JP6988303B2 - Pneumatic tires - Google Patents

Pneumatic tires Download PDF

Info

Publication number
JP6988303B2
JP6988303B2 JP2017180529A JP2017180529A JP6988303B2 JP 6988303 B2 JP6988303 B2 JP 6988303B2 JP 2017180529 A JP2017180529 A JP 2017180529A JP 2017180529 A JP2017180529 A JP 2017180529A JP 6988303 B2 JP6988303 B2 JP 6988303B2
Authority
JP
Japan
Prior art keywords
rubber
tie
rubber composition
mass
inner liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017180529A
Other languages
Japanese (ja)
Other versions
JP2019055655A (en
Inventor
洋樹 杉本
強 野間口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2017180529A priority Critical patent/JP6988303B2/en
Publication of JP2019055655A publication Critical patent/JP2019055655A/en
Application granted granted Critical
Publication of JP6988303B2 publication Critical patent/JP6988303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、成形加工性、低空気透過性およびタイヤ耐久性に優れた空気入りタイヤに関する。 The present invention relates to a pneumatic tire having excellent molding processability, low air permeability and tire durability.

地球環境への負荷を低減するため、空気入りタイヤの転がり抵抗を小さくし燃費性能を高くする検討がされている。空気入りタイヤの空気圧が低下すると、走行時のタイヤ変形を大きくし、それが転がり抵抗の増大、ひいては燃費性能の悪化を引き起こす。そのため空気入りタイヤの空気透過性を抑制することが、転がり抵抗を小さくし燃費性能を高くすることに繋がる。また、空気透過性を抑制することにより、スチールコードなどのタイヤ補強材の劣化を抑制し、タイヤ耐久性をより優れたものにすることができる。 In order to reduce the load on the global environment, studies are being conducted to reduce the rolling resistance of pneumatic tires and improve fuel efficiency. When the air pressure of a pneumatic tire decreases, the tire deformation during running increases, which causes an increase in rolling resistance and eventually a deterioration in fuel efficiency. Therefore, suppressing the air permeability of the pneumatic tire leads to reducing the rolling resistance and improving the fuel efficiency. Further, by suppressing the air permeability, deterioration of the tire reinforcing material such as a steel cord can be suppressed, and the tire durability can be further improved.

空気透過性を小さくするため、特許文献1は、ブチル系ゴムからなるゴム成分100重量部と、平均アスペクト比が3以上30未満であるクレー10〜50重量部と、カーボンブラック10〜60重量部とを含有するインナーライナー用ゴム組成物が空気透過性を低くすることを記載する。しかしながら近年、空気入りタイヤの空気透過性をより一層優れたものにし、タイヤ耐久性を改良すると共に、タイヤ加工性を悪化させないことが求められており、このような要求満たす空気入りタイヤは、未だ開発されていない。 In order to reduce air permeability, Patent Document 1 describes 100 parts by weight of a rubber component made of butyl rubber, 10 to 50 parts by weight of clay having an average aspect ratio of 3 or more and less than 30, and 10 to 60 parts by weight of carbon black. It is described that the rubber composition for an inner liner containing the above reduces air permeability. However, in recent years, it has been required to improve the air permeability of pneumatic tires, improve tire durability, and not deteriorate tire workability, and pneumatic tires that meet such requirements are still available. Not developed.

特開2002−88206号公報Japanese Unexamined Patent Publication No. 2002-88206

本発明の目的は、成形加工性、低空気透過性およびタイヤ耐久性を従来レベル以上に改良するようにした空気入りタイヤを提供することにある。 An object of the present invention is to provide a pneumatic tire having improved moldability, low air permeability and tire durability beyond the conventional level.

上記目的を達成する本発明の空気入りタイヤは、タイヤ径方向内側から外側へ、インナーライナー層、タイゴム層およびカーカス層を有し、前記タイゴム層を形成するタイゴム用ゴム組成物が、ジエン系ゴム100質量部に、無機フィラー3〜50質量部を有し、その100%変形引張り応力(Mtie)と、前記インナーライナー層を形成するインナーライナー用ゴム組成物の100%変形引張り応力(MIL)との差(Mtie−MIL)が0〜2.0MPaであることを特徴とする。 The pneumatic tire of the present invention that achieves the above object has an inner liner layer, a tie rubber layer and a carcass layer from the inside to the outside in the tire radial direction, and the rubber composition for tie rubber forming the tie rubber layer is a diene rubber. 100 parts by weight, has an inorganic filler 3-50 weight parts, and its 100% deformation tensile stress (M tie), 100% deformation tensile stress of the rubber composition for an inner liner forming the inner liner layer (M IL ) difference between the (M tie -M IL) is characterized in that it is a 0~2.0MPa.

本発明の空気入りタイヤは、タイゴム用ゴム組成物が無機フィラーを配合し、かつその100%変形引張り応力(Mtie)と、インナーライナー用ゴム組成物の100%変形引張り応力(MIL)との差(Mtie−MIL)を0〜2.0MPaにしたので、成形加工性、低空気透過性およびタイヤ耐久性を従来レベル以上に改良することができる。 The pneumatic tire of the present invention, the rubber composition is blended with inorganic filler for the tie rubber, and its 100% tensile deformation stress (M tie), and 100% deformation tensile stress of rubber composition for an inner liner (M IL) because of the difference of (M tie -M IL) was 0~2.0MPa, moldability, a low air permeability and tire durability can be improved in a conventional level or higher.

前記無機フィラーのアスペクト比Arは、0.5〜0.95であるであるとよく、空気透過性をより小さくすることができる。また前記インナーライナー用ゴム組成物がそのゴム成分100質量部に、無機フィラーをAIL質量部有し、前記タイゴム用ゴム組成物における前記ジエン系ゴム100質量部に対する前記無機フィラーの配合量をAtie質量部とするとき、これら無機フィラーの配合量の比(AIL/Atie)が2/3以下であるとよく、タイゴム用ゴム組成物およびインナーライナー用ゴム組成物の100%変形引張り応力の差(Mtie−MIL)を容易に適正化することができる。また前記無機フィラーは、クレー、タルク、炭酸カルシウム、酸化マグネシウムから選ばれる少なくとも1つであるとよい。 The aspect ratio Ar of the inorganic filler is preferably 0.5 to 0.95, and the air permeability can be made smaller. Further, the rubber composition for an inner liner has an A IL mass part in 100 parts by mass of the rubber component thereof, and the blending amount of the inorganic filler with respect to 100 parts by mass of the diene rubber in the rubber composition for tie rubber is A. When it is a tie mass part, the ratio of the blending amounts of these inorganic fillers (A IL / A tie ) is preferably 2/3 or less, and 100% deformation tensile stress of the rubber composition for tie rubber and the rubber composition for inner liner. The difference (M tie - MIL ) can be easily optimized. Further, the inorganic filler may be at least one selected from clay, talc, calcium carbonate and magnesium oxide.

本明細書において、空気入りタイヤは、インナーライナー層、タイゴム層およびカーカス層を、タイヤ径方向内側から外側へ、この順に有する。すなわち、空気入りタイヤのタイヤ径方向の最内側に、インナーライナー層を有し、それより外側にカーカス層を有し、インナーライナー層およびカーカス層の間にタイゴム層が介在している。そしてインナーライナー層およびタイゴム層は、インナーライナー用ゴム組成物およびタイゴム用ゴム組成物で形成される。 In the present specification, the pneumatic tire has an inner liner layer, a tie rubber layer and a carcass layer in this order from the inner side to the outer side in the tire radial direction. That is, the pneumatic tire has an inner liner layer on the innermost side in the tire radial direction, a carcass layer on the outer side thereof, and a tie rubber layer is interposed between the inner liner layer and the carcass layer. The inner liner layer and the tie rubber layer are formed of the inner liner rubber composition and the tie rubber rubber composition.

タイゴム用ゴム組成物は、ジエン系ゴム100質量部に、無機フィラー3〜50質量部を有する。ジエン系ゴムとして、例えば天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム等が例示される。好ましくは、天然ゴムをジエン系ゴム100質量%中、30〜70質量%含有するとよい。 The rubber composition for tie rubber has 3 to 50 parts by mass of an inorganic filler in 100 parts by mass of a diene-based rubber. Examples of the diene rubber include natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber and the like. It is preferable that the natural rubber is contained in an amount of 30 to 70% by mass based on 100% by mass of the diene rubber.

無機フィラーとして、クレー、タルク、炭酸カルシウム、酸化マグネシウム、マイカ、瀝青炭等を例示することができる。なかでもクレー、タルク、炭酸カルシウム、酸化マグネシウムから選ばれる少なくとも1つであるとよい。なお、本明細書において、カーボンブラックは、無機フィラーの種類から除外するものとする。 Examples of the inorganic filler include clay, talc, calcium carbonate, magnesium oxide, mica, bituminous coal and the like. Among them, at least one selected from clay, talc, calcium carbonate, and magnesium oxide is preferable. In this specification, carbon black is excluded from the types of inorganic fillers.

無機フィラーのアスペクト比Arは、好ましくは0.5〜0.95、より好ましくは0.5〜0.9、更に好ましくは0.6〜0.9であるとよい。無機フィラーのアスペクト比Arをこのような範囲内にすることにより耐空気透過性を抑制しながら、タック性、接着性等を確保することができる。本明細書において、アスペクト比Arは、マイクロメリテックス計器社製セディグラグ5100粒子径測定装置を使用して遠心沈降法で50%粒子径Dsを測定し、マルバーン社製レーザー・マルバーン・マスターサイザー2000回折式粒子分布測定装置を使用して50%粒子径Dlを測定し、下記式(1)により求めることができる。
Ar=(Ds−Dl)/Ds (1)
(式中、Arはアスペクト比、Dsは遠心沈降法で測定された累積分布により求められた50%粒子径、Dlはコヒーレント光のレーザー回折法で測定された累積分布により求められた50%粒子径を表す。)。
The aspect ratio Ar of the inorganic filler is preferably 0.5 to 0.95, more preferably 0.5 to 0.9, and even more preferably 0.6 to 0.9. By setting the aspect ratio Ar of the inorganic filler within such a range, it is possible to secure tackiness, adhesiveness, etc. while suppressing air permeability resistance. In the present specification, the aspect ratio Ar measures 50% particle size Ds by the centrifugal sedimentation method using a Cedigrag 5100 particle size measuring device manufactured by Micromeritex Instrument Co., Ltd., and a laser Malvern Mastersizer 2000 diffraction manufactured by Malvern Co., Ltd. The 50% particle diameter Dl can be measured using the formula particle distribution measuring device, and can be obtained by the following formula (1).
Ar = (Ds-Dl) / Ds (1)
(In the formula, Ar is the aspect ratio, Ds is the 50% particle diameter determined by the cumulative distribution measured by the centrifugal sedimentation method, and Dl is the 50% particle diameter determined by the cumulative distribution measured by the laser diffraction method of coherent light. Represents the diameter.)

無機フィラーは、ジエン系ゴム100質量部に対し、3〜50質量部、好ましくは5〜30質量部配合する。本明細書において、ジエン系ゴム100質量部に対する無機フィラーの配合量をAtie質量部であるとする。無機フィラーの配合量が3質量部未満であると、空気透過性を小さくする作用が十分に得られない。また無機フィラーの配合量が50質量部を超えると、成形加工性が低下し良品率が低下すると共に、タイヤ故障を起こしやすくなり、タイヤ耐久性が低下する。 The inorganic filler is blended in an amount of 3 to 50 parts by mass, preferably 5 to 30 parts by mass, based on 100 parts by mass of the diene rubber. In the present specification, it is assumed that the blending amount of the inorganic filler with respect to 100 parts by mass of the diene rubber is A tie mass parts. If the blending amount of the inorganic filler is less than 3 parts by mass, the effect of reducing the air permeability cannot be sufficiently obtained. Further, when the blending amount of the inorganic filler exceeds 50 parts by mass, the molding processability is lowered, the non-defective product rate is lowered, the tire is liable to fail, and the tire durability is lowered.

本発明の空気入りタイヤにおいて、タイゴム用ゴム組成物の100%変形引張り応力(Mtie)およびインナーライナー用ゴム組成物の100%変形引張り応力(MIL)との差(Mtie−MIL)は、0〜2.0MPa、好ましくは0〜1.5MPaである。100%変形引張り応力の差(Mtie−MIL)をこのような範囲内にすることにより、タイヤ成形時に口開き等が起きるのを抑制し、良品率を高くすることができる。また、タイヤが変形したとき応力集中を低減しタイヤ耐久性を改良することができる。本明細書において、タイゴム用ゴム組成物の100%変形引張り応力(Mtie)およびインナーライナー用ゴム組成物の100%変形引張り応力(MIL)は、JIS K6251に準拠し、3号型ダンベル試験片を20℃、引張り速度500mm/分の条件で引張り試験を行い、100%伸長時の引張り応力を測定するものとする。 In the pneumatic tire of the present invention, the difference between the 100% deformation tensile stress (M tie ) of the rubber composition for tie rubber and the 100% deformation tensile stress (M IL ) of the rubber composition for inner liner (M tie − M IL ). Is 0 to 2.0 MPa, preferably 0 to 1.5 MPa. By setting the difference in 100% deformation tensile stress (M tie - MIL ) within such a range, it is possible to suppress the occurrence of opening of the mouth during tire molding and increase the non-defective rate. Further, when the tire is deformed, the stress concentration can be reduced and the tire durability can be improved. In the present specification, 100% tensile deformation stress of the tie rubber for the rubber composition (M tie) and 100% deformation tensile stress of the inner liner rubber composition (M IL) conforms to JIS K6251, 3 No. dumbbell test The piece shall be subjected to a tensile test under the conditions of 20 ° C. and a tensile speed of 500 mm / min, and the tensile stress at 100% elongation shall be measured.

インナーライナー用ゴム組成物は、ゴム成分100質量部に、無機フィラーをAIL質量部配合することができる。インナーライナー用ゴム組成物における無機フィラーの配合量(AIL質量部)は、タイゴム用ゴム組成物における無機フィラーの配合量(Atie質量部)との比で決めることができる。インナーライナー用ゴム組成物の無機フィラーの配合量(AIL質量部)およびタイゴム用ゴム組成物の無機フィラーの配合量(Atie質量部)の比(AIL/Atie)は、好ましくは2/3以下、より好ましくは1/5〜1/3である。無機フィラーの配合量の比(AIL/Atie)を2/3以下にすることにより、タイゴム用ゴム組成物およびインナーライナー用ゴム組成物の100%変形引張り応力の差(Mtie−MIL)を容易に適正化することができる。またインナーライナー用ゴム組成物が含有する無機フィラーは、クレー、タルク、炭酸カルシウム、酸化マグネシウム、マイカ、瀝青炭等から適宜、選ぶことができる。インナーライナー用ゴム組成物が含有する無機フィラーは、タイゴム用ゴム組成物が含有する無機フィラーと、同じ種類でも、異なる種類でもよい。 In the rubber composition for an inner liner, an inorganic filler can be blended in an A IL mass part in 100 parts by mass of the rubber component. The blending amount of the inorganic filler (A IL mass part) in the rubber composition for the inner liner can be determined by the ratio with the blending amount of the inorganic filler (A tie mass portion) in the rubber composition for tie rubber. The ratio (A IL / A tie ) of the blending amount of the inorganic filler of the rubber composition for the inner liner (A IL mass part) and the blending amount of the inorganic filler of the tie rubber rubber composition (A tie mass part) is preferably 2. It is 3/3 or less, more preferably 1/5 to 1/3. By setting the ratio of the blending amount of the inorganic filler (A IL / A tie ) to 2/3 or less, the difference in 100% deformation tensile stress between the rubber composition for tie rubber and the rubber composition for inner liner (M tie- M IL). ) Can be easily optimized. The inorganic filler contained in the rubber composition for the inner liner can be appropriately selected from clay, talc, calcium carbonate, magnesium oxide, mica, bituminous coal and the like. The inorganic filler contained in the rubber composition for inner liner may be of the same type or different from the inorganic filler contained in the rubber composition for tie rubber.

インナーライナー用ゴム組成物のゴム成分は、ブチルゴム、臭素化ブチルゴム、塩素化ブチルゴムなどからなるブチル系ゴムを主成分にする。すなわち、ゴム成分100質量%中、ブチル系ゴムが50質量%以上、好ましくは70〜100質量%含有するとよい。インナーライナー用ゴム組成物は、ブチル系ゴム以外の他のゴム成分を含有することができる。他のゴム成分としては、例えば天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、等が例示される。 The rubber component of the rubber composition for the inner liner is mainly butyl rubber composed of butyl rubber, brominated butyl rubber, chlorinated butyl rubber and the like. That is, it is preferable that the butyl rubber is contained in an amount of 50% by mass or more, preferably 70 to 100% by mass, based on 100% by mass of the rubber component. The rubber composition for the inner liner can contain a rubber component other than the butyl rubber. Examples of other rubber components include natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, and the like.

本発明において、タイゴム用ゴム組成物およびインナーライナー用ゴム組成物は、上述した配合剤の他、通常のタイゴム用ゴム組成物およびインナーライナー用ゴム組成物に配合される配合剤を含有することができる。すなわち、加硫剤/架橋剤、加硫促進助剤、老化防止剤、素練促進剤、各種オイル、可塑剤などのゴム組成物に一般的に使用される各種添加剤を、本発明の構成を阻害しない範囲で配合することができ、かかる添加剤は一般的な方法で混練してタイゴム用ゴム組成物およびインナーライナー用ゴム組成物とし、加硫又は架橋するのに使用することができる。 In the present invention, the rubber composition for tie rubber and the rubber composition for inner liner may contain, in addition to the above-mentioned compounding agent, a compounding agent to be blended in a normal rubber composition for tie rubber and a rubber composition for inner liner. can. That is, the present invention comprises various additives generally used in rubber compositions such as vulcanization agents / cross-linking agents, vulcanization accelerator aids, antiaging agents, scouring accelerators, various oils, and plasticizers. Such additives can be kneaded by a general method to obtain a rubber composition for tie rubber and a rubber composition for an inner liner, and can be used for vulcanization or crosslinking.

以下、実施例によって本発明をさらに説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to Examples, but the scope of the present invention is not limited to these Examples.

表2に示す共通配合を有し、表1に示す配合からなる10種類のタイゴム用ゴム組成物(標準例、実施例1〜5、比較例1〜4)を調製する。タイゴム用ゴム組成物の配合において、硫黄および加硫促進剤を除く成分を秤量し、1.7L密閉式バンバリーミキサーで約5分間混練し、得られた混合物を放出し室温冷却した。冷却された混合物を、ロールに供し、硫黄および加硫促進剤を添加、混合し、タイゴム用ゴム組成物を調製した。なお、タイゴム用ゴム組成物における無機フィラーの配合量(Atie)に対する、下記のインナーライナー用ゴム組成物における無機フィラーの配合量(AIL)の比(AIL/Atie)を算出し、表1に記載した。 Ten kinds of rubber compositions for tie rubber (Standard Example, Examples 1 to 5, Comparative Examples 1 to 4) having the common composition shown in Table 2 and having the composition shown in Table 1 are prepared. In the formulation of the rubber composition for Thai rubber, the components excluding sulfur and the vulcanization accelerator were weighed and kneaded with a 1.7 L sealed Banbury mixer for about 5 minutes, and the obtained mixture was released and cooled to room temperature. The cooled mixture was subjected to a roll, sulfur and a vulcanization accelerator were added and mixed to prepare a rubber composition for Thai rubber. The ratio (A IL / A tie ) of the blending amount (A IL ) of the inorganic filler in the rubber composition for inner liner below to the blending amount (A tie ) of the inorganic filler in the rubber composition for tie rubber was calculated. It is described in Table 1.

表3に示す配合からなる3種類のインナーライナー用ゴム組成物(組成物A,B,C)を、硫黄および加硫促進剤を除く成分を秤量し、1.7L密閉式バンバリーミキサーで約5分間混練し、得られた混合物を放出し室温冷却した。冷却された混合物を、ロールに供し、硫黄および加硫促進剤を添加、混合し、インナーライナー用ゴム組成物を調製した。 Three types of rubber compositions for inner liners (compositions A, B, and C) having the formulations shown in Table 3 are weighed with components excluding sulfur and a vulcanization accelerator, and about 5 with a 1.7 L sealed Banbury mixer. After kneading for minutes, the resulting mixture was released and cooled to room temperature. The cooled mixture was subjected to a roll, sulfur and a vulcanization accelerator were added and mixed to prepare a rubber composition for an inner liner.

得られたタイゴム用ゴム組成物およびインナーライナー用ゴム組成物を用いて、所定形状の金型を使用して160℃、30分間加硫成形し試験用サンプルを作成し、下記に示す方法により100%引張り応力を測定した。またタイゴム用ゴム組成物の試験用サンプルを用いて、下記に示す方法により空気透過性を測定した。 Using the obtained rubber composition for tie rubber and rubber composition for inner liner, vulcanize and mold at 160 ° C. for 30 minutes using a mold having a predetermined shape to prepare a test sample, and 100 by the method shown below. % Tensile stress was measured. Moreover, the air permeability was measured by the method shown below using the test sample of the rubber composition for tie rubber.

100%引張り応力
得られた試験用サンプルから、JIS K6251に準拠してJIS3号ダンベル型試 験片を切り出した。JIS K6251に準拠し温度20℃、引張速度500mm/分の条件で引張試験を行い、100%伸長時の引張り応力を測定した。得られた結果を、表1および3に示した。またタイゴム用ゴム組成物の100%引張り応力(Mtie)およびインナーライナー用ゴム組成物の100%引張り応力(MIL)の差(Mtie−MIL)を算出し、表1に記載した。
100% tensile stress From the obtained test sample, a JIS No. 3 dumbbell type test piece was cut out in accordance with JIS K6251. A tensile test was conducted under the conditions of a temperature of 20 ° C. and a tensile speed of 500 mm / min in accordance with JIS K6251, and the tensile stress at 100% elongation was measured. The results obtained are shown in Tables 1 and 3. Also to calculate the difference between 100% tensile stress and 100% tensile stress (M tie) and the inner liner rubber composition for the tie rubber for the rubber composition (M IL) (M tie -M IL), as described in Table 1.

空気透過性
得られたタイゴム用ゴム組成物の試験用サンプルの空気透過性を、JIS K7126「プラスチックフィルム及びシート−ガス透過度試験方法−第1部:差圧法」に準拠して、空気透過係数を測定した。得られた空気透過係数の逆数を算出し、標準例を100とする指数にし、表1の「タイゴムの空気透過性」の欄に示した。この指数が大きいほど空気透過性が小さくバリア性が優れることを意味する。
Air permeability The air permeability of the obtained test sample of the rubber composition for tie rubber is determined in accordance with JIS K7126 "Plastic film and sheet-Gas permeability test method-Part 1: Differential pressure method". Was measured. The reciprocal of the obtained air permeability coefficient was calculated and used as an index with the standard example as 100, and is shown in the column of "Air permeability of Thai rubber" in Table 1. The larger this index is, the smaller the air permeability is and the better the barrier property is.

表1に示すように、10種類のタイゴム用ゴム組成物(標準例、実施例1〜5、比較例1〜4)と、3種類のインナーライナー用ゴム組成物(組成物A,B,C)とを組み合わせて、タイヤサイズ(195/65R15)の空気入りタイヤを加硫成形した。ここで1000本ずつの空気入りタイヤを製作するとき、グリーン成形から加硫成形までの良品率を求め、標準例を100とする指数にし、表1の「タイヤ成形時の良品率」に記載した。この指数が高いほど良品率が高く優れることを意味する。
また得られた空気入りタイヤを使用し、下記に示す方法によりタイヤ耐久性試験、およびタイヤ空気漏れ性能を測定した。
As shown in Table 1, 10 types of rubber compositions for tie rubber (Standard Examples, Examples 1 to 5, Comparative Examples 1 to 4) and 3 types of rubber compositions for inner liners (compositions A, B, C). ) And a tire size (195 / 65R15) pneumatic tire was vulcanized and molded. Here, when manufacturing 1000 pneumatic tires each, the good product rate from green molding to vulcanization molding was obtained, and the standard example was set to 100, which was set as an index and described in "Good product rate during tire molding" in Table 1. .. The higher this index, the higher the non-defective rate and the better.
Further, using the obtained pneumatic tire, the tire durability test and the tire air leakage performance were measured by the methods shown below.

タイヤ耐久性試験
得られた空気入りタイヤをJATMA標準リムに組み付けドラム表面が平滑な、鋼製の直径1707mmのドラム試験機を用い、周辺温度を38±3℃に制御し、内圧200kPa、荷重4.7kN、速度80km/hにてタイヤ故障が発生するまでの走行距離を求めた。得られた結果は、標準例を100とする指数にし、表1の「タイヤ耐久性」の欄に記載した。この指数が大きいほどタイヤ耐久性が優れることを意味する。
Tire durability test The obtained pneumatic tire was assembled to the JATTA standard rim, and a steel drum tester with a diameter of 1707 mm was used to control the ambient temperature to 38 ± 3 ° C., internal pressure 200 kPa, load 4 The mileage until a tire failure occurred at 0.7 kN and a speed of 80 km / h was calculated. The obtained results were indexed with the standard example as 100 and listed in the "Tire durability" column of Table 1. The larger this index is, the better the tire durability is.

タイヤ空気漏れ性能
空気入りタイヤをJATMA標準リムに組み付け、空気圧230kPaに加圧した。各空気入りタイヤを、常温で1か月間、放置した後、空気圧を測定し、空気漏れ量(空気圧の漏れ率)を算出した。得られた結果は、それぞれの逆数を算出し、標準例を100とする指数にし、表1の「タイヤ空気漏れ性能」の欄に記載した。この指数が大きいほど空気漏れがすくなく、タイヤ空気漏れ性能が優れることを意味する。
Tire air leakage performance A pneumatic tire was assembled on a JATTA standard rim and pressurized to an air pressure of 230 kPa. After each pneumatic tire was left at room temperature for one month, the air pressure was measured and the amount of air leakage (air pressure leakage rate) was calculated. The obtained results are shown in the column of "tire air leakage performance" in Table 1 by calculating the reciprocal of each and making an index with the standard example as 100. The larger this index is, the less air leaks, and the better the tire air leak performance.

Figure 0006988303
Figure 0006988303

表1において使用した原材料の種類を下記に示す。
・NR:天然ゴム、TSR20、Tg:−65℃
・SBR:スチレンブタジエンゴム、日本ゼオン社製Nipol 1520、Tg:−60℃
・カーボンブラック:東海カーボン社製シーストV、窒素吸着比表面積:27m2/g
・クレー:山陽クレー社製カタルポY−K、アスペクト比Ar:0.85
・タルク:日本ミストロン社製ミストロンベーパー、アスペクト比Ar:0.65
The types of raw materials used in Table 1 are shown below.
-NR: natural rubber, TSR20, Tg: -65 ° C
-SBR: Styrene butadiene rubber, Nippon Zeon Nipol 1520, Tg: -60 ° C
-Carbon black: Tokai Carbon Co., Ltd. Seast V, nitrogen adsorption specific surface area: 27 m 2 / g
・ Clay: Catalpo Y-K manufactured by Sanyo Clay, aspect ratio Ar: 0.85
・ Talc: Mistron vapor manufactured by Japan Mistron, aspect ratio Ar: 0.65

Figure 0006988303
Figure 0006988303

表2において使用した原材料の種類を下記に示す。
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・ステアリン酸:日油社製ビーズステアリン酸
・樹脂:日立化成工業社製ヒタノール1502Z
・硫黄:四国化成工業社製ミュークロンOT−20
・加硫促進剤:大内新興化学工業社製ノクセラーCZ
The types of raw materials used in Table 2 are shown below.
・ Zinc oxide: Zinc oxide 3 types manufactured by Shodo Chemical Industry Co., Ltd. ・ Stearic acid: Beaded stearic acid manufactured by NOF Corporation ・ Resin: Hitanol 1502Z manufactured by Hitachi Kasei Kogyo Co., Ltd.
・ Sulfur: Shikoku Kasei Kogyo Co., Ltd. Mucron OT-20
・ Vulcanization accelerator: Noxeller CZ manufactured by Ouchi Shinko Chemical Industry Co., Ltd.

Figure 0006988303
Figure 0006988303

表3において使用した原材料の種類を下記に示す。
・IIR:ブチルゴム、エクソンモービル社製EXXON BROMOBUTYL 2255
・NR:天然ゴム、TSR20、Tg:−65℃
・カーボンブラック:東海カーボン社製シーストV、窒素吸着比表面積:27m2/g
・クレー:山陽クレー社製カタルポY−K、アスペクト比Ar:0.85
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・ステアリン酸:日油社製ビーズステアリン酸
・硫黄:四国化成工業社製ミュークロンOT−20
・加硫促進剤:大内新興化学工業社製ノクセラーCZ
The types of raw materials used in Table 3 are shown below.
-IIR: Butyl rubber, EXXON BROMOBUTYL 2255 manufactured by ExxonMobil
-NR: natural rubber, TSR20, Tg: -65 ° C
-Carbon black: Tokai Carbon Co., Ltd. Seast V, nitrogen adsorption specific surface area: 27 m 2 / g
・ Clay: Catalpo Y-K manufactured by Sanyo Clay, aspect ratio Ar: 0.85
・ Zinc oxide: Zinc oxide 3 types manufactured by Shodo Chemical Industry Co., Ltd. ・ Stearic acid: Bead stearic acid manufactured by NOF Corporation ・ Sulfur: Mucron OT-20 manufactured by Shikoku Kasei Kogyo Co., Ltd.
・ Vulcanization accelerator: Noxeller CZ manufactured by Ouchi Shinko Chemical Industry Co., Ltd.

表1から明らかなように実施例1〜6の空気入りタイヤは、成形加工性、低空気透過性およびタイヤ耐久性が優れる。 As is clear from Table 1, the pneumatic tires of Examples 1 to 6 are excellent in molding processability, low air permeability and tire durability.

比較例1の空気入りタイヤは、タイゴム用ゴム組成物が無機フィラーを含有せず、インナーライナー用ゴム組成物に無機フィラーを含むため、タイヤ成形時の良品率が悪化する。
比較例2の空気入りタイヤは、タイゴム用ゴム組成物が無機フィラーを含有せず、100%変形引張り応力の差(Mtie−MIL)が2.0MPaを超えるので、タイヤ成形時の良品率およびタイヤ耐久性が悪化する。
比較例3の空気入りタイヤは、タイゴム用ゴム組成物中、無機フィラーが50質量部を超え、100%変形引張り応力の差(Mtie−MIL)が2.0MPaを超えるので、タイヤ成形時の良品率およびタイヤ耐久性が悪化する。
比較例4の空気入りタイヤは、タイゴム用ゴム組成物中、100%変形引張り応力の差(Mtie−MIL)が0MPaより小さいので、タイヤ成形時の良品率が著しく悪化する。
In the pneumatic tire of Comparative Example 1, the rubber composition for tie rubber does not contain an inorganic filler, and the rubber composition for an inner liner contains an inorganic filler, so that the non-defective rate at the time of tire molding deteriorates.
The pneumatic tire of Comparative Example 2, the tie rubber for the rubber composition contains no inorganic filler, the difference between 100% deformation tensile stress (M tie -M IL) exceeds 2.0 MPa, the yield rate at the time of tire molding And tire durability deteriorates.
In the pneumatic tire of Comparative Example 3, the inorganic filler exceeds 50 parts by mass and the difference in 100% deformation tensile stress (M tie - MIL ) exceeds 2.0 MPa in the rubber composition for tie rubber, so that during tire molding. The non-defective rate and tire durability deteriorate.
The pneumatic tire of Comparative Example 4, the rubber composition for the tie rubber, the difference in a 100% deformation tensile stress (M tie -M IL) because less than 0 MPa, the yield rate at the time of tire molding is remarkably deteriorated.

Claims (4)

タイヤ径方向内側から外側へ、インナーライナー層、タイゴム層およびカーカス層を有し、前記タイゴム層を形成するタイゴム用ゴム組成物が、ジエン系ゴム100質量部に、無機フィラー3〜50質量部を有し、その100%変形引張り応力(Mtie)と、前記インナーライナー層を形成するインナーライナー用ゴム組成物の100%変形引張り応力(MIL)との差(Mtie−MIL)が0〜2.0MPaであることを特徴とする空気入りタイヤ。 The rubber composition for tie rubber having an inner liner layer, a tie rubber layer and a carcass layer from the inside to the outside in the tire radial direction and forming the tie rubber layer comprises 100 parts by mass of a diene rubber and 3 to 50 parts by mass of an inorganic filler. The difference (M tie − M IL ) between the 100% deformation tensile stress (M tie ) and the 100% deformation tensile stress (M IL ) of the rubber composition for the inner liner forming the inner liner layer is 0. Pneumatic tires characterized by ~ 2.0 MPa. 前記無機フィラーのアスペクト比Arが0.5〜0.95であることを特徴とする請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the inorganic filler has an aspect ratio Ar of 0.5 to 0.95. 前記インナーライナー用ゴム組成物がそのゴム成分100質量部に、無機フィラーをAIL質量部有し、前記タイゴム用ゴム組成物における前記ジエン系ゴム100質量部に対する前記無機フィラーの配合量をAtie質量部とするとき、これら無機フィラーの配合量の比(AIL/Atie)が0以上、2/3以下であることを特徴とする請求項1または2に記載の空気入りタイヤ。 The rubber composition for an inner liner has an A IL mass part in 100 parts by mass of the rubber component thereof, and the blending amount of the inorganic filler with respect to 100 parts by mass of the diene rubber in the rubber composition for tie rubber is tie. The pneumatic tire according to claim 1 or 2, wherein the ratio (A IL / A tie ) of the blending amounts of these inorganic fillers is 0 or more and 2/3 or less in terms of parts by mass. 前記タイゴム用ゴム組成物が含有する無機フィラーが、クレー、タルク、炭酸カルシウム、酸化マグネシウムから選ばれる少なくとも1つであることを特徴とする請求項1〜3のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the inorganic filler contained in the rubber composition for tie rubber is at least one selected from clay, talc, calcium carbonate, and magnesium oxide.
JP2017180529A 2017-09-20 2017-09-20 Pneumatic tires Active JP6988303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017180529A JP6988303B2 (en) 2017-09-20 2017-09-20 Pneumatic tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017180529A JP6988303B2 (en) 2017-09-20 2017-09-20 Pneumatic tires

Publications (2)

Publication Number Publication Date
JP2019055655A JP2019055655A (en) 2019-04-11
JP6988303B2 true JP6988303B2 (en) 2022-01-05

Family

ID=66106933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017180529A Active JP6988303B2 (en) 2017-09-20 2017-09-20 Pneumatic tires

Country Status (1)

Country Link
JP (1) JP6988303B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507288B2 (en) * 1982-12-28 1996-06-12 株式会社ブリヂストン Tubeless pneumatic radial tires for heavy loads
EP0763563A1 (en) * 1995-09-13 1997-03-19 The Goodyear Tire & Rubber Company Innerliner for pneumatic tires
JP3058624B2 (en) * 1998-12-10 2000-07-04 住友ゴム工業株式会社 Tubeless tire
JP4537806B2 (en) * 2004-08-31 2010-09-08 住友ゴム工業株式会社 Pneumatic tire and manufacturing method thereof
DE102005004031A1 (en) * 2005-01-28 2006-08-03 Continental Aktiengesellschaft Rubber blend, useful for inner liner of vehicle tyres, comprises halo butyl rubber; additional rubber of e.g. butyl rubber or polybutadiene; delaminated talc; and carbon black
JP5092058B1 (en) * 2011-06-21 2012-12-05 住友ゴム工業株式会社 Rubber composition for tire installation and tire using the same
JP5443455B2 (en) * 2011-09-21 2014-03-19 住友ゴム工業株式会社 Pneumatic tire
JP5964225B2 (en) * 2012-12-27 2016-08-03 東洋ゴム工業株式会社 Pneumatic tire
JP6247591B2 (en) * 2014-05-08 2017-12-13 株式会社ブリヂストン Rubber composition, inner liner, sealant and pneumatic tire
JP6115647B2 (en) * 2014-08-22 2017-04-19 横浜ゴム株式会社 Heavy duty pneumatic tire
JP6369277B2 (en) * 2014-10-10 2018-08-08 横浜ゴム株式会社 Pneumatic tire
US10160263B2 (en) * 2016-01-11 2018-12-25 The Goodyear Tire & Rubber Company Tire with non-spliced multilayered film innerliner

Also Published As

Publication number Publication date
JP2019055655A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
AU646622B1 (en) Pneumatic tire having a multilayered innerliner
US20060142463A1 (en) Rubber composition for inner liner and tire
JP6115647B2 (en) Heavy duty pneumatic tire
JP5342684B1 (en) Pneumatic tire with inner liner
EP2957592B1 (en) Tire
US9109102B2 (en) Rubber composition for use in tire side walls and pneumatic tire using the same
JP2011074237A (en) Polymer composition for inner liner, and pneumatic tire using the same
JP5095093B2 (en) Method for producing rubber composition and rubber composition obtained thereby
JP2008169298A (en) Rubber composition and pneumatic tire using same
US20180057675A1 (en) Rubber Composition, and Pneumatic Tire Using Same
JP6988303B2 (en) Pneumatic tires
WO2014168232A1 (en) Pneumatic tire for heavy load
JP2011116815A (en) Rubber composition for tire and pneumatic tire obtained using the same
JP2010144067A (en) Rubber composition and pneumatic tire using the same
JP5223445B2 (en) Rubber composition for rim cushion
JP5443554B2 (en) Pneumatic tire with inner liner
JP2011157495A (en) Rubber composition for tire rim cushion and pneumatic tire using the same
JP5772226B2 (en) Rubber composition for tire bead insulation and pneumatic tire using the same
JP2009119907A (en) Rubber composition and pneumatic tire
US10723176B2 (en) Rubber composition for sidewalls, and pneumatic tire using same
JP2009132835A (en) Rubber composition for tire inner liner
JP2009126939A (en) Rubber composition and pneumatic tire
JP6302181B2 (en) Truck or bus tire
JPS6337825B2 (en)
JP2022029223A (en) Sealant material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6988303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350