JP2019055655A - Pneumatic tire - Google Patents
Pneumatic tire Download PDFInfo
- Publication number
- JP2019055655A JP2019055655A JP2017180529A JP2017180529A JP2019055655A JP 2019055655 A JP2019055655 A JP 2019055655A JP 2017180529 A JP2017180529 A JP 2017180529A JP 2017180529 A JP2017180529 A JP 2017180529A JP 2019055655 A JP2019055655 A JP 2019055655A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- tie
- rubber composition
- inorganic filler
- inner liner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、成形加工性、低空気透過性およびタイヤ耐久性に優れた空気入りタイヤに関する。 The present invention relates to a pneumatic tire excellent in molding processability, low air permeability and tire durability.
地球環境への負荷を低減するため、空気入りタイヤの転がり抵抗を小さくし燃費性能を高くする検討がされている。空気入りタイヤの空気圧が低下すると、走行時のタイヤ変形を大きくし、それが転がり抵抗の増大、ひいては燃費性能の悪化を引き起こす。そのため空気入りタイヤの空気透過性を抑制することが、転がり抵抗を小さくし燃費性能を高くすることに繋がる。また、空気透過性を抑制することにより、スチールコードなどのタイヤ補強材の劣化を抑制し、タイヤ耐久性をより優れたものにすることができる。 In order to reduce the load on the global environment, studies are being made to reduce the rolling resistance of pneumatic tires and increase fuel efficiency. When the air pressure of the pneumatic tire decreases, the tire deformation during running increases, which causes an increase in rolling resistance and, consequently, a deterioration in fuel consumption performance. Therefore, suppressing the air permeability of the pneumatic tire leads to a reduction in rolling resistance and an improvement in fuel efficiency. Further, by suppressing the air permeability, it is possible to suppress the deterioration of the tire reinforcing material such as a steel cord and to improve the tire durability.
空気透過性を小さくするため、特許文献1は、ブチル系ゴムからなるゴム成分100重量部と、平均アスペクト比が3以上30未満であるクレー10〜50重量部と、カーボンブラック10〜60重量部とを含有するインナーライナー用ゴム組成物が空気透過性を低くすることを記載する。しかしながら近年、空気入りタイヤの空気透過性をより一層優れたものにし、タイヤ耐久性を改良すると共に、タイヤ加工性を悪化させないことが求められており、このような要求満たす空気入りタイヤは、未だ開発されていない。 In order to reduce air permeability, Patent Document 1 discloses that 100 parts by weight of a rubber component made of butyl rubber, 10 to 50 parts by weight of clay having an average aspect ratio of 3 to less than 30, and 10 to 60 parts by weight of carbon black. It describes that the rubber composition for inner liners containing low air permeability. However, in recent years, it has been demanded to further improve the air permeability of pneumatic tires, to improve tire durability, and not to deteriorate tire processability. Not developed.
本発明の目的は、成形加工性、低空気透過性およびタイヤ耐久性を従来レベル以上に改良するようにした空気入りタイヤを提供することにある。 An object of the present invention is to provide a pneumatic tire in which molding processability, low air permeability, and tire durability are improved to the conventional level or more.
上記目的を達成する本発明の空気入りタイヤは、タイヤ径方向内側から外側へ、インナーライナー層、タイゴム層およびカーカス層を有し、前記タイゴム層を形成するタイゴム用ゴム組成物が、ジエン系ゴム100質量部に、無機フィラー3〜50質量部を有し、その100%変形引張り応力(Mtie)と、前記インナーライナー層を形成するインナーライナー用ゴム組成物の100%変形引張り応力(MIL)との差(Mtie−MIL)が0〜2.0MPaであることを特徴とする。 The pneumatic tire of the present invention that achieves the above object has an inner liner layer, a tie rubber layer, and a carcass layer from the inside to the outside in the tire radial direction, and the rubber composition for tie rubber that forms the tie rubber layer is a diene rubber. 100 parts by mass has 3 to 50 parts by mass of an inorganic filler, 100% deformation tensile stress (M tie ) thereof, and 100% deformation tensile stress (M IL ) of the rubber composition for the inner liner forming the inner liner layer. ) (M tie -M IL ) is 0 to 2.0 MPa.
本発明の空気入りタイヤは、タイゴム用ゴム組成物が無機フィラーを配合し、かつその100%変形引張り応力(Mtie)と、インナーライナー用ゴム組成物の100%変形引張り応力(MIL)との差(Mtie−MIL)を0〜2.0MPaにしたので、成形加工性、低空気透過性およびタイヤ耐久性を従来レベル以上に改良することができる。 In the pneumatic tire of the present invention, the rubber composition for tie rubber contains an inorganic filler, and its 100% deformation tensile stress (M tie ) and the rubber composition for inner liner 100% deformation tensile stress (M IL ) Since the difference (M tie −M IL ) is set to 0 to 2.0 MPa, the molding processability, the low air permeability and the tire durability can be improved over the conventional level.
前記無機フィラーのアスペクト比Arは、0.5〜0.95であるであるとよく、空気透過性をより小さくすることができる。また前記インナーライナー用ゴム組成物がそのゴム成分100質量部に、無機フィラーをAIL質量部有し、前記タイゴム用ゴム組成物における前記ジエン系ゴム100質量部に対する前記無機フィラーの配合量をAtie質量部とするとき、これら無機フィラーの配合量の比(AIL/Atie)が2/3以下であるとよく、タイゴム用ゴム組成物およびインナーライナー用ゴム組成物の100%変形引張り応力の差(Mtie−MIL)を容易に適正化することができる。また前記無機フィラーは、クレー、タルク、炭酸カルシウム、酸化マグネシウムから選ばれる少なくとも1つであるとよい。 The aspect ratio Ar of the inorganic filler may be 0.5 to 0.95, and the air permeability can be further reduced. Further, the rubber composition for an inner liner has an A IL part by mass of an inorganic filler in 100 parts by mass of the rubber component, and the blending amount of the inorganic filler with respect to 100 parts by mass of the diene rubber in the rubber composition for a tie rubber is A. When the tie is part by mass, the ratio of the blended amount of these inorganic fillers (A IL / A tie ) is preferably 2/3 or less, and 100% deformation tensile stress of the rubber composition for tie rubber and the rubber composition for inner liner. Difference (M tie −M IL ) can be easily optimized. The inorganic filler may be at least one selected from clay, talc, calcium carbonate, and magnesium oxide.
本明細書において、空気入りタイヤは、インナーライナー層、タイゴム層およびカーカス層を、タイヤ径方向内側から外側へ、この順に有する。すなわち、空気入りタイヤのタイヤ径方向の最内側に、インナーライナー層を有し、それより外側にカーカス層を有し、インナーライナー層およびカーカス層の間にタイゴム層が介在している。そしてインナーライナー層およびタイゴム層は、インナーライナー用ゴム組成物およびタイゴム用ゴム組成物で形成される。 In this specification, the pneumatic tire has an inner liner layer, a tie rubber layer, and a carcass layer in this order from the inner side to the outer side in the tire radial direction. That is, an inner liner layer is provided on the innermost side in the tire radial direction of the pneumatic tire, a carcass layer is provided on the outer side, and a tie rubber layer is interposed between the inner liner layer and the carcass layer. The inner liner layer and the tie rubber layer are formed of an inner liner rubber composition and a tie rubber rubber composition.
タイゴム用ゴム組成物は、ジエン系ゴム100質量部に、無機フィラー3〜50質量部を有する。ジエン系ゴムとして、例えば天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム等が例示される。好ましくは、天然ゴムをジエン系ゴム100質量%中、30〜70質量%含有するとよい。 The rubber composition for tie rubber has 3 to 50 parts by mass of an inorganic filler in 100 parts by mass of a diene rubber. Examples of the diene rubber include natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, and acrylonitrile-butadiene rubber. Preferably, the natural rubber is contained in an amount of 30 to 70% by mass in 100% by mass of the diene rubber.
無機フィラーとして、クレー、タルク、炭酸カルシウム、酸化マグネシウム、マイカ、瀝青炭等を例示することができる。なかでもクレー、タルク、炭酸カルシウム、酸化マグネシウムから選ばれる少なくとも1つであるとよい。なお、本明細書において、カーボンブラックは、無機フィラーの種類から除外するものとする。 Examples of the inorganic filler include clay, talc, calcium carbonate, magnesium oxide, mica, and bituminous coal. Among these, at least one selected from clay, talc, calcium carbonate, and magnesium oxide is preferable. In the present specification, carbon black is excluded from the type of inorganic filler.
無機フィラーのアスペクト比Arは、好ましくは0.5〜0.95、より好ましくは0.5〜0.9、更に好ましくは0.6〜0.9であるとよい。無機フィラーのアスペクト比Arをこのような範囲内にすることにより耐空気透過性を抑制しながら、タック性、接着性等を確保することができる。本明細書において、アスペクト比Arは、マイクロメリテックス計器社製セディグラグ5100粒子径測定装置を使用して遠心沈降法で50%粒子径Dsを測定し、マルバーン社製レーザー・マルバーン・マスターサイザー2000回折式粒子分布測定装置を使用して50%粒子径Dlを測定し、下記式(1)により求めることができる。
Ar=(Ds−Dl)/Ds (1)
(式中、Arはアスペクト比、Dsは遠心沈降法で測定された累積分布により求められた50%粒子径、Dlはコヒーレント光のレーザー回折法で測定された累積分布により求められた50%粒子径を表す。)。
The aspect ratio Ar of the inorganic filler is preferably 0.5 to 0.95, more preferably 0.5 to 0.9, and still more preferably 0.6 to 0.9. By making the aspect ratio Ar of the inorganic filler within such a range, tackiness, adhesiveness and the like can be ensured while suppressing air permeation resistance. In this specification, the aspect ratio Ar is determined by measuring 50% particle size Ds by centrifugal sedimentation using a Sedi-Grag 5100 particle size measuring device manufactured by Micromeritex Instruments Co., Ltd., and laser Malvern Mastersizer 2000 diffraction manufactured by Malvern. The 50% particle diameter Dl is measured using an equation particle distribution measuring device, and can be obtained by the following equation (1).
Ar = (Ds−Dl) / Ds (1)
(Wherein Ar is the aspect ratio, Ds is the 50% particle diameter determined by the cumulative distribution measured by the centrifugal sedimentation method, and Dl is the 50% particle determined by the cumulative distribution measured by the laser diffraction method of coherent light. Represents the diameter.)
無機フィラーは、ジエン系ゴム100質量部に対し、3〜50質量部、好ましくは5〜30質量部配合する。本明細書において、ジエン系ゴム100質量部に対する無機フィラーの配合量をAtie質量部であるとする。無機フィラーの配合量が3質量部未満であると、空気透過性を小さくする作用が十分に得られない。また無機フィラーの配合量が50質量部を超えると、成形加工性が低下し良品率が低下すると共に、タイヤ故障を起こしやすくなり、タイヤ耐久性が低下する。 The inorganic filler is blended in an amount of 3 to 50 parts by mass, preferably 5 to 30 parts by mass with respect to 100 parts by mass of the diene rubber. In this specification, the compounding quantity of the inorganic filler with respect to 100 parts by mass of the diene rubber is assumed to be A tie parts by mass. If the blending amount of the inorganic filler is less than 3 parts by mass, the effect of reducing the air permeability cannot be obtained sufficiently. Moreover, when the compounding quantity of an inorganic filler exceeds 50 mass parts, while a moldability will fall and a good product rate will fall, it will become easy to raise | generate a tire failure, and tire durability will fall.
本発明の空気入りタイヤにおいて、タイゴム用ゴム組成物の100%変形引張り応力(Mtie)およびインナーライナー用ゴム組成物の100%変形引張り応力(MIL)との差(Mtie−MIL)は、0〜2.0MPa、好ましくは0〜1.5MPaである。100%変形引張り応力の差(Mtie−MIL)をこのような範囲内にすることにより、タイヤ成形時に口開き等が起きるのを抑制し、良品率を高くすることができる。また、タイヤが変形したとき応力集中を低減しタイヤ耐久性を改良することができる。本明細書において、タイゴム用ゴム組成物の100%変形引張り応力(Mtie)およびインナーライナー用ゴム組成物の100%変形引張り応力(MIL)は、JIS K6251に準拠し、3号型ダンベル試験片を20℃、引張り速度500mm/分の条件で引張り試験を行い、100%伸長時の引張り応力を測定するものとする。 In the pneumatic tire of the present invention, the difference (M tie -M IL ) between the 100% deformation tensile stress (M tie ) of the rubber composition for tie rubber and the 100% deformation tensile stress (M IL ) of the rubber composition for the inner liner. Is 0 to 2.0 MPa, preferably 0 to 1.5 MPa. By setting the difference of 100% deformation tensile stress (M tie -M IL ) within such a range, it is possible to suppress the occurrence of opening and the like during tire molding and to increase the yield rate. Further, when the tire is deformed, stress concentration can be reduced and tire durability can be improved. In this specification, the 100% deformation tensile stress (M tie ) of the rubber composition for tie rubber and the 100% deformation tensile stress (M IL ) of the rubber composition for the inner liner conform to JIS K6251 and are No. 3 type dumbbell test. The piece is subjected to a tensile test under the conditions of 20 ° C. and a pulling speed of 500 mm / min, and the tensile stress at 100% elongation is measured.
インナーライナー用ゴム組成物は、ゴム成分100質量部に、無機フィラーをAIL質量部配合することができる。インナーライナー用ゴム組成物における無機フィラーの配合量(AIL質量部)は、タイゴム用ゴム組成物における無機フィラーの配合量(Atie質量部)との比で決めることができる。インナーライナー用ゴム組成物の無機フィラーの配合量(AIL質量部)およびタイゴム用ゴム組成物の無機フィラーの配合量(Atie質量部)の比(AIL/Atie)は、好ましくは2/3以下、より好ましくは1/5〜1/3である。無機フィラーの配合量の比(AIL/Atie)を2/3以下にすることにより、タイゴム用ゴム組成物およびインナーライナー用ゴム組成物の100%変形引張り応力の差(Mtie−MIL)を容易に適正化することができる。またインナーライナー用ゴム組成物が含有する無機フィラーは、クレー、タルク、炭酸カルシウム、酸化マグネシウム、マイカ、瀝青炭等から適宜、選ぶことができる。インナーライナー用ゴム組成物が含有する無機フィラーは、タイゴム用ゴム組成物が含有する無機フィラーと、同じ種類でも、異なる種類でもよい。 The rubber composition for an inner liner, the 100 parts by mass of the rubber component, an inorganic filler can be compounded A IL parts by weight. Amount of the inorganic filler in the rubber composition for an inner liner (A IL parts by mass) can be determined by the ratio of the amount of the inorganic filler in the tie rubber for the rubber composition (A tie parts by mass). The ratio (A IL / A tie ) of the amount of the inorganic filler in the rubber composition for the inner liner (A IL part by mass) and the amount of the inorganic filler in the rubber composition for the tie rubber (A tie part by mass) is preferably 2 / 3 or less, more preferably 1/5 to 1/3. Difference in 100% deformation tensile stress between the rubber composition for tie rubber and the rubber composition for inner liner (M tie -M IL ) by setting the ratio (A IL / A tie ) of the inorganic filler to 2/3 or less. ) Can be easily optimized. The inorganic filler contained in the inner liner rubber composition can be appropriately selected from clay, talc, calcium carbonate, magnesium oxide, mica, bituminous coal, and the like. The inorganic filler contained in the inner liner rubber composition may be the same or different from the inorganic filler contained in the tie rubber rubber composition.
インナーライナー用ゴム組成物のゴム成分は、ブチルゴム、臭素化ブチルゴム、塩素化ブチルゴムなどからなるブチル系ゴムを主成分にする。すなわち、ゴム成分100質量%中、ブチル系ゴムが50質量%以上、好ましくは70〜100質量%含有するとよい。インナーライナー用ゴム組成物は、ブチル系ゴム以外の他のゴム成分を含有することができる。他のゴム成分としては、例えば天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、等が例示される。 The rubber component of the rubber composition for the inner liner is mainly composed of butyl rubber composed of butyl rubber, brominated butyl rubber, chlorinated butyl rubber and the like. That is, in 100% by mass of the rubber component, the butyl rubber is contained in an amount of 50% by mass or more, preferably 70 to 100% by mass. The rubber composition for the inner liner can contain other rubber components other than the butyl rubber. Examples of other rubber components include natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, and the like.
本発明において、タイゴム用ゴム組成物およびインナーライナー用ゴム組成物は、上述した配合剤の他、通常のタイゴム用ゴム組成物およびインナーライナー用ゴム組成物に配合される配合剤を含有することができる。すなわち、加硫剤/架橋剤、加硫促進助剤、老化防止剤、素練促進剤、各種オイル、可塑剤などのゴム組成物に一般的に使用される各種添加剤を、本発明の構成を阻害しない範囲で配合することができ、かかる添加剤は一般的な方法で混練してタイゴム用ゴム組成物およびインナーライナー用ゴム組成物とし、加硫又は架橋するのに使用することができる。 In the present invention, the rubber composition for tie rubber and the rubber composition for inner liner may contain a compounding agent blended in the usual rubber composition for tie rubber and rubber composition for inner liner, in addition to the above compounding agent. it can. That is, various additives generally used in rubber compositions such as vulcanizing agents / crosslinking agents, vulcanization accelerating aids, anti-aging agents, peptizers, various oils, plasticizers, etc. These additives can be blended by a general method to obtain a rubber composition for a tie rubber and a rubber composition for an inner liner, and can be used for vulcanization or crosslinking.
以下、実施例によって本発明をさらに説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further, the scope of the present invention is not limited to these Examples.
表2に示す共通配合を有し、表1に示す配合からなる10種類のタイゴム用ゴム組成物(標準例、実施例1〜5、比較例1〜4)を調製する。タイゴム用ゴム組成物の配合において、硫黄および加硫促進剤を除く成分を秤量し、1.7L密閉式バンバリーミキサーで約5分間混練し、得られた混合物を放出し室温冷却した。冷却された混合物を、ロールに供し、硫黄および加硫促進剤を添加、混合し、タイゴム用ゴム組成物を調製した。なお、タイゴム用ゴム組成物における無機フィラーの配合量(Atie)に対する、下記のインナーライナー用ゴム組成物における無機フィラーの配合量(AIL)の比(AIL/Atie)を算出し、表1に記載した。 Ten types of rubber compositions for tie rubber (standard examples, Examples 1 to 5 and Comparative Examples 1 to 4) having the common composition shown in Table 2 and comprising the composition shown in Table 1 are prepared. In the blending of the rubber composition for tie rubber, the components excluding sulfur and the vulcanization accelerator were weighed and kneaded with a 1.7 L closed Banbury mixer for about 5 minutes, and the resulting mixture was discharged and cooled at room temperature. The cooled mixture was subjected to a roll, and sulfur and a vulcanization accelerator were added and mixed to prepare a rubber composition for tie rubber. In addition, the ratio (A IL / A tie ) of the blending amount (A IL ) of the inorganic filler in the following inner liner rubber composition to the blending amount (A tie ) of the inorganic filler in the rubber composition for tie rubber was calculated, It described in Table 1.
表3に示す配合からなる3種類のインナーライナー用ゴム組成物(組成物A,B,C)を、硫黄および加硫促進剤を除く成分を秤量し、1.7L密閉式バンバリーミキサーで約5分間混練し、得られた混合物を放出し室温冷却した。冷却された混合物を、ロールに供し、硫黄および加硫促進剤を添加、混合し、インナーライナー用ゴム組成物を調製した。 Three types of rubber compositions for inner liners (compositions A, B, and C) having the composition shown in Table 3 were weighed with components excluding sulfur and a vulcanization accelerator, and about 5 with a 1.7 L hermetic Banbury mixer. After kneading for minutes, the resulting mixture was discharged and cooled to room temperature. The cooled mixture was applied to a roll, and sulfur and a vulcanization accelerator were added and mixed to prepare a rubber composition for an inner liner.
得られたタイゴム用ゴム組成物およびインナーライナー用ゴム組成物を用いて、所定形状の金型を使用して160℃、30分間加硫成形し試験用サンプルを作成し、下記に示す方法により100%引張り応力を測定した。またタイゴム用ゴム組成物の試験用サンプルを用いて、下記に示す方法により空気透過性を測定した。 Using the obtained rubber composition for tie rubber and the rubber composition for inner liner, a test sample was prepared by vulcanization molding at 160 ° C. for 30 minutes using a mold having a predetermined shape. % Tensile stress was measured. Further, air permeability was measured by the following method using a test sample of a rubber composition for tie rubber.
100%引張り応力
得られた試験用サンプルから、JIS K6251に準拠してJIS3号ダンベル型試 験片を切り出した。JIS K6251に準拠し温度20℃、引張速度500mm/分の条件で引張試験を行い、100%伸長時の引張り応力を測定した。得られた結果を、表1および3に示した。またタイゴム用ゴム組成物の100%引張り応力(Mtie)およびインナーライナー用ゴム組成物の100%引張り応力(MIL)の差(Mtie−MIL)を算出し、表1に記載した。
100% tensile stress A JIS No. 3 dumbbell specimen was cut out from the obtained test sample in accordance with JIS K6251. A tensile test was performed in accordance with JIS K6251 under conditions of a temperature of 20 ° C. and a tensile speed of 500 mm / min, and the tensile stress at 100% elongation was measured. The obtained results are shown in Tables 1 and 3. Also to calculate the difference between 100% tensile stress and 100% tensile stress (M tie) and the inner liner rubber composition for the tie rubber for the rubber composition (M IL) (M tie -M IL), as described in Table 1.
空気透過性
得られたタイゴム用ゴム組成物の試験用サンプルの空気透過性を、JIS K7126「プラスチックフィルム及びシート−ガス透過度試験方法−第1部:差圧法」に準拠して、空気透過係数を測定した。得られた空気透過係数の逆数を算出し、標準例を100とする指数にし、表1の「タイゴムの空気透過性」の欄に示した。この指数が大きいほど空気透過性が小さくバリア性が優れることを意味する。
Air permeability The air permeability of the test sample of the obtained rubber composition for tie rubber is determined according to JIS K7126 “Plastic film and sheet-Gas permeability test method-Part 1: Differential pressure method”. Was measured. The reciprocal of the air permeability coefficient obtained was calculated, and the index was set to 100 as a standard example. The result was shown in the column of “Air permeability of tie rubber” in Table 1. The larger the index, the smaller the air permeability and the better the barrier property.
表1に示すように、10種類のタイゴム用ゴム組成物(標準例、実施例1〜5、比較例1〜4)と、3種類のインナーライナー用ゴム組成物(組成物A,B,C)とを組み合わせて、タイヤサイズ(195/65R15)の空気入りタイヤを加硫成形した。ここで1000本ずつの空気入りタイヤを製作するとき、グリーン成形から加硫成形までの良品率を求め、標準例を100とする指数にし、表1の「タイヤ成形時の良品率」に記載した。この指数が高いほど良品率が高く優れることを意味する。
また得られた空気入りタイヤを使用し、下記に示す方法によりタイヤ耐久性試験、およびタイヤ空気漏れ性能を測定した。
As shown in Table 1, ten types of rubber compositions for tie rubber (standard examples, Examples 1 to 5, Comparative Examples 1 to 4) and three types of rubber compositions for inner liners (Compositions A, B, and C) ) And a pneumatic tire having a tire size (195 / 65R15) was vulcanized. Here, when producing 1000 pneumatic tires each, the non-defective product rate from green molding to vulcanization molding was obtained, and the index was set to 100 as a standard example. . The higher this index, the higher the yield rate and the better.
Further, the obtained pneumatic tire was used, and the tire durability test and the tire air leakage performance were measured by the following methods.
タイヤ耐久性試験
得られた空気入りタイヤをJATMA標準リムに組み付けドラム表面が平滑な、鋼製の直径1707mmのドラム試験機を用い、周辺温度を38±3℃に制御し、内圧200kPa、荷重4.7kN、速度80km/hにてタイヤ故障が発生するまでの走行距離を求めた。得られた結果は、標準例を100とする指数にし、表1の「タイヤ耐久性」の欄に記載した。この指数が大きいほどタイヤ耐久性が優れることを意味する。
Tire durability test The obtained pneumatic tire was assembled on a JATMA standard rim, and the drum surface with a smooth drum surface and a steel diameter of 1707 mm was used. The ambient temperature was controlled at 38 ± 3 ° C., the internal pressure was 200 kPa, the load was 4 The distance traveled until a tire failure occurred at 0.7 km and a speed of 80 km / h was obtained. The obtained results were indexed with a standard example of 100 and listed in the “Tire durability” column of Table 1. A larger index means better tire durability.
タイヤ空気漏れ性能
空気入りタイヤをJATMA標準リムに組み付け、空気圧230kPaに加圧した。各空気入りタイヤを、常温で1か月間、放置した後、空気圧を測定し、空気漏れ量(空気圧の漏れ率)を算出した。得られた結果は、それぞれの逆数を算出し、標準例を100とする指数にし、表1の「タイヤ空気漏れ性能」の欄に記載した。この指数が大きいほど空気漏れがすくなく、タイヤ空気漏れ性能が優れることを意味する。
Tire Air Leakage Performance A pneumatic tire was assembled on a JATMA standard rim and pressurized to an air pressure of 230 kPa. Each pneumatic tire was allowed to stand at room temperature for one month, and then the air pressure was measured to calculate the amount of air leakage (pneumatic leakage rate). The obtained results were calculated by calculating the reciprocal number of each, making an index with a standard example of 100, and listing in the column of “Tire air leakage performance” in Table 1. The larger this index, the less air leaks, and the better the tire air leak performance.
表1において使用した原材料の種類を下記に示す。
・NR:天然ゴム、TSR20、Tg:−65℃
・SBR:スチレンブタジエンゴム、日本ゼオン社製Nipol 1520、Tg:−60℃
・カーボンブラック:東海カーボン社製シーストV、窒素吸着比表面積:27m2/g
・クレー:山陽クレー社製カタルポY−K、アスペクト比Ar:0.85
・タルク:日本ミストロン社製ミストロンベーパー、アスペクト比Ar:0.65
The types of raw materials used in Table 1 are shown below.
NR: natural rubber, TSR20, Tg: -65 ° C
SBR: styrene butadiene rubber, Nipol 1520 manufactured by Zeon Corporation, Tg: -60 ° C
Carbon black: Seast V manufactured by Tokai Carbon Co., nitrogen adsorption specific surface area: 27 m 2 / g
Clay: Sanyo Clay Catalpo YK, aspect ratio Ar: 0.85
-Talc: Mistrone Vapor made by Nippon Mytron, Aspect Ratio Ar: 0.65
表2において使用した原材料の種類を下記に示す。
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・ステアリン酸:日油社製ビーズステアリン酸
・樹脂:日立化成工業社製ヒタノール1502Z
・硫黄:四国化成工業社製ミュークロンOT−20
・加硫促進剤:大内新興化学工業社製ノクセラーCZ
The types of raw materials used in Table 2 are shown below.
・ Zinc oxide: 3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd. ・ Stearic acid: Bead stearic acid manufactured by NOF Corporation ・ Resin: Hitachil 1502Z manufactured by Hitachi Chemical
-Sulfur: Shikoku Kasei Kogyo Co., Ltd. Mukuron OT-20
・ Vulcanization accelerator: Noxeller CZ manufactured by Ouchi Shinsei Chemical Co., Ltd.
表3において使用した原材料の種類を下記に示す。
・IIR:ブチルゴム、エクソンモービル社製EXXON BROMOBUTYL 2255
・NR:天然ゴム、TSR20、Tg:−65℃
・カーボンブラック:東海カーボン社製シーストV、窒素吸着比表面積:27m2/g
・クレー:山陽クレー社製カタルポY−K、アスペクト比Ar:0.85
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・ステアリン酸:日油社製ビーズステアリン酸
・硫黄:四国化成工業社製ミュークロンOT−20
・加硫促進剤:大内新興化学工業社製ノクセラーCZ
The types of raw materials used in Table 3 are shown below.
IIR: butyl rubber, EXXON BROMOBUTYL 2255 manufactured by ExxonMobil
NR: natural rubber, TSR20, Tg: -65 ° C
Carbon black: Seast V manufactured by Tokai Carbon Co., nitrogen adsorption specific surface area: 27 m 2 / g
Clay: Sanyo Clay Catalpo YK, aspect ratio Ar: 0.85
・ Zinc oxide: 3 types of zinc oxide manufactured by Shodo Chemical Co., Ltd. ・ Stearic acid: Bead stearic acid manufactured by NOF Corporation ・ Sulfur: Mucron OT-20 manufactured by Shikoku Kasei Kogyo Co., Ltd.
・ Vulcanization accelerator: Noxeller CZ manufactured by Ouchi Shinsei Chemical Co., Ltd.
表1から明らかなように実施例1〜6の空気入りタイヤは、成形加工性、低空気透過性およびタイヤ耐久性が優れる。 As is clear from Table 1, the pneumatic tires of Examples 1 to 6 are excellent in moldability, low air permeability, and tire durability.
比較例1の空気入りタイヤは、タイゴム用ゴム組成物が無機フィラーを含有せず、インナーライナー用ゴム組成物に無機フィラーを含むため、タイヤ成形時の良品率が悪化する。
比較例2の空気入りタイヤは、タイゴム用ゴム組成物が無機フィラーを含有せず、100%変形引張り応力の差(Mtie−MIL)が2.0MPaを超えるので、タイヤ成形時の良品率およびタイヤ耐久性が悪化する。
比較例3の空気入りタイヤは、タイゴム用ゴム組成物中、無機フィラーが50質量部を超え、100%変形引張り応力の差(Mtie−MIL)が2.0MPaを超えるので、タイヤ成形時の良品率およびタイヤ耐久性が悪化する。
比較例4の空気入りタイヤは、タイゴム用ゴム組成物中、100%変形引張り応力の差(Mtie−MIL)が0MPaより小さいので、タイヤ成形時の良品率が著しく悪化する。
In the pneumatic tire of Comparative Example 1, since the rubber composition for tie rubber does not contain an inorganic filler and the rubber composition for an inner liner contains an inorganic filler, the yield rate at the time of tire molding is deteriorated.
In the pneumatic tire of Comparative Example 2, the rubber composition for tie rubber does not contain an inorganic filler, and the difference in 100% deformation tensile stress (M tie -M IL ) exceeds 2.0 MPa. And tire durability deteriorates.
In the pneumatic tire of Comparative Example 3, the inorganic filler exceeds 50 parts by mass in the rubber composition for tie rubber, and the difference of 100% deformation tensile stress (M tie -M IL ) exceeds 2.0 MPa. The yield rate of tires and tire durability deteriorate.
In the pneumatic tire of Comparative Example 4, the difference in 100% deformation tensile stress (M tie -M IL ) in the rubber composition for tie rubber is smaller than 0 MPa, so that the yield rate at the time of tire molding is significantly deteriorated.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017180529A JP6988303B2 (en) | 2017-09-20 | 2017-09-20 | Pneumatic tires |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017180529A JP6988303B2 (en) | 2017-09-20 | 2017-09-20 | Pneumatic tires |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019055655A true JP2019055655A (en) | 2019-04-11 |
JP6988303B2 JP6988303B2 (en) | 2022-01-05 |
Family
ID=66106933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017180529A Active JP6988303B2 (en) | 2017-09-20 | 2017-09-20 | Pneumatic tires |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6988303B2 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59120501A (en) * | 1982-12-28 | 1984-07-12 | Bridgestone Corp | Pneumatic tire |
US5755899A (en) * | 1995-09-13 | 1998-05-26 | The Goodyear Tire & Rubber Company | Innerliner for pnuematic tires |
JP2000168318A (en) * | 1998-12-10 | 2000-06-20 | Sumitomo Rubber Ind Ltd | Tubeless tire |
JP2006069297A (en) * | 2004-08-31 | 2006-03-16 | Sumitomo Rubber Ind Ltd | Pneumatic tire, and manufacturing method thereof |
JP2008528739A (en) * | 2005-01-28 | 2008-07-31 | コンチネンタル アクチェンゲゼルシャフト | Rubber composition for inner liner of vehicle tire |
JP2013028784A (en) * | 2011-06-21 | 2013-02-07 | Sumitomo Rubber Ind Ltd | Rubber composition for tire insulation and tire using the same |
JP2013067707A (en) * | 2011-09-21 | 2013-04-18 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JP2014125179A (en) * | 2012-12-27 | 2014-07-07 | Toyo Tire & Rubber Co Ltd | Pneumatic tire |
JP2015214620A (en) * | 2014-05-08 | 2015-12-03 | 株式会社ブリヂストン | Rubber composition, inner liner, sealant and pneumatic tire |
WO2016027382A1 (en) * | 2014-08-22 | 2016-02-25 | 横浜ゴム株式会社 | Pneumatic tire for heavy load |
JP2016078520A (en) * | 2014-10-10 | 2016-05-16 | 横浜ゴム株式会社 | Pneumatic tire |
US20170197464A1 (en) * | 2016-01-11 | 2017-07-13 | The Goodyear Tire & Rubber Company | Tire with non-spliced multilayered film innerliner |
-
2017
- 2017-09-20 JP JP2017180529A patent/JP6988303B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59120501A (en) * | 1982-12-28 | 1984-07-12 | Bridgestone Corp | Pneumatic tire |
US5755899A (en) * | 1995-09-13 | 1998-05-26 | The Goodyear Tire & Rubber Company | Innerliner for pnuematic tires |
JP2000168318A (en) * | 1998-12-10 | 2000-06-20 | Sumitomo Rubber Ind Ltd | Tubeless tire |
JP2006069297A (en) * | 2004-08-31 | 2006-03-16 | Sumitomo Rubber Ind Ltd | Pneumatic tire, and manufacturing method thereof |
JP2008528739A (en) * | 2005-01-28 | 2008-07-31 | コンチネンタル アクチェンゲゼルシャフト | Rubber composition for inner liner of vehicle tire |
JP2013028784A (en) * | 2011-06-21 | 2013-02-07 | Sumitomo Rubber Ind Ltd | Rubber composition for tire insulation and tire using the same |
JP2013067707A (en) * | 2011-09-21 | 2013-04-18 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JP2014125179A (en) * | 2012-12-27 | 2014-07-07 | Toyo Tire & Rubber Co Ltd | Pneumatic tire |
JP2015214620A (en) * | 2014-05-08 | 2015-12-03 | 株式会社ブリヂストン | Rubber composition, inner liner, sealant and pneumatic tire |
WO2016027382A1 (en) * | 2014-08-22 | 2016-02-25 | 横浜ゴム株式会社 | Pneumatic tire for heavy load |
JP2016078520A (en) * | 2014-10-10 | 2016-05-16 | 横浜ゴム株式会社 | Pneumatic tire |
US20170197464A1 (en) * | 2016-01-11 | 2017-07-13 | The Goodyear Tire & Rubber Company | Tire with non-spliced multilayered film innerliner |
Also Published As
Publication number | Publication date |
---|---|
JP6988303B2 (en) | 2022-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5044516B2 (en) | Rubber composition for inner liner and tire having inner liner comprising the same | |
JP5300679B2 (en) | Polymer composition for inner liner and pneumatic tire using the same | |
US20060142463A1 (en) | Rubber composition for inner liner and tire | |
US9109102B2 (en) | Rubber composition for use in tire side walls and pneumatic tire using the same | |
JPWO2016027382A1 (en) | Heavy duty pneumatic tire | |
JP2007302715A (en) | Rubber composition and pneumatic tire | |
JP2011246565A (en) | Rubber composition for tire, and pneumatic tire using the same | |
JP2009270003A (en) | Rubber composition for side-reinforcing liner | |
US20180057675A1 (en) | Rubber Composition, and Pneumatic Tire Using Same | |
JP2011016924A (en) | Rubber composition for tire and pneumatic tire using the same | |
JP2010144067A (en) | Rubber composition and pneumatic tire using the same | |
JP2011116815A (en) | Rubber composition for tire and pneumatic tire obtained using the same | |
JP6988303B2 (en) | Pneumatic tires | |
JP2014205402A (en) | Heavy load pneumatic tire | |
JP2011157495A (en) | Rubber composition for tire rim cushion and pneumatic tire using the same | |
JP5443554B2 (en) | Pneumatic tire with inner liner | |
JP2009119907A (en) | Rubber composition and pneumatic tire | |
JP5772226B2 (en) | Rubber composition for tire bead insulation and pneumatic tire using the same | |
JP2009269963A (en) | Rubber composition for rim cushion | |
JP2010144069A (en) | Rubber composition for tire and pneumatic tire using the same | |
JP5252268B2 (en) | Pneumatic tire | |
US10723176B2 (en) | Rubber composition for sidewalls, and pneumatic tire using same | |
JP2020132078A (en) | Rubber composition for tire inner liner or tire tube, tire inner liner, tire tube and pneumatic tire | |
JP2009132835A (en) | Rubber composition for tire inner liner | |
WO2022113722A1 (en) | Rubber composition for tires |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210622 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6988303 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |