JP6327000B2 - Rubber composition and pneumatic tire using the same - Google Patents

Rubber composition and pneumatic tire using the same Download PDF

Info

Publication number
JP6327000B2
JP6327000B2 JP2014126278A JP2014126278A JP6327000B2 JP 6327000 B2 JP6327000 B2 JP 6327000B2 JP 2014126278 A JP2014126278 A JP 2014126278A JP 2014126278 A JP2014126278 A JP 2014126278A JP 6327000 B2 JP6327000 B2 JP 6327000B2
Authority
JP
Japan
Prior art keywords
parts
mass
rubber
rubber composition
petroleum resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014126278A
Other languages
Japanese (ja)
Other versions
JP2016003325A (en
Inventor
田中 健
健 田中
新 築島
新 築島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2014126278A priority Critical patent/JP6327000B2/en
Publication of JP2016003325A publication Critical patent/JP2016003325A/en
Application granted granted Critical
Publication of JP6327000B2 publication Critical patent/JP6327000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ゴム組成物およびそれを用いた空気入りタイヤに関するものであり、詳しくは、発熱性、硬度、耐屈曲疲労性、加工性のすべてを同時に向上させ得るゴム組成物およびそれを用いた空気入りタイヤに関するものである。   The present invention relates to a rubber composition and a pneumatic tire using the same, and more specifically, a rubber composition capable of simultaneously improving all of heat generation, hardness, bending fatigue resistance, and workability, and the same. It relates to pneumatic tires.

従来、パンク状態での走行を可能にするランフラットタイヤとして、サイドウォール部の内側に断面三日月状のサイド補強層を配置したサイド補強型のランフラットタイヤ(例えば、特許文献1参照)が提案されている。   2. Description of the Related Art Conventionally, as a run flat tire that enables running in a puncture state, a side reinforcing type run flat tire in which a side reinforcing layer having a crescent cross section is disposed inside a sidewall portion has been proposed (for example, see Patent Document 1). ing.

このようなサイド補強型のランフラットタイヤでは、ランフラット走行時における耐久性を高めるために、サイド補強層に硬度が高いゴム組成物を使用することが一般的である。
一方、低内圧時の走行ではサイド補強層に大きな荷重がかかり、大きな変形が繰り返され、これによりサイド補強層は発熱する。発熱はゴムの劣化を促進させ、ゴムを破壊する恐れがあるため、サイド補強層は低発熱性であり、高硬度であり、かつ高い耐屈曲疲労性を有することが求められる。
低発熱性を得るためには、カーボンブラックの配合量を減少させる方法が一般的であるが、この場合は高硬度が得られない。
高硬度を得るためには、カーボンブラックの配合量を増加させる方法が知られているが、この場合は逆に発熱性が悪化し、また未加硫のゴム組成物の粘度が上昇し、混練りや押出など工程への負荷が大きく、加工性が悪化するとともに、耐屈曲疲労性も悪化するという問題がある。
なお、カーボンブラックの増量による加工性の悪化を改善するために、オイルを増量する手段があるが、この場合は硬度および発熱性が共に悪化してしまう。
以上のように、発熱性、硬度、耐屈曲疲労性、加工性のすべてを同時に向上させ得るゴム組成物を獲得するのは、当業界では困難な事項であると認識されている。
In such side-reinforced run-flat tires, it is common to use a rubber composition having a high hardness for the side reinforcing layer in order to enhance durability during run-flat running.
On the other hand, during traveling at a low internal pressure, a large load is applied to the side reinforcing layer, and large deformation is repeated, whereby the side reinforcing layer generates heat. Since heat generation promotes deterioration of the rubber and may destroy the rubber, the side reinforcing layer is required to have low heat generation properties, high hardness, and high bending fatigue resistance.
In order to obtain low heat build-up, a method of reducing the blending amount of carbon black is common, but in this case, high hardness cannot be obtained.
In order to obtain high hardness, a method of increasing the compounding amount of carbon black is known. However, in this case, the exothermic property is deteriorated, and the viscosity of the unvulcanized rubber composition is increased, thereby kneading. There is a problem that the load on the process such as extrusion and extrusion is large, workability is deteriorated, and bending fatigue resistance is also deteriorated.
In order to improve the deterioration of workability due to the increase in the amount of carbon black, there is a means for increasing the amount of oil. In this case, both the hardness and the exothermicity are deteriorated.
As described above, it is recognized that it is a difficult matter in the art to obtain a rubber composition capable of simultaneously improving all of heat generation, hardness, bending fatigue resistance, and workability.

特開平7−304312号公報Japanese Patent Laid-Open No. 7-3030412

したがって本発明の目的は、発熱性、硬度、耐屈曲疲労性、加工性のすべてを同時に向上させ得るゴム組成物およびそれを用いた空気入りタイヤを提供することにある。   Accordingly, an object of the present invention is to provide a rubber composition capable of simultaneously improving all of heat generation, hardness, bending fatigue resistance, and workability, and a pneumatic tire using the same.

本発明者らは鋭意研究を重ねた結果、特定の組成を有するジエン系ゴムに対し、特定の特性を有するフェノール系化合物で変性したC系石油樹脂および特定の特性を有するカーボンブラック、加硫促進剤および硫黄を特定量でもって配合することにより、上記課題を解決できることを見出し、本発明を完成することができた。
すなわち本発明は以下の通りである。
The present inventors have results of extensive research with respect to the diene rubber having a specific composition, carbon black having a modified C 9 petroleum resin and a specific characteristic in phenolic compounds with specific properties, vulcanization It has been found that the above problem can be solved by blending the accelerator and sulfur in a specific amount, and the present invention has been completed.
That is, the present invention is as follows.

1.天然ゴム10〜40質量部およびブタジエンゴム60〜90質量部を含むジエン系ゴム100質量部に対し、重量平均分子量Mwが200〜1000であり、かつ軟化点が−40〜20℃の範囲にある、フェノール系化合物で変性したC系石油樹脂を1〜30質量部、窒素吸着比表面積(NSA)が5〜90m/gのカーボンブラックを30〜80質量部、加硫促進剤を1.5〜5.0質量部および硫黄を3〜10質量部配合してなることを特徴とするゴム組成物。
2.フェノール系化合物で変性したC系石油樹脂が、フェノールで変性したC系石油樹脂であることを特徴とする前記1に記載のゴム組成物。
3.加硫後の前記ゴム組成物の硬さ(JIS K6253に準拠して20℃で測定した硬度)が、70以上であることを特徴とする前記1または2に記載のゴム組成物。
4.前記1〜3のいずれかに記載のゴム組成物をサイド補強用ゴムとして配置した空気入りタイヤ。
1. The weight average molecular weight Mw is 200 to 1000 and the softening point is in the range of −40 to 20 ° C. with respect to 100 parts by mass of diene rubber including 10 to 40 parts by mass of natural rubber and 60 to 90 parts by mass of butadiene rubber. 1 to 30 parts by weight of a C 9 petroleum resin modified with phenolic compounds, nitrogen adsorption specific surface area (N 2 SA) of 30 to 80 parts by weight of carbon black 5~90m 2 / g, the vulcanization accelerator A rubber composition comprising 1.5 to 5.0 parts by mass and 3 to 10 parts by mass of sulfur.
2. Phenolic modified C 9 petroleum resin compound, the rubber composition according to the 1, which is a modified C 9 petroleum resin with phenol.
3. 3. The rubber composition as described in 1 or 2 above, wherein the rubber composition after vulcanization has a hardness (hardness measured at 20 ° C. in accordance with JIS K6253) of 70 or more.
4). A pneumatic tire in which the rubber composition according to any one of 1 to 3 is disposed as a side reinforcing rubber.

本発明によれば、特定の組成を有するジエン系ゴムに対し、特定の特性を有するフェノール系化合物で変性したC系石油樹脂および特定の特性を有するカーボンブラック、加硫促進剤および硫黄を特定量でもって配合したので、発熱性、硬度、耐屈曲疲労性、加工性のすべてを同時に向上させ得るゴム組成物およびそれを用いた空気入りタイヤを提供することができる。 According to the present invention, to the diene-based rubber having a specific composition, carbon black having a modified C 9 petroleum resin and a specific characteristic in phenolic compounds with specific properties, vulcanization accelerators and sulfur specific Since they are blended in amounts, it is possible to provide a rubber composition capable of simultaneously improving all of heat generation, hardness, bending fatigue resistance, and workability, and a pneumatic tire using the same.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

(ジエン系ゴム)
本発明で使用されるジエン系ゴムは、天然ゴム(NR)およびブタジエンゴム(BR)を必須成分とする。NRおよびBRの配合量は、本発明の効果の観点から、ジエン系ゴム全体を100質量部としたときに、NR10〜40質量部およびBR60〜90質量部が好ましく、NR20〜40質量部およびBR60〜80質量部がさらに好ましい。なお、NRおよびBR以外のジエン系ゴムを使用することもでき、例えば、イソプレンゴム(IR)、スチレン−ブタジエン共重合体ゴム(SBR)、アクリロニトリル−ブタジエン共重合体ゴム(NBR)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。また、その分子量やミクロ構造はとくに制限されず、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基等で末端変性されていても、エポキシ化されていてもよい。なおジエン系ゴムは、水素添加していないものを使用するのが好ましい。
(Diene rubber)
The diene rubber used in the present invention contains natural rubber (NR) and butadiene rubber (BR) as essential components. From the viewpoint of the effect of the present invention, the blending amounts of NR and BR are preferably 10 to 40 parts by mass and 60 to 90 parts by mass of BR, and 20 to 40 parts by mass and BR 60 when the entire diene rubber is 100 parts by mass. -80 mass parts is more preferable. Diene rubbers other than NR and BR can also be used, and examples include isoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), and acrylonitrile-butadiene copolymer rubber (NBR). . These may be used alone or in combination of two or more. The molecular weight and microstructure are not particularly limited, and may be terminally modified with an amine, amide, silyl, alkoxysilyl, carboxyl, hydroxyl group or the like, or may be epoxidized. As the diene rubber, it is preferable to use a non-hydrogenated rubber.

(フェノール系化合物で変性したC系石油樹脂)
本発明で使用するフェノール系化合物で変性したC系石油樹脂は、重量平均分子量Mwが200〜1000であり、かつ軟化点が−40〜20℃の範囲にある。また、該C系石油樹脂は、常温で液体である。
系石油樹脂とは、よく知られているように、ナフサの熱分解によって得られるC9 留分を(共)重合して得られる芳香族系石油樹脂である。典型的なC系石油樹脂は、スチレン、ビニルトルエン、メチルスチレン、インデン、メチルインデンおよびジシクロペンタジエンから選択された1種以上をモノマー単位として構成されている。
本発明で使用するフェノール系化合物で変性したC系石油樹脂は、C留分をフェノール系化合物の存在下でカチオン重合して得ることができる。フェノール系化合物としては、フェノール、クレゾール、キシレノール、p−t−ブチルフェノール、p−オクチルフェノール、p−ノニルフェノール等が挙げられ、中でも本発明の効果が向上するという観点から、フェノールが好ましい。
ここで、フェノール系化合物で変性したC系石油樹脂の重量平均分子量Mwが200未満あるいは1000を超えると、発熱性、硬度、耐屈曲疲労性、加工性を同時に向上させることができない。軟化点が−40℃未満あるいは20℃を超える場合でも発熱性、硬度、耐屈曲疲労性、加工性を同時に向上させることができない。
前記重量平均分子量は、ポリスチレン換算のGPC法により測定され、軟化点は、JIS K6220−1に規定されたリングアンドボール法により測定される。
なお、本発明で使用するフェノール系化合物で変性したC系石油樹脂は、市販されているものを使用することができ、例えばRutgers社製ノバレスL100、ノバレスL800、ノバレスA1200、ノバレスLC60等が挙げられる。
フェノール系化合物で変性したC系石油樹脂の配合によって、該樹脂とジエン系ゴムとの架橋反応が促進され、所望の特性が発現されるものと推測される。また、該樹脂とジエン系ゴムとの架橋鎖長が長いため、優れた耐屈曲疲労性を発現すると推測される。
(Modified C 9 petroleum resin with a phenol compound)
C 9 petroleum resins modified with phenolic compounds used in the present invention has a weight average molecular weight Mw of 200 to 1000, and a softening point in the range of -40~20 ℃. Also, the C 9 petroleum resin is a liquid at room temperature.
As is well known, the C 9 petroleum resin is an aromatic petroleum resin obtained by (co) polymerizing a C 9 fraction obtained by thermal decomposition of naphtha. Typical C 9 petroleum resin, styrene, vinyl toluene, and a-methyl styrene, indene, one or more selected from methyl indene and dicyclopentadiene as monomer units.
C 9 petroleum resins modified with phenolic compounds used in the present invention can be obtained by cationic polymerization of the C 9 fraction in the presence of phenolic compounds. Examples of the phenolic compound include phenol, cresol, xylenol, pt-butylphenol, p-octylphenol, p-nonylphenol, and the like. Among them, phenol is preferable from the viewpoint of improving the effect of the present invention.
Here, the weight average molecular weight Mw of C 9 petroleum resins modified with phenolic compounds is greater than 200 less than or 1000, pyrogenic, hardness, it can not improve the bending fatigue resistance, workability at the same time. Even when the softening point is lower than −40 ° C. or higher than 20 ° C., the heat generation, hardness, bending fatigue resistance, and workability cannot be improved at the same time.
The weight average molecular weight is measured by a GPC method in terms of polystyrene, and the softening point is measured by a ring and ball method defined in JIS K6220-1.
Incidentally, C 9 petroleum resins modified with phenolic compounds used in the present invention may be used those commercially available, for example, Rutgers Co. Nobaresu L100, Nobaresu L800, Nobaresu A1200, etc. Nobaresu LC60 is cited It is done.
By blending the modified C 9 petroleum resin with a phenol-based compound, the crosslinking reaction between the resin and the diene rubber is promoted, it is presumed that the desired properties are expressed. In addition, since the cross-linking chain length between the resin and the diene rubber is long, it is estimated that excellent bending fatigue resistance is exhibited.

(カーボンブラック)
本発明で使用されるカーボンブラックは、発熱性、硬度、耐屈曲疲労性、加工性を同時に向上させるために、窒素吸着比表面積(NSA)は5〜90m/gであることが必要であり、該効果をさらに高めるという観点から、10〜80m/gであるのが好ましい。
なお窒素吸着比表面積(NSA)は、JIS K6217−2に準拠して求めるものとする。
(Carbon black)
The carbon black used in the present invention needs to have a nitrogen adsorption specific surface area (N 2 SA) of 5 to 90 m 2 / g in order to improve heat generation, hardness, bending fatigue resistance, and workability at the same time. From the viewpoint of further enhancing the effect, it is preferably 10 to 80 m 2 / g.
The nitrogen adsorption specific surface area (N 2 SA) is determined according to JIS K6217-2.

(加硫促進剤)
本発明で用いる加硫促進剤としては、従来から公知のものがいずれも使用可能であり、例えば、チウラム系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤、チアゾール系加硫促進剤、等が挙げられる。
(Vulcanization accelerator)
As the vulcanization accelerator used in the present invention, any conventionally known vulcanization accelerator can be used. For example, thiuram vulcanization accelerator, sulfenamide vulcanization accelerator, guanidine vulcanization accelerator, thiazole Vulcanization accelerators, and the like.

(ゴム組成物の配合割合)
本発明のゴム組成物は、ジエン系ゴム100質量部に対し、前記フェノール系化合物で変性したC系石油樹脂を1〜30質量部、窒素吸着比表面積(NSA)が5〜90m/gのカーボンブラックを30〜80質量部、加硫促進剤を1.5〜5.0質量部および硫黄を3〜10質量部配合してなることを特徴とする。
前記フェノール系化合物で変性したC系石油樹脂の配合量が1質量部未満であると、配合量が少な過ぎて本発明の効果を奏することができない。逆に30質量部を超えると発熱性および硬度が悪化する。
前記カーボンブラックの配合量が30質量部未満であると、硬度が悪化し、80質量部を超えると発熱性、耐屈曲疲労性および加工性が悪化する。
加硫促進剤の配合量が1.5質量部未満であると、発熱性および硬度が低下し、5.0質量部を超えると耐屈曲疲労性が悪化する。
硫黄の配合量が3質量部未満であると、発熱性および硬度が低下し、10質量部を超えると耐屈曲疲労性が悪化する。
(Rubber composition ratio)
The rubber composition of the present invention, to the diene rubber 100 parts by weight, the 30 parts by mass of phenol-modified C 9 petroleum resin compound, the nitrogen adsorption specific surface area (N 2 SA) 5~90M 2 30 to 80 parts by mass of carbon black / g, 1.5 to 5.0 parts by mass of a vulcanization accelerator, and 3 to 10 parts by mass of sulfur.
If the amount of the C 9 petroleum resins modified with the phenolic compound is less than 1 part by mass, it is impossible to achieve the effect of the present invention too small, amount. Conversely, when it exceeds 30 mass parts, exothermic property and hardness will deteriorate.
When the blending amount of the carbon black is less than 30 parts by mass, the hardness is deteriorated, and when it exceeds 80 parts by mass, the heat generation, the bending fatigue resistance and the workability are deteriorated.
When the blending amount of the vulcanization accelerator is less than 1.5 parts by mass, the heat buildup and hardness are lowered, and when it exceeds 5.0 parts by mass, the bending fatigue resistance is deteriorated.
When the amount of sulfur is less than 3 parts by mass, the heat buildup and hardness are reduced, and when it exceeds 10 parts by mass, the bending fatigue resistance is deteriorated.

前記フェノール系化合物で変性したC系石油樹脂のさらに好ましい配合量は、ジエン系ゴム100質量部に対し、5〜30質量部である。
前記カーボンブラックのさらに好ましい配合量は、ジエン系ゴム100質量部に対し、40〜70質量部である。
前記加硫促進剤のさらに好ましい配合量は、ジエン系ゴム100質量部に対し、2〜5質量部である。
前記硫黄のさらに好ましい配合量は、ジエン系ゴム100質量部に対し、3〜8質量部である。
A further preferred amount of the C 9 petroleum resins modified with the phenolic compound to the diene rubber 100 parts by weight, from 5 to 30 parts by weight.
A more preferable blending amount of the carbon black is 40 to 70 parts by mass with respect to 100 parts by mass of the diene rubber.
A more preferable blending amount of the vulcanization accelerator is 2 to 5 parts by mass with respect to 100 parts by mass of the diene rubber.
The more preferable compounding amount of the sulfur is 3 to 8 parts by mass with respect to 100 parts by mass of the diene rubber.

(その他成分)
本発明におけるゴム組成物には、前記した成分に加えて、加硫又は架橋剤;加硫又は架橋促進剤;酸化亜鉛、クレー、タルク、炭酸カルシウムのような各種充填剤;老化防止剤;可塑剤などのゴム組成物に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
(Other ingredients)
In the rubber composition of the present invention, in addition to the above-described components, a vulcanization or crosslinking agent; a vulcanization or crosslinking accelerator; various fillers such as zinc oxide, clay, talc, calcium carbonate; an anti-aging agent; Various additives that are generally blended in rubber compositions such as additives can be blended, and these additives are kneaded by a general method into a composition and used for vulcanization or crosslinking. Can do. The blending amounts of these additives can be set to conventional general blending amounts as long as the object of the present invention is not violated.

また本発明のゴム組成物は従来の空気入りタイヤの製造方法に従って空気入りタイヤを製造するのに適しており、加硫後のゴム組成物の硬さ(JIS K6253に準拠して20℃で測定した硬度)が、70以上であるとともに、発熱性、耐屈曲疲労性、加工性に優れるという観点から、ランフラットタイヤのサイド補強層に適用するのがよい。   The rubber composition of the present invention is suitable for producing a pneumatic tire according to a conventional method for producing a pneumatic tire, and the hardness of the rubber composition after vulcanization (measured at 20 ° C. according to JIS K6253). The hardness is preferably 70 or more, and is preferably applied to the side reinforcing layer of the run-flat tire from the viewpoints of exothermic property, bending fatigue resistance, and workability.

以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example further demonstrate this invention, this invention is not restrict | limited to the following example.

標準例1、実施例1〜3および比較例1〜8
サンプルの調製
表1に示す配合(質量部)において、加硫促進剤と硫黄を除く成分を1.7リットルの密閉式バンバリーミキサーで5分間混練した後、加硫促進剤および硫黄を加えてさらに混練し、ゴム組成物を得た。次に得られたゴム組成物を所定の金型中で160℃、20分間プレス加硫して加硫ゴム試験片を得、以下に示す試験法で未加硫のゴム組成物および加硫ゴム試験片の物性を測定した。
Standard Example 1, Examples 1-3 and Comparative Examples 1-8
Sample Preparation In the formulation (parts by mass) shown in Table 1, the components except the vulcanization accelerator and sulfur were kneaded for 5 minutes with a 1.7 liter closed Banbury mixer, and then added with the vulcanization accelerator and sulfur. The rubber composition was obtained by kneading. Next, the obtained rubber composition was press vulcanized in a predetermined mold at 160 ° C. for 20 minutes to obtain a vulcanized rubber test piece, and an unvulcanized rubber composition and vulcanized rubber were tested by the following test method. The physical properties of the test piece were measured.

発熱性(tanδ(60℃)):JIS K6394に準拠して、東洋精機社製の粘弾性スペクトロメーターを用いて、伸長変形歪率=10%、振幅=±2%、振動数=20Hz、温度60℃の条件下tanδ(60℃)を測定し、この値をもって発熱性を評価した。結果は、標準例1を100として指数で示した。指数が大きいほど、低発熱性であることを示す。
硬度:JIS K6253に準拠して20℃で測定した。
耐屈曲疲労性:JIS K6260に準拠して、屈曲亀裂成長試験を行った。試験片の中央にあらかじめ長さ2mmの傷を付け、26%の変位量を加えて毎分300回の屈曲を加え、傷が所定の長さに達するまでの屈曲回数を測定した。結果は、標準例1で得られた値を100として指数表示した。指数が大きいほど耐屈曲疲労性に優れることを示す。
ムーニー粘度:前記ゴム組成物を用い、JIS K6300に従い、100℃における未加硫ゴムの粘度を測定した。結果は標準例1の値を100として指数表示した。指数が大きいほど粘度が低く、加工性が良好であることを示す。
結果を表1に併せて示す。
Exothermic property (tan δ (60 ° C.)): In accordance with JIS K6394, using a viscoelastic spectrometer manufactured by Toyo Seiki Co., Ltd., elongation deformation strain rate = 10%, amplitude = ± 2%, frequency = 20 Hz, temperature Tan δ (60 ° C.) was measured under the condition of 60 ° C., and the exothermic property was evaluated with this value. The results are shown as an index with the standard example 1 being 100. A larger index indicates a lower exothermic property.
Hardness: measured at 20 ° C. according to JIS K6253.
Bending fatigue resistance: A bending crack growth test was conducted in accordance with JIS K6260. A scratch having a length of 2 mm was previously made at the center of the test piece, a displacement amount of 26% was added, and 300 times of bending was applied per minute, and the number of times of bending until the wound reached a predetermined length was measured. The result was expressed as an index with the value obtained in Standard Example 1 as 100. The larger the index, the better the bending fatigue resistance.
Mooney viscosity: The viscosity of unvulcanized rubber at 100 ° C. was measured in accordance with JIS K6300 using the rubber composition. The results were expressed as an index with the value of standard example 1 being 100. The larger the index, the lower the viscosity and the better the workability.
The results are also shown in Table 1.

Figure 0006327000
Figure 0006327000

*1:NR(STR20)
*2:BR(日本ゼオン(株)製Nipol BR1220)
*3:カーボンブラック−1(東海カーボン(株)製シーストF、窒素吸着比表面積(NSA)=40m/g)
*4:カーボンブラック−2(新日化カーボン(株)製ニテロン#300IH、窒素吸着比表面積(NSA)=115m/g)
*5:酸化亜鉛(正同化学工業(株)製酸化亜鉛3種)
*6:ステアリン酸(日油(株)製ビーズステアリン酸)
*7:老化防止剤(ランクセス社製VULKANOX)
*8:オイル(昭和シェル石油(株)製エキストラクト4号S)
*9:樹脂−1(Rutgers社製ノバレスL800、フェノールで変性したC系石油樹脂、Mw=300、軟化点−40〜−30℃、水酸基価=0.1wt%、常温で液体)
*10:樹脂−2(Rutgers社製ノバレスC90、クマロンインデン樹脂、Mw=2000、軟化点20〜30℃、水酸基価=0.0wt%、常温で固体)
*11:硫黄(鶴見化学工業(株)製金華印油入微粉硫黄(硫黄の含有量95.24質量%))
*12:加硫促進剤(FLEXSYS社製SANTOCURE CBS)
* 1: NR (STR20)
* 2: BR (Nipol BR1220 manufactured by Nippon Zeon Co., Ltd.)
* 3: Carbon Black-1 (Toast Carbon Co., Ltd. Seast F, nitrogen adsorption specific surface area (N 2 SA) = 40 m 2 / g)
* 4: Carbon black-2 (Niteron Carbon Co., Ltd. Niteron # 300IH, Nitrogen adsorption specific surface area (N 2 SA) = 115 m 2 / g)
* 5: Zinc oxide (3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd.)
* 6: Stearic acid (beef stearic acid manufactured by NOF Corporation)
* 7: Anti-aging agent (VULKANOX manufactured by LANXESS)
* 8: Oil (Extract No. 4 S manufactured by Showa Shell Sekiyu KK)
* 9: Resin -1 (Rutgers Co. Nobaresu L800, phenol modified with C 9 petroleum resin, Mw = 300, softening point -40 to-30 ° C., hydroxyl value = 0.1 wt%, liquid at room temperature)
* 10: Resin-2 (Novales C90 manufactured by Rutgers, Coumarone Indene resin, Mw = 2000, softening point 20-30 ° C., hydroxyl value = 0.0 wt%, solid at room temperature)
* 11: Sulfur (fine powder sulfur with Jinhua seal oil manufactured by Tsurumi Chemical Co., Ltd. (sulfur content 95.24% by mass))
* 12: Vulcanization accelerator (SANTOCURE CBS manufactured by FLEXSYS)

上記の表1の結果から明らかなように、実施例1〜3で得られたゴム組成物は、特定の組成を有するジエン系ゴムに対し、特定の特性を有するフェノール系化合物で変性したC系石油樹脂および特定の特性を有するカーボンブラック、加硫促進剤および硫黄を特定量でもって配合したので、従来の代表的な標準例1に対し、発熱性、硬度、耐屈曲疲労性、加工性のすべてを同時に向上させ得ることが判明した。
これに対し、比較例1は、フェノール系化合物で変性したC系石油樹脂を使用せず、その替わりに未変性のクマロンインデン樹脂を使用した例であるので、発熱性、耐屈曲疲労性および加工性が悪化した。
比較例2は、フェノール系化合物で変性したC系石油樹脂の配合量が本発明で規定する下限未満であるので、耐屈曲疲労性および加工性が悪化した。
比較例3は、フェノール系化合物で変性したC系石油樹脂の配合量が本発明で規定する上限を超えているので、発熱性および硬度が悪化した。
比較例4は、カーボンブラックの配合量が本発明で規定する下限未満であるので、硬度が悪化した。
比較例5は、カーボンブラックの配合量が本発明で規定する上限を超えているので、発熱性、耐屈曲疲労性および加工性が悪化した。
比較例6は、カーボンブラックの窒素吸着比表面積(NSA)が本発明で規定する上限を超えているので、発熱性、耐屈曲疲労性および加工性が悪化した。
比較例7は、加硫促進剤および硫黄の配合量が本発明で規定する下限未満であるので、発熱性および硬度が悪化した。
比較例8は、加硫促進剤および硫黄の配合量が本発明で規定する上限を超えているので、耐屈曲疲労性が悪化した。
As is clear from the results in Table 1 above, the rubber compositions obtained in Examples 1 to 3 were C 9 modified with a phenolic compound having specific characteristics with respect to the diene rubber having a specific composition. Since a specific amount of a petroleum petroleum resin and carbon black having specific characteristics, a vulcanization accelerator, and sulfur are blended, the exothermic property, hardness, bending fatigue resistance, and workability compared to the conventional representative standard example 1 It has been found that all of can be improved at the same time.
In contrast, Comparative Example 1, without using the C 9 petroleum resin modified with phenolic compounds, because in case of using unmodified coumarone-indene resin to that instead, pyrogenic, flexural fatigue resistance And processability deteriorated.
Comparative Example 2, since the amount of C 9 petroleum resins modified with phenolic compound is less than the lower limit defined in the present invention, bending fatigue resistance and processability is deteriorated.
Comparative Example 3, since the amount of denatured C 9 petroleum resin in the phenolic compounds is greater than the upper limit defined in the present invention, heating and hardness is deteriorated.
In Comparative Example 4, since the blending amount of carbon black was less than the lower limit specified in the present invention, the hardness deteriorated.
In Comparative Example 5, since the blending amount of carbon black exceeded the upper limit defined in the present invention, the heat generation property, the bending fatigue resistance, and the workability deteriorated.
In Comparative Example 6, since the nitrogen adsorption specific surface area (N 2 SA) of carbon black exceeded the upper limit defined in the present invention, the heat generation property, the bending fatigue resistance, and the workability deteriorated.
In Comparative Example 7, since the blending amount of the vulcanization accelerator and sulfur was less than the lower limit specified in the present invention, the heat generation and hardness were deteriorated.
In Comparative Example 8, the bending fatigue resistance deteriorated because the blending amounts of the vulcanization accelerator and sulfur exceeded the upper limit defined in the present invention.

Claims (4)

天然ゴム10〜40質量部およびブタジエンゴム60〜90質量部を含むジエン系ゴム100質量部に対し、重量平均分子量Mwが200〜1000であり、かつ軟化点が−40〜20℃の範囲にある、フェノール、クレゾール、キシレノール、p−t−ブチルフェノール、p−オクチルフェノールまたはp−ノニルフェノールで変性した、ナフサの熱分解によって得られるC 9 留分を重合して得られる芳香族系石油樹脂である系石油樹脂を1〜30質量部、窒素吸着比表面積(NSA)が5〜90m/gのカーボンブラックを30〜80質量部、加硫促進剤を1.5〜5.0質量部および硫黄を3〜10質量部配合してなることを特徴とするランフラットタイヤのサイド補強層用ゴム組成物。 The weight average molecular weight Mw is 200 to 1000 and the softening point is in the range of −40 to 20 ° C. with respect to 100 parts by mass of diene rubber including 10 to 40 parts by mass of natural rubber and 60 to 90 parts by mass of butadiene rubber. , phenol, cresol, xylenol, modified with p-t-butylphenol, p- octylphenol or p- nonylphenol, an aromatic petroleum resin obtained by polymerizing a C 9 fraction obtained by thermal cracking of naphtha C 9 1 to 30 parts by mass of a petroleum petroleum resin, 30 to 80 parts by mass of carbon black having a nitrogen adsorption specific surface area (N 2 SA) of 5 to 90 m 2 / g, and 1.5 to 5.0 parts by mass of a vulcanization accelerator And a rubber composition for a side reinforcing layer of a run-flat tire, comprising 3 to 10 parts by mass of sulfur. 前記系石油樹脂が、フェノールで変性したC系石油樹脂であることを特徴とする請求項1に記載のランフラットタイヤのサイド補強層用ゴム組成物。 The C 9 petroleum resin is, the side reinforcing layer rubber composition of the run-flat tire according to claim 1, characterized in that the modified C 9 petroleum resin with phenol. 加硫後の前記ゴム組成物の硬さ(JIS K6253に準拠して20℃で測定した硬度)が、70以上であることを特徴とする請求項1または2に記載のランフラットタイヤのサイド補強層用ゴム組成物。 The side reinforcement of a run flat tire according to claim 1 or 2, wherein the rubber composition after vulcanization has a hardness (hardness measured at 20 ° C in accordance with JIS K6253) of 70 or more. Layer rubber composition. 請求項1〜3のいずれかに記載のゴム組成物をサイド補強用ゴムとして配置したランフラットタイヤである空気入りタイヤ。 A pneumatic tire which is a run-flat tire in which the rubber composition according to any one of claims 1 to 3 is disposed as a rubber for a side reinforcing layer .
JP2014126278A 2014-06-19 2014-06-19 Rubber composition and pneumatic tire using the same Active JP6327000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014126278A JP6327000B2 (en) 2014-06-19 2014-06-19 Rubber composition and pneumatic tire using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014126278A JP6327000B2 (en) 2014-06-19 2014-06-19 Rubber composition and pneumatic tire using the same

Publications (2)

Publication Number Publication Date
JP2016003325A JP2016003325A (en) 2016-01-12
JP6327000B2 true JP6327000B2 (en) 2018-05-23

Family

ID=55222859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014126278A Active JP6327000B2 (en) 2014-06-19 2014-06-19 Rubber composition and pneumatic tire using the same

Country Status (1)

Country Link
JP (1) JP6327000B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111546A1 (en) * 2017-12-06 2019-06-13 株式会社ブリヂストン Rubber composition and pneumatic tire

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225697A (en) * 2010-04-19 2011-11-10 Yokohama Rubber Co Ltd:The Rubber composition and pneumatic tire using the same
JP2011225731A (en) * 2010-04-20 2011-11-10 Bridgestone Corp Rubber composition and tire using the same
ES2429524T5 (en) * 2010-11-10 2022-07-19 Continental Reifen Deutschland Gmbh commercial vehicle tire
CN103476850B (en) * 2011-04-19 2016-10-12 横滨橡胶株式会社 Rubber composition for sidewall and use the pneumatic tire of this rubber composition
JP5623986B2 (en) * 2011-07-05 2014-11-12 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP5612727B2 (en) * 2011-04-22 2014-10-22 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire

Also Published As

Publication number Publication date
JP2016003325A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5291858B2 (en) Rubber composition and pneumatic tire using the same
JP5101830B2 (en) Rubber composition for breaker topping
JP2008169295A (en) Rubber composition and pneumatic tire produced by using the same
JP5549082B2 (en) Rubber composition for tire
JP5608982B2 (en) Rubber composition for tire
WO2015008565A1 (en) Tire
JP2011246685A (en) Rubber composition and pneumatic tire using the same
JP2016006135A (en) Rubber composition and pneumatic tire using the same
JP6245033B2 (en) Rubber composition and pneumatic tire using the same
JP2009249594A (en) Rubber composition and tire using the same
JP2008169298A (en) Rubber composition and pneumatic tire using same
JP2011168740A (en) Rubber composition, rubber composition for high damping laminate, and rubber composition for tire
JP2011105848A (en) Rubber composition for tire and pneumatic tire
JP4510778B2 (en) Rubber composition for base tread
JP5453736B2 (en) Rubber composition for tire and method for producing the same
JP2011246565A (en) Rubber composition for tire, and pneumatic tire using the same
JPWO2015083818A1 (en) Rubber composition for tire
JP2016113482A (en) Rubber composition for tire tread and pneumatic tire
US20200181368A1 (en) Rubber composition and tire
JP2010013553A (en) Rubber composition for tire sidewall
JP6327000B2 (en) Rubber composition and pneumatic tire using the same
WO2014112654A1 (en) Rubber composition
JP2016003296A (en) Rubber composition and pneumatic tire using the same
JP5285335B2 (en) Rubber composition for crawler
JP5428477B2 (en) Polybutadiene rubber and rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250