JP5095093B2 - Method for producing rubber composition and rubber composition obtained thereby - Google Patents
Method for producing rubber composition and rubber composition obtained thereby Download PDFInfo
- Publication number
- JP5095093B2 JP5095093B2 JP2005272148A JP2005272148A JP5095093B2 JP 5095093 B2 JP5095093 B2 JP 5095093B2 JP 2005272148 A JP2005272148 A JP 2005272148A JP 2005272148 A JP2005272148 A JP 2005272148A JP 5095093 B2 JP5095093 B2 JP 5095093B2
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- weight
- rubber composition
- reinforcing agent
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Tires In General (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、ゴム組成物の製造方法およびそれにより得られるゴム組成物に関する。 The present invention relates to a method for producing a rubber composition and a rubber composition obtained thereby.
空気入りタイヤは、タイヤ内部に空気を充填することにより、車両の荷重を支え、乗り心地を向上させることができ、それには、タイヤ内の空気圧を保持することが非常に重要となる。 In the pneumatic tire, by filling the tire with air, the load of the vehicle can be supported and the riding comfort can be improved. For that purpose, it is very important to maintain the air pressure in the tire.
空気圧保持を目的として、空気入りタイヤ内面には、ブチルゴム、ハロゲン化ブチルゴムなどのような空気透過量の低い(低空気透過性能に優れる)ゴムからなるインナーライナー層が設けられている。インナーライナー層は低空気透過性能を充分に確保するとともに、柔軟性、耐亀裂性、耐破壊性能および他のタイヤ部材との接着性が必要となる部材であり、それらの性能をいかに向上させるかがこれまで検討されてきた。 For the purpose of maintaining air pressure, an inner liner layer made of rubber having a low air permeation amount (excellent in low air permeation performance) such as butyl rubber and halogenated butyl rubber is provided on the inner surface of the pneumatic tire. The inner liner layer is a member that requires sufficient air permeation performance and also requires flexibility, crack resistance, fracture resistance and adhesion to other tire members, and how to improve their performance. Has been studied so far.
特許文献1には、ゴム成分として、ハロゲン化ブチルゴムおよびエポキシ化天然ゴムを添加して、低空気透過性能および接着性を向上させたゴム組成物が開示されているが、柔軟性、耐亀裂性および耐破壊性能はまだ充分なものではなかった。 Patent Document 1 discloses a rubber composition in which halogenated butyl rubber and epoxidized natural rubber are added as rubber components to improve low air permeation performance and adhesiveness. However, flexibility and crack resistance are disclosed. And the fracture resistance was not yet sufficient.
本発明は、低空気透過性能を維持したうえで、柔軟性、耐亀裂性および耐破壊性能に優れたゴム組成物の製造方法およびそれにより得られるゴム組成物を提供することを目的とする。 An object of the present invention is to provide a method for producing a rubber composition excellent in flexibility, crack resistance and fracture resistance while maintaining low air permeation performance, and a rubber composition obtained thereby.
本発明は、(A)ハロゲン化ブチルゴムおよび炭素数4〜7のイソモノオレフィンとパラアルキルスチレンとの共重合体のハロゲン化物から選ばれる1種以上のゴム30〜95重量%および(B)エポキシ化率が5〜85%のエポキシ化天然ゴム5〜70重量%含有するゴム成分100重量部に対して、補強剤を20〜100重量部含有するゴム組成物の製造方法であって、(1)密閉型ミキサー中で50〜200℃にて、ゴム(A)、および補強剤全量の80重量%以上の補強剤を10秒以上混合する工程、ならびに
(2)エポキシ化天然ゴム(B)、残りの補強剤および工程(1)で得られた混合物を混合する工程からなるゴム組成物の製造方法に関する。
The present invention comprises (A) a halogenated butyl rubber and 30 to 95% by weight of one or more rubbers selected from a halogenated copolymer of a C 4-7 isomonoolefin and a paraalkyl styrene, and (B) an epoxy. A method for producing a rubber composition containing 20 to 100 parts by weight of a reinforcing agent with respect to 100 parts by weight of a rubber component containing 5 to 70% by weight of an epoxidized natural rubber having a conversion rate of 5 to 85%, (1 ) Mixing the rubber (A) and a reinforcing agent of 80% by weight or more of the total amount of the reinforcing agent for 10 seconds or more at 50 to 200 ° C. in a closed mixer, and (2) the epoxidized natural rubber (B), The present invention relates to a method for producing a rubber composition comprising a step of mixing the remaining reinforcing agent and the mixture obtained in step (1).
前記補強剤は、カーボンブラックまたはシリカであることが好ましい。 The reinforcing agent is preferably carbon black or silica.
また、本発明は、前記製造方法により得られるゴム組成物に関する。 Moreover, this invention relates to the rubber composition obtained by the said manufacturing method.
さらに、本発明は、前記ゴム組成物からなるインナーライナー層を有する空気入りタイヤに関する。 Furthermore, the present invention relates to a pneumatic tire having an inner liner layer made of the rubber composition.
本発明によれば、はじめに、ハロゲン化ブチルゴムおよび炭素数4〜7のイソモノオレフィンとパラアルキルスチレンとの共重合体のハロゲン化物から選ばれる1種以上のゴムと特定量の補強剤とを混合してバウンドラバーを形成したうえで、さらに、エポキシ化天然ゴムを混合することにより、得られたゴム組成物の低空気透過性能を維持したうえで、さらに柔軟性および耐破壊性能を向上させることができる。 According to the present invention, first, one or more kinds of rubber selected from halogenated butyl rubber and a halogenated copolymer of a C 4-7 isomonoolefin and paraalkyl styrene and a specific amount of reinforcing agent are mixed. In addition to forming a bound rubber, and further mixing the epoxidized natural rubber to maintain the low air permeation performance of the resulting rubber composition and further improve the flexibility and fracture resistance Can do.
本発明のゴム組成物の製造方法は、(1)密閉型ミキサー中で50〜200℃にて、(A)ハロゲン化ブチルゴムおよび炭素数4〜7のイソモノオレフィンとパラアルキルスチレンとの共重合体のハロゲン化物から選ばれる1種以上のゴム(ゴム(A))、およびゴム組成物に配合する補強剤全量のうち80重量%以上の補強剤を10秒以上混合する工程、ならびに(2)(B)エポキシ化率が5〜85%のエポキシ化天然ゴム(ゴム(B))、残りの補強剤および工程(1)で得られた混合物を混合する工程からなる。 The method for producing the rubber composition of the present invention comprises: (1) Copolymerization of halogenated butyl rubber and isomonoolefin having 4 to 7 carbon atoms and paraalkylstyrene in a closed mixer at 50 to 200 ° C. A step of mixing one or more rubbers selected from the combined halide (rubber (A)) and 80% by weight or more of the reinforcing agent blended in the rubber composition for 10 seconds or more, and (2) (B) It comprises a step of mixing an epoxidized natural rubber (rubber (B)) having an epoxidation rate of 5 to 85%, the remaining reinforcing agent and the mixture obtained in step (1).
ゴム(A)であるハロゲン化ブチルゴムとしては、塩素化ブチルゴム(Cl−IIR)、臭素化ブチルゴム(Br−IIR)、フッ素化ブチルゴム(F−IIR)などが挙げられ、Br−IIRが好ましい。 Examples of the halogenated butyl rubber as the rubber (A) include chlorinated butyl rubber (Cl-IIR), brominated butyl rubber (Br-IIR), and fluorinated butyl rubber (F-IIR), and Br-IIR is preferred.
また、ゴム(A)であるイソモノオレフィンとパラアルキルスチレンとの共重合体のハロゲン化物におけるモノマー成分のイソモノオレフィンの炭素数は4〜7である。炭素数が上記範囲外では、下層との接着性に劣る。 Moreover, carbon number of the isomonoolefin of the monomer component in the halide of the copolymer of the isomonoolefin and paraalkylstyrene which are rubber | gum (A) is 4-7. When the carbon number is outside the above range, the adhesion to the lower layer is poor.
炭素数4〜7のイソモノオレフィンとパラアルキルスチレンとの共重合体のハロゲン化物としては、とくに制限はないが、共架橋性の点からイソモノオレフィン単位量/パラアルキルスチレン単位量が、重量比で90/10〜98/2であり、ハロゲン含有率が0.5〜5重量%であるのが好ましい。 The halide of the copolymer of 4 to 7 carbon isomonoolefin and paraalkyl styrene is not particularly limited, but the amount of isomonoolefin unit / paraalkyl styrene unit is weight in terms of co-crosslinking property. The ratio is preferably 90/10 to 98/2, and the halogen content is preferably 0.5 to 5% by weight.
炭素数4〜7のイソモノオレフィンとパラアルキルスチレンとの共重合体のハロゲン化物のハロゲンとしては、F、Cl、Br、Iなどがあげられ、特に制限はないが、Brが好ましい。 Examples of the halogen in the halide of a copolymer of an isomonoolefin having 4 to 7 carbon atoms and paraalkylstyrene include F, Cl, Br, and I. Br is preferred, although there is no particular limitation.
ゴム(A)として、ハロゲン化ブチルゴムおよび炭素数4〜7のイソモノオレフィンとパラアルキルスチレンとの共重合体のハロゲン化物のいずれか一方、またはそれらを組み合わせて使用することもできるが、ハロゲン化ブチルゴムが好ましく、Br−IIRがより好ましい。 As the rubber (A), a halogenated butyl rubber and a halide of a copolymer of a C 4-7 isomonoolefin and a paraalkyl styrene, or a combination thereof may be used. Butyl rubber is preferred, and Br-IIR is more preferred.
ハロゲン化ブチルゴムまたは炭素数4〜7のイソモノオレフィンとパラアルキルスチレンとの共重合体のハロゲン化物のハロゲン含有率は、0.1〜5重量%が好ましい。ハロゲン含有率が0.1重量%未満では、加硫度が低すぎて強度が低下する傾向がある。また、ハロゲン含有率が5重量%をこえると、加硫度が高くなり、硬くなる傾向がある。 The halogen content of the halogenated butyl rubber or the halide of the copolymer of 4 to 7 carbon isomonoolefin and paraalkylstyrene is preferably 0.1 to 5% by weight. If the halogen content is less than 0.1% by weight, the degree of vulcanization is too low and the strength tends to decrease. On the other hand, if the halogen content exceeds 5% by weight, the vulcanization degree tends to be high and hard.
ゴム(B)のエポキシ化率は、5%以上である。ENRのエポキシ化率が5%未満では、ゴム(B)を配合することによる改質効果が小さい。また、ゴム(B)のエポキシ化率は、85%以下が好ましく、75%以下がより好ましく、65%以下がさらに好ましい。ゴム(B)のエポキシ化率が85%をこえると、ポリマーがゲル化してしまう。ここでいうエポキシ化率とは、エポキシ化される前の全二重結合部分の割合に対する、主鎖の二重結合部分を酸素で環化した部分の割合のことである。たとえば、NMR測定データから、5.10ppm付近の天然ゴム由来メチンプロトンの面積強度Aと、2.7ppm付近のエポキシ基由来プロトンの面積強度Bを求め、下記式
エポキシ化率(%)=B/(A+B)×100
より求めることができる。
The epoxidation rate of the rubber (B) is 5% or more. When the epoxidation rate of ENR is less than 5%, the reforming effect by blending rubber (B) is small. The epoxidation rate of the rubber (B) is preferably 85% or less, more preferably 75% or less, and further preferably 65% or less. If the epoxidation rate of the rubber (B) exceeds 85%, the polymer will gel. The term “epoxidation rate” as used herein refers to the proportion of the portion in which the double bond portion of the main chain is cyclized with oxygen to the proportion of all double bond portions before epoxidation. For example, the area intensity A of natural rubber-derived methine protons in the vicinity of 5.10 ppm and the area intensity B of epoxy group-derived protons in the vicinity of 2.7 ppm are determined from NMR measurement data, and the following formula: Epoxidation rate (%) = B / (A + B) × 100
It can be obtained more.
前記補強剤としては、カーボンブラック、シリカ、クレー、水酸化アルミニウム、炭酸カルシウム、タルク、マイカなどがあげられるが、バウンドラバーを多く形成し、補強性に優れることから、カーボンブラックまたはシリカが好ましい。 Examples of the reinforcing agent include carbon black, silica, clay, aluminum hydroxide, calcium carbonate, talc, mica, and the like. Carbon black or silica is preferable because it forms a lot of bound rubber and has excellent reinforcing properties.
前記カーボンブラックとしては、とくに制限はなく、たとえば、HAF、ISAF、SAF、GPF、FEF、FTなどを用いることができる。 There is no restriction | limiting in particular as said carbon black, For example, HAF, ISAF, SAF, GPF, FEF, FT etc. can be used.
通常のゴム組成物の混練では、ゴム成分および補強剤を、添加剤とともにまとめて混練しているため、ゴム成分および補強剤の間に充分な相互作用が得られず、充分な柔軟性、耐亀裂性および耐破壊性能が得られない。 In ordinary kneading of rubber compositions, the rubber component and the reinforcing agent are kneaded together with the additive, so that sufficient interaction between the rubber component and the reinforcing agent cannot be obtained, and sufficient flexibility and resistance Cracking and fracture resistance cannot be obtained.
それに対して、本発明のように、工程(1)において、先にゴム(A)および多量の補強剤を混練りすることで、ゴム(A)および補強剤が強い相互作用を示し、補強剤近傍において、ゴム(A)をバウンドラバーとすることができる。バウンドラバーは補強剤に強固につなぎとめられているため、外部刺激に対して大きな応力を発現することができる。 On the other hand, as in the present invention, in the step (1), the rubber (A) and a large amount of the reinforcing agent are kneaded first, whereby the rubber (A) and the reinforcing agent show a strong interaction, and the reinforcing agent In the vicinity, the rubber (A) can be a bound rubber. Since the bound rubber is firmly attached to the reinforcing agent, a large stress can be generated against an external stimulus.
工程(1)を経ることでバウンドラバーとなったゴム(A)は、破壊に対する強度が増大し、また、ゴム(B)よりも優れる柔軟性がさらに向上する。 The rubber (A) that has become a bound rubber through the step (1) has increased strength against breakage, and further improved flexibility, which is superior to that of the rubber (B).
そして、本発明の製造方法により得られたゴム組成物では、ゴム組成物に外部刺激を与えた場合、弾性率の非常に高い部分、すなわち補強剤の近傍に応力集中が生じるため、バウンドラバーとなったゴム(A)の力学特性が、ゴム組成物の力学特性に対して支配的となり、結果として低空気透過性能を維持したまま、柔軟性、耐亀裂性および耐破壊性能を大幅に向上したゴム組成物を得ることができる。 And in the rubber composition obtained by the production method of the present invention, when an external stimulus is given to the rubber composition, stress concentration occurs in a portion having a very high elastic modulus, that is, in the vicinity of the reinforcing agent. The mechanical properties of the resulting rubber (A) became dominant over the mechanical properties of the rubber composition, and as a result, the flexibility, crack resistance and fracture resistance were greatly improved while maintaining low air permeability. A rubber composition can be obtained.
前記工程(1)における補強剤の配合率は、補強剤全量の80重量%以上、好ましくは85重量%以上である。工程(1)で配合する補強剤が80重量%未満では、目的のゴム成分のバウンドラバー量が得られず、タイヤ性能が向上せず、耐破壊性能が充分ではない。また、補強剤の配合率は、ゴム(A)の性質を充分に引き出すために、100重量%であることがとくに好ましい。 The compounding ratio of the reinforcing agent in the step (1) is 80% by weight or more, preferably 85% by weight or more of the total amount of the reinforcing agent. When the reinforcing agent blended in the step (1) is less than 80% by weight, the amount of bound rubber of the target rubber component cannot be obtained, the tire performance is not improved, and the fracture resistance is not sufficient. In addition, the compounding ratio of the reinforcing agent is particularly preferably 100% by weight in order to sufficiently bring out the properties of the rubber (A).
工程(1)の混合工程は、密閉型ミキサーによりおこなわれる。ここで、密閉型ミキサーとしては、たとえば、バンバリーミキサー、ニーダーなどがあげられる。 The mixing step of step (1) is performed by a closed mixer. Here, examples of the closed mixer include a Banbury mixer and a kneader.
工程(1)において、密閉型ミキサー中における混合温度は50℃以上である。混合温度が50℃未満では、混合中の熱によって形成されるバウンドラバーを形成するだけの熱が得られず、バウンドラバーが形成されにくい。また、工程(1)において、密閉型ミキサー中における混合温度は200℃以下である。混合温度が200℃をこえると、ゴムの耐熱性能をこえるため、ゴムが劣化してしまう。 In the step (1), the mixing temperature in the closed mixer is 50 ° C. or higher. When the mixing temperature is less than 50 ° C., heat sufficient to form a bound rubber formed by heat during mixing cannot be obtained, and it is difficult to form a bound rubber. In step (1), the mixing temperature in the closed mixer is 200 ° C. or lower. When the mixing temperature exceeds 200 ° C., the heat resistance performance of the rubber is exceeded, so that the rubber deteriorates.
工程(1)において、混合時間は10秒以上、好ましくは30秒以上である。混合時間が10秒未満では、混合中のゴムに熱が発生せず、その結果としてバウンドラバーが形成されにくい。また、混合時間は600秒以下が好ましく、480秒以下がより好ましい。混合時間が600秒をこえても、バウンドラバーの増加は認められないため、コストアップする傾向があり、さらに、長時間混練りすることで、ゴムの劣化が生じる傾向もある。 In step (1), the mixing time is 10 seconds or longer, preferably 30 seconds or longer. When the mixing time is less than 10 seconds, heat is not generated in the rubber being mixed, and as a result, a bound rubber is hardly formed. The mixing time is preferably 600 seconds or shorter, and more preferably 480 seconds or shorter. Even if the mixing time exceeds 600 seconds, an increase in bound rubber is not recognized, so that the cost tends to increase, and further, the rubber tends to deteriorate by kneading for a long time.
工程(2)では、工程(1)において得られた混合物とともに、ゴム(B)、および残りの補強剤を混合する。なお、残りの補強剤とは、ゴム組成物の製造において使用される補強剤のうち、工程(1)において使用されなかった補強剤をいう。 In step (2), rubber (B) and the remaining reinforcing agent are mixed together with the mixture obtained in step (1). The remaining reinforcing agent refers to a reinforcing agent that was not used in step (1) among the reinforcing agents used in the production of the rubber composition.
工程(2)の混合工程は、密閉型ミキサーによりおこなわれることが好ましい。 The mixing step in step (2) is preferably performed with a closed mixer.
工程(2)において、密閉型ミキサー中における混合温度は30〜200℃が好ましい。混合温度が30℃未満では、工程(1)で得られた混合物が高粘度であるため、ゴム(B)との混合が困難となる傾向があり、混合温度が200℃をこえると、ゴムの劣化が生じる傾向がある。 In the step (2), the mixing temperature in the closed mixer is preferably 30 to 200 ° C. If the mixing temperature is less than 30 ° C., the mixture obtained in the step (1) has a high viscosity, so that it tends to be difficult to mix with the rubber (B), and if the mixing temperature exceeds 200 ° C., There is a tendency to deteriorate.
工程(2)において、混合時間は30〜600秒が好ましい。混合時間が30秒未満では、ゴム(A)とゴム(B)の混合が不充分である傾向があり、混合時間が600秒をこえると、ゴム温度が上昇し、ゴムの劣化が生じる傾向がある。 In the step (2), the mixing time is preferably 30 to 600 seconds. If the mixing time is less than 30 seconds, the rubber (A) and the rubber (B) tend to be insufficiently mixed. If the mixing time exceeds 600 seconds, the rubber temperature tends to increase and the rubber tends to deteriorate. is there.
本発明のゴム組成物の製造方法において、ゴム組成物に一般的に使用される添加剤、たとえば、オイルなどの軟化剤、ステアリン酸、酸化亜鉛などを配合することができるが、添加剤の分散性を向上させるために、工程(2)において混合されることが好ましい。 In the method for producing a rubber composition of the present invention, additives generally used in the rubber composition, for example, softeners such as oil, stearic acid, zinc oxide and the like can be blended. In order to improve property, it is preferable to mix in a process (2).
工程(1)および工程(2)を経て得られた混合物は、一般的なゴム組成物の製造と同様に、オープンロールなどのロール機において、加硫剤および加硫促進剤とともに混合され、さらに加硫されることでゴム組成物とされることが好ましい。 The mixture obtained through the steps (1) and (2) is mixed with a vulcanizing agent and a vulcanization accelerator in a roll machine such as an open roll, as in the production of a general rubber composition. A rubber composition is preferably obtained by vulcanization.
本発明の製造方法により得られるゴム組成物は、ゴム成分および補強剤からなる。 The rubber composition obtained by the production method of the present invention comprises a rubber component and a reinforcing agent.
ゴム成分は、ゴム(A)およびゴム(B)からなる。 The rubber component is composed of rubber (A) and rubber (B).
ゴム組成物において、ゴム成分中のゴム(A)の含有率は、30重量%以上、好ましくは35重量%以上である。ゴム(A)の含有率が30重量%未満では、低空気透過性能および透湿性に劣り、ゴム(A)のタイヤ性能が損なわれる。ゴム(A)の含有率は、95重量%以下、好ましくは90重量%以下である。ゴム(A)の含有率が95重量%をこえると、配合ゴムとの接着性が改善されない。 In the rubber composition, the content of the rubber (A) in the rubber component is 30% by weight or more, preferably 35% by weight or more. When the content of the rubber (A) is less than 30% by weight, the low air permeability and moisture permeability are inferior, and the tire performance of the rubber (A) is impaired. The content of rubber (A) is 95% by weight or less, preferably 90% by weight or less. When the rubber (A) content exceeds 95% by weight, the adhesion to the compounded rubber is not improved.
前記ゴム成分中のゴム(B)の含有率は、5重量%以上が好ましく、10重量%以上がより好ましい。ゴム(B)の含有率が5重量%未満では、接着性が改善されない。ゴム(B)の含有率は、70重量%以下が好ましく、65重量%以下がより好ましい。ゴム(B)の含有率が70重量%をこえると、低空気透過性能に劣る。さらに、ゴム(B)がマトリクス相となり、それによって系全体の透湿性が悪化する。 The content of rubber (B) in the rubber component is preferably 5% by weight or more, and more preferably 10% by weight or more. When the content of the rubber (B) is less than 5% by weight, the adhesion is not improved. The content of rubber (B) is preferably 70% by weight or less, and more preferably 65% by weight or less. When the content of the rubber (B) exceeds 70% by weight, the low air permeability is inferior. Furthermore, rubber (B) becomes a matrix phase, thereby deteriorating the moisture permeability of the entire system.
前記補強剤は、前記ゴム成分100重量部に対して、20重量部以上が好ましく、30重量部以上がより好ましく、40重量部以上がさらに好ましい。補強剤の配合量が20重量部未満では、補強性が低くなる傾向がある。補強剤の配合量は100重量部以下が好ましく、90重量部以下がより好ましく、80重量部以下がさらに好ましい。補強剤の配合量が100重量部をこえると、加工性が悪くなる。 The reinforcing agent is preferably 20 parts by weight or more, more preferably 30 parts by weight or more, and still more preferably 40 parts by weight or more with respect to 100 parts by weight of the rubber component. When the compounding amount of the reinforcing agent is less than 20 parts by weight, the reinforcing property tends to be low. The amount of the reinforcing agent is preferably 100 parts by weight or less, more preferably 90 parts by weight or less, and still more preferably 80 parts by weight or less. When the compounding amount of the reinforcing agent exceeds 100 parts by weight, workability is deteriorated.
本発明のゴム組成物は、前記ゴム成分、補強剤のほかにも、その他の配合剤として、タイヤ用ゴム配合に用いられる一般的なもの、たとえば、薬品オイルなどの可塑剤、粘着付与剤、硫黄、亜鉛華などの架橋剤、架橋助剤、加硫促進剤などを含むことができる。 In addition to the rubber component and the reinforcing agent, the rubber composition of the present invention is a general compound used for tire rubber compounding, for example, a plasticizer such as chemical oil, a tackifier, A crosslinking agent such as sulfur and zinc white, a crosslinking aid, a vulcanization accelerator and the like can be included.
ゴム組成物中の補強剤近傍に作製したバウンドラバー中のゴム(A)の含有率は、未加硫ゴム組成物をトルエンなどの良溶媒に浸漬させ、上記溶媒に不溶となったCBゲルとゴム成分(バウンドラバー)を取り出す化学分析によって定量することができる。また、透過型電子顕微鏡でも、補強剤の存在位置により、バウンドラバーがどの原料ゴムで構成されているかが判断できる。 The content of the rubber (A) in the bound rubber produced in the vicinity of the reinforcing agent in the rubber composition is determined by immersing the unvulcanized rubber composition in a good solvent such as toluene, and the CB gel insoluble in the solvent. It can be quantified by chemical analysis to extract the rubber component (bound rubber). Further, even with a transmission electron microscope, it is possible to determine which raw rubber the bound rubber is made of, depending on the position of the reinforcing agent.
前記バウンドラバー中のゴム(A)の含有率は65〜100%が好ましい。ゴム(A)の含有率が65%未満では、ゴム(A)のタイヤ性能および力学特性が充分に発現しない傾向がある。 The rubber (A) content in the bound rubber is preferably 65 to 100%. When the rubber (A) content is less than 65%, the tire performance and mechanical properties of the rubber (A) tend not to be sufficiently exhibited.
本発明の製造方法により得られたゴム組成物は、タイヤとして使用されることが好ましい。とくに、柔軟性および耐破壊性能に優れ、充分な低空気透過性能を示すため、タイヤ部材のなかでもインナーライナー層として好適に使用される。 The rubber composition obtained by the production method of the present invention is preferably used as a tire. In particular, it is excellent in flexibility and fracture resistance, and exhibits a sufficiently low air permeation performance. Therefore, it is suitably used as an inner liner layer among tire members.
次に、実施例に基づいて本発明を具体的に説明するが、本発明はこれらのみに制限されるものではない。 Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
実施例1および比較例1〜2
次に、実施例および比較例において、評価用ゴムに用いた薬品を示す。また、評価用ゴムの配合内容を表1に示す。
Example 1 and Comparative Examples 1-2
Next, chemicals used for evaluation rubber in Examples and Comparative Examples are shown. Table 1 shows the contents of the rubber for evaluation.
臭素化ブチルゴム(Br−IIR):日本ブチル(株)製(販売元:エクソンモービル(有))のエクソンブロモブチル2255(臭素含有率:2.0重量%)
エポキシ化天然ゴム(ENR):クンプーランガスリー社(Kumpulan Guthrie Berhad)製のENR−50(エポキシ化率50%)
カーボンブラック(HAF):三菱化学(株)製のダイヤブラックH
オイル:昭和シェル石油(株)製のマシン油22
接着性レジン:エッソ(株)のESCOREZ1102
ステアリン酸:日本油脂(株)製のステアリン酸
亜鉛華:三井金属鉱業(株)製の亜鉛華1号
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤NS:大内新興化学工業(株)のノクセラーNS
加硫促進剤DM:大内新興化学工業(株)のノクセラーDM
Brominated butyl rubber (Br-IIR): Exon bromobutyl 2255 (bromine content: 2.0% by weight) manufactured by Nippon Butyl Co., Ltd. (distributor: ExxonMobil Corporation)
Epoxidized natural rubber (ENR): ENR-50 (epoxidation rate 50%) manufactured by Kumpulan Guthrie Berhad
Carbon Black (HAF): Diamond Black H manufactured by Mitsubishi Chemical Corporation
Oil: Machine oil 22 manufactured by Showa Shell Sekiyu KK
Adhesive resin: ESCOREZ1102 from Esso Corporation
Stearic acid: Zinc stearate manufactured by Nippon Oil & Fats Co., Ltd .: Zinc Hana No. 1 manufactured by Mitsui Mining & Smelting Co., Ltd. Sulfur: Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd. NS: Ouchi Shinsei Chemical Industry Co., Ltd. Noxeller NS Co., Ltd.
Vulcanization accelerator DM: NOCELLER DM of Ouchi Shinsei Chemical Co., Ltd.
<評価用ゴムの作製方法>
(実施例1の評価用ゴムの作製)
表1の工程(1)に示す配合量のBr−IIRおよびHAFを、バンバリーミキサーを用いて100℃の条件下で5分間混練りし、その後、工程(1)により得られた混合物に対して、表1の工程(2)に示す配合量のENR、オイル、接着性レジン、ステアリン酸および亜鉛華を加え、バンバリーミキサーを用いて、100℃の条件下で5分間混練りして混練物を作製した。次に、前記混練物に対して、表1に示す配合量の硫黄、加硫促進剤NSおよびDMを加え、8インチロールを用いて、50℃で5分間混練りし、得られた混練物を160℃で10分間プレス加硫することにより、実施例1の評価用ゴムを作製した。なお、工程(2)で得られた混練物をトルエンに48時間浸漬させ、得られたバウンドラバーを熱分解ガスクロマトグラフィーにて分析することにより算出した実施例1の評価用ゴムにおけるバウンドラバー中のゴム(A)の含有率は90%であった。
<Method for producing rubber for evaluation>
(Production of rubber for evaluation of Example 1)
The blended amounts of Br-IIR and HAF shown in step (1) of Table 1 are kneaded for 5 minutes at 100 ° C. using a Banbury mixer, and then the mixture obtained in step (1) is mixed. Add ENR, oil, adhesive resin, stearic acid, and zinc white as shown in step (2) of Table 1 and knead for 5 minutes at 100 ° C. using a Banbury mixer. Produced. Next, sulfur and vulcanization accelerators NS and DM having the blending amounts shown in Table 1 were added to the kneaded product, and kneaded at 50 ° C. for 5 minutes using an 8-inch roll. Was subjected to press vulcanization at 160 ° C. for 10 minutes to produce a rubber for evaluation of Example 1. In the bound rubber in the rubber for evaluation of Example 1 calculated by immersing the kneaded product obtained in the step (2) in toluene for 48 hours and analyzing the obtained bound rubber by pyrolysis gas chromatography. The rubber (A) content was 90%.
(比較例1の評価用ゴムの作製)
ENRを工程(1)で添加および混練りし、HAFを工程(2)で添加および混練りした以外は、実施例1と同様にして比較例1の評価用ゴムを作製した。なお、工程(2)で得られた混練物をトルエンに48時間浸漬させ、得られたバウンドラバーを熱分解ガスクロマトグラフィーにて分析することにより算出した、比較例1の評価用ゴムにおけるバウンドラバー中のゴム(A)の含有率は30%であった。
(Production of rubber for evaluation of Comparative Example 1)
A rubber for evaluation of Comparative Example 1 was produced in the same manner as in Example 1 except that ENR was added and kneaded in step (1) and HAF was added and kneaded in step (2). The kneaded product obtained in step (2) was immersed in toluene for 48 hours, and the obtained bound rubber was analyzed by pyrolysis gas chromatography, and the bound rubber in the rubber for evaluation of Comparative Example 1 was calculated. The rubber (A) content was 30%.
(比較例2の評価用ゴムの作製)
ENRを工程(1)で配合し、Br−IIRを工程(2)で配合した以外は、実施例1と同様にして比較例2の評価用ゴムを作製した。なお、工程(2)で得られた混練物をトルエンに48時間浸漬させ、得られたバウンドラバーを熱分解ガスクロマトグラフィーにて分析することにより算出した、比較例2の評価用ゴムにおけるゴムバウンドラバー中のゴム(A)の含有率は0%であった。
(Production of rubber for evaluation of Comparative Example 2)
A rubber for evaluation of Comparative Example 2 was produced in the same manner as in Example 1 except that ENR was blended in Step (1) and Br-IIR was blended in Step (2). In addition, the rubber bound in the rubber for evaluation of Comparative Example 2 was calculated by immersing the kneaded product obtained in the step (2) in toluene for 48 hours and analyzing the obtained bound rubber by pyrolysis gas chromatography. The rubber (A) content in the rubber was 0%.
上記3種類のゴム組成物を用いて、下記に示す各特性試験を行った。 Using the above three kinds of rubber compositions, the following characteristic tests were conducted.
(低空気透過性能測定試験)
JIS K7126「プラスチックフィルムおよびシートの気体透過度試験方法(A法)」に準じて、試験気体を空気(窒素:酸素=8:2)、試験温度を25℃とし、実施例1および比較例1〜2のゴム組成物からなる厚さ0.5mmの加硫ゴムシートを用いて空気透過量を測定し、空気透過係数(単位:×10-11cc・cm/cm2・sec・cmHg)を算出した。測定には、東洋精機製作所(株)製の恒温式ガス透過率測定装置M−C1を用いた。空気透過係数が低いほど、低空気透過性能に優れることを示す。
(Low air permeability performance measurement test)
In accordance with JIS K7126 “Plastic Film and Sheet Gas Permeability Test Method (Method A)”, the test gas was air (nitrogen: oxygen = 8: 2), the test temperature was 25 ° C., and Example 1 and Comparative Example 1 The air permeation amount was measured using a vulcanized rubber sheet having a thickness of 0.5 mm comprising the rubber composition of ~ 2, and the air permeation coefficient (unit: x 10 -11 cc · cm / cm 2 · sec · cm Hg) Calculated. For the measurement, a constant temperature gas permeability measuring device M-C1 manufactured by Toyo Seiki Seisakusho Co., Ltd. was used. The lower the air permeability coefficient, the better the low air permeability performance.
(引張試験)
JIS K6250「加硫ゴム・熱可塑性ゴムの物理試験方法通則」に準じて、(株)インテスコ製のインテスコ引張試験機を用いて、室温にて、100%モジュラス(M100)、破断強度および破断時伸びの測定を行なった。M100が低いほど柔軟性に富み、破断強度および破断時伸びが大きいほど耐破壊性能に優れることを示す。
(Tensile test)
According to JIS K6250 “General Rules for Physical Test Methods of Vulcanized Rubber / Thermoplastic Rubber”, using an Intesco tensile tester manufactured by Intesco Corporation at room temperature, 100% modulus (M100), breaking strength and breaking The elongation was measured. It shows that it is rich in a softness, so that M100 is low, and it is excellent in fracture resistance, so that breaking strength and elongation at break are large.
試験結果を表1に示す。 The test results are shown in Table 1.
本発明の製造方法により作製された実施例1のゴム組成物は、従来の製造方法で作製された比較例1のゴム組成物に対して、低空気透過性能を維持しながら、柔軟性および耐破壊性能に優れているものであった。 The rubber composition of Example 1 produced by the production method of the present invention is more flexible and resistant than the rubber composition of Comparative Example 1 produced by the conventional production method while maintaining low air permeability. It was excellent in fracture performance.
一方、比較例2のゴム組成物は、比較例1のゴム組成物に対して、低空気透過性能は維持されているが、柔軟性および耐破壊性能が低下しており充分な性能が得られなかった。
On the other hand, the rubber composition of Comparative Example 2 maintains a low air permeation performance as compared with the rubber composition of Comparative Example 1, but the flexibility and fracture resistance are reduced, and sufficient performance is obtained. There wasn't.
Claims (3)
(1)密閉型ミキサー中で50〜200℃にて、ゴム(A)および補強剤全量を10秒以上混合する工程、ならびに
(2)エポキシ化天然ゴム(B)、および工程(1)で得られた混合物を混合する工程からなるゴム組成物の製造方法。 (A) 30 to 95% by weight of one or more kinds of rubbers selected from halogenated butyl rubber and a halogenated copolymer of a C 4-7 isomonoolefin and paraalkyl styrene, and (B) an epoxidation rate of 5 A method for producing a rubber composition containing 20-100 parts by weight of a reinforcing agent with respect to 100 parts by weight of a rubber component containing 5-70% by weight of epoxidized natural rubber of -85%,
(1) at 50 to 200 ° C. in a sealed mixer, in the step of mixing the rubber (A) and the reinforcing agent total amount of more than 10 seconds, and (2) epoxidized natural rubber (B), Contact and step (1) A method for producing a rubber composition comprising a step of mixing the obtained mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005272148A JP5095093B2 (en) | 2005-09-20 | 2005-09-20 | Method for producing rubber composition and rubber composition obtained thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005272148A JP5095093B2 (en) | 2005-09-20 | 2005-09-20 | Method for producing rubber composition and rubber composition obtained thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007084610A JP2007084610A (en) | 2007-04-05 |
JP5095093B2 true JP5095093B2 (en) | 2012-12-12 |
Family
ID=37971927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005272148A Expired - Fee Related JP5095093B2 (en) | 2005-09-20 | 2005-09-20 | Method for producing rubber composition and rubber composition obtained thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5095093B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5288728B2 (en) * | 2007-05-21 | 2013-09-11 | 住友ゴム工業株式会社 | Rubber composition for base tread and pneumatic tire |
US8058339B2 (en) | 2007-05-15 | 2011-11-15 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tire and pneumatic tire |
JP5137057B2 (en) * | 2007-05-17 | 2013-02-06 | 住友ゴム工業株式会社 | Rubber composition for bead apex and pneumatic tire |
JP4587230B2 (en) * | 2007-05-17 | 2010-11-24 | 住友ゴム工業株式会社 | Clinch rubber composition and pneumatic tire |
JP5172215B2 (en) * | 2007-05-31 | 2013-03-27 | 住友ゴム工業株式会社 | Rubber composition for inner liner and pneumatic tire |
JP5288727B2 (en) * | 2007-05-15 | 2013-09-11 | 住友ゴム工業株式会社 | Rubber composition for tire tread and pneumatic tire |
JP6461628B2 (en) * | 2015-02-03 | 2019-01-30 | 住友ゴム工業株式会社 | Method for kneading rubber composition and method for producing pneumatic tire |
CN109385181B (en) * | 2018-10-17 | 2021-01-01 | 沈阳化工大学 | Preparation method of epoxy eucommia rubber-containing paint |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2661915B1 (en) * | 1990-05-11 | 1993-12-24 | Rhone Poulenc Chimie | ELASTOMETRIC COMPOSITION WITH HALOGENOBUTYL MATRIX REINFORCED BY A SILICA MINERAL FILLER AND ITS USE IN THE PNEUMATIC INDUSTRY. |
JP3240770B2 (en) * | 1993-08-19 | 2001-12-25 | ジェイエスアール株式会社 | Method for producing rubber composition |
JP3392249B2 (en) * | 1994-12-28 | 2003-03-31 | 横浜ゴム株式会社 | Rubber composition and method for producing the same |
JPH08302029A (en) * | 1995-05-01 | 1996-11-19 | Ohtsu Tire & Rubber Co Ltd :The | Production of rubber composition for tire |
JP4043403B2 (en) * | 2003-05-13 | 2008-02-06 | 住友ゴム工業株式会社 | Pneumatic tire |
-
2005
- 2005-09-20 JP JP2005272148A patent/JP5095093B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007084610A (en) | 2007-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5095093B2 (en) | Method for producing rubber composition and rubber composition obtained thereby | |
JP6790832B2 (en) | Rubber composition | |
JP4819410B2 (en) | Rubber composition for sidewall | |
JP5497254B2 (en) | Rubber composition and pneumatic tire using the same | |
JP2005213486A (en) | Rubber composition for under-tread and pneumatic tire using the same | |
JP5353050B2 (en) | Rubber composition for bead filler | |
JP6473302B2 (en) | tire | |
JP2004099804A (en) | Rubber composition for tire and pneumatic tire using the same | |
JP2021063184A (en) | Rubber composition for tires and pneumatic tire using the same | |
JP2009114367A (en) | Rubber composition for tire tread and pneumatic tire having tread using it | |
WO2014112654A1 (en) | Rubber composition | |
JP4615989B2 (en) | Rubber composition and pneumatic tire | |
JP4583023B2 (en) | Rubber composition for tire sidewall | |
JP2013014667A (en) | Rubber composition for inner liner and pneumatic tire | |
JP2007314629A (en) | Rubber composition for tire inner liner | |
JP6852985B2 (en) | Rubber composition | |
JP2021070778A (en) | Rubber composition for tire and pneumatic tire using the same | |
JPH10219033A (en) | Rubber composition for high-attenuation support | |
JP5073189B2 (en) | Method for producing rubber composition and rubber composition obtained thereby | |
JP2007099872A (en) | Rubber composition for tire | |
JP2008044444A (en) | Pneumatic tube | |
JP2002212363A (en) | Rubber composition for tire inner liner | |
JP6988303B2 (en) | Pneumatic tires | |
JP2001113919A (en) | Pneumatic tire | |
JPH1135754A (en) | Rubber composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080704 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110809 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120626 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120918 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120919 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |