WO2014112654A1 - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
WO2014112654A1
WO2014112654A1 PCT/JP2014/051314 JP2014051314W WO2014112654A1 WO 2014112654 A1 WO2014112654 A1 WO 2014112654A1 JP 2014051314 W JP2014051314 W JP 2014051314W WO 2014112654 A1 WO2014112654 A1 WO 2014112654A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
weight
parts
rubber composition
sbr
Prior art date
Application number
PCT/JP2014/051314
Other languages
French (fr)
Japanese (ja)
Inventor
山口 毅
務 高嶋
辰夫 山口
正哲 金
達也 千羽
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2014112654A1 publication Critical patent/WO2014112654A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a rubber composition having excellent grip properties when applied to a tire, and a rubber having excellent grip properties when applied to a tire formed by crosslinking the rubber composition.
  • Crosslinked products of diene rubbers such as styrene butadiene copolymer rubber (SBR) have excellent grip characteristics and are used, for example, in the tread portion of a tire in contact with the road surface, but due to olefin bonds in the main chain. , Heat resistance, weather resistance, ozone degradation resistance, etc. may be a problem.
  • ⁇ -olefin-nonconjugated diene copolymer rubbers such as butyl rubber (IIR) containing a small amount of olefin bond in the main chain and EPDM containing olefin bond only in the side chain have good heat resistance and weather resistance. is there.
  • butyl rubber containing a small amount of olefinic bonds in the main chain and ⁇ -olefin-nonconjugated diene copolymer containing olefinic bonds only in the side chain, in order to improve the properties of the diene rubber while maintaining the grip characteristics.
  • the rubber composition of the rubber and its cross-linked rubber have been studied, and proposals have been made mainly for SBR / IIR and SBR / EPDM systems.
  • the rubber having a main chain structure typified by butyl rubber is grasped by the change in tan ⁇ .
  • the improvement effect of grip performance (also referred to as tread characteristics) of diene rubber has been recognized.
  • Patent Document 3 rubber having an olefin structure only in the side chain
  • Patent Document 4 modification of butyl rubber to diene rubber by addition of minerals mainly composed of sepiolite
  • Patent Document 5 Modification of butyl rubber with respect to diene rubber by use of phosphorous vulcanization accelerator
  • Patent Document 6 modification of modified butyl rubber with respect to diene rubber by addition of specific chemical substances
  • the present inventors selected SBR as the diene rubber and a rubber having an isobutylene main chain structure typified by butyl rubber as the modifier, and the molecular structure between them, By specifying the molecular weight relationship, it was found that a rubber having a particularly high grip performance was obtained, and the present invention was completed.
  • 100 parts by weight of a styrene-butadiene copolymer in which the rubber component is a styrene-butadiene copolymer and the cis-1,4 bond unit in the microstructure of the butadiene unit is 40% by weight or more.
  • the unit represented by the following formula (1) contains 100 to 90% by weight
  • the unit represented by the following formula (2) contains 0 to 10% by weight (both are 100% by weight).
  • the present invention relates to a rubber composition containing 0.5 to 70 parts by weight of a polymer.
  • the second of the present invention is characterized in that the isobutylene polymer has a weight average molecular weight (Mw) of 5,000 to 100,000 and a molecular weight distribution dispersity (Mw / Mn) of 3.0 or less.
  • the present invention relates to a first rubber composition of the present invention.
  • a third aspect of the present invention relates to the first or second rubber composition of the present invention, wherein the styrene-butadiene copolymer rubber has a butadiene content of 70% by weight or more.
  • a fourth aspect of the present invention relates to the rubber composition according to any one of the first to third aspects of the present invention, wherein the Mooney viscosity (ML 1 + 4 , 100 ° C.) is 30 to 50.
  • a fifth aspect of the present invention relates to a rubber obtained by crosslinking the rubber composition according to any one of the first to fourth aspects of the present invention.
  • a sixth aspect of the present invention relates to a tire characterized by comprising the fifth rubber of the present invention as a constituent material.
  • a solution-polymerized styrene-butadiene copolymer having a cis-1,4-bond unit content of the butadiene unit of the diene polymer of 40% by weight or more is used.
  • These copolymers are described as S-SBR and are commercially available.
  • “Toughden” manufactured by Asahi Kasei Chemicals Corporation can be raised.
  • the microstructure of butadiene includes a cis-1,4 bond, a trans-1,4 bond, and a 1,2-bond.
  • the cis of the butadiene unit is analyzed by the following analysis method. -1 and 4 units whose content is analyzed to be 40% by weight or more are used.
  • the content of cis-1,4 bonds in ordinary styrene butadiene is less than 35% by weight according to this analysis method.
  • the ratio of cis-1,4 bonds in the styrene-butadiene copolymer is carried out in accordance with JIS K6239 “How to Determine the Microstructure of Raw Rubber-Solution Polymerized SBR (Quantitative)”.
  • the extracted SBR sample is subjected to 1 H-NMR measurement and IR measurement to contain cis-1,4 bond unit, trans-1,4 bond unit, 1,2 unit bond and styrene of butadiene unit in SBR. The rate was calculated.
  • the compatibility with other rubber components also changes.
  • a rubber having an isobutylene main chain structure represented by butyl rubber which has excellent compatibility or so-called microphase separation in response to this change has not been known.
  • the main chain structure is represented by the following formula (1) and, if necessary, the following formula (2), and the unit of the formula (1) is 100 to 90
  • An isobutylene polymer having a weight percentage of 0 to 10 wt% of the unit of the formula (2) (both are 100 wt% in total) is used.
  • the present inventors consider that these isobutylene polymers are excellent in compatibility with S-SBR and constitute so-called microphase separation, judging from the results of Examples described later. That is, by configuring this microphase separation, the total interfacial area with the isobutylene polymer finely dispersed in S-SBR increases, and in the blend system, the formulas (1) and (2), It is considered that the viscoelastic characteristics of the structure mainly represented by the formula (1) are efficiently transmitted to the S-SBR, and the grip performance when applied to a tire is improved.
  • S-SBR as a continuous phase (or matrix) and an isobutylene-based polymer as a dispersed phase (or domain).
  • the isobutylene polymer is used in an amount of 0.5 to 70 parts by weight with respect to 100 parts by weight of S-SBR. If the amount is 0.5 parts by weight or less, the effect of modifying the isobutylene polymer cannot be sufficiently obtained. If the amount exceeds 70 parts by weight, the phase structure tends to become unstable.
  • the improvement in grip performance according to the present invention mainly depends on the structure represented by the formula (1) in the isobutylene-based polymer, and therefore the ratio of the structural unit represented by the formula (2) is isobutylene.
  • the content is preferably 10% by weight or less based on the total weight of the polymer.
  • the weight average molecular weight (Mw) of the isobutylene polymer is reduced, and the molecular weight distribution It is also preferable to reduce the dispersity (Mw / Mn). Specifically, it is preferable that the weight average molecular weight (Mw) is 5,000 to 100,000 and the dispersity (Mw / Mn) is 3.0 or less.
  • butadiene having a cis-1,4 bond structure in S-SBR which is considered highly compatible with the isobutylene polymer. It is preferable to increase the unit weight as much as possible, and the butadiene content in S-SBR is preferably 70% by weight or more.
  • the isobutylene polymers according to the present invention those having substantially only the structural unit represented by the formula (1) can be obtained from the market. An example is “Tetrax 3T (trade name)” manufactured by JX Nippon Oil & Energy Corporation.
  • the thing containing 10% or less of structural units represented by Formula (2) among the isobutylene-type polymers which concern on this invention can also be obtained from a market.
  • An example is “BUTYL 268” manufactured by JSR Corporation (the content of the structural unit of the formula (2) is 1.8% by weight).
  • a diene rubber other than S-SBR may be included as a rubber component.
  • SBR styrene-butadiene copolymer
  • NR natural rubber
  • BR butadiene rubber
  • IR isoprene rubber
  • nitrile butadiene having a butadiene unit having a cis-1,4 bond content of less than 35% by weight.
  • NBR chloroloprene rubber
  • CR chloroloprene rubber
  • EPDM 1,6-hexadiene, dicyclopentadiene, ethylidene norbornene, or the like. These may use only 1 type and can also use 2 or more types together.
  • a normal rubber A chemical used in processing is blended to perform crosslinking.
  • the isobutylene polymer in the present invention substantially contains only the formula (1) as a repeating unit, it is substantially crosslinked. Absent. Even in the final rubber, it is considered to function as an uncrosslinked dispersed phase.
  • the cross-linking of the isobutylene polymer itself and the co-crosslinking of S-SBR and the isobutylene polymer proceed, and the compatibility between the two. Will be further improved.
  • preferable ones are sulfur-based crosslinking from the viewpoint of grip characteristics when applied to a tire.
  • peroxide crosslinking is carried out when the cross-linking of the isobutylene polymer itself and the co-crosslinking of both including S-SBR are advanced. Is preferred.
  • formula (1) causes molecular chain scission
  • a highly reactive crosslinking agent such as divinylbenzene or m-phenylenebismaleimide.
  • the Mooney viscosity of the rubber composition before crosslinking is not limited, but the Mooney viscosity (ML 1 + 4 , 100 ° C.) is preferably 30-50. Outside these ranges, the torque in kneading becomes excessive and insufficient, and the dispersion structure is not sufficiently secured and the dispersion / diffusion of various additives, etc., is insufficient, and the effects of the present invention may not be sufficiently obtained.
  • the reinforcing agent include carbon black and silica.
  • Carbon black is suitably used as a reinforcing agent from the viewpoints of improving wear resistance, improving rolling resistance characteristics, preventing cracks and cracks caused by ultraviolet rays (preventing ultraviolet degradation), and the like.
  • the type of carbon black is not particularly limited, and conventionally known carbon blacks such as furnace black, acetylene black, thermal black, channel black, and graphite can be used.
  • the physical characteristics such as particle size, pore volume and specific surface area of carbon black are not particularly limited, and various carbon blacks conventionally used in the rubber industry, for example, SAF, ISAF, HAF, FEF, GPF, SRF (all are abbreviations of carbon black classified according to the US ASTM standard D-1765-82a) and the like can be used as appropriate.
  • the blending amount is preferably 5 to 80 parts by mass, and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the rubber component (A). Further, it can be 30 to 80 parts by mass, or 40 to 60 parts by mass. In such a blending amount, the effect as a reinforcing agent can be favorably obtained in the rubber composition and the crosslinked rubber composition according to the present embodiment.
  • silica those conventionally used as rubber reinforcing agents can be used without particular limitation, for example, dry method white carbon, wet method white carbon, synthetic silicate white carbon, colloidal silica, precipitated silica and the like. Can be mentioned.
  • the specific surface area of silica is not particularly limited, but usually a silica having a surface area of 40 to 600 m 2 / g, preferably 70 to 300 m 2 / g, and a primary particle diameter of 10 to 1000 nm should be used. Can do. These may be used alone or in combination of two or more.
  • the amount of silica used is preferably 0.1 to 150 parts by weight, more preferably 10 to 100 parts by weight, and 30 to 100 parts by weight with respect to 100 parts by weight of the rubber component (A). Is more preferable. Moreover, you may mix
  • silane coupling agent examples include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxy-ethoxy) silane, ⁇ - (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, and 3-chloropropyltrimethoxy.
  • the addition amount of the silane coupling agent can be appropriately changed depending on the desired blending amount of silica, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the filler mineral powders such as clay and talc, carbonates such as magnesium carbonate and calcium carbonate, alumina hydrate such as aluminum hydroxide, and the like can be used.
  • plant oil softeners such as tall oil, mainly linoleic acid, oleic acid, and abithienic acid, pineapple, rapeseed oil, cottonseed oil, peanut oil, castor oil, palm oil, fuacitis, paraffinic oil, Examples thereof include naphthenic oils, aromatic oils, and phthalic acid derivatives such as dibutyl phthalate.
  • the blending amount of the softening agent is preferably 0 to 50 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the rubber composition according to this embodiment also includes various additives used in the field of the rubber industry, such as anti-aging agents, sulfur, crosslinking agents, vulcanization accelerators, vulcanization retarders, peptizers, processes. You may contain 1 type, or 2 or more types, such as oil and a plasticizer, as needed.
  • the compounding amount of these additives is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • Antiaging agents include primary amines such as p, p′-diaminodiphenylmethane; secondary amines such as phenyl- ⁇ -naphthylamine and N, N′-diphenyl-p-phenylenediamine; 2,6-di Examples include alkylphenols such as tert-butyl-p-cresol, 2,5-ditert-butyl-hydroquinone and hydroquinone monobenzyl ether; and imidazoles such as 2-mercaptobenzimidazole.
  • the blending amount is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • vulcanization accelerator examples include thiuram accelerators such as tetramethylthiuram monosulfide, tetramethylthiuram disulfide, and tetraethylthiuram disulfide; thiazole accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide; N-cyclohexyl Sulfenamide accelerators such as 2-benzothiazylsulfenamide and N-oxydiethylene-2-benzothiazolylsulfenamide; guanidine accelerators such as diphenylguanidine and diortolylguanidine; n-butyraldehyde -Aldehyde-amine accelerators such as aniline condensates and butyraldehyde-monobutylamine condensates; aldehyde-ammonia accelerators such as hexamethylenetetramine; thiourea accelerators such as thiocarbanilide
  • Vulcanization aids include metal oxides such as zinc oxide (zinc white) and magnesium oxide; metal hydroxides such as calcium hydroxide; metal carbonates such as zinc carbonate and basic zinc carbonate; stearic acid and oleic acid Aliphatic acid salts such as zinc stearate and magnesium stearate; amines such as di-n-butylamine and dicyclohexylamine; ethylene dimethacrylate, diallyl phthalate, N, Nm-phenylenebismaleimide, triallyl isocyanurate And trimethylolpropane trimethacrylate.
  • metal oxides such as zinc oxide (zinc white) and magnesium oxide
  • metal hydroxides such as calcium hydroxide
  • metal carbonates such as zinc carbonate and basic zinc carbonate
  • stearic acid and oleic acid Aliphatic acid salts such as zinc stearate and magnesium stearate
  • amines such as di-n-butylamine and dicyclohexylamine
  • the content of the vulcanization aid is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the rubber composition according to the present embodiment can be produced by applying a method generally used as a method for producing a rubber composition. For example, it can manufacture by mixing each component mentioned above using kneading machines, such as a Brabender, a Banbury mixer, and a roll mixer.
  • Example 1 As styrene-butadiene copolymer rubber (hereinafter abbreviated as SBR), solution-polymerized styrene-butadiene rubber, trade name “Tuffden 1000” (manufactured by Asahi Kasei Chemicals Co., Ltd.), and polyisobutylene polymer as polyisobutylene, trade name “Tetrax 3T” (manufactured by JX Nippon Oil & Energy Corporation, Mw 32,000, Mw / Mn 2.0) was used.
  • SBR styrene-butadiene copolymer rubber
  • Tuffden 1000 solution-polymerized styrene-butadiene rubber
  • polyisobutylene polymer trade name “Tetrax 3T” (manufactured by JX Nippon Oil & Energy Corporation, Mw 32,000, Mw / Mn 2.0) was used.
  • a filler, a plasticizer, a vulcanizing agent, a vulcanization accelerator, a vulcanization aid, and an anti-aging agent are blended in the amounts shown in Table 1 in 100 parts by weight of the above SBR and 10 parts by weight of polyisobutylene, respectively. 6 inch ⁇ ⁇ 16 inch) and kneading under the conditions of a rotation speed of 30 rpm and a front-rear roll rotation ratio of 1: 1.22 to obtain a rubber composition having a predetermined Mooney viscosity.
  • Silica AQ (manufactured by Tosoh Silica) is used as the filler, process oil “NS-100” (manufactured by Idemitsu Kosan Co., Ltd.) as the plasticizer, and sulfur (Kawagoe Chemical Co., Ltd.) as the vulcanizing agent.
  • Zinc Oxide No. 3 (Hakusui Tech Co., Ltd.) and stearic acid (made by Nippon Seika Co., Ltd.) as vulcanization aids
  • sulfenamide accelerators as vulcanization accelerators.
  • Example 2 Vulcanization characteristics and dynamic viscoelasticity (that is, an index of grip resistance) at the time of producing the sheet were evaluated. These results are shown in Table 3.
  • Example 2 The same procedure as in Example 1 was performed except that 100 parts by weight of solution-polymerized styrene-butadiene rubber, trade name “Tuffden 2000R” (manufactured by Asahi Kasei Chemicals Corporation) was used as SBR.
  • Example 3 As SBR, 70 parts by weight of solution-polymerized styrene-butadiene rubber, trade name “Tuffden 2000R” (manufactured by Asahi Kasei Chemicals Corporation) is used, and butadiene rubber (BR) (trade name “BR1220”, produced by Nippon Zeon Co., Ltd.). ) The same operation as in Example 1 was carried out except that 30 parts by weight was added (see Table 2). The polyisobutylene used in Example 4 below is prepared as follows.
  • the flask was immersed in a low temperature bath at a predetermined temperature, and after confirming that the liquid temperature in the system reached 10 ° C., 30 g of isobutylene was transferred to the reaction system.
  • EADC 0.1 mol / L ethylaluminum dichloride
  • Example 4 As SBR, 100 parts by weight of solution-polymerized styrene-butadiene rubber, trade name “Tuffden 2000R” (manufactured by Asahi Kasei Chemicals Co., Ltd.) was used, and Mw11,000 and Mw / Mn2.6 polyisobutylene (in the above synthesis method) Preparation) was carried out in the same manner as in Example 1, except that 10 parts by weight were used.
  • Example 5 As SBR, 100 parts by weight of solution-polymerized styrene-butadiene rubber, trade name “Toughden 2000R” (manufactured by Asahi Kasei Chemicals Corporation), and polyisobutylene (synthetic product) of Mw 97,000 and Mw / Mn 1.9 as additives are used. It implemented like Example 1 except having used 10 weight part.
  • Example 6 As SBR, 70 parts by weight of solution-polymerized styrene-butadiene rubber, trade name “Tuffden 2000R” (manufactured by Asahi Kasei Chemicals Corporation) and butyl rubber as an additive, trade name “BUTYL 268” (manufactured by JSR Corporation): ( Example 2 was carried out in the same manner as in Example 1 except that 30 parts by weight of the content of 1.8% by weight was used. [Comparative Example 1] The same procedure as in Example 1 was performed except that solution-polymerized styrene-butadiene rubber, “SL-552 (manufactured by JSR Corporation)” was used as SBR.
  • SL-552 solution-polymerized styrene-butadiene rubber
  • Example 2 The same procedure as in Example 1 was performed except that solution-polymerized styrene-butadiene rubber, “SL-563 (manufactured by JSR Corporation)” was used as SBR.
  • SBR solution-polymerized styrene-butadiene rubber
  • SBR solution-polymerized styrene-butadiene rubber
  • Example 4 The SBR was carried out in the same manner as in Example 1 except that “Tuffden 2003 (manufactured by Asahi Kasei Chemicals Corporation)” was used as the solution-polymerized styrene-butadiene rubber.
  • Comparative Example 5 As SBR, solution polymerized styrene-butadiene rubber, trade name “Toughden 2000R” (manufactured by Asahi Kasei Chemicals Corporation) was used, and polyisobutylene (synthetic product) of Mw 3,800 and Mw / Mn 2.9 was used as an additive. Except for this, the same procedure as in Example 1 was performed.
  • one test piece having a thickness of 1 mm, a width of 5 mm, and a length of 40 mm was cut out from the sheets obtained in Examples 1 and 2 and Comparative Examples 1 to 5, and the frequency was 10 Hz and the dynamic strain was 0.
  • the measurement temperature was measured in the tensile mode while the temperature was raised in the range of ⁇ 50 to 100 ° C. at 2 ° C./min.
  • the apparatus used is a dynamic viscoelasticity measuring apparatus RSA-3 (manufactured by TA INSTRUMENTS).
  • the wet grip property correlates with a loss coefficient (tan ⁇ ) value at 10 Hz-0 ° C., and the wet grip property (brake braking property) is better as the value is larger. It is known. Table 3 shows the measurement results. Examples 1 to 6 have a large 0 ° C. tan ⁇ value (good grip properties). In addition, the vulcanization speed is fast and the productivity is excellent.
  • the rubber composition of the present invention can be particularly suitably used for tire applications.
  • automobile tires and tubes, inner liners, bead fillers, plies, belts, tread rubbers, side rubbers, various sealing materials, sealants, and aircraft use It can be used for applications such as tires and tubes, bicycle tires and tubes, solid tires, and corrected tires. In addition to tire applications, it can be used for applications such as shoe soles, grips for golf and tennis clubs, golf balls, tennis balls, and the like.
  • the rubber composition according to the present invention can achieve both improvement in productivity due to an increase in the crosslinking speed and improvement in gripping properties, and can be particularly suitably used for tire tread applications. There is a possibility that it can be used for applications such as grips for clubs such as tennis, golf balls, tennis balls and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

Provided is a rubber composition having excellent grip resistance, which contains a styrene-butadiene copolymer as a rubber component, said rubber composition comprising: 100 parts by weight of a styrene-butadiene copolymer in which the content of a cis-1,4-bond in the microstructure of a butadiene unit is 40 wt% or more; and 0.5 to 70 parts by weight of an isobutyrene polymer which comprises 100 to 90 wt% of a structural unit represented by formula (1) and 0 to 10 wt% of an isoprene binding unit represented by formula (2).

Description

ゴム組成物Rubber composition
 本発明は、タイヤに適用した場合のグリップ性に優れたゴム組成物、および前記ゴム組成物を架橋してなるタイヤに適用した場合のグリップ性に優れたゴムに関する。 The present invention relates to a rubber composition having excellent grip properties when applied to a tire, and a rubber having excellent grip properties when applied to a tire formed by crosslinking the rubber composition.
 スチレンブタジエン共重合体ゴム(SBR)等のジエン系ゴムの架橋物は、グリップ特性に優れ、例えば、路面と接するタイヤのトレッド部に使用されているが、主鎖中のオレフィン結合に起因して、耐熱性、耐候性、耐オゾン劣化性等が問題となることがある。一方、主鎖中に微量のオレフィン結合を含むブチルゴム(IIR)、側鎖にのみオレフィン結合を含むEPDM等のα−オレフィン—非共役ジエン共重合系ゴムは、耐熱性、耐候性等が良好である。
 そこで、グリップ特性を保持しながら、ジエン系ゴムの特性改良のため、主鎖中に微量のオレフィン結合を含むブチルゴム(IIR)、側鎖にのみオレフィン結合を含むα−オレフィン—非共役ジエン共重合系ゴムのゴム組成物とその架橋ゴムが検討され、SBR/IIR系、SBR/EPDM系を中心に提案がなされ、ブチルゴムに代表される主鎖構造を有するゴムに、tanδの変化で把握される、ジエン系ゴムのグリップ性能(トレッド特性ともいう。)改良効果が認められている。しかし、近年、ジエン系ゴムの分子構造が精密に制御され、多様な化学構造のゴムが提供されて来ると、ブレンドゴム特性において、各々のゴム単味の加成性は容易に成立しないことが確認されている。これは、両ゴム間の相溶性に基づいて出現する架橋前のモホロジー、両ゴムの架橋速度の差に起因しているものと考えられる。
 以下に示した特許文献には、ジエン系ゴムに対するハロゲン化ゴムの改質(特許文献1)、ペンタエリスリトール等の添加によるジエン系ゴムに対するブチルゴムの改質(特許文献2)、ジエン系ゴムの改質剤して有効な、側鎖にのみオレフィン構造を有するゴム(特許文献3)、セピオライトを主成分とする鉱物の添加によるジエン系ゴムに対するブチルゴムの改質(特許文献4)、EPDM等と特定のリン系加硫促進剤の使用によるジエン系ゴムに対するブチルゴムの改質(特許文献5)、特定の化学物質添加によるジエン系ゴムに対する変性ブチルゴムの改質(特許文献6)等が開示されている。しかしながら、従来、SBRの如きジエン系ゴムにイソブチレン系重合体やブチルゴムを添加してタイヤのグリップ性を向上することに関する報告はなされていない。
Crosslinked products of diene rubbers such as styrene butadiene copolymer rubber (SBR) have excellent grip characteristics and are used, for example, in the tread portion of a tire in contact with the road surface, but due to olefin bonds in the main chain. , Heat resistance, weather resistance, ozone degradation resistance, etc. may be a problem. On the other hand, α-olefin-nonconjugated diene copolymer rubbers such as butyl rubber (IIR) containing a small amount of olefin bond in the main chain and EPDM containing olefin bond only in the side chain have good heat resistance and weather resistance. is there.
Therefore, butyl rubber (IIR) containing a small amount of olefinic bonds in the main chain and α-olefin-nonconjugated diene copolymer containing olefinic bonds only in the side chain, in order to improve the properties of the diene rubber while maintaining the grip characteristics. The rubber composition of the rubber and its cross-linked rubber have been studied, and proposals have been made mainly for SBR / IIR and SBR / EPDM systems. The rubber having a main chain structure typified by butyl rubber is grasped by the change in tan δ. The improvement effect of grip performance (also referred to as tread characteristics) of diene rubber has been recognized. However, in recent years, when the molecular structure of diene rubber is precisely controlled and rubbers with various chemical structures are provided, the individual additivity of each rubber may not be easily established in blend rubber properties. It has been confirmed. This is considered to be due to the morphology before crosslinking that appears based on the compatibility between the two rubbers and the difference in the crosslinking speed between the two rubbers.
The patent documents shown below include modification of halogenated rubber to diene rubber (Patent Document 1), modification of butyl rubber to diene rubber by addition of pentaerythritol and the like (Patent Document 2), modification of diene rubber. Effective as a material, rubber having an olefin structure only in the side chain (Patent Document 3), modification of butyl rubber to diene rubber by addition of minerals mainly composed of sepiolite (Patent Document 4), specified as EPDM, etc. Modification of butyl rubber with respect to diene rubber by use of phosphorous vulcanization accelerator (Patent Document 5), modification of modified butyl rubber with respect to diene rubber by addition of specific chemical substances (Patent Document 6), etc. . However, there has been no report on improvement of tire grip properties by adding an isobutylene polymer or butyl rubber to a diene rubber such as SBR.
特開平5−1177号公報Japanese Patent Laid-Open No. 5-1177 特開平6−116443号公報JP-A-6-116443 国際特許公開公報2011/021437号公報International Patent Publication No. 2011/021437 特開平11−246707号公報JP-A-11-246707 特開平11−227409号公報JP 11-227409 A 特開2012−167240号公報JP 2012-167240 A
 本発明者らは、ジエン系ゴムのグリップ性能をさらに高めるべく、ジエン系ゴムとしてSBR、その改質剤としてブチルゴムに代表されるイソブチレン主鎖構造を有するゴムを選択し、両者間の分子構造、分子量の関係を特定することにより、特異的にグリップ性能の高いゴムを得ることを見出し、本発明の完成に至った。 In order to further improve the grip performance of the diene rubber, the present inventors selected SBR as the diene rubber and a rubber having an isobutylene main chain structure typified by butyl rubber as the modifier, and the molecular structure between them, By specifying the molecular weight relationship, it was found that a rubber having a particularly high grip performance was obtained, and the present invention was completed.
 本発明の第一は、ゴム成分がスチレン−ブタジエン共重合体であり、そのブタジエンユニットのミクロ構造のシス—1,4結合ユニットが40重量%以上であるスチレン−ブタジエン共重合体100重量部に対して、下記式(1)で表されるユニットを100~90重量%、下記式(2)で表されるユニットを0~10重量%(両者あわせて100重量%とする。)含有するイソブチレン系重合体0.5~70重量部を含むゴム組成物に関する。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 本発明の第二は、イソブチレン系重合体が、重量平均分子量(Mw)が5,000~100,000、分子量分布の分散度(Mw/Mn)が、3.0以下であることを特徴とする、本発明第一のゴム組成物に関する。
 本発明の第三は、スチレン−ブタジエン共重合体ゴムのブタジエン含有量が70重量%以上であることを特徴とする、本発明第一または本発明第二のゴム組成物に関する。
 本発明の第四は、ムーニー粘度(ML1+4、100℃)が30~50であることを特徴とする、本発明第一ないし本発明第三の何れかのゴム組成物に関する。
 本発明の第五は、本発明第一ないし本発明第四の何れかのゴム組成物を架橋してなることを特徴とするゴムに関する。
 本発明の第六は、本発明第五のゴムを構成材料とすることを特徴とするタイヤに関する。
In the first aspect of the present invention, 100 parts by weight of a styrene-butadiene copolymer in which the rubber component is a styrene-butadiene copolymer and the cis-1,4 bond unit in the microstructure of the butadiene unit is 40% by weight or more. On the other hand, the unit represented by the following formula (1) contains 100 to 90% by weight, and the unit represented by the following formula (2) contains 0 to 10% by weight (both are 100% by weight). The present invention relates to a rubber composition containing 0.5 to 70 parts by weight of a polymer.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
The second of the present invention is characterized in that the isobutylene polymer has a weight average molecular weight (Mw) of 5,000 to 100,000 and a molecular weight distribution dispersity (Mw / Mn) of 3.0 or less. The present invention relates to a first rubber composition of the present invention.
A third aspect of the present invention relates to the first or second rubber composition of the present invention, wherein the styrene-butadiene copolymer rubber has a butadiene content of 70% by weight or more.
A fourth aspect of the present invention relates to the rubber composition according to any one of the first to third aspects of the present invention, wherein the Mooney viscosity (ML 1 + 4 , 100 ° C.) is 30 to 50.
A fifth aspect of the present invention relates to a rubber obtained by crosslinking the rubber composition according to any one of the first to fourth aspects of the present invention.
A sixth aspect of the present invention relates to a tire characterized by comprising the fifth rubber of the present invention as a constituent material.
 本発明によれば、タイヤ材料として信頼性の高いSBRを主原料とする、タイヤに適用した場合にグリップ性に優れたゴム組成物を得ることができる。 According to the present invention, it is possible to obtain a rubber composition having excellent grip properties when applied to a tire using SBR having high reliability as a tire material as a main raw material.
 本発明においては、ジエン系重合体のブタジエンユニットのシス−1,4結合ユニットの含有率が40重量%以上である溶液重合法スチレン−ブタジエン共重合体を使用する。これら共重合体はS−SBRと記載され、市場から入手できる。例えば、旭化成ケミカルズ(株)製の「タフデン」が上げられる。ブタジエンのミクロ構造には、原理上、シス−1,4結合、トランス−1,4結合、1,2−結合があるが、本発明では、以下の分析方法による解析結果で、ブタジエンユニットのシス−1,4結合ユニットの含有率が40重量%以上と解析されたものを使用する。なお、通常のスチレンブタジエン中のシス−1,4結合の含有率は、本分析法によれば、35重量%未満である。
 本発明においては、スチレンブタジエン共重合体中のシス−1,4結合の割合を、JISK6239「原料ゴム−溶液重合SBRのミクロ構造の求め方(定量)」に準じて実施する。抽出処理したSBR試料について、H−NMR測定およびIR測定を行い、SBR中のブタジエンユニットのシス−1,4結合単位、トランス−1,4結合単位、1,2単位結合、並びにスチレンの含有率を算出した。これらの解析結果は、後述する実施例に示した。
 シス−1,4結合構造の含有率が増加するにつれ、架橋速度の増大と高グリップ性の特性向上が期待されるが、その一方で、他のゴム成分との相溶性も変化する。この変化に対応し、優れた相溶性、あるいは、いわゆるミクロ相分離するブチルゴムに代表されるイソブチレン主鎖構造を有するゴムは、従来知られていない。
 本発明においては、S−SBRの改質剤として、主鎖構造が、下記式(1)および、必要に応じて、下記式(2)で表され、式(1)のユニットが100~90重量%、式(2)のユニットが0~10重量%の割合(両者合わせて100重量%とする。)のイソブチレン系重合体を用いる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 本発明者らは、後述する実施例の結果から判断して、これらイソブチレン系重合体は、S−SBRとの相溶性に優れ、いわゆる、ミクロ相分離を構成すると考えている。すなわち、このミクロ相分離が構成されることにより、S−SBR中に微細に分散した前記イソブチレン系重合体との総界面面積が増大し、ブレンド系において、式(1)および式(2)、主として式(1)で表される構造の有する粘弾性特性がS−SBRに効率よく伝達され、タイヤに適用した場合のグリップ性能が向上するものと考えている。
 上記効果を発現させるためには、まず、S−SBRを連続相(またはマトリックス)、イソブチレン系重合体を分散相(またはドメイン)とすることが好ましく、本発明においては、両者の配合比を、S−SBR100重量部に対して、イソブチレン系重合体を、0.5~70重量部とする。0.5重量部以下であると、イソブチレン系重合体の改質効果が十分に得られず、70重量部を超えると、相構造が不安定になる傾向がある。
 本発明に係るグリップ性能の向上は、主として、イソブチレン系重合体中の、式(1)で表される構造の多少に依存するので、式(2)で表される構造ユニットの比率は、イソブチレン系重合体全重量に対して10重量%以下とすることが好ましい。
 また、S−SBRを連続相、イソブチレン系重合体を分散相とするためには、前述の配合比の調整以外に、イソブチレン系重合体の重量平均分子量(Mw)を小さく、かつ、分子量分布の分散度(Mw/Mn)も小さくすることが好ましい。具体的には、重量平均分子量(Mw)は、5,000~100,000、分散度(Mw/Mn)を3.0以下とすることが好ましい。
 また、S−SBRを連続相、イソブチレン系重合体を分散相とするためには、イソブチレン系重合体との相溶性が高いと考えられるS−SBR中のシス−1,4結合構造からなるブタジエンユニットの重量をなるべく多くすることが好ましく、また、S−SBR中のブタジエン含有量は70重量%以上とすることが好ましい。
 本発明に係るイソブチレン系重合体のうち、実質的に式(1)で表される構造ユニットのみを有するものは、市場から入手することができる。例えば、JX日鉱日石エネルギー(株)製の「テトラックス3T(商品名)」があげられる。
 また、本発明に係るイソブチレン系重合体のうち、式(2)で表される構造ユニットを10%以下含むものも、市場から入手することができる。例えば、JSR(株)製の「BUTYL 268」が挙げられる(式(2)の構造ユニットの含有率が1.8重量%)。
 本発明においては、ゴム成分として、S−SBR以外のジエン系ゴムを含んでいてもよい。例えば、ブタジエンユニットのシス−1,4結合含有率が35重量%未満であるスチレン−ブタジエン共重合体(SBR)、天然ゴム(NR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ニトリルブタジエンゴム(NBR)、クロロロプレンゴム(CR)等である。これらは、1種のみを使用してもよいし、2種以上を併用することもできる。
 また、本発明においては、本発明に係る、イソブチレン系重合体以外に、α—オレフィン—非共役ジエン化合物共重合ゴム以外のα—オレフィン—非共役ジエン化合物共重合ゴムを含んでもよい。例えば、1,6−ヘキサジエン、ジシクロペンタジエン、エチリデンノルボルネンを使用したEPDM等である。これらは、1種のみを使用してもよいし、2種以上を併用することもできる。
 本発明に係るゴム組成物には、上記イソブチレン系重合体に、軟化剤・可塑剤、酸化防止剤、紫外線吸収剤、老化防止剤等の添加剤、カーボンブラック等の補強材等、通常のゴム加工で使用される薬剤を配合して、架橋を行う。
 通常の、過酸化物架橋以外のジエン系ゴムの架橋を行う場合において、本発明におけるイソブチレン系重合体が、実質的に式(1)のみを繰り返し単位とする場合は、実質的に架橋を生じない。最終ゴム中においても、未架橋分散相として機能すると考えられる。
 式(2)で表される構造を実質的に10重量%以下含む場合は、イソブチレン系重合体自身の架橋および、S−SBRとイソブチレン系重合体との共架橋が進行し、両者の相溶性はさらに向上すると考えられる。
 架橋反応のうち、好ましいものを挙げれば、タイヤに適用した場合のグリップ特性の観点から、イオウ系架橋である。
 実質的に式(1)で表される構造のみを有する場合でも、イソブチレン系重合体自身の架橋、および、S−SBRを含む両者の共架橋を進行させる場合は、過酸化物架橋を行うことが好ましい。この場合において、式(1)は、分子鎖切断を生じるので、これを抑制したい場合は、ジビニルベンゼン、m−フェニレンビスマレイミド等の反応性の高い架橋剤を使用することが好ましい。
 架橋前のゴム組成物のムーニー粘度にも制限はないが、ムーニー粘度(ML1+4、100℃)を30~50とすることが好ましい。これらの範囲外では、混練におけるトルクに過不足が生じて、前記分散構造の確保、各種添加剤等の分散・拡散が不十分となり、本発明の効果を十分に得ることができないことがある。
 補強剤としては、カーボンブラック、シリカ等が挙げられる。
 カーボンブラックは、耐磨耗性の向上、転がり抵抗特性の向上、紫外線による亀裂やひび割れの防止(紫外線劣化防止)等の効果が得られる観点から、補強剤として好適に用いられる。カーボンブラックの種類は特に限定されるものではなく、従来公知のカーボンブラック、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト等のカーボンブラックを使用することができる。また、カーボンブラックの粒径、細孔容積、比表面積等の物理的特性についても特に限定されるものではなく、従来ゴム工業で使用されている各種のカーボンブラック、例えば、SAF、ISAF、HAF、FEF、GPF、SRF(いずれも、米国のASTM規格D−1765−82aで分類されたカーボンブラックの略称)等を適宜使用することができる。カーボンブラックを用いる場合、その配合量は、ゴム成分(A)100質量部に対して、5~80質量部であることが好ましく、10~60質量部であることがより好ましい。また、30~80質量部とすることもでき、40~60質量部とすることもできる。このような配合量であると、本実施形態に係るゴム組成物及び架橋ゴム組成物において、補強剤としての効果を良好に得ることができる。
 シリカとしては、従来よりゴム用補強剤として使用されているものを特に制限なく使用でき、例えば乾式法ホワイトカーボン、湿式法ホワイトカーボン、合成ケイ酸塩系ホワイトカーボン、コロイダルシリカ、沈降性シリカなどが挙げられる。シリカの比表面積は特に制限はないが、通常、40~600m/gの範囲、好ましくは70~300m/gのものを用いることができ、一次粒子径は10~1000nmのものを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。シリカの使用量は、ゴム成分(A)100質量部に対して0.1~150質量部であることが好ましく、10~100質量部であることがより好ましく、30~100質量部であることがさらに好ましい。
 また、シリカを配合させる目的で、ゴム組成物にシランカップリング剤を配合してもよい。シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシ−エトキシ)シラン、β−(3,4−エポキシシクロヘキシル)−エチルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、ビス(3−(トリエトキシシリル)プロピル)テトラスルフィド、ビス(3−(トリエトキシシリル)プロピル)ジスルフィドなどが挙げられる。これらは単独でも用いても、2種以上を組み合わせて用いてもよい。シランカップリング剤の添加量は、所望するシリカの配合量によって適宜変更できるが、ゴム成分(A)100質量部に対して、0.1~20質量部であることが好ましい。
 充填剤としては、クレー、タルク等の鉱物の粉末類、炭酸マグネシウム、炭酸カルシウムなどの炭酸塩類、水酸化アルミニウムなどのアルミナ水和物などを用いることができる。
 軟化剤・可塑剤としては、リノール酸、オレイン酸、アビチエン酸を主とするトール油、パインタール、菜種油、綿実油、落花生油、ひまし油、パーム油、フアクチス等の植物系軟化剤、パラフィン系油、ナフテン系油、芳香族系油、ジブチルフタレート等のフタル酸誘導体、等が挙げられる。軟化剤の配合量は、ゴム成分(A)100質量部に対して、0~50質量部であることが好ましい。
 本実施形態に係るゴム組成物はまた、ゴム工業の分野で使用される種々の添加剤、例えば、老化防止剤、イオウ、架橋剤、加硫促進剤、加硫遅延剤、しゃく解剤、プロセス油、可塑剤等の1種又は2種以上を、必要に応じて含有していてもよい。これらの添加剤の配合量は、ゴム成分(A)100質量部に対して、0.1~10質量部であることが好ましい。
 老化防止剤として、p,p’−ジアミノジフェニルメタン等の第一級アミン類;フェニル−α−ナフチルアミン、N,N’−ジフェニル−p−フェニレンジアミン等の第二級アミン類;2,6−ジtert−ブチル−p−クレゾール、2,5−ジtert−ブチル−ハイドロキノン、ハイドロキノンモノベンジルエーテル等のアルキルフェノール類;2−メルカプトベンズイミダゾール等イミダゾール類が挙げられる。配合量は、ゴム成分(A)100質量部に対して、0.1~10質量部であることが好ましい。
 加硫促進剤としては、例えば、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィドなどのチウラム系促進剤;2−メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィドなどのチアゾール系促進剤;N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾリルスルフェンアミドなどのスルフェンアミド系促進剤;ジフェニルグアニジン、ジオルトトリルグアニジンなどのグアニジン系促進剤;n−ブチルアルデヒド−アニリン縮合品、ブチルアルデヒド−モノブチルアミン縮合品などのアルデヒド−アミン系促進剤;ヘキサメチレンテトラミンなどのアルデヒド−アンモニア系促進剤;チオカルバニリドなどのチオ尿素系促進剤、などが挙げられる。これらの加硫促進剤を配合する場合は、1種類を単独で使用してもよく、2種以上を組み合わせて使用してもよい。加硫促進剤の含有量は、ゴム成分(A)100質量部に対して0.1~10質量部であることが好ましい。
 加硫助剤としては酸化亜鉛(亜鉛華)、酸化マグネシウムなどの金属酸化物;水酸化カルシウムなどの金属水酸化物;炭酸亜鉛、塩基性炭酸亜鉛などの金属炭酸塩;ステアリン酸、オレイン酸などの脂肪酸;ステアリン酸亜鉛、ステアリン酸マグネシウムなどの脂肪族金属塩;ジn−ブチルアミン、ジシクロヘキシルアミンなどのアミン類;エチレンジメタクリレート、ジアリルフタレート、N,N−m−フェニレンビスマレイミド、トリアリルイソシアヌレート、トリメチロールプロパントリメタクリレートなどが挙げられる。これらの加硫助剤を配合する場合は、1種類を単独で使用してもよく、2種以上を組み合わせて使用してもよい。加硫助剤の含有量は、ゴム成分(A)100質量部に対して、0.1~10質量部であることが好ましい。
 本実施形態に係るゴム組成物は、一般にゴム組成物の製造方法として用いられる方法を適用することにより製造することができる。例えば、上述した各成分を、ブラベンダー、バンバリーミキサー、ロールミキサー等の混練機を用いて混合すること等により製造できる。
In the present invention, a solution-polymerized styrene-butadiene copolymer having a cis-1,4-bond unit content of the butadiene unit of the diene polymer of 40% by weight or more is used. These copolymers are described as S-SBR and are commercially available. For example, “Toughden” manufactured by Asahi Kasei Chemicals Corporation can be raised. In principle, the microstructure of butadiene includes a cis-1,4 bond, a trans-1,4 bond, and a 1,2-bond. In the present invention, the cis of the butadiene unit is analyzed by the following analysis method. -1 and 4 units whose content is analyzed to be 40% by weight or more are used. The content of cis-1,4 bonds in ordinary styrene butadiene is less than 35% by weight according to this analysis method.
In the present invention, the ratio of cis-1,4 bonds in the styrene-butadiene copolymer is carried out in accordance with JIS K6239 “How to Determine the Microstructure of Raw Rubber-Solution Polymerized SBR (Quantitative)”. The extracted SBR sample is subjected to 1 H-NMR measurement and IR measurement to contain cis-1,4 bond unit, trans-1,4 bond unit, 1,2 unit bond and styrene of butadiene unit in SBR. The rate was calculated. These analysis results were shown in the Example mentioned later.
As the content of the cis-1,4 bond structure increases, an increase in the crosslinking rate and an improvement in the properties of high grip properties are expected, but on the other hand, the compatibility with other rubber components also changes. A rubber having an isobutylene main chain structure represented by butyl rubber which has excellent compatibility or so-called microphase separation in response to this change has not been known.
In the present invention, as a modifier of S-SBR, the main chain structure is represented by the following formula (1) and, if necessary, the following formula (2), and the unit of the formula (1) is 100 to 90 An isobutylene polymer having a weight percentage of 0 to 10 wt% of the unit of the formula (2) (both are 100 wt% in total) is used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
The present inventors consider that these isobutylene polymers are excellent in compatibility with S-SBR and constitute so-called microphase separation, judging from the results of Examples described later. That is, by configuring this microphase separation, the total interfacial area with the isobutylene polymer finely dispersed in S-SBR increases, and in the blend system, the formulas (1) and (2), It is considered that the viscoelastic characteristics of the structure mainly represented by the formula (1) are efficiently transmitted to the S-SBR, and the grip performance when applied to a tire is improved.
In order to express the above effect, first, it is preferable to use S-SBR as a continuous phase (or matrix) and an isobutylene-based polymer as a dispersed phase (or domain). The isobutylene polymer is used in an amount of 0.5 to 70 parts by weight with respect to 100 parts by weight of S-SBR. If the amount is 0.5 parts by weight or less, the effect of modifying the isobutylene polymer cannot be sufficiently obtained. If the amount exceeds 70 parts by weight, the phase structure tends to become unstable.
The improvement in grip performance according to the present invention mainly depends on the structure represented by the formula (1) in the isobutylene-based polymer, and therefore the ratio of the structural unit represented by the formula (2) is isobutylene. The content is preferably 10% by weight or less based on the total weight of the polymer.
Moreover, in order to use S-SBR as a continuous phase and an isobutylene polymer as a dispersed phase, in addition to the adjustment of the blending ratio described above, the weight average molecular weight (Mw) of the isobutylene polymer is reduced, and the molecular weight distribution It is also preferable to reduce the dispersity (Mw / Mn). Specifically, it is preferable that the weight average molecular weight (Mw) is 5,000 to 100,000 and the dispersity (Mw / Mn) is 3.0 or less.
Also, in order to use S-SBR as a continuous phase and an isobutylene polymer as a dispersed phase, butadiene having a cis-1,4 bond structure in S-SBR, which is considered highly compatible with the isobutylene polymer. It is preferable to increase the unit weight as much as possible, and the butadiene content in S-SBR is preferably 70% by weight or more.
Among the isobutylene polymers according to the present invention, those having substantially only the structural unit represented by the formula (1) can be obtained from the market. An example is “Tetrax 3T (trade name)” manufactured by JX Nippon Oil & Energy Corporation.
Moreover, the thing containing 10% or less of structural units represented by Formula (2) among the isobutylene-type polymers which concern on this invention can also be obtained from a market. An example is “BUTYL 268” manufactured by JSR Corporation (the content of the structural unit of the formula (2) is 1.8% by weight).
In the present invention, a diene rubber other than S-SBR may be included as a rubber component. For example, styrene-butadiene copolymer (SBR), natural rubber (NR), butadiene rubber (BR), isoprene rubber (IR), nitrile butadiene having a butadiene unit having a cis-1,4 bond content of less than 35% by weight. Rubber (NBR), chloroloprene rubber (CR) and the like. These may use only 1 type and can also use 2 or more types together.
In the present invention, in addition to the isobutylene polymer according to the present invention, an α-olefin-nonconjugated diene compound copolymer rubber other than the α-olefin-nonconjugated diene compound copolymer rubber may be included. For example, EPDM using 1,6-hexadiene, dicyclopentadiene, ethylidene norbornene, or the like. These may use only 1 type and can also use 2 or more types together.
In the rubber composition according to the present invention, the above-mentioned isobutylene polymer, an additive such as a softener / plasticizer, an antioxidant, an ultraviolet absorber, an anti-aging agent, a reinforcing material such as carbon black, and the like, a normal rubber A chemical used in processing is blended to perform crosslinking.
In the case of performing crosslinking of a diene rubber other than normal peroxide crosslinking, when the isobutylene polymer in the present invention substantially contains only the formula (1) as a repeating unit, it is substantially crosslinked. Absent. Even in the final rubber, it is considered to function as an uncrosslinked dispersed phase.
When the structure represented by the formula (2) is substantially contained by 10% by weight or less, the cross-linking of the isobutylene polymer itself and the co-crosslinking of S-SBR and the isobutylene polymer proceed, and the compatibility between the two. Will be further improved.
Among the crosslinking reactions, preferable ones are sulfur-based crosslinking from the viewpoint of grip characteristics when applied to a tire.
Even in the case of having only the structure represented by the formula (1), peroxide crosslinking is carried out when the cross-linking of the isobutylene polymer itself and the co-crosslinking of both including S-SBR are advanced. Is preferred. In this case, since formula (1) causes molecular chain scission, when it is desired to suppress this, it is preferable to use a highly reactive crosslinking agent such as divinylbenzene or m-phenylenebismaleimide.
The Mooney viscosity of the rubber composition before crosslinking is not limited, but the Mooney viscosity (ML 1 + 4 , 100 ° C.) is preferably 30-50. Outside these ranges, the torque in kneading becomes excessive and insufficient, and the dispersion structure is not sufficiently secured and the dispersion / diffusion of various additives, etc., is insufficient, and the effects of the present invention may not be sufficiently obtained.
Examples of the reinforcing agent include carbon black and silica.
Carbon black is suitably used as a reinforcing agent from the viewpoints of improving wear resistance, improving rolling resistance characteristics, preventing cracks and cracks caused by ultraviolet rays (preventing ultraviolet degradation), and the like. The type of carbon black is not particularly limited, and conventionally known carbon blacks such as furnace black, acetylene black, thermal black, channel black, and graphite can be used. Further, the physical characteristics such as particle size, pore volume and specific surface area of carbon black are not particularly limited, and various carbon blacks conventionally used in the rubber industry, for example, SAF, ISAF, HAF, FEF, GPF, SRF (all are abbreviations of carbon black classified according to the US ASTM standard D-1765-82a) and the like can be used as appropriate. When carbon black is used, the blending amount is preferably 5 to 80 parts by mass, and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the rubber component (A). Further, it can be 30 to 80 parts by mass, or 40 to 60 parts by mass. In such a blending amount, the effect as a reinforcing agent can be favorably obtained in the rubber composition and the crosslinked rubber composition according to the present embodiment.
As silica, those conventionally used as rubber reinforcing agents can be used without particular limitation, for example, dry method white carbon, wet method white carbon, synthetic silicate white carbon, colloidal silica, precipitated silica and the like. Can be mentioned. The specific surface area of silica is not particularly limited, but usually a silica having a surface area of 40 to 600 m 2 / g, preferably 70 to 300 m 2 / g, and a primary particle diameter of 10 to 1000 nm should be used. Can do. These may be used alone or in combination of two or more. The amount of silica used is preferably 0.1 to 150 parts by weight, more preferably 10 to 100 parts by weight, and 30 to 100 parts by weight with respect to 100 parts by weight of the rubber component (A). Is more preferable.
Moreover, you may mix | blend a silane coupling agent with a rubber composition in order to mix | blend a silica. Examples of the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxy-ethoxy) silane, β- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, and 3-chloropropyltrimethoxy. Silane, 3-chloropropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, bis (3- (triethoxysilyl) propyl) tetrasulfide, bis (3- (triethoxysilyl) propyl ) Disulfide and the like. These may be used alone or in combination of two or more. The addition amount of the silane coupling agent can be appropriately changed depending on the desired blending amount of silica, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component (A).
As the filler, mineral powders such as clay and talc, carbonates such as magnesium carbonate and calcium carbonate, alumina hydrate such as aluminum hydroxide, and the like can be used.
As softeners and plasticizers, plant oil softeners such as tall oil, mainly linoleic acid, oleic acid, and abithienic acid, pineapple, rapeseed oil, cottonseed oil, peanut oil, castor oil, palm oil, fuacitis, paraffinic oil, Examples thereof include naphthenic oils, aromatic oils, and phthalic acid derivatives such as dibutyl phthalate. The blending amount of the softening agent is preferably 0 to 50 parts by mass with respect to 100 parts by mass of the rubber component (A).
The rubber composition according to this embodiment also includes various additives used in the field of the rubber industry, such as anti-aging agents, sulfur, crosslinking agents, vulcanization accelerators, vulcanization retarders, peptizers, processes. You may contain 1 type, or 2 or more types, such as oil and a plasticizer, as needed. The compounding amount of these additives is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
Antiaging agents include primary amines such as p, p′-diaminodiphenylmethane; secondary amines such as phenyl-α-naphthylamine and N, N′-diphenyl-p-phenylenediamine; 2,6-di Examples include alkylphenols such as tert-butyl-p-cresol, 2,5-ditert-butyl-hydroquinone and hydroquinone monobenzyl ether; and imidazoles such as 2-mercaptobenzimidazole. The blending amount is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
Examples of the vulcanization accelerator include thiuram accelerators such as tetramethylthiuram monosulfide, tetramethylthiuram disulfide, and tetraethylthiuram disulfide; thiazole accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide; N-cyclohexyl Sulfenamide accelerators such as 2-benzothiazylsulfenamide and N-oxydiethylene-2-benzothiazolylsulfenamide; guanidine accelerators such as diphenylguanidine and diortolylguanidine; n-butyraldehyde -Aldehyde-amine accelerators such as aniline condensates and butyraldehyde-monobutylamine condensates; aldehyde-ammonia accelerators such as hexamethylenetetramine; thiourea accelerators such as thiocarbanilide Agents, and the like. When blending these vulcanization accelerators, one type may be used alone, or two or more types may be used in combination. The content of the vulcanization accelerator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
Vulcanization aids include metal oxides such as zinc oxide (zinc white) and magnesium oxide; metal hydroxides such as calcium hydroxide; metal carbonates such as zinc carbonate and basic zinc carbonate; stearic acid and oleic acid Aliphatic acid salts such as zinc stearate and magnesium stearate; amines such as di-n-butylamine and dicyclohexylamine; ethylene dimethacrylate, diallyl phthalate, N, Nm-phenylenebismaleimide, triallyl isocyanurate And trimethylolpropane trimethacrylate. When blending these vulcanization aids, one type may be used alone, or two or more types may be used in combination. The content of the vulcanization aid is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
The rubber composition according to the present embodiment can be produced by applying a method generally used as a method for producing a rubber composition. For example, it can manufacture by mixing each component mentioned above using kneading machines, such as a Brabender, a Banbury mixer, and a roll mixer.
 以下に実施例、比較例を以って本発明をさらに具体的に説明するが、以下の実施例により本発明が限定されるものではない。
[実施例1]
 スチレン−ブタジエン共重合体ゴム(以下SBRと略す)として、溶液重合スチレン−ブタジエンゴム、商品名「タフデン1000」(旭化成ケミカルズ(株)製)を、ポリイソブチレン系重合体として、ポリイソブチレン、商品名「テトラックス3T」(JX日鉱日石エネルギー(株)製、Mw32,000、Mw/Mn2.0)を使用した。
 上記SBR100重量部、ポリイソブチレン10重量部に充填剤、可塑剤、加硫剤、加硫促進剤、加硫助剤及び老化防止剤を、それぞれ表1に示す量だけ配合して、ロールミキサー(6インチφ×16インチ)を用い、回転数30rpm、前後ロール回転比1:1.22の条件で混練し、所定のムーニー粘度のゴム組成物を得た。
 なお、充填剤としてはシリカAQ(東ソー・シリカ社製)を、可塑剤としてはプロセスオイル「NS−100」(出光興産(株)製)を、加硫剤としては硫黄(川越化学(株)製)を、加硫助剤としては「酸化亜鉛3号」(ハクスイテック(株)製)及びステアリン酸(日本精化(株)製)を、加硫促進剤としてはスルフェンアミド系促進剤の「ノクセラーCZ(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)」(大内新興化学(株)製)及びグアニジン系促進剤の「ノクセラーD(1,3−ジフェニルグアニジン)」(大内新興化学(株)製)を、老化防止剤としては「老化防止剤224」(大内新興化学(株)製)を、表1に示した分量それぞれ用いた。
 混練後のゴム組成物を160℃×20分の加硫条件で圧縮成形し、シートを作製した。
このシート作製時の加硫特性、動的粘弾性(すなわち耐グリップ性の指標)を評価した。これらの結果を表3に示す。
[実施例2]
 SBRとして、溶液重合スチレン−ブタジエンゴム、商品名「タフデン2000R」(旭化成ケミカルズ(株)製)を100重量部用いたこと以外は実施例1と同様に実施した。
[実施例3]
 SBRとして、溶液重合スチレン−ブタジエンゴム、商品名「タフデン2000R」(旭化成ケミカルズ(株)製)70重量部を用い、これにブタジエンゴム(BR)(商品名「BR1220」、日本ゼオン(株)製)30重量部を加えて配合したこと以外は実施例1と同様に実施した(表2参照)。
 以下の実施例4にて用いるポリイソブチレンは以下のように調製する。
[ポリイソブチレンの合成]
 300mLの3口フラスコにセプタムキャップ、真空ラインを繋げた還流管、温度管を取り付け、スターラーバーを入れ、真空ライン(シュレンク管付き)を用いて、系内の脱気−窒素置換を2回繰り返し、常圧窒素雰囲気下とした。そのフラスコ内に、水素化カルシウムにて乾燥−蒸留した100mLのトルエン溶媒を、シリンジを用いてセプタムキャップから注入した。
 次にフラスコを所定温度の低温槽に浸漬させ、系内の液温が10℃になったことを確認した後、イソブチレン30gを反応系に移した。系内の液温が10℃で安定したことを確認した時点で、窒素雰囲気下のグローブボックス内、0.1mol/Lのエチルアルミニウムジクロライド(EADC)/n−ヘキサン溶液を、イソブチレン/EADC=60,000(モル比)となるようシリンジにて秤量し、反応器に注入した。
 触媒液注入から2時間後、フラスコから低温槽をはずし、室温まで放置させた。反応混合液を1N水酸化ナトリウム水溶液にて抽出操作を行い(2回)、得られた油相を純水にて抽出操作を行った。水相側のpHが中性になったことを確認した後、油相をエバポレータにて溶媒を留去させ、残渣を減圧乾燥機にて1mmHg、12時間、60℃にて乾燥させ、目的のポリイソブチレンを21g得た。
 なお、実施例5、比較例5、比較例6、比較例7で用いたポリイソブチレン(合成品)も触媒濃度、反応温度を変化させた以外は上記と同様にして合成した。
[実施例4]
 SBRとして、溶液重合スチレン−ブタジエンゴム、商品名「タフデン2000R」(旭化成ケミカルズ(株)製)を100重量部用い、添加剤としてMw11,000、Mw/Mn2.6のポリイソブチレン(上記合成法にて調製)を10重量部用いたこと以外は実施例1と同様に実施した。
[実施例5]
 SBRとして、溶液重合スチレン−ブタジエンゴム、商品名「タフデン2000R」(旭化成ケミカルズ(株)製)を100重量部用い、添加剤としてMw97,000、Mw/Mn1.9のポリイソブチレン(合成品)を10重量部用いたこと以外は実施例1と同様に実施した。
[実施例6]
 SBRとして、溶液重合スチレン−ブタジエンゴム、商品名「タフデン2000R」(旭化成ケミカルズ(株)製)を70重量部用い、添加剤としてブチルゴム、商品名「BUTYL 268」(JSR(株)製):(式2)の含有率1.8重量%)を30重量部用いたこと以外は実施例1と同様に実施した。
[比較例1]
 SBRとして、溶液重合スチレン−ブタジエンゴム、「SL−552(JSR(株)製)」を用いたこと以外は実施例1と同様に実施した。
[比較例2]
 SBRとして、溶液重合スチレン−ブタジエンゴム、「SL−563(JSR(株)製)」を用いたこと以外は、実施例1と同様に実施した。
[比較例3]
 SBRとして、溶液重合スチレン−ブタジエンゴム、「NS116R(日本ゼオン(株)製)」を用いたこと以外は、実施例1と同様に実施した。
[比較例4]
 SBRとして、溶液重合スチレン−ブタジエンゴムに「タフデン2003(旭化成ケミカルズ(株)製)」を用いたこと以外は、実施例1と同様に実施した。
[比較例5]
 SBRとして、溶液重合スチレン−ブタジエンゴム、商品名「タフデン2000R」(旭化成ケミカルズ(株)製)を用い、添加剤としてMw3,800、Mw/Mn2.9のポリイソブチレン(合成品)を用いたこと以外は実施例1と同様に実施した。
[比較例6]
 SBRとして、溶液重合スチレン−ブタジエンゴム、商品名「タフデン2000R」(旭化成ケミカルズ(株)製)を用い、添加剤としてMw33,000、Mw/Mn3.8のポリイソブチレン(合成品)を用いたこと以外は実施例1と同様に実施した。
[比較例7]
 SBRとして、溶液重合スチレン−ブタジエンゴム、商品名「タフデン2000R」(旭化成ケミカルズ(株)製)を用い、添加剤としてMw205,000、Mw/Mn2.8のポリイソブチレン(合成品)を用いたこと以外は実施例1と同様に実施した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
[ムーニー粘度の測定]
 ムーニー粘度の測定は、JIS K 6300−1:2001「未加硫ゴム−物理特性−第1部:ムーニー粘度計による粘度及びスコーチタイムの求め方」に準じて実施した。測定結果を表3に示す。
[加硫速度の測定]
 加硫速度の測定は、JIS K 6300−2:2001「未加硫ゴム−物理特性−第2部:振動式加硫試験機による加硫特性の求め方」に準じて実施した。加硫度が90%に達するまでの時間(T90、分)を加硫速度として、測定結果を表3に示す。
[動的粘弾性の測定]
 動的粘弾性の測定は、JIS K 7244−4:1999「プラスチック−動的機械特性の試験方法−第4部:引張振動—非共振法」に準じて実施した。具体的には、実施例1~2、比較例1~5で得られたシートから、厚さ1mm×幅5mm×長さ40mmの試験片を1枚切り出して用い、周波数10Hz、動的歪み0.1%の条件で、測定温度−50~100℃の範囲を2℃/分で昇温させながら、引張モードで測定した。用いた装置は動的粘弾性測定装置RSA−3(TA INSTRUMENTS製)である。ウェットグリップ性は、粘弾性の時間換算側を利用すると、10Hz−0℃に於ける損失係数
(tanδ)値と相関があり、その数値が大きいほどウェットグリップ性(ブレーキ制動性)が良好であることが知られている。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000009
 実施例1~6は0℃tanδ値が大きい(グリップ性が良好)。また、加硫速度も速く生産性に優れる。
 本発明のゴム組成物は、タイヤ用途に特に好適に用いることができ、例えば、自動車タイヤ・チューブ、インナーライナー、ビードフィラー、プライ、ベルト、トレッドゴム、サイドゴム、各種封止材、シーラント、航空機用タイヤ・チューブ、自転車タイヤ・チューブ、ソリッドタイヤ、更正タイヤ等の用途に用いることができる。
タイヤ用途以外に、靴底、ゴルフ・テニス等クラブ用グリップ、ゴルフボール、テニスボール等の用途に用いることができる。
The present invention will be described more specifically with reference to the following examples and comparative examples. However, the present invention is not limited to the following examples.
[Example 1]
As styrene-butadiene copolymer rubber (hereinafter abbreviated as SBR), solution-polymerized styrene-butadiene rubber, trade name “Tuffden 1000” (manufactured by Asahi Kasei Chemicals Co., Ltd.), and polyisobutylene polymer as polyisobutylene, trade name “Tetrax 3T” (manufactured by JX Nippon Oil & Energy Corporation, Mw 32,000, Mw / Mn 2.0) was used.
A filler, a plasticizer, a vulcanizing agent, a vulcanization accelerator, a vulcanization aid, and an anti-aging agent are blended in the amounts shown in Table 1 in 100 parts by weight of the above SBR and 10 parts by weight of polyisobutylene, respectively. 6 inch φ × 16 inch) and kneading under the conditions of a rotation speed of 30 rpm and a front-rear roll rotation ratio of 1: 1.22 to obtain a rubber composition having a predetermined Mooney viscosity.
Silica AQ (manufactured by Tosoh Silica) is used as the filler, process oil “NS-100” (manufactured by Idemitsu Kosan Co., Ltd.) as the plasticizer, and sulfur (Kawagoe Chemical Co., Ltd.) as the vulcanizing agent. Made of Zinc Oxide No. 3 (Hakusui Tech Co., Ltd.) and stearic acid (made by Nippon Seika Co., Ltd.) as vulcanization aids, and sulfenamide accelerators as vulcanization accelerators. “Noxeller CZ (N-cyclohexyl-2-benzothiazylsulfenamide)” (manufactured by Ouchi Shinsei Chemical Co., Ltd.) and the guanidine accelerator “Noxeller D (1,3-diphenylguanidine)” (Emerging Ouchi) Chemical Co., Ltd.) was used as an anti-aging agent, and “anti-aging agent 224” (manufactured by Ouchi Shinsei Chemical Co., Ltd.) was used in the amounts shown in Table 1.
The rubber composition after kneading was compression molded under a vulcanization condition of 160 ° C. × 20 minutes to produce a sheet.
Vulcanization characteristics and dynamic viscoelasticity (that is, an index of grip resistance) at the time of producing the sheet were evaluated. These results are shown in Table 3.
[Example 2]
The same procedure as in Example 1 was performed except that 100 parts by weight of solution-polymerized styrene-butadiene rubber, trade name “Tuffden 2000R” (manufactured by Asahi Kasei Chemicals Corporation) was used as SBR.
[Example 3]
As SBR, 70 parts by weight of solution-polymerized styrene-butadiene rubber, trade name “Tuffden 2000R” (manufactured by Asahi Kasei Chemicals Corporation) is used, and butadiene rubber (BR) (trade name “BR1220”, produced by Nippon Zeon Co., Ltd.). ) The same operation as in Example 1 was carried out except that 30 parts by weight was added (see Table 2).
The polyisobutylene used in Example 4 below is prepared as follows.
[Synthesis of polyisobutylene]
Attach a septum cap, a reflux tube connected to a vacuum line, and a temperature tube to a 300 mL 3-neck flask, put a stirrer bar, and repeat degassing-nitrogen replacement in the system twice using a vacuum line (with a Schlenk tube). And under a normal pressure nitrogen atmosphere. Into the flask, 100 mL of a toluene solvent dried and distilled with calcium hydride was injected from a septum cap using a syringe.
Next, the flask was immersed in a low temperature bath at a predetermined temperature, and after confirming that the liquid temperature in the system reached 10 ° C., 30 g of isobutylene was transferred to the reaction system. When it was confirmed that the liquid temperature in the system was stable at 10 ° C., a 0.1 mol / L ethylaluminum dichloride (EADC) / n-hexane solution in a glove box under a nitrogen atmosphere was isobutylene / EADC = 60. It was weighed with a syringe so as to be 1,000 (molar ratio) and injected into the reactor.
Two hours after the injection of the catalyst solution, the low-temperature bath was removed from the flask and allowed to stand at room temperature. The reaction mixture was extracted with a 1N aqueous sodium hydroxide solution (twice), and the resulting oil phase was extracted with pure water. After confirming that the pH of the aqueous phase became neutral, the solvent was distilled off from the oil phase with an evaporator, and the residue was dried with a vacuum dryer at 1 mmHg for 12 hours at 60 ° C. 21 g of polyisobutylene was obtained.
The polyisobutylene (synthetic product) used in Example 5, Comparative Example 5, Comparative Example 6, and Comparative Example 7 was synthesized in the same manner as above except that the catalyst concentration and the reaction temperature were changed.
[Example 4]
As SBR, 100 parts by weight of solution-polymerized styrene-butadiene rubber, trade name “Tuffden 2000R” (manufactured by Asahi Kasei Chemicals Co., Ltd.) was used, and Mw11,000 and Mw / Mn2.6 polyisobutylene (in the above synthesis method) Preparation) was carried out in the same manner as in Example 1, except that 10 parts by weight were used.
[Example 5]
As SBR, 100 parts by weight of solution-polymerized styrene-butadiene rubber, trade name “Toughden 2000R” (manufactured by Asahi Kasei Chemicals Corporation), and polyisobutylene (synthetic product) of Mw 97,000 and Mw / Mn 1.9 as additives are used. It implemented like Example 1 except having used 10 weight part.
[Example 6]
As SBR, 70 parts by weight of solution-polymerized styrene-butadiene rubber, trade name “Tuffden 2000R” (manufactured by Asahi Kasei Chemicals Corporation) and butyl rubber as an additive, trade name “BUTYL 268” (manufactured by JSR Corporation): ( Example 2 was carried out in the same manner as in Example 1 except that 30 parts by weight of the content of 1.8% by weight was used.
[Comparative Example 1]
The same procedure as in Example 1 was performed except that solution-polymerized styrene-butadiene rubber, “SL-552 (manufactured by JSR Corporation)” was used as SBR.
[Comparative Example 2]
The same procedure as in Example 1 was performed except that solution-polymerized styrene-butadiene rubber, “SL-563 (manufactured by JSR Corporation)” was used as SBR.
[Comparative Example 3]
The same procedure as in Example 1 was performed except that solution-polymerized styrene-butadiene rubber, “NS116R (manufactured by Nippon Zeon Co., Ltd.)” was used as SBR.
[Comparative Example 4]
The SBR was carried out in the same manner as in Example 1 except that “Tuffden 2003 (manufactured by Asahi Kasei Chemicals Corporation)” was used as the solution-polymerized styrene-butadiene rubber.
[Comparative Example 5]
As SBR, solution polymerized styrene-butadiene rubber, trade name “Toughden 2000R” (manufactured by Asahi Kasei Chemicals Corporation) was used, and polyisobutylene (synthetic product) of Mw 3,800 and Mw / Mn 2.9 was used as an additive. Except for this, the same procedure as in Example 1 was performed.
[Comparative Example 6]
As SBR, solution polymerized styrene-butadiene rubber, trade name “Toughden 2000R” (manufactured by Asahi Kasei Chemicals Corporation) was used, and polyisobutylene (synthetic product) of Mw 33,000 and Mw / Mn 3.8 was used as an additive. Except for this, the same procedure as in Example 1 was performed.
[Comparative Example 7]
As SBR, solution-polymerized styrene-butadiene rubber, trade name “Tuffden 2000R” (manufactured by Asahi Kasei Chemicals Corporation) was used, and polyisobutylene (synthetic product) of Mw 205,000 and Mw / Mn 2.8 was used as an additive. Except for this, the same procedure as in Example 1 was performed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
[Measurement of Mooney viscosity]
The Mooney viscosity was measured according to JIS K 6300-1: 2001 “Unvulcanized rubber—physical properties—Part 1: Determination of viscosity and scorch time using Mooney viscometer”. Table 3 shows the measurement results.
[Measurement of vulcanization speed]
The measurement of the vulcanization speed was carried out according to JIS K 6300-2: 2001 “Unvulcanized rubber—Physical characteristics—Part 2: Determination of vulcanization characteristics using a vibration vulcanization tester”. Table 3 shows the measurement results, with the time until the vulcanization degree reaches 90% (T90, minutes) as the vulcanization rate.
[Measurement of dynamic viscoelasticity]
The measurement of dynamic viscoelasticity was carried out according to JIS K 7244-4: 1999 “Plastics—Testing method of dynamic mechanical properties—Part 4: Tensile vibration—Non-resonance method”. Specifically, one test piece having a thickness of 1 mm, a width of 5 mm, and a length of 40 mm was cut out from the sheets obtained in Examples 1 and 2 and Comparative Examples 1 to 5, and the frequency was 10 Hz and the dynamic strain was 0. Under the condition of 0.1%, the measurement temperature was measured in the tensile mode while the temperature was raised in the range of −50 to 100 ° C. at 2 ° C./min. The apparatus used is a dynamic viscoelasticity measuring apparatus RSA-3 (manufactured by TA INSTRUMENTS). When the time conversion side of viscoelasticity is used, the wet grip property correlates with a loss coefficient (tan δ) value at 10 Hz-0 ° C., and the wet grip property (brake braking property) is better as the value is larger. It is known. Table 3 shows the measurement results.
Figure JPOXMLDOC01-appb-T000009
Examples 1 to 6 have a large 0 ° C. tan δ value (good grip properties). In addition, the vulcanization speed is fast and the productivity is excellent.
The rubber composition of the present invention can be particularly suitably used for tire applications. For example, automobile tires and tubes, inner liners, bead fillers, plies, belts, tread rubbers, side rubbers, various sealing materials, sealants, and aircraft use It can be used for applications such as tires and tubes, bicycle tires and tubes, solid tires, and corrected tires.
In addition to tire applications, it can be used for applications such as shoe soles, grips for golf and tennis clubs, golf balls, tennis balls, and the like.
 本発明に係るゴム組成物は、架橋速度の増大による生産性の向上、グリップ性の向上の特性を両立させることができ、特にタイヤトレッド用途に好適に使用し得、そのほか、靴底、ゴルフ・テニス等クラブ用グリップ、ゴルフボール、テニスボール等の用途に用い得る可能性を有する。 The rubber composition according to the present invention can achieve both improvement in productivity due to an increase in the crosslinking speed and improvement in gripping properties, and can be particularly suitably used for tire tread applications. There is a possibility that it can be used for applications such as grips for clubs such as tennis, golf balls, tennis balls and the like.

Claims (6)

  1.  ゴム成分が、スチレン−ブタジエン共重合体であり、そのブタジエンユニットのミクロ構造のシス—1,4結合が40重量%以上であるスチレン−ブタジエン共重合体100重量部に対して、
     下記式(1)で表されるユニットを100~90重量%、下記式(2)で表されるユニットを0~10重量%(両者あわせて100重量%とする。)含有するイソブチレン系重合体0.5~70重量部を含むゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    The rubber component is a styrene-butadiene copolymer, and 100 parts by weight of the styrene-butadiene copolymer in which the cis-1,4 bond of the microstructure of the butadiene unit is 40% by weight or more,
    An isobutylene polymer containing 100 to 90% by weight of a unit represented by the following formula (1) and 0 to 10% by weight of a unit represented by the following formula (2) (both are 100% by weight). A rubber composition containing 0.5 to 70 parts by weight.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  2.  イソブチレン系重合体が、重量平均分子量(Mw)が5,000~100,000、分子量分布の分散度(Mw/Mn)が、3.0以下であることを特徴とする、請求項1に記載のゴム組成物。 The isobutylene polymer has a weight average molecular weight (Mw) of 5,000 to 100,000 and a molecular weight distribution dispersity (Mw / Mn) of 3.0 or less. Rubber composition.
  3.  スチレン−ブタジエン共重合体ゴムのブタジエン含有量が70重量%以上であることを特徴とする、請求項1ないし請求項2に記載のゴム組成物。 The rubber composition according to claim 1, wherein the styrene content of the styrene-butadiene copolymer rubber is 70% by weight or more.
  4.  ムーニー粘度(ML1+4、100℃)が30~50であることを特徴とする、請求項1ないし請求項3の何れかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, wherein Mooney viscosity (ML 1 + 4 , 100 ° C) is 30 to 50.
  5.  請求項1ないし請求項4の何れかに記載のゴム組成物を架橋してなることを特徴とするゴム。 A rubber obtained by crosslinking the rubber composition according to any one of claims 1 to 4.
  6.  請求項5に記載のゴムを構成材料とすることを特徴とするタイヤ。 A tire comprising the rubber according to claim 5 as a constituent material.
PCT/JP2014/051314 2013-01-17 2014-01-16 Rubber composition WO2014112654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-006463 2013-01-17
JP2013006463A JP2014136759A (en) 2013-01-17 2013-01-17 Rubber composition

Publications (1)

Publication Number Publication Date
WO2014112654A1 true WO2014112654A1 (en) 2014-07-24

Family

ID=51209739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051314 WO2014112654A1 (en) 2013-01-17 2014-01-16 Rubber composition

Country Status (2)

Country Link
JP (1) JP2014136759A (en)
WO (1) WO2014112654A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199189A4 (en) * 2014-10-02 2018-07-11 Sumitomo Rubber Industries, Ltd. Nozzle cap
JPWO2020075829A1 (en) * 2018-10-10 2021-09-24 株式会社ブリヂストン Rubber composition, tread and tires
JP7275460B2 (en) * 2018-12-11 2023-05-18 株式会社ブリヂストン Rubber composition for tire tread and tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315171A (en) * 1998-03-04 1999-11-16 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2000351873A (en) * 1999-06-11 2000-12-19 Yokohama Rubber Co Ltd:The Rubber composition
JP2003301075A (en) * 2002-04-11 2003-10-21 Toyo Tire & Rubber Co Ltd Styrene butadiene rubber composition for low temperature and its molded body
JP2012172022A (en) * 2011-02-18 2012-09-10 Jx Nippon Oil & Energy Corp Rubber composition, crosslinked rubber composition, and pneumatic tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315171A (en) * 1998-03-04 1999-11-16 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2000351873A (en) * 1999-06-11 2000-12-19 Yokohama Rubber Co Ltd:The Rubber composition
JP2003301075A (en) * 2002-04-11 2003-10-21 Toyo Tire & Rubber Co Ltd Styrene butadiene rubber composition for low temperature and its molded body
JP2012172022A (en) * 2011-02-18 2012-09-10 Jx Nippon Oil & Energy Corp Rubber composition, crosslinked rubber composition, and pneumatic tire

Also Published As

Publication number Publication date
JP2014136759A (en) 2014-07-28

Similar Documents

Publication Publication Date Title
RU2660883C1 (en) Rubber composition, method for its production and tire
JP2007514022A (en) Butyl rubber composition for tire tread
JP7317807B2 (en) Rubber additive, uncrosslinked rubber composition, crosslinked rubber and tire
JP2008156446A (en) Rubber composition for specific tire member and tire obtained using the same
JP7024712B2 (en) Rubber composition for tires and pneumatic tires
WO2021065615A1 (en) Rubber composition and tire
JP2009249594A (en) Rubber composition and tire using the same
JP2022075724A (en) Rubber composition for tread and pneumatic tire
KR20180036319A (en) Composition for tire tread comprising resin alternative to process oil
JP2011168740A (en) Rubber composition, rubber composition for high damping laminate, and rubber composition for tire
WO2014112654A1 (en) Rubber composition
JP5453736B2 (en) Rubber composition for tire and method for producing the same
WO2014104381A1 (en) Rubber composition
EP3467017A1 (en) Rubber composition and tire
KR20170113322A (en) Rubber Composition for Tire Tread
JP2015143310A (en) Rubber composition and pneumatic tire using the same
KR20190024827A (en) Rubber composition
JP2017088864A (en) Vulcanized rubber composition and tire using the same
JP4979055B2 (en) Rubber material, rubber composition using the same, and crosslinked rubber
JP6327000B2 (en) Rubber composition and pneumatic tire using the same
JP4615988B2 (en) Rubber composition and pneumatic tire using the same
JP2011074313A (en) Rubber composition, and pneumatic tire using the same
JP2016006133A (en) Rubber composition for fiber coating and pneumatic tire using the same
KR20240008376A (en) Petroleum resins, additives for rubber, uncrosslinked rubber compositions and crosslinked rubber
JP6710934B2 (en) Rubber composition for tires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740769

Country of ref document: EP

Kind code of ref document: A1