyzed fatty acids and water supplied to the hydrolysis reaction apparatus are preferred from the viewpoint of suppressing oxidation of fatty acids obtained by using raw oil and water that have been degassed or deoxygenated in advance if necessary.

高温高圧分解法による加水分解においては、部分的に加水分解した脂肪酸類100質量部に対し、水を10〜250質量部となるように加え、温度200〜270℃、圧力2〜8MPaの条件下で0.1〜6時間かけて加水分解するのが好ましい。脂肪酸類の工業的生産性、脱色、トランス不飽和脂肪酸の生成を抑制する点から、温度は210〜265℃、更に215〜260℃とすることが好ましい。部分的に加水分解した脂肪酸類100質量部に対する水の量は、同様の点から、更に15〜150質量部、特に20〜120質量部とすることが好ましい。また、圧力は同様の点から、更に2〜7MPa、特に2.5〜6MPaとすることが好ましい。更に、反応時間は同様の点から、更に0.2〜5時間、特に0.3〜4時間とすることが好ましい。   In the hydrolysis by the high-temperature and high-pressure decomposition method, water is added so as to be 10 to 250 parts by mass with respect to 100 parts by mass of partially hydrolyzed fatty acids, and the temperature is 200 to 270 ° C. and the pressure is 2 to 8 MPa. It is preferable to hydrolyze for 0.1 to 6 hours. The temperature is preferably 210 to 265 ° C, and more preferably 215 to 260 ° C, from the viewpoint of suppressing industrial productivity of fatty acids, decolorization, and generation of trans-unsaturated fatty acids. From the same point, the amount of water relative to 100 parts by mass of partially hydrolyzed fatty acids is preferably 15 to 150 parts by mass, particularly 20 to 120 parts by mass. Further, from the same point, the pressure is preferably 2 to 7 MPa, particularly preferably 2.5 to 6 MPa. Further, from the same point, the reaction time is further preferably 0.2 to 5 hours, particularly 0.3 to 4 hours.

好ましい反応装置としては、7〜40m3の容量の加水分解反応槽を備えた向流式のColgate−Emery法油脂分解塔(例えばIHI社)を挙げることができる。また、少量分解には実験室規模の市販のオートクレーブ装置(例えば日東高圧(株))を加水分解反応槽として用いてもよい。 As a preferable reaction apparatus, a counter-current Colgate-Emery method oil decomposition tower (for example, IHI) equipped with a hydrolysis reaction tank having a capacity of 7 to 40 m 3 can be exemplified. For small-scale decomposition, a laboratory-scale commercially available autoclave apparatus (for example, Nitto High Pressure Co., Ltd.) may be used as the hydrolysis reaction tank.

油脂の高温高圧分解法による加水分解に用いる部分的に加水分解した脂肪酸類は、そのまま用いてもよいが、必要により静置分離、遠心分離等の方法で脂肪酸類と水相を分離してもよい。更に、必要に応じて、油相中に分配されたグリセリンは、遠心分離、水洗等により除去して精製してもよい。   The partially hydrolyzed fatty acids used for the hydrolysis of fats and oils by the high-temperature and high-pressure decomposition method may be used as they are, but if necessary, the fatty acids and the aqueous phase may be separated by a method such as static separation or centrifugation. Good. Furthermore, if necessary, the glycerin distributed in the oil phase may be removed and purified by centrifugation, washing with water or the like.

加水分解反応は、前記の式(2)で示される脂肪酸濃度によって管理し、所定の脂肪酸濃度に到達した時点で終了すればよい。加水分解反応終了後は、静置分離、遠心分離等の方法により脂肪酸類と水相を分離することが好ましい。必要に応じて、油相中に分配されたグリセリンは、遠心分離、水洗等により除去して精製してもよい。   The hydrolysis reaction is controlled by the fatty acid concentration represented by the above formula (2), and may be terminated when a predetermined fatty acid concentration is reached. After completion of the hydrolysis reaction, the fatty acids and the aqueous phase are preferably separated by a method such as stationary separation or centrifugation. If necessary, the glycerin distributed in the oil phase may be removed and purified by centrifugation, washing with water or the like.

本発明では、上記の如く、油脂の加水分解反応において、原料油脂100質量部に対して、固定化酵素量0.01〜30質量部、水10〜200質量部をそれぞれ加え、温度0〜70℃の条件下で酵素分解法による部分的な加水分解を行った後、部分的に加水分解した脂肪酸類100質量部に対して、10〜250質量部の水を加えて、温度200〜270℃、圧力2〜8MPaの条件下で0.1〜6時間かけて加水分解することにより、工業的生産性、良好な外観、トランス不飽和脂肪酸含量の低減された脂肪酸類を得ることができる。   In the present invention, as described above, in the hydrolysis reaction of fats and oils, 0.01 to 30 parts by weight of immobilized enzyme and 10 to 200 parts by weight of water are added to 100 parts by weight of raw oil and fat, respectively, and the temperature is set to 0 to 70. After partial hydrolysis by an enzymatic decomposition method at 100 ° C., 10 to 250 parts by mass of water is added to 100 parts by mass of partially hydrolyzed fatty acids, and the temperature is 200 to 270 ° C. By subjecting to hydrolysis under a pressure of 2 to 8 MPa for 0.1 to 6 hours, fatty acids with reduced industrial productivity, good appearance and trans-unsaturated fatty acid content can be obtained.

〔固定化酵素製造法〕
Duolite A−568(Rohm & Hass社製)50gを0.1Nの水酸化ナトリウム水溶液500mL中で、1時間攪拌した。その後、500mLの蒸留水で1時間洗浄し、500mMのリン酸緩衝液(pH7)500mLで、2時間pHの平衡化を行った。その後50mMのリン酸緩衝液(pH7)500mLで2時間ずつ2回、pHの平衡化を行った。この後、濾過を行い担体を回収した後、エタノール250mLでエタノール置換を30分間行った。濾過した後、リシノール酸を50g含むエタノール250mLを加え30分間、リシノール酸を担体に吸着させた。この後濾過し、担体を回収した後、50mMのリン酸緩衝液(pH7)250mLで4回洗浄し、エタノールを除去し、濾過して担体を回収した。その後、油脂に作用する市販のリパーゼ(リパーゼAY「アマノ」30G,天野エンザイム社)の10%溶液1000mLと4時間接触させ、固定化を行った。濾過し、固定化酵素を回収して、50mMの酢酸緩衝液(pH7)250mLで洗浄を行い、固定化していない酵素や蛋白を除去した。以上の操作はいずれも20℃で行った。固定化後の酵素液の残存活性と固定化前の酵素液の活性差より固定化率を求めたところ、95%であった。その後、脱臭大豆油200gを加え、40℃、2時間攪拌した後、濾過して脱臭大豆油と分離し、固定化酵素とした。こうして得られた固定化酵素を、使用前に実際に反応を行う基質である未脱臭大豆油で3回洗浄しろ過した。
[Immobilized enzyme production method]
50 g of Duolite A-568 (Rohm & Hass) was stirred in 500 mL of 0.1N aqueous sodium hydroxide for 1 hour. Then, it was washed with 500 mL of distilled water for 1 hour, and the pH was equilibrated with 500 mL of 500 mM phosphate buffer (pH 7) for 2 hours. Thereafter, the pH was equilibrated twice with 500 mL of 50 mM phosphate buffer (pH 7) for 2 hours each. Thereafter, filtration was performed to recover the carrier, followed by ethanol replacement with 250 mL of ethanol for 30 minutes. After filtration, 250 mL of ethanol containing 50 g of ricinoleic acid was added and ricinoleic acid was adsorbed on the carrier for 30 minutes. Thereafter, the carrier was recovered by filtration, and then washed four times with 250 mL of 50 mM phosphate buffer (pH 7), ethanol was removed, and the carrier was recovered by filtration. Thereafter, the mixture was brought into contact with 1000 mL of a 10% solution of a commercially available lipase (Lipase AY “Amano” 30G, Amano Enzyme) acting on fats and oils for immobilization. After filtration, the immobilized enzyme was recovered and washed with 250 mL of 50 mM acetate buffer (pH 7) to remove non-immobilized enzyme and protein. All the above operations were performed at 20 ° C. The immobilization rate was determined to be 95% from the residual activity of the enzyme solution after immobilization and the activity difference between the enzyme solution before immobilization. Thereafter, 200 g of deodorized soybean oil was added and stirred at 40 ° C. for 2 hours, followed by filtration and separation from the deodorized soybean oil to obtain an immobilized enzyme. The immobilized enzyme thus obtained was washed three times with undeodorized soybean oil, which is a substrate that actually performs the reaction, and filtered before use.

〔原料油脂〕
原料油脂として、表1に示す未脱臭大豆油を用いた。なお、グリセリド組成は、次に示す方法にて測定した。
[Raw oil]
As raw material fats and oils, undeodorized soybean oil shown in Table 1 was used. The glyceride composition was measured by the following method.

〔グリセリド組成の測定法〕
ガラス製サンプル瓶に、サンプル10mgとトリメチルシリル化剤(「シリル化剤TH」、関東化学製)0.5mLとを加え、密栓した後、70℃で15分間加熱した。これに蒸留水1.0mL、ヘキサン2.0mLを加えて、混合後、ヘキサン層をガスクロマトグラフィー(GLC)にて測定した。
装置;Hewlett Packard製 6890型
カラム;DB−1HT(J&W Scientific製) 7m
カラム温度;initial=80℃、final=340℃
昇温速度=10℃/分、340℃にて20分間保持
検出器;FID、温度=350℃
注入部;スプリット比=50:1、温度=320℃
サンプル注入量;1μL
キャリアガス;ヘリウム、流量=1.0mL/分
[Method for measuring glyceride composition]
To a glass sample bottle, 10 mg of a sample and 0.5 mL of a trimethylsilylating agent (“silylating agent TH”, manufactured by Kanto Chemical Co., Inc.) were added, sealed, and then heated at 70 ° C. for 15 minutes. Distilled water (1.0 mL) and hexane (2.0 mL) were added thereto, and after mixing, the hexane layer was measured by gas chromatography (GLC).
Apparatus: Hewlett Packard 6890 type column; DB-1HT (manufactured by J & W Scientific) 7m
Column temperature; initial = 80 ° C., final = 340 ° C.
Temperature rising rate = 10 ° C./min, hold at 340 ° C. for 20 minutes Detector; FID, temperature = 350 ° C.
Injection part; split ratio = 50: 1, temperature = 320 ° C.
Sample injection volume: 1 μL
Carrier gas; helium, flow rate = 1.0 mL / min

〔全窒素量の測定〕
未脱臭大豆油及び部分的に加水分解した脂肪酸類を10mLメスフラスコに5g秤量し、トルエンでメスアップしたサンプルを微量全窒素分析装置にて測定した。なお、標準液は各濃度のピリジン/トルエン溶液を用いた。
装置;三菱化学製 微量全窒素分析装置 モデルTN−05型
温度;INLET 800℃ / CATALYST 900℃
使用ガス及び流量;酸素 600mL/min
ヘリウム/酸素 Sub 100/100mL/min
時間;ヘリウム 30秒/酸素 120秒
サンプル注入量及び速度;50μL 1.0μL/秒
[Measurement of total nitrogen content]
5 g of undeodorized soybean oil and partially hydrolyzed fatty acids were weighed in a 10 mL volumetric flask, and a sample made up with toluene was measured with a trace total nitrogen analyzer. The standard solution used was a pyridine / toluene solution having various concentrations.
Equipment: Micro Chemical Total Nitrogen Analyzer Model TN-05 Type Temperature: INLET 800 ° C / CATALYST 900 ° C
Gas and flow rate used: Oxygen 600mL / min
Helium / oxygen Sub 100/100 mL / min
Time; helium 30 seconds / oxygen 120 seconds Sample injection volume and rate; 50 μL 1.0 μL / second

〔固定化酵素を用いた酵素分解法による加水分解〕
表1に示す未脱臭大豆油について、固定化酵素を用いた酵素分解法による加水分解を行った。加水分解反応は、固定化酵素を用いた酵素塔と基質循環槽との間で反応液を循環させる方法で行った。
未脱臭大豆油で洗浄した固定化酵素(加水分解活性2960U/g)を、ジャケット付きステンレス製酵素塔カラム(内径22mm、高さ145mm)に乾燥基準で20.0g充填した。固定化酵素の乾燥基準の重量は、ジャケット付きステンレス製酵素塔カラムに充填したものと同じバッチの固定化酵素を、アセトン及びヘキサンを用いて、固定化酵素に付着している油分を除去し、さらに減圧下で脱水して、本来の固定化酵素の重量を求めた。
未脱臭大豆油900gと蒸留水540gを、内径150mm、容量3Lのジャケット付き基質循環槽に投入した後、攪拌(半月翼Φ90mm×H25mm:600r/min)しながら、混合して40℃に昇温した。この間は、ジャケット付き基質循環槽内の気相部は窒素に置換し窒素雰囲気下とした。
基質が40℃に昇温された後、ジャケット付き基質循環槽内の基質を、送液ポンプを用いて55mL/minの流量で上部からジャケット付きステンレス製酵素塔カラムに供給した。ジャケット付きステンレス製酵素塔カラムの下部から得られる反応液をジャケット付き基質循環槽に返送してバッチ循環反応を開始した。反応開始から1時間後に、反応液をジャケット付き基質循環槽から、3Lビーカーに全量抜き出し、窒素雰囲気下で、40℃、120分間静置分離して水層を除去しサンプルAを得た。サンプルAは、一部分をサンプリングして、遠心分離(5,000×g,10分)し、水層を除去後、部分分解した脂肪酸類を温度70℃、真空度400Paで10分間、減圧で完全脱水してから、分析を行った。
更に、サンプルAの調製に用いた固定化酵素充填済みジャケット付きステンレス製酵素塔カラムを未脱臭大豆油で洗浄した。その後、サンプルAと同様の条件で、バッチ循環反応を開始した。反応開始から3時間後に、反応液をジャケット付き基質循環槽から、3Lビーカーに全量抜き出し、窒素雰囲気下で、40℃、120分間静置分離して水層を除去しサンプルBを得た。サンプルBもサンプルAと同じ処理をした後に分析を行った。部分的に加水分解した脂肪酸類の分析の結果、全窒素量は未脱臭大豆油と同等であり、固定化酵素からの酵素の脱離はなかった。
[Hydrolysis by enzyme digestion using immobilized enzyme]
Undeodorized soybean oil shown in Table 1 was hydrolyzed by an enzymatic decomposition method using an immobilized enzyme. The hydrolysis reaction was performed by circulating the reaction solution between an enzyme tower using an immobilized enzyme and a substrate circulation tank.
Immobilized enzyme washed with undeodorized soybean oil (hydrolysis activity 2960 U / g) was packed in a jacketed stainless steel enzyme column column (inner diameter 22 mm, height 145 mm) on a dry basis with 20.0 g. The dry standard weight of the immobilized enzyme is the same batch of immobilized enzyme packed in the jacketed stainless steel enzyme column, using acetone and hexane, and removing the oil adhering to the immobilized enzyme, Further, dehydration was performed under reduced pressure to determine the weight of the original immobilized enzyme.
900 g of non-deodorized soybean oil and 540 g of distilled water were introduced into a jacketed substrate circulation tank having an inner diameter of 150 mm and a capacity of 3 L, and then mixed and heated to 40 ° C. with stirring (half moon blade φ90 mm × H25 mm: 600 r / min) did. During this period, the gas phase portion in the jacketed substrate circulation tank was replaced with nitrogen to be in a nitrogen atmosphere.
After the substrate was heated to 40 ° C., the substrate in the jacketed substrate circulation tank was supplied from the top to the jacketed stainless steel enzyme column using a liquid feed pump at a flow rate of 55 mL / min. The reaction solution obtained from the lower part of the jacketed stainless steel enzyme column was returned to the jacketed substrate circulation tank to start the batch circulation reaction. One hour after the start of the reaction, the entire amount of the reaction solution was extracted from the jacketed substrate circulation tank into a 3 L beaker, and left and separated at 40 ° C. for 120 minutes in a nitrogen atmosphere to remove the aqueous layer and obtain sample A. Sample A was partially sampled, centrifuged (5,000 × g, 10 minutes), the aqueous layer was removed, and the partially decomposed fatty acids were completely decompressed at a temperature of 70 ° C. and a vacuum of 400 Pa for 10 minutes. Analysis was performed after dehydration.
Furthermore, the immobilized enzyme-enclosed stainless steel enzyme tower column used for the preparation of Sample A was washed with undeodorized soybean oil. Thereafter, a batch circulation reaction was started under the same conditions as in Sample A. Three hours after the start of the reaction, the entire amount of the reaction solution was taken out from the jacketed substrate circulation tank into a 3 L beaker, and left and separated in a nitrogen atmosphere at 40 ° C. for 120 minutes to remove the aqueous layer, thereby obtaining Sample B. Sample B was analyzed after the same treatment as Sample A. As a result of analysis of partially hydrolyzed fatty acids, the total nitrogen amount was equivalent to that of undeodorized soybean oil, and there was no detachment of the enzyme from the immobilized enzyme.

〔粉末リパーゼを用いた酵素分解法による加水分解〕
表1に示す未脱臭大豆油について、粉末リパーゼ(リパーゼAY「アマノ」30G,天野エンザイム社)を用いた酵素分解法による加水分解を行った。未脱臭大豆油1300gと蒸留水750gを3000mL容量の四つ口フラスコに投入した後、攪拌(半月翼Φ90mm×H25mm:300r/min)しながら混合して40℃に昇温した。この間は、3000mL容量の四つ口フラスコの気相部は窒素に置換し窒素雰囲気下とした。40℃で、窒素雰囲気下、密閉状態で攪拌(半月翼Φ90mm×H25mm:300r/min)しながら、そこへ粉末リパーゼ(リパーゼAY「アマノ」30G,天野エンザイム社)3.9gを蒸留水30gに溶解後全量投入し、バッチ攪拌反応を開始した。反応開始から0.6時間後に、反応液を3000mL容量の四つ口フラスコから、3Lビーカーに全量抜き出し、窒素雰囲気下で、40℃、120分間静置分離して水層を除去しサンプルCを得た。サンプルCもサンプルAと同じ処理をした後に分析を行った。
[Hydrolysis by Enzymatic Decomposition Using Powdered Lipase]
Undeodorized soybean oil shown in Table 1 was hydrolyzed by an enzymatic decomposition method using powder lipase (Lipase AY “Amano” 30G, Amano Enzyme). After putting 1300 g of non-deodorized soybean oil and 750 g of distilled water into a four-necked flask with a capacity of 3000 mL, the mixture was mixed with stirring (half moon blade φ90 mm × H25 mm: 300 r / min) and heated to 40 ° C. During this period, the gas phase part of the 3000 mL capacity four-necked flask was replaced with nitrogen to create a nitrogen atmosphere. While stirring in a sealed atmosphere at 40 ° C. in a nitrogen atmosphere (half moon blade φ90 mm × H25 mm: 300 r / min), 3.9 g of powder lipase (lipase AY “Amano” 30G, Amano Enzyme) was added to 30 g of distilled water. After dissolution, the entire amount was charged and batch stirring reaction was started. 0.6 hours after the start of the reaction, the entire amount of the reaction solution was extracted from a 3000 mL four-necked flask into a 3 L beaker, and left to stand at 40 ° C. for 120 minutes in a nitrogen atmosphere to remove the aqueous layer and remove sample C. Obtained. Sample C was analyzed after the same treatment as Sample A.

〔顆粒リパーゼを用いた酵素分解法による加水分解〕
表1に示す未脱臭大豆油について、顆粒リパーゼ(Lipolase 100T,ノボザイム社)を用いた酵素分解法による加水分解を行った。未脱臭大豆油1300gと蒸留水750gを3000mL容量の四つ口フラスコに投入した後、攪拌(半月翼Φ90mm×H25mm:300r/min)しながら、混合して45℃に昇温した。この間は、3000mL容量の四つ口フラスコの気相部は窒素に置換し窒素雰囲気下とした。45℃で、窒素雰囲気下、密閉状態で攪拌(半月翼Φ90mm×H25mm:300r/min)しながら、そこへ顆粒リパーゼ(Lipolase 100T,ノボザイム社)2.0gを蒸留水30gに溶解後全量投入し、バッチ攪拌反応を開始した。反応開始から43時間後に、反応液を3000mL容量の四つ口フラスコから、3Lビーカーに全量抜き出し、窒素雰囲気下で、40℃、120分間静置分離して水層を除去しサンプルDを得た。サンプルDもサンプルAと同じ処理をした後に分析を行った。
[Hydrolysis by enzymatic decomposition using granule lipase]
The undeodorized soybean oil shown in Table 1 was hydrolyzed by an enzymatic decomposition method using granular lipase (Lipolase 100T, Novozyme). After putting 1300 g of non-deodorized soybean oil and 750 g of distilled water into a four-necked flask with a capacity of 3000 mL, the mixture was mixed and heated to 45 ° C. with stirring (half moon blade φ90 mm × H25 mm: 300 r / min). During this period, the gas phase part of the 3000 mL capacity four-necked flask was replaced with nitrogen to create a nitrogen atmosphere. While stirring in a sealed atmosphere in a nitrogen atmosphere at 45 ° C. (half moon blade φ90 mm × H25 mm: 300 r / min), 2.0 g of granule lipase (Lipolase 100T, Novozyme) was dissolved in 30 g of distilled water, and the whole amount was added. The batch stirring reaction was started. 43 hours after the start of the reaction, the entire amount of the reaction solution was drawn out from a 3000 mL four-necked flask into a 3 L beaker, and left and separated at 40 ° C. for 120 minutes in a nitrogen atmosphere to remove the aqueous layer and obtain sample D. . Sample D was analyzed after the same treatment as Sample A.

〔部分分解脂肪酸類及び未脱臭大豆油の高温高圧分解法による加水分解〕
表1に示す部分的に加水分解した脂肪酸類であるサンプルA〜D及びに未脱臭大豆油を原料として、日東高圧社のバッチ式のオートクレーブ装置(容量2.2L、設計圧力10MPa、設計温度300℃、材質TB480H)で高温高圧分解法による加水分解を行った。それぞれの原料700gと蒸留水350gをオートクレーブ装置に投入し、密閉した。次に、水素を用いて5.0MPaの圧力で気密テストをして、オートクレーブ装置内の漏れがないことを確認後、窒素置換した。その後、600r/minで攪拌しながら、反応温度である240℃まで昇温した。240℃までの昇温時間は40分であり、到達圧力は3.2MPaであった。240℃に到達後、サンプリング口から反応液を適宜採取し、窒素シールし、遮光状態で25℃まで急激に冷却した。その後、遠心分離(5,000g,5分)し、水層を除去後、脂肪酸層を温度70℃、真空度400Paで5分間減圧脱水し、酸価を測定して脂肪酸濃度を算出した。脂肪酸濃度が85質量%に達した時点で、加水分解を終了し、50℃まで冷却した。50℃までの冷却時間は50分であった。加水分解した脂肪酸類をオートクレーブ装置から、2Lビーカーに全量抜き出し、窒素雰囲気下で、40℃、120分間静置分離して水層を除去した。さらに、遠心分離(5,000×g,30分)し、水層を除去後、2000mL容量の四つ口フラスコに投入し、攪拌(半月翼Φ90mm×H25mm:300r/min)しながら、脂肪酸類を温度70℃、真空度400Paで30分間、減圧で完全脱水した後に分析を行い、表2の脂肪酸類のサンプルE〜Iを得た。
[Hydrolysis of partially decomposed fatty acids and undeodorized soybean oil by high-temperature and high-pressure decomposition method]
Samples A to D, which are partially hydrolyzed fatty acids shown in Table 1, and undeodorized soybean oil as a raw material, a batch type autoclave apparatus (capacity 2.2 L, design pressure 10 MPa, design temperature 300, manufactured by Nitto Koatsu Co., Ltd.) The hydrolysis was carried out by a high-temperature high-pressure decomposition method at 0 ° C. and material TB480H). 700 g of each raw material and 350 g of distilled water were put into an autoclave and sealed. Next, an airtight test was performed using hydrogen at a pressure of 5.0 MPa, and after confirming that there was no leakage in the autoclave apparatus, the atmosphere was replaced with nitrogen. Then, it heated up to 240 degreeC which is reaction temperature, stirring at 600 r / min. The temperature raising time to 240 ° C. was 40 minutes, and the ultimate pressure was 3.2 MPa. After reaching 240 ° C., the reaction solution was appropriately collected from the sampling port, sealed with nitrogen, and rapidly cooled to 25 ° C. in a light-shielded state. Thereafter, the mixture was centrifuged (5,000 g, 5 minutes), the aqueous layer was removed, the fatty acid layer was dehydrated under reduced pressure for 5 minutes at a temperature of 70 ° C. and a vacuum degree of 400 Pa, and the acid value was measured to calculate the fatty acid concentration. When the fatty acid concentration reached 85% by mass, the hydrolysis was terminated and cooled to 50 ° C. The cooling time to 50 ° C. was 50 minutes. All the hydrolyzed fatty acids were extracted from the autoclave apparatus into a 2 L beaker, and left and separated at 40 ° C. for 120 minutes under a nitrogen atmosphere to remove the aqueous layer. Further, after centrifugation (5,000 × g, 30 minutes) and removing the aqueous layer, the mixture was put into a 2000 mL four-necked flask and stirred (half moon blade Φ90 mm × H25 mm: 300 r / min) while fatty acids Was completely dehydrated under reduced pressure at a temperature of 70 ° C. and a vacuum degree of 400 Pa for 30 minutes, and then analyzed to obtain fatty acid samples E to I shown in Table 2.

表2より明らかなように、原料油脂を、固定化酵素を用いて酵素分解法で部分的に加水分解し、脂肪酸類の脂肪酸濃度を20〜90質量%とし、その後、高温、高圧の条件下で加水分解すると、構成脂肪酸中のトランス不飽和脂肪酸含量が低いだけでなく、良好な外観の脂肪酸類(サンプルF、G)ができることが分かった。これに対し、原料油脂を、粉末リパーゼ及び顆粒リパーゼを用いて酵素分解法で部分的に加水分解し、その後、高温、高圧の条件下で加水分解して得た脂肪酸類(サンプルH、I)は、構成脂肪酸中のトランス不飽和脂肪酸含量は低いが、外観が損なわれることがわかった。また、原料油脂を、高温、高圧の条件下の加水分解のみで得た脂肪酸類(サンプルE)は、良好な外観であるが、構成脂肪酸中のトランス不飽和脂肪酸含量が高いことが分かった。また、表1及び表2より明らかなように、酵素分解法で部分的に加水分解した脂肪酸類の全窒素量が低いと、高温、高圧の条件下で加水分解した脂肪酸類の色相Cが低いことが分かった。   As is clear from Table 2, the raw material fats and oils are partially hydrolyzed by an enzymatic decomposition method using an immobilized enzyme, the fatty acid concentration of the fatty acids is set to 20 to 90% by mass, and thereafter, under conditions of high temperature and high pressure It was found that the fatty acids (samples F and G) having a good appearance can be obtained by hydrolysis with a low fatty acid content in the constituent fatty acids. In contrast, fatty acids (samples H and I) obtained by partially hydrolyzing raw material fats and oils by enzymatic decomposition using powder lipase and granular lipase, and then hydrolyzing under high temperature and high pressure conditions It was found that the content of trans-unsaturated fatty acids in the constituent fatty acids is low, but the appearance is impaired. Moreover, although the fatty acid (sample E) which obtained raw material fats and oils only by the hydrolysis of the conditions of high temperature and a high pressure is a favorable external appearance, it turned out that the trans unsaturated fatty acid content in a constituent fatty acid is high. Further, as is clear from Tables 1 and 2, when the total nitrogen content of the fatty acids partially hydrolyzed by the enzymatic decomposition method is low, the hue C of the fatty acids hydrolyzed under high temperature and high pressure conditions is low. I understood that.

Claims (2)

油脂を加水分解することにより脂肪酸類を製造する方法であって、酵素を担体に固定化した固定化酵素を用いて、油脂を酵素分解法で脂肪酸濃度が20〜90質量%となるまで加水分解した後、高温高圧分解法により加水分解する脂肪酸類の製造方法。 A method for producing fatty acids by hydrolyzing fats and oils, wherein the fats and oils are hydrolyzed by an enzymatic decomposition method until the fatty acid concentration is 20 to 90% by mass using an immobilized enzyme in which the enzyme is immobilized on a carrier. After that, the manufacturing method of the fatty acids hydrolyzed by a high temperature / high pressure decomposition method. 加水分解反応に供する油脂の構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下である請求項に記載の脂肪酸類の製造方法。 The method for producing fatty acids according to claim 1 , wherein the content of trans-unsaturated fatty acids in the constituent fatty acids of the fats and oils subjected to the hydrolysis reaction is 1.5% by mass or less.
JP2005293278A 2005-10-06 2005-10-06 Method for producing fatty acids Expired - Fee Related JP4694939B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005293278A JP4694939B2 (en) 2005-10-06 2005-10-06 Method for producing fatty acids
US12/067,245 US8323934B2 (en) 2005-10-06 2006-10-06 Process for producing fatty acids
DE602006014845T DE602006014845D1 (en) 2005-10-06 2006-10-06 TWO-STAGE PROCESS FOR THE PREPARATION OF FATTY ACIDS
KR1020087005502A KR101297957B1 (en) 2005-10-06 2006-10-06 Two-staged process for the preparation of fatty acids from fat or oil comprising one step of enzymatic hydrolysis employing an immobilized lipase and an other step of high temperature and pressure hydrolysis
EP06811713A EP1931794B1 (en) 2005-10-06 2006-10-06 Two-stage process for producing fatty acids
PCT/JP2006/320425 WO2007043631A2 (en) 2005-10-06 2006-10-06 Two-staged process for the preparation of fatty acids from fat or oil comprising one step of enzymatic hydrolysis employing an immobilized lipase and an other step of high temperature and pressure hydrolysis
CN2006800367033A CN101278054B (en) 2005-10-06 2006-10-06 Method for producing fatty acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293278A JP4694939B2 (en) 2005-10-06 2005-10-06 Method for producing fatty acids

Publications (2)

Publication Number Publication Date
JP2007099959A JP2007099959A (en) 2007-04-19
JP4694939B2 true JP4694939B2 (en) 2011-06-08

Family

ID=38027208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293278A Expired - Fee Related JP4694939B2 (en) 2005-10-06 2005-10-06 Method for producing fatty acids

Country Status (2)

Country Link
JP (1) JP4694939B2 (en)
CN (1) CN101278054B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253196A (en) * 2007-04-05 2008-10-23 Kao Corp Method for producing fatty acids
JP5550282B2 (en) * 2008-08-04 2014-07-16 花王株式会社 Process for producing fats and oils with high diacylglycerol content
JP6990019B2 (en) * 2016-10-26 2022-01-12 花王株式会社 Method for producing fatty acids
CN107446707B (en) * 2017-09-22 2021-05-04 山东理工大学 Process for preparing fatty acid by membrane separation reinforced lard normal pressure hydrolysis reaction
CN109957459B (en) * 2017-12-26 2023-04-07 丰益(上海)生物技术研发中心有限公司 Method for producing fatty acids and fatty acids obtained by the method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023051A1 (en) * 1993-03-30 1994-10-13 Henkel Corporation Improved fat splitting process
JPH11123097A (en) * 1997-08-18 1999-05-11 Kao Corp Production of diglyceride
JP2000160188A (en) * 1998-11-26 2000-06-13 Kao Corp Hydrolysis of oil and fat
JP2003113395A (en) * 2001-10-03 2003-04-18 Kao Corp Method of hydrolysis for fat and oil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506006A (en) * 1995-05-31 1999-06-02 ヘンケル コーポレーション Improved decomposition method of fats and oils
US6716610B2 (en) * 1998-12-07 2004-04-06 Kao Corporation Esterification or hydrolysis with substrate treated un-dried immobilized lipolytic enzyme
TW200503634A (en) * 2003-06-10 2005-02-01 Archer Daniels Midland Co Method for the production of fatty acids having a low trans-fatty acid content

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023051A1 (en) * 1993-03-30 1994-10-13 Henkel Corporation Improved fat splitting process
JPH08507917A (en) * 1993-03-30 1996-08-27 ヘンケル コーポレーション Improved lipolysis method
JPH11123097A (en) * 1997-08-18 1999-05-11 Kao Corp Production of diglyceride
JP2000160188A (en) * 1998-11-26 2000-06-13 Kao Corp Hydrolysis of oil and fat
JP2003113395A (en) * 2001-10-03 2003-04-18 Kao Corp Method of hydrolysis for fat and oil

Also Published As

Publication number Publication date
CN101278054A (en) 2008-10-01
CN101278054B (en) 2011-12-14
JP2007099959A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP5101206B2 (en) Process for producing fats and oils with high diacylglycerol content
JP5586914B2 (en) Process for producing fats and oils with high diacylglycerol content
JP4694939B2 (en) Method for producing fatty acids
JP5307806B2 (en) Process for producing fats and oils with high diacylglycerol content
US8323934B2 (en) Process for producing fatty acids
JP4694938B2 (en) Method for producing fatty acids
US20240018491A1 (en) Purified Immobilized Lipases
JP6645804B2 (en) Manufacturing method of structural fats and oils
JP2017073980A (en) Method for producing highly unsaturated fatty acid
JP2008253196A (en) Method for producing fatty acids
JP4849967B2 (en) Method for producing fatty acids
JP6990076B2 (en) Method for producing fatty acids
JP5178888B2 (en) Method for producing transesterified oil
JP3893107B2 (en) Method for producing fatty acid
JP6990019B2 (en) Method for producing fatty acids
JP5527983B2 (en) Process for producing docosahexaenoic acid-rich oil
JP2006136258A (en) Method for producing immobilized enzyme
JP2019094445A (en) Method for producing linseed oil
JP3847729B2 (en) Method for producing docosahexaenoic acid-rich oil
JP6859212B2 (en) Method for producing fats and oils containing high diacylglycerol
JP2011078328A (en) Method for producing unsaturated fatty acids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4694939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees