JP6987356B2 - Manufacturing method of support glass substrate - Google Patents

Manufacturing method of support glass substrate Download PDF

Info

Publication number
JP6987356B2
JP6987356B2 JP2017556000A JP2017556000A JP6987356B2 JP 6987356 B2 JP6987356 B2 JP 6987356B2 JP 2017556000 A JP2017556000 A JP 2017556000A JP 2017556000 A JP2017556000 A JP 2017556000A JP 6987356 B2 JP6987356 B2 JP 6987356B2
Authority
JP
Japan
Prior art keywords
glass substrate
support glass
heat treatment
manufacturing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017556000A
Other languages
Japanese (ja)
Other versions
JPWO2017104513A1 (en
Inventor
良太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Publication of JPWO2017104513A1 publication Critical patent/JPWO2017104513A1/en
Priority to JP2021188397A priority Critical patent/JP7268718B2/en
Application granted granted Critical
Publication of JP6987356B2 publication Critical patent/JP6987356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/24Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass
    • B24B7/242Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass for plate glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

本発明は、支持ガラス基板の製造方法に関し、具体的には、半導体パッケージの製造工程で加工基板を支持するための支持ガラス基板の製造方法に関する。 The present invention relates to a method for manufacturing a support glass substrate, and more specifically, to a method for manufacturing a support glass substrate for supporting a processed substrate in a semiconductor package manufacturing process.

携帯電話、ノート型パーソナルコンピュータ、PDA(Personal Data Assistance)等の携帯型電子機器には、小型化及び軽量化が要求されている。これに伴い、これらの電子機器に用いられる半導体チップの実装スペースも厳しく制限されており、半導体チップの高密度な実装が課題になっている。そこで、近年では、三次元実装技術、すなわち半導体チップ同士を積層し、各半導体チップ間を配線接続することにより、半導体パッケージの高密度実装を図っている。 Portable electronic devices such as mobile phones, notebook personal computers, and PDAs (Personal Data Assistance) are required to be smaller and lighter. Along with this, the mounting space for semiconductor chips used in these electronic devices is also severely limited, and high-density mounting of semiconductor chips has become an issue. Therefore, in recent years, a three-dimensional mounting technology, that is, a high-density mounting of a semiconductor package has been aimed at by stacking semiconductor chips and connecting each semiconductor chip by wiring.

また、従来のウェハレベルパッケージ(WLP)は、バンプをウェハの状態で形成した後、ダイシングで個片化することにより作製されている。しかし、従来のWLPは、ピン数を増加させ難いことに加えて、半導体チップの裏面が露出した状態で実装されるため、半導体チップの欠け等が発生し易いという問題があった。 Further, the conventional wafer level package (WLP) is manufactured by forming bumps in the state of a wafer and then individualizing them by dicing. However, the conventional WLP has a problem that it is difficult to increase the number of pins and the semiconductor chip is easily chipped because the back surface of the semiconductor chip is exposed.

そこで、新たなWLPとして、fan out型のWLPが提案されている。fan out型のWLPは、ピン数を増加させることが可能であり、また半導体チップの端部を保護することにより、半導体チップの欠け等を防止することができる。 Therefore, as a new WLP, a fan-out type WLP has been proposed. The fan-out type WLP can increase the number of pins, and by protecting the end portion of the semiconductor chip, it is possible to prevent the semiconductor chip from being chipped or the like.

fan out型のWLPでは、複数の半導体チップを樹脂の封止材でモールドして、加工基板を形成した後に、加工基板の一方の表面に配線する工程、半田バンプを形成する工程等を有する。 The fan-out type WLP has a step of molding a plurality of semiconductor chips with a resin encapsulant to form a processed substrate, and then wiring to one surface of the processed substrate, a step of forming solder bumps, and the like.

これらの工程は、約200℃の熱処理を伴うため、封止材が変形して、加工基板が寸法変化する虞がある。加工基板が寸法変化すると、加工基板の一方の表面に対して、高密度に配線することが困難になり、また半田バンプを正確に形成することも困難になる。 Since these steps involve a heat treatment at about 200 ° C., the encapsulant may be deformed and the size of the processed substrate may change. When the dimensions of the processed substrate change, it becomes difficult to wire the processed substrate at a high density to one surface of the processed substrate, and it becomes difficult to accurately form solder bumps.

このような事情から、加工基板の寸法変化を抑制するために、加工基板を支持するためにガラス基板を用いることが検討されている(特許文献1参照)。 Under these circumstances, it has been studied to use a glass substrate to support the processed substrate in order to suppress the dimensional change of the processed substrate (see Patent Document 1).

ガラス基板は、表面を平滑化し易く、且つ剛性を有する。よって、支持基板としてガラス基板を用いると、加工基板を強固、且つ正確に支持することが可能になる。またガラス基板は、紫外光、赤外光等の光を透過し易い。よって、支持基板としてガラス基板を用いると、紫外線硬化型接着剤等により接着層等を設けると、加工基板とガラス基板を容易に固定することができる。更に、赤外線を吸収する剥離層等を設けると、加工基板とガラス基板を容易に分離することもできる。別の方式として、紫外線硬化型テープ等により接着層等を設けると、加工基板とガラス基板を容易に固定、分離することができる。 The glass substrate is easy to smooth the surface and has rigidity. Therefore, if a glass substrate is used as the support substrate, the processed substrate can be firmly and accurately supported. Further, the glass substrate easily transmits light such as ultraviolet light and infrared light. Therefore, when a glass substrate is used as the support substrate, the processed substrate and the glass substrate can be easily fixed by providing an adhesive layer or the like with an ultraviolet curable adhesive or the like. Further, by providing a release layer or the like that absorbs infrared rays, the processed substrate and the glass substrate can be easily separated. As another method, if an adhesive layer or the like is provided with an ultraviolet curable tape or the like, the processed substrate and the glass substrate can be easily fixed and separated.

特開2015−78113号公報Japanese Unexamined Patent Publication No. 2015-78113

ところで、加工基板とガラス基板の熱膨張係数が不整合であると、加工処理時に加工基板の寸法変化(特に、反り変形)が生じ易くなる。結果として、加工基板の一方の表面に対して、高密度に配線することが困難になり、また半田バンプを正確に形成することも困難になる。よって、加工基板とガラス基板の熱膨張係数を厳密に整合させることが重要になる。 By the way, if the coefficients of thermal expansion of the processed substrate and the glass substrate are inconsistent, dimensional changes (particularly, warpage deformation) of the processed substrate are likely to occur during the processing. As a result, it becomes difficult to wire at a high density to one surface of the processed circuit board, and it becomes difficult to accurately form solder bumps. Therefore, it is important to strictly match the coefficients of thermal expansion of the processed substrate and the glass substrate.

従来、ガラス基板のガラス組成を調整することにより、ガラス基板の熱膨張係数を加工基板の熱膨張係数に整合させていた。 Conventionally, the coefficient of thermal expansion of a glass substrate is matched with the coefficient of thermal expansion of a processed substrate by adjusting the glass composition of the glass substrate.

しかし、ガラス基板のガラス組成を調整しても、ガラス基板の溶融条件や成形条件の変動により、ガラス基板の熱膨張係数が目標値からずれてしまうことがあった。この場合、ガラス基板を廃棄するか、或いはガラス基板を再溶融して、ガラス基板の熱膨張係数を変動させることになり、結果として、ガラス基板の製造コストが高騰してしまう。 However, even if the glass composition of the glass substrate is adjusted, the coefficient of thermal expansion of the glass substrate may deviate from the target value due to changes in the melting conditions and molding conditions of the glass substrate. In this case, the glass substrate is discarded or the glass substrate is remelted to change the coefficient of thermal expansion of the glass substrate, and as a result, the manufacturing cost of the glass substrate rises.

本発明は、上記事情に鑑みなされたものであり、その技術的課題は、簡便な手法により、成形後の支持ガラス基板の熱膨張係数を目標値に再調整し得る方法を創案することである。 The present invention has been made in view of the above circumstances, and a technical problem thereof is to devise a method capable of readjusting the coefficient of thermal expansion of the supported glass substrate after molding to a target value by a simple method. ..

本発明者は、種々の実験を繰り返した結果、成形後のガラス基板に対して熱処理を行うことにより、上記技術的課題を解決し得ることを見出し、本発明として、提案するものである。すなわち、本発明の支持ガラス基板の製造方法は、加工基板を支持するための支持ガラス基板の製造方法において、支持ガラス基板を成形する成形工程と、成形後の支持ガラス基板を熱処理して、支持ガラス基板の熱膨張係数を変動させる熱処理工程と、を備えることを特徴とする。 As a result of repeating various experiments, the present inventor has found that the above technical problem can be solved by performing a heat treatment on a glass substrate after molding, and proposes it as the present invention. That is, the method for manufacturing a support glass substrate of the present invention is a method for manufacturing a support glass substrate for supporting a processed substrate, in which a molding step for molding the support glass substrate and a heat treatment for the support glass substrate after molding are performed to support the support glass substrate. It is characterized by comprising a heat treatment step of varying the thermal expansion coefficient of the glass substrate.

本発明の支持ガラス基板の製造方法では、支持ガラス基板の熱膨張係数が目標理からずれていても、熱処理により支持ガラス基板の熱膨張係数を目標値に変動させることが可能である。これにより、支持ガラス基板の廃棄や再溶融が不要になり、支持ガラス基板の製造コストを低廉化することができる。 In the method for manufacturing a support glass substrate of the present invention, even if the coefficient of thermal expansion of the support glass substrate deviates from the target theory, the coefficient of thermal expansion of the support glass substrate can be changed to the target value by heat treatment. This eliminates the need for disposal and remelting of the support glass substrate, and can reduce the manufacturing cost of the support glass substrate.

第二に、本発明の支持ガラス基板の製造方法は、成形工程後の支持ガラス基板を熱処理して、支持ガラス基板の熱膨張係数を低下させることが好ましい。 Secondly, in the method for manufacturing a support glass substrate of the present invention, it is preferable to heat-treat the support glass substrate after the molding step to reduce the coefficient of thermal expansion of the support glass substrate.

第三に、本発明の支持ガラス基板の製造方法は、熱処理の最高温度を(支持ガラス基板の歪点−100)℃よりも高くすることが好ましい。 Thirdly, in the method for manufacturing a support glass substrate of the present invention, it is preferable that the maximum temperature of the heat treatment is higher than (strain point of the support glass substrate −100) ° C.

第四に、本発明の支持ガラス基板の製造方法は、熱処理の最高温度に到達した後、熱処理温度を5℃/分以下の速度で降温することが好ましい。 Fourth, in the method for manufacturing a supporting glass substrate of the present invention, it is preferable to lower the heat treatment temperature at a rate of 5 ° C./min or less after reaching the maximum temperature of the heat treatment.

第五に、本発明の支持ガラス基板の製造方法は、熱処理により支持ガラス基板の反り量を40μm以下に低減することが好ましい。ここで、「反り量」は、支持結晶化ガラス基板全体における最高位点と最小二乗焦点面との間の最大距離の絶対値と、最低位点と最小二乗焦点面との絶対値との合計を指し、例えばコベルコ科研社製のSBW−331ML/dにより測定可能である。 Fifth, in the method for manufacturing a supporting glass substrate of the present invention, it is preferable to reduce the amount of warpage of the supporting glass substrate to 40 μm or less by heat treatment. Here, the "warp amount" is the sum of the absolute value of the maximum distance between the highest point and the least squares focal plane in the entire supported crystallized glass substrate and the absolute value of the lowest point and the least squares focal plane. For example, it can be measured by SBW-331ML / d manufactured by Kobelco Kaken Co., Ltd.

第六に、本発明の支持ガラス基板の製造方法は、支持ガラス基板の寸法よりも大きい熱処理用セッターを用意し、その熱処理用セッター上に、成形後の支持ガラス基板を載置した後、熱処理工程に供することが好ましい。 Sixth, in the method for manufacturing a support glass substrate of the present invention, a heat treatment setter larger than the size of the support glass substrate is prepared, the support glass substrate after molding is placed on the heat treatment setter, and then heat treatment is performed. It is preferable to use it in the process.

第七に、本発明の支持ガラス基板の製造方法は、板厚が400μm以上、且つ2mm未満になるように、支持ガラス基板を成形することが好ましい。 Seventh, in the method for manufacturing a support glass substrate of the present invention, it is preferable to mold the support glass substrate so that the plate thickness is 400 μm or more and less than 2 mm.

第八に、本発明の支持ガラス基板の製造方法は、オーバーフローダウンドロー法により支持ガラス基板を成形することが好ましい。 Eighth, in the method for manufacturing a supporting glass substrate of the present invention, it is preferable to form the supporting glass substrate by an overflow downdraw method.

第九に、本発明の支持ガラス基板の製造方法は、熱処理工程後に、支持ガラス基板の表面を研磨して、全体板厚偏差を2.0μm未満に低減する研磨工程を備えることが好ましい。ここで、「全体板厚偏差」は、支持ガラス基板全体の最大板厚と最小板厚の差であり、例えばコベルコ科研社製のSBW−331ML/dにより測定可能である。 Ninth, the method for manufacturing a support glass substrate of the present invention preferably includes a polishing step of polishing the surface of the support glass substrate after the heat treatment step to reduce the overall plate thickness deviation to less than 2.0 μm. Here, the "overall plate thickness deviation" is the difference between the maximum plate thickness and the minimum plate thickness of the entire supporting glass substrate, and can be measured by, for example, SBW-331ML / d manufactured by Kobelco Kaken Co., Ltd.

第十に、本発明の支持ガラス基板の製造方法は、熱処理工程後に、支持ガラス基板の周辺部を切断除去する切断除去工程を備えることが好ましい。 Tenth, it is preferable that the method for manufacturing a supporting glass substrate of the present invention includes a cutting and removing step of cutting and removing the peripheral portion of the supporting glass substrate after the heat treatment step.

第十一に、本発明の半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層体を作製する積層工程と、積層体の加工基板に対して、加工処理を行う加工処理工程と、を備えると共に、支持ガラス基板が、上記の支持ガラス基板の製造方法により作製されていることが好ましい。 Eleventh, the method for manufacturing a semiconductor package of the present invention relates to a laminating step of producing a laminated body including at least a processed substrate and a supporting glass substrate for supporting the processed substrate, and a processed substrate of the laminated body. It is preferable that the support glass substrate is manufactured by the above-mentioned method for manufacturing a support glass substrate, and is provided with a processing process for performing the processing process.

第十二に、本発明の半導体パッケージの製造方法は、加工基板が、少なくとも封止材でモールドされた半導体チップを備えることが好ましい。 Twelfth, in the method for manufacturing a semiconductor package of the present invention, it is preferable that the processed substrate includes at least a semiconductor chip molded with a sealing material.

第十三に、本発明の半導体パッケージの製造方法は、加工処理が、加工基板の一方の表面に配線する処理を含むことが好ましい。 Thirteenth, in the method for manufacturing a semiconductor package of the present invention, it is preferable that the processing process includes a process of wiring to one surface of the processed substrate.

第十四に、本発明の半導体パッケージの製造方法は、加工処理が、加工基板の一方の表面に半田バンプを形成する処理を含むことが好ましい。 Fourteenth, in the method for manufacturing a semiconductor package of the present invention, it is preferable that the processing process includes a process of forming solder bumps on one surface of the processed substrate.

本発明に係る積層体の一例を示す概念斜視図である。It is a conceptual perspective view which shows an example of the laminated body which concerns on this invention. fan out型のWLPの製造工程を示す概念断面図である。It is a conceptual cross-sectional view which shows the manufacturing process of a fan out type WLP.

以下に、本発明の支持ガラス基板の製造方法を詳細に説明する。 Hereinafter, the method for manufacturing the supporting glass substrate of the present invention will be described in detail.

本発明の支持ガラス基板の製造方法では、まずガラス原料を調合、混合して、ガラスバッチを作製し、このガラスバッチをガラス溶融炉に投入した後、得られた溶融ガラスを清澄、攪拌した上で、成形装置に供給して、板状に成形し、支持ガラス基板を得ることが好ましい。 In the method for manufacturing a supporting glass substrate of the present invention, first, glass raw materials are mixed and mixed to prepare a glass batch, the glass batch is put into a glass melting furnace, and then the obtained molten glass is clarified and stirred. Therefore, it is preferable to supply the glass to a molding apparatus and mold it into a plate shape to obtain a support glass substrate.

ガラスバッチは、所望の熱膨張係数になるように調製することが好ましい。具体的には、加工基板内で半導体チップの割合が少なく、封止材の割合が多い場合は、高膨張のガラス組成になるようにガラスバッチを調製し、逆に、加工基板内で半導体チップの割合が多く、封止材の割合が少ない場合は、低膨張のガラス組成になるようにガラスバッチを調製することが好ましい。 The glass batch is preferably prepared to have a desired coefficient of thermal expansion. Specifically, when the proportion of semiconductor chips in the processed substrate is small and the proportion of encapsulant is large, a glass batch is prepared so as to have a highly expanding glass composition, and conversely, the semiconductor chips are prepared in the processed substrate. When the proportion of the glass is large and the proportion of the encapsulant is small, it is preferable to prepare the glass batch so as to have a glass composition having a low expansion.

30〜380℃の温度範囲における平均線熱膨張係数を0×10−7/℃以上、且つ50×10−7/℃未満に規制する場合、支持ガラス基板が、ガラス組成として、質量%で、SiO 55〜75%、Al 15〜30%、LiO 0.1〜6%、NaO+KO(NaOとKOの合量) 0〜8%、MgO+CaO+SrO+BaO(MgO、CaO、SrO及びBaOの合量) 0〜10%を含有するようにガラスバッチを調製することが好ましく、SiO 55〜75%、Al 10〜30%、LiO+NaO+KO(LiO、NaO及びKOの合量) 0〜0.3%、MgO+CaO+SrO+BaO 5〜20%を含有するようにガラスバッチを調製することも好ましく、SiO 55〜68%、Al 12〜25%、B 0〜15%、MgO+CaO+SrO+BaO 5〜30%を含有するようにガラスバッチを調製することも好ましい。30〜380℃の温度範囲における平均線熱膨張係数を50×10−7/℃以上、且つ70×10−7/℃未満に規制する場合、支持ガラス基板が、ガラス組成として、質量%で、SiO 55〜75%、Al 3〜15%、B 5〜20%、MgO 0〜5%、CaO 0〜10%、SrO 0〜5%、BaO 0〜5%、ZnO 0〜5%、NaO 5〜15%、KO 0〜10%を含有するようにガラスバッチを調製することが好ましく、SiO 64〜71%、Al 5〜10%、B 8〜15%、MgO 0〜5%、CaO 0〜6%、SrO 0〜3%、BaO 0〜3%、ZnO 0〜3%、NaO 5〜15%、KO 0〜5%を含有するようにガラスバッチを調製することが更に好ましい。30〜380℃の温度範囲における平均線熱膨張係数を70×10−7/℃以上、且つ85×10−7/℃以下に規制する場合、支持ガラス基板が、ガラス組成として、質量%で、SiO 60〜75%、Al 5〜15%、B 5〜20%、MgO 0〜5%、CaO 0〜10%、SrO 0〜5%、BaO 0〜5%、ZnO 0〜5%、NaO 7〜16%、KO 0〜8%を含有するようにガラスバッチを調製することが好ましく、SiO 60〜68%、Al 5〜15%、B 5〜20%、MgO 0〜5%、CaO 0〜10%、SrO 0〜3%、BaO 0〜3%、ZnO 0〜3%、NaO 8〜16%、KO 0〜3%を含有するようにガラスバッチを調製することが更に好ましい。30〜380℃の温度範囲における平均線熱膨張係数を85×10−7/℃超、且つ120×10−7/℃以下に規制する場合、支持ガラス基板が、ガラス組成として、質量%で、SiO 45〜70%(55〜70%)、Al 3〜25%(好ましくは3〜13%)、B 0〜8%(好ましくは2〜8%)、P 0〜20%、MgO 0〜5%、CaO 0〜10%、SrO 0〜5%、BaO 0〜5%、ZnO 0〜5%、NaO 10〜21%、KO 0〜5%を含有するようにガラスバッチを調製することが好ましい。30〜380℃の温度範囲における平均線熱膨張係数を120×10−7/℃超、且つ165×10−7/℃以下に規制する場合、支持ガラス基板が、ガラス組成として、質量%で、SiO 53〜65%、Al 3〜13%、B 0〜5%、MgO 0.1〜6%、CaO 0〜10%、SrO 0〜5%、BaO 0〜5%、ZnO 0〜5%、NaO+KO 20〜40%、NaO 12〜21%、KO 7〜21%を含有するようにガラスバッチを調製することが好ましい。このようにすれば、熱膨張係数を目標値に調整し易くなると共に、耐失透性が向上するため、全体板厚偏差が小さい支持ガラス基板を成形し易くなる。なお、「30〜380℃の温度範囲における平均線熱膨張係数」は、ディラトメーターで測定した値を指す。When the average coefficient of linear thermal expansion in the temperature range of 30 to 380 ° C is restricted to 0 × 10 -7 / ° C or higher and less than 50 × 10 -7 / ° C, the supporting glass substrate has a glass composition of% by mass. SiO 2 55-75%, Al 2 O 3 15-30%, Li 2 O 0.1-6%, Na 2 O + K 2 O ( total amount of Na 2 O and K 2 O) 0-8%, MgO + CaO + SrO + BaO ( It is preferable to prepare the glass batch so as to contain 0 to 10% (total amount of MgO, CaO, SrO and BaO), SiO 2 55 to 75%, Al 2 O 3 10 to 30%, Li 2 O + Na 2 O + K. It is also preferable to prepare a glass batch so as to contain 2 O ( total amount of Li 2 O, Na 2 O and K 2 O) 0 to 0.3%, MgO + CaO + SrO + BaO 5 to 20%, and SiO 2 55 to 68%. , Al 2 O 3 12~25%, B 2 O 3 0~15%, it is also preferable to prepare the glass batch to contain 5~30% MgO + CaO + SrO + BaO. When the average coefficient of linear thermal expansion in the temperature range of 30 to 380 ° C is restricted to 50 × 10 -7 / ° C or higher and less than 70 × 10 -7 / ° C, the supporting glass substrate has a glass composition of% by mass. SiO 2 55-75%, Al 2 O 3 3-15%, B 2 O 3 5-20%, MgO 0-5%, CaO 0-10%, SrO 0-5%, BaO 0-5%, ZnO 0~5%, Na 2 O 5~15% , preferably be prepared glass batch to contain K 2 O 0~10%, SiO 2 64~71%, Al 2 O 3 5~10%, B 2 O 3 8 to 15%, MgO 0 to 5%, CaO 0 to 6%, SrO 0 to 3%, BaO 0 to 3%, ZnO 0 to 3%, Na 2 O 5 to 15%, K 2 O It is more preferred to prepare the glass batch to contain 0-5%. When the average coefficient of linear thermal expansion in the temperature range of 30 to 380 ° C is restricted to 70 × 10 -7 / ° C or higher and 85 × 10 -7 / ° C or lower, the supporting glass substrate has a glass composition of% by mass. SiO 2 60-75%, Al 2 O 3 5-15%, B 2 O 3 5-20%, MgO 0-5%, CaO 0-10%, SrO 0-5%, BaO 0-5%, ZnO 0~5%, Na 2 O 7~16% , preferably be prepared glass batch to contain K 2 O 0~8%, SiO 2 60~68%, Al 2 O 3 5~15%, B 2 O 3 5 to 20%, MgO 0 to 5%, CaO 0 to 10%, SrO 0 to 3%, BaO 0 to 3%, ZnO 0 to 3%, Na 2 O 8 to 16%, K 2 O It is more preferred to prepare the glass batch to contain 0-3%. When the average coefficient of linear thermal expansion in the temperature range of 30 to 380 ° C is restricted to more than 85 × 10 -7 / ° C and 120 × 10 -7 / ° C or less, the supporting glass substrate has a glass composition of% by mass. SiO 2 45~70% (55~70%) , Al 2 O 3 3~25% ( preferably 3~13%), B 2 O 3 0~8% ( preferably 2~8%), P 2 O 5 0~20%, 0~5% MgO, CaO 0~10%, SrO 0~5%, BaO 0~5%, 0~5% ZnO, Na 2 O 10~21%, K 2 O 0~5 It is preferable to prepare the glass batch so as to contain%. When the average coefficient of linear thermal expansion in the temperature range of 30 to 380 ° C is restricted to more than 120 × 10 -7 / ° C and 165 × 10 -7 / ° C or less, the supporting glass substrate has a glass composition of% by mass. SiO 2 53 to 65%, Al 2 O 3 3 to 13%, B 2 O 30 to 5%, MgO 0.1 to 6%, CaO 0 to 10%, SrO 0 to 5%, BaO 0 to 5% , ZnO 0-5%, Na 2 O + K 2 O 20-40%, Na 2 O 12-21%, K 2 O 7-21%. By doing so, it becomes easy to adjust the coefficient of thermal expansion to the target value, and the devitrification resistance is improved, so that it becomes easy to form a support glass substrate having a small deviation in the overall plate thickness. The "average coefficient of linear thermal expansion in the temperature range of 30 to 380 ° C." refers to a value measured by a dilatometer.

ガラスバッチ中に、清澄剤としてAs、Sb、CeO、SnO、F、Cl、SOの群(好ましくはSnO、Cl、SOの群)から選択された一種又は二種以上を0.05〜2質量%添加してもよい。SnO、SO及びClの合量は、好ましくは0〜1質量%、100〜3000ppm(0.01〜0.3質量%)、300〜2500ppm、特に500〜2500ppmである。なお、SnO、SO及びClの合量が100ppmより少ないと、清澄効果を享受し難くなる。One selected from the group of As 2 O 3 , Sb 2 O 3 , CeO 2 , SnO 2 , F, Cl, SO 3 (preferably the group of SnO 2 , Cl, SO 3 ) as a clarifying agent in a glass batch. Alternatively, two or more kinds may be added in an amount of 0.05 to 2% by mass. The total amount of SnO 2 , SO 3 and Cl is preferably 0 to 1% by mass, 100 to 3000 ppm (0.01 to 0.3% by mass), 300 to 2500 ppm, and particularly 500 to 2500 ppm. If the total amount of SnO 2 , SO 3 and Cl is less than 100 ppm, it becomes difficult to enjoy the clarification effect.

環境的観点から、As、Sb及びFの使用は極力控えることが好ましく、実質的に含有しないことが好ましい。ここで、「実質的に〜を含有しない」とは、具体的には、明示の成分の含有量が500ppm(質量)未満であることを指す。環境的観点から、ガラス組成中に実質的にPbO、Biを含有しないことも好ましい。From an environmental point of view, it is preferable to refrain from using As 2 O 3 , Sb 2 O 3 and F as much as possible, and it is preferable that they are not substantially contained. Here, "substantially free of ..." specifically means that the content of the specified component is less than 500 ppm (mass). From an environmental point of view, it is also preferable that PbO and Bi 2 O 3 are not substantially contained in the glass composition.

本発明の支持ガラス基板の製造方法において、支持ガラス基板のヤング率が60GPa以上(望ましくは65GPa以上、70GPa以上、特に75〜130GPa)になるようにガラスバッチを調製することが好ましい。加工基板内で半導体チップの割合が少なく、封止材の割合が多い場合、積層体全体の剛性が低下して、加工処理工程で加工基板が反り易くなる。そこで、支持ガラス基板のヤング率を高めると、加工基板の反り変形を抑制し易くなり、加工基板を強固、且つ正確に支持することが可能になる。ここで、「ヤング率」は、曲げ共振法により測定した値を指す。 In the method for manufacturing a supporting glass substrate of the present invention, it is preferable to prepare a glass batch so that the Young's modulus of the supporting glass substrate is 60 GPa or more (preferably 65 GPa or more, 70 GPa or more, particularly 75 to 130 GPa). When the proportion of the semiconductor chip is small and the proportion of the encapsulant is large in the processed substrate, the rigidity of the entire laminated body is lowered, and the processed substrate is easily warped in the processing process. Therefore, if the Young's modulus of the support glass substrate is increased, it becomes easy to suppress the warp deformation of the processed substrate, and the processed substrate can be firmly and accurately supported. Here, "Young's modulus" refers to a value measured by the bending resonance method.

支持ガラス基板の液相温度が1150℃未満(望ましくは1120℃以下、1100℃以下、1080℃以下、1050℃以下、1010℃以下、980℃以下、960℃以下、950℃以下、特に940℃以下)になるようにガラスバッチを調製することが好ましい。また支持ガラス基板の液相粘度が104.8dPa・s以上(望ましくは105.0dPa・s以上、105.2dPa・s以上、105.4dPa・s以上、特に105.6dPa・s以上)になるようにガラスバッチを調製することが好ましい。このようにすれば、ダウンドロー法、特にオーバーフローダウンドロー法で支持ガラス基板を成形し易くなるため、板厚が小さい支持ガラス基板を作製し易くなると共に、表面を研磨しなくても、全体板厚偏差を低減することができる。或いは、少量の研磨によって、全体板厚偏差を2.0μm未満、特に1.0μm未満まで低減することができる。結果として、支持ガラス基板の製造コストを低廉化することもできる。なお、「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、温度勾配炉中に24時間保持して、結晶が析出する温度を測定することにより算出可能である。「液相粘度」は、白金球引き上げ法で測定可能である。The liquidus temperature of the supporting glass substrate is less than 1150 ° C (preferably 1120 ° C or less, 1100 ° C or less, 1080 ° C or less, 1050 ° C or less, 1010 ° C or less, 980 ° C or less, 960 ° C or less, 950 ° C or less, especially 940 ° C or less. ), It is preferable to prepare a glass batch. The liquidus viscosity of the supporting glass substrate is 10 4.8 dPa · s or more (preferably 10 5.0 dPa · s or more, 10 5.2 dPa · s or more, 10 5.4 dPa · s or more, especially 10 5 It is preferable to prepare a glass batch so as to have a value of 6.6 dPa · s or more). By doing so, it becomes easy to form the support glass substrate by the down draw method, particularly the overflow down draw method, so that it becomes easy to manufacture the support glass substrate having a small plate thickness, and the whole plate does not need to be polished. The thickness deviation can be reduced. Alternatively, a small amount of polishing can reduce the overall plate thickness deviation to less than 2.0 μm, particularly less than 1.0 μm. As a result, the manufacturing cost of the supporting glass substrate can be reduced. The "liquid phase temperature" is determined by passing the standard sieve 30 mesh (500 μm), putting the glass powder remaining in 50 mesh (300 μm) into a platinum boat, and then holding it in a temperature gradient furnace for 24 hours to form crystals. It can be calculated by measuring the precipitation temperature. The "liquid phase viscosity" can be measured by the platinum ball pulling method.

本発明の支持ガラス基板の製造方法において、板厚が400μm以上、且つ2mm未満になるように、支持ガラス基板を成形することが好ましい。支持ガラス基板の板厚は、好ましくは400μm以上、500μm以上、600μm以上、700μm以上、800μm以上、900μm以上、特に1000μm以上である。支持ガラス基板の板厚は小さ過ぎると、機械的強度が低下して、半導体パッケージの製造工程で支持ガラス基板が破損し易くなる。一方、支持ガラス基板の板厚が大き過ぎると、積層体の質量が大きくなるため、ハンドリング性が低下する。また半導体パッケージの製造工程で、積層体が半導体パッケージの製造装置内の高さ制限をクリアできない虞が生じる。よって、支持ガラス基板の板厚は、好ましくは2.0mm未満、1.5mm以下、1.2mm以下、特に1.1mm以下である。 In the method for manufacturing a support glass substrate of the present invention, it is preferable to mold the support glass substrate so that the plate thickness is 400 μm or more and less than 2 mm. The plate thickness of the support glass substrate is preferably 400 μm or more, 500 μm or more, 600 μm or more, 700 μm or more, 800 μm or more, 900 μm or more, and particularly 1000 μm or more. If the plate thickness of the supporting glass substrate is too small, the mechanical strength is lowered and the supporting glass substrate is easily damaged in the manufacturing process of the semiconductor package. On the other hand, if the plate thickness of the support glass substrate is too large, the mass of the laminated body becomes large, and the handleability deteriorates. Further, in the semiconductor package manufacturing process, there is a possibility that the laminate cannot clear the height limitation in the semiconductor package manufacturing apparatus. Therefore, the plate thickness of the support glass substrate is preferably less than 2.0 mm, 1.5 mm or less, 1.2 mm or less, and particularly 1.1 mm or less.

ダウンドロー法、特にオーバーフローダウンドロー法で支持ガラス基板を成形することが好ましい。オーバーフローダウンドロー法は、耐熱性の樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下頂端で合流させて、ガラス内部に成形合流面を形成しながら、下方に延伸成形する方法である。オーバーフローダウンドロー法では、ガラス表面になるべき面は樋状耐火物に接触せず、自由表面の状態で成形される。このため、板厚が小さい支持ガラス基板を作製し易くなると共に、表面を研磨しなくても、全体板厚偏差を低減することができる。或いは、少量の研磨によって、全体板厚偏差を2.0μm未満、特に1.0μm未満まで低減することができる。結果として、支持ガラス基板の製造コストを低廉化することができる。 It is preferable to form the support glass substrate by the down draw method, particularly the overflow down draw method. In the overflow down draw method, molten glass is overflowed from both sides of a heat-resistant gutter-shaped structure, and the overflowed molten glass is merged at the lower apex end of the gutter-shaped structure to form a molded confluence surface inside the glass. , It is a method of stretching and molding downward. In the overflow down draw method, the surface that should be the glass surface does not come into contact with the gutter-shaped refractory and is formed in a free surface state. Therefore, it becomes easy to manufacture a support glass substrate having a small plate thickness, and the deviation in the overall plate thickness can be reduced without polishing the surface. Alternatively, a small amount of polishing can reduce the overall plate thickness deviation to less than 2.0 μm, particularly less than 1.0 μm. As a result, the manufacturing cost of the supporting glass substrate can be reduced.

支持ガラス基板の成形方法として、オーバーフローダウンドロー法以外にも、例えば、スロットダウン法、リドロー法、フロート法等を採択することもできる。 As a method for forming the support glass substrate, for example, a slot down method, a redraw method, a float method and the like can be adopted in addition to the overflow down draw method.

本発明の支持ガラス基板の製造方法は、熱処理工程前に、成形後の支持ガラス基板の熱膨張係数を測定する工程を備えることが好ましい。このようにすれば、支持ガラス基板の熱膨張係数の測定値を考慮した上で、熱処理条件(熱処理の最高温度、熱処理の降温速度等)を制御することにより、支持ガラス基板の熱膨張係数を目標値に調整し易くなる。 The method for manufacturing a support glass substrate of the present invention preferably includes a step of measuring the coefficient of thermal expansion of the support glass substrate after molding before the heat treatment step. By doing so, the coefficient of thermal expansion of the support glass substrate can be increased by controlling the heat treatment conditions (maximum temperature of heat treatment, rate of temperature decrease of heat treatment, etc.) in consideration of the measured value of the coefficient of thermal expansion of the support glass substrate. It becomes easy to adjust to the target value.

本発明の支持ガラス基板の製造方法は、熱処理工程前に、支持ガラス基板の洗浄工程を設けてもよい。これにより、支持ガラス基板に異物が付着しても、付着した異物が熱処理により支持ガラス基板の表面に焼き付くことを防止することができる。 In the method for manufacturing a supporting glass substrate of the present invention, a cleaning step of the supporting glass substrate may be provided before the heat treatment step. As a result, even if foreign matter adheres to the support glass substrate, it is possible to prevent the adhered foreign matter from being seized on the surface of the support glass substrate by the heat treatment.

本発明の支持ガラス基板の製造方法は、成形後の支持ガラス基板を熱処理して、支持ガラス基板の熱膨張係数を変動させる熱処理工程を備えるが、その場合、成形工程後の支持ガラス基板を熱処理して、支持ガラス基板の熱膨張係数を低下させることが好ましい。このようにすれば、支持ガラス基板の熱膨張係数を目標値に制御し易くなる。なお、熱処理により、支持ガラス基板の熱膨張係数を増加させることも可能であるが、この場合、成形時に支持ガラス基板を十分に徐冷した後、熱処理工程に供しなければならず、支持ガラス基板の製造効率が低下し易くなる。 The method for manufacturing a support glass substrate of the present invention includes a heat treatment step of heat-treating the support glass substrate after molding to change the coefficient of thermal expansion of the support glass substrate. In that case, the support glass substrate after the molding step is heat-treated. Therefore, it is preferable to reduce the coefficient of thermal expansion of the supporting glass substrate. By doing so, it becomes easy to control the coefficient of thermal expansion of the supporting glass substrate to the target value. It is possible to increase the coefficient of thermal expansion of the support glass substrate by heat treatment, but in this case, the support glass substrate must be sufficiently slowly cooled at the time of molding and then subjected to the heat treatment step, and the support glass substrate must be subjected to the heat treatment step. The manufacturing efficiency of the glass tends to decrease.

熱処理工程で、支持ガラス基板の温度範囲30〜380℃における平均線熱膨張係数を0.05×10−7〜3×10−7/℃低下させることが好ましく、0.1×10−7〜3×10−7/℃低下させることがより好ましく、0.2×10−7〜1×10−7/℃低下させることが更に好ましく、0.3×10−7〜0.8×10−7/℃低下させることが特に好ましい。溶融条件、成形条件等の変動により支持ガラス基板の熱膨張係数は変動する。その変動幅はそれほど大きくないが、熱膨張係数を厳密に調整する必要がある支持ガラス基板の用途では、これらの僅かな変動が問題になる。そして、溶融条件、成形条件等を管理して、熱膨張係数を目標値に制御することは困難である。そこで、熱処理工程で熱処理条件(熱処理の最高温度、熱処理の降温速度など)を調整すると、溶融条件、成形条件等を厳密に管理しなくても、支持ガラス基板の熱膨張係数を目標値に制御し易くなる。In the heat treatment step, it is preferable to reduce the average coefficient of linear thermal expansion in the temperature range of 30 to 380 ° C. of the supporting glass substrate by 0.05 × 10 -7 to 3 × 10 -7 / ° C., preferably 0.1 × 10 -7 to. It is more preferable to lower the temperature by 3 × 10 -7 / ° C, further preferably to lower the temperature by 0.2 × 10 -7 to 1 × 10 -7 / ° C, and it is more preferable to reduce the temperature by 0.3 × 10 -7 to 0.8 × 10 −. It is particularly preferable to reduce the temperature by 7 / ° C. The coefficient of thermal expansion of the supporting glass substrate fluctuates due to fluctuations in melting conditions, molding conditions, and the like. The fluctuation range is not so large, but these slight fluctuations become a problem in the application of the supporting glass substrate where the coefficient of thermal expansion needs to be adjusted strictly. Then, it is difficult to control the coefficient of thermal expansion to the target value by managing the melting conditions, molding conditions, and the like. Therefore, if the heat treatment conditions (maximum temperature of heat treatment, temperature decrease rate of heat treatment, etc.) are adjusted in the heat treatment process, the coefficient of thermal expansion of the supporting glass substrate is controlled to the target value without strictly controlling the melting conditions, molding conditions, etc. It becomes easier to do.

本発明の支持ガラス基板の製造方法は、成形後の支持ガラス基板を熱処理して、支持ガラス基板の密度を変動させる熱処理工程を備えることが好ましく、その場合、成形工程後の支持ガラス基板を熱処理して、支持ガラス基板の密度を上昇させることが好ましい。このようにすれば、支持ガラス基板の密度を厳密に調整する必要がある場合に、支持ガラス基板の密度を目標値に制御し易くなる。なお、熱処理により、支持ガラス基板の密度を低下させることも可能であるが、この場合、成形時に支持ガラス基板を十分に徐冷した後、熱処理工程に供しなければならず、支持ガラス基板の製造効率が低下し易くなる。 The method for manufacturing a support glass substrate of the present invention preferably includes a heat treatment step of heat-treating the support glass substrate after molding to change the density of the support glass substrate. In that case, the support glass substrate after the molding step is heat-treated. Therefore, it is preferable to increase the density of the support glass substrate. By doing so, when it is necessary to strictly adjust the density of the support glass substrate, it becomes easy to control the density of the support glass substrate to the target value. It is possible to reduce the density of the supporting glass substrate by heat treatment, but in this case, the supporting glass substrate must be sufficiently slowly cooled at the time of molding and then subjected to the heat treatment step, so that the supporting glass substrate must be manufactured. Efficiency tends to decrease.

支持ガラス基板の密度の上昇度合いは、支持ガラス基板の熱膨張係数の低下度合いと相関している。よって、支持ガラス基板の密度の上昇値を測定すれば、支持ガラス基板の熱膨張係数の低下値を簡易に見積もることができる。熱処理工程で、支持ガラス基板の密度を0.001〜0.05g/cm上昇させることが好ましく、0.004〜0.03g/cm上昇させることが更に好ましく、0.007〜0.015g/cm上昇させることが特に好ましい。密度の上昇値が上記範囲外になると、支持ガラス基板の熱膨張係数の低下値を見積もり難くなる。The degree of increase in the density of the support glass substrate correlates with the degree of decrease in the coefficient of thermal expansion of the support glass substrate. Therefore, by measuring the increase value of the density of the support glass substrate, the decrease value of the thermal expansion coefficient of the support glass substrate can be easily estimated. In the heat treatment step, it is preferable to the density of the supporting glass substrate 0.001-0.05 grams / cm 3 is raised, more preferably be 0.004~0.03g / cm 3 is raised, 0.007~0.015G it is particularly preferred to / cm 3 is raised. When the increase value of the density is out of the above range, it becomes difficult to estimate the decrease value of the coefficient of thermal expansion of the supporting glass substrate.

熱処理の最高温度は、好ましくは(支持ガラス基板の歪点−100)℃超、(支持ガラス基板の歪点−50)℃以上、(支持ガラス基板の歪点−30)℃以上、支持ガラス基板の歪み点以上、(支持ガラス基板の歪点+10)℃以上、(支持ガラス基板の歪点+20)℃以上、(支持ガラス基板の歪点+30)℃以上、特に(支持ガラス基板の歪点+50)℃以上である。熱処理の最高温度が低過ぎると、支持ガラス基板の熱膨張係数を変動させるための熱処理時間が不当に長くなり、熱処理効率が低下し易くなる。更に熱処理により支持ガラス基板の熱膨張係数を低下させ難くなる。その一方で、熱処理の最高温度が高すぎると、支持ガラス基板が熱変形し易くなる。よって、熱処理の最高温度は、好ましくは(支持ガラス基板の歪点+150)℃以下、(支持ガラス基板の歪点+120)℃以下である。 The maximum temperature of the heat treatment is preferably (strain point of the support glass substrate -100) ° C or higher, (strain point of the support glass substrate -50) ° C or higher, (strain point of the support glass substrate -30) ° C or higher, and the support glass substrate. (Strain point of support glass substrate +10) ° C or higher, (distortion point of support glass substrate +20) ° C or higher, (distortion point of support glass substrate +30) ° C or higher, especially (distortion point of support glass substrate +50) ) ℃ or higher. If the maximum temperature of the heat treatment is too low, the heat treatment time for varying the coefficient of thermal expansion of the supporting glass substrate becomes unreasonably long, and the heat treatment efficiency tends to decrease. Further, it becomes difficult to reduce the coefficient of thermal expansion of the supporting glass substrate by the heat treatment. On the other hand, if the maximum temperature of the heat treatment is too high, the supporting glass substrate is likely to be thermally deformed. Therefore, the maximum temperature of the heat treatment is preferably (distortion point of the supporting glass substrate +150) ° C. or lower, and (distortion point of the supporting glass substrate +120) ° C. or less.

熱処理工程では、熱処理炉から支持ガラス基板を安全に取り出すために、熱処理の最高温度から降温する必要がある。その降温速度は、好ましくは5℃/分以下、4℃/分以下、3℃/分以下、2℃/分以下、1℃/分以下、特に0.8℃/分以下である。降温速度が速過ぎると、熱処理工程後に支持ガラス基板に熱歪が残留し易くなり、また熱処理炉から支持ガラス基板を取り出す際に支持ガラス基板が破損する虞がある。その一方で、降温速度が遅過ぎると、支持ガラス基板の熱膨張係数を変動させるための熱処理時間が不当に長くなり、熱処理効率が低下し易くなる。よって、降温速度は、好ましくは0.01℃/分以上、0.05℃/分以上、0.1℃/分以上、0.2℃/分以上、特に0.5℃/分以上である。 In the heat treatment step, it is necessary to lower the temperature from the maximum temperature of the heat treatment in order to safely take out the support glass substrate from the heat treatment furnace. The temperature lowering rate is preferably 5 ° C./min or less, 4 ° C./min or less, 3 ° C./min or less, 2 ° C./min or less, 1 ° C./min or less, and particularly 0.8 ° C./min or less. If the temperature lowering rate is too fast, thermal strain tends to remain on the support glass substrate after the heat treatment step, and the support glass substrate may be damaged when the support glass substrate is taken out from the heat treatment furnace. On the other hand, if the temperature lowering rate is too slow, the heat treatment time for varying the coefficient of thermal expansion of the supporting glass substrate becomes unreasonably long, and the heat treatment efficiency tends to decrease. Therefore, the temperature lowering rate is preferably 0.01 ° C./min or more, 0.05 ° C./min or more, 0.1 ° C./min or more, 0.2 ° C./min or more, and particularly 0.5 ° C./min or more. ..

支持ガラス基板の寸法よりも大きい熱処理用セッターを用意し、その熱処理用セッター上に、成形後の支持ガラス基板を載置した後、熱処理工程に供することが好ましい。このようにすれば、熱処理の際に、支持ガラス基板の温度ムラを低減することができる。なお、熱処理用セッターの寸法が支持ガラス基板の寸法と同等又は小さいと、支持ガラス基板の一部が熱処理用セッターから食み出し易く、その食み出し部分に熱変形が生じ易くなる。 It is preferable to prepare a heat treatment setter having a size larger than the size of the support glass substrate, place the molded support glass substrate on the heat treatment setter, and then perform the heat treatment step. By doing so, it is possible to reduce the temperature unevenness of the supporting glass substrate during the heat treatment. When the size of the heat treatment setter is equal to or smaller than the size of the support glass substrate, a part of the support glass substrate is likely to protrude from the heat treatment setter, and the protruding portion is likely to be thermally deformed.

本発明の支持ガラス基板の製造方法では、熱処理により支持ガラス基板の反り量を40μm以下まで低減することが好ましい。そして、支持ガラス基板の反り量を低減するために、支持ガラス基板の上方に耐熱基板を配置し、熱処理用セッターと耐熱基板で支持ガラス基板を挟持しながら熱処理を行うことが好ましい。なお、耐熱基板として、ムライト基板、アルミナ基板等が使用可能である。また、複数枚の支持ガラス基板を積層させた状態で、熱処理を行うことが好ましい。これにより、積層下方に積層された支持ガラス基板の反り量が、上方に積層された支持ガラス基板の質量によって適正に低減される。更に支持ガラス基板の熱処理効率を高めることができる。 In the method for manufacturing a support glass substrate of the present invention, it is preferable to reduce the amount of warpage of the support glass substrate to 40 μm or less by heat treatment. Then, in order to reduce the amount of warpage of the support glass substrate, it is preferable to arrange the heat-resistant substrate above the support glass substrate and perform the heat treatment while sandwiching the support glass substrate between the heat treatment setter and the heat-resistant substrate. As the heat-resistant substrate, a mullite substrate, an alumina substrate, or the like can be used. Further, it is preferable to perform the heat treatment in a state where a plurality of supporting glass substrates are laminated. As a result, the amount of warpage of the support glass substrate laminated below the stack is appropriately reduced by the mass of the support glass substrate laminated above. Further, the heat treatment efficiency of the support glass substrate can be improved.

本発明の支持ガラス基板の製造方法は、熱処理工程後に、支持ガラス基板の表面を研磨して、全体板厚偏差を2.0μm未満に低減する研磨工程を備えることが好ましい。研磨処理の方法としては、種々の方法を採用することができるが、支持ガラス基板の両面を一対の研磨パッドで挟み込み、支持ガラス基板と一対の研磨パッドを共に回転させながら、支持ガラス基板を研磨処理する方法が好ましい。更に一対の研磨パッドは外径が異なることが好ましく、研磨の際に間欠的に支持ガラス基板の一部が研磨パッドから食み出すように研磨処理することが好ましい。これにより、全体板厚偏差を低減し易くなり、また反り量も低減し易くなる。なお、研磨処理において、研磨深さは特に限定されないが、研磨深さは、好ましくは50μm以下、30μm以下、20μm以下、特に10μm以下である。研磨深さが小さい程、支持ガラス基板の生産性が向上する。 The method for manufacturing a support glass substrate of the present invention preferably includes a polishing step of polishing the surface of the support glass substrate after the heat treatment step to reduce the overall plate thickness deviation to less than 2.0 μm. Various methods can be adopted as the polishing treatment method, but the support glass substrate is polished by sandwiching both sides of the support glass substrate with a pair of polishing pads and rotating the support glass substrate and the pair of polishing pads together. The method of processing is preferred. Further, it is preferable that the pair of polishing pads have different outer diameters, and it is preferable to perform polishing treatment so that a part of the supporting glass substrate intermittently protrudes from the polishing pads during polishing. This makes it easier to reduce the deviation in the overall plate thickness and also makes it easier to reduce the amount of warpage. In the polishing treatment, the polishing depth is not particularly limited, but the polishing depth is preferably 50 μm or less, 30 μm or less, 20 μm or less, and particularly 10 μm or less. The smaller the polishing depth, the higher the productivity of the supporting glass substrate.

支持ガラス基板の全体板厚偏差が2.0μm未満、1μm以下、特に0.1〜1μm未満になるように支持ガラス基板の表面を研磨することが好ましく、また支持ガラス基板の表面の算術平均粗さRaが5nm以下、2nm以下、1.5nm以下、1nm以下、0.8nm以下、特に0.5nm以下になるように支持ガラス基板の表面を研磨することが好ましい。全体板厚偏差が小さい程、或いは表面精度が高い程、加工処理の精度を高め易くなる。特に配線精度を高めることができるため、高密度の配線が可能になる。また支持ガラス基板の強度が向上して、支持ガラス基板及び積層体が破損し難くなる。なお、「算術平均粗さRa」は、原子間力顕微鏡(AFM)により測定可能である。 It is preferable to polish the surface of the support glass substrate so that the total thickness deviation of the support glass substrate is less than 2.0 μm, 1 μm or less, particularly 0.1 to 1 μm, and the arithmetic average roughness of the surface of the support glass substrate is rough. It is preferable to polish the surface of the supporting glass substrate so that Ra is 5 nm or less, 2 nm or less, 1.5 nm or less, 1 nm or less, 0.8 nm or less, and particularly 0.5 nm or less. The smaller the deviation in the overall plate thickness or the higher the surface accuracy, the easier it is to improve the accuracy of the processing. In particular, since the wiring accuracy can be improved, high-density wiring becomes possible. In addition, the strength of the support glass substrate is improved, and the support glass substrate and the laminate are less likely to be damaged. The "arithmetic mean roughness Ra" can be measured by an atomic force microscope (AFM).

本発明の支持ガラス基板の製造方法は、熱処理工程後に、支持ガラス基板の周辺部を切断除去する切断除去工程を備えることが好ましく、研磨工程後に、支持ガラス基板の周辺部を切断除去する切断除去工程を備えることが更に好ましい。熱処理工程では、支持ガラス基板の中央部に比べて、周辺部の方が反り量が大きい傾向がある。そこで、熱処理工程後に、支持ガラス基板の周辺部を切断除去すれば、支持ガラス基板の反り量を低減することができる。 The method for manufacturing a supporting glass substrate of the present invention preferably includes a cutting and removing step of cutting and removing the peripheral portion of the supporting glass substrate after the heat treatment step, and cutting and removing the peripheral portion of the supporting glass substrate after the polishing step. It is more preferable to have a process. In the heat treatment step, the amount of warpage tends to be larger in the peripheral portion than in the central portion of the support glass substrate. Therefore, if the peripheral portion of the support glass substrate is cut and removed after the heat treatment step, the amount of warpage of the support glass substrate can be reduced.

支持ガラス基板の周辺部を切断除去する際に、矩形の支持ガラス基板から略円板状又はウェハ状に切抜き加工することが好ましい。このようにすれば、半導体パッケージの製造工程に適用し易くなる。必要に応じて、それ以外の形状、例えば矩形等の形状に加工してもよい。切り抜いた支持ガラス基板の真円度(但し、ノッチ部を除く)は1mm以下、0.1mm以下、0.05mm以下、特に0.03mm以下が好ましい。真円度が小さい程、半導体パッケージの製造工程に適用し易くなる。なお、真円度の定義は、ウェハの外形の最大値から最小値を減じた値である。 When cutting and removing the peripheral portion of the support glass substrate, it is preferable to cut out the rectangular support glass substrate into a substantially disk shape or a wafer shape. By doing so, it becomes easy to apply to the manufacturing process of the semiconductor package. If necessary, it may be processed into another shape, for example, a shape such as a rectangle. The roundness of the cut-out support glass substrate (excluding the notch portion) is preferably 1 mm or less, 0.1 mm or less, 0.05 mm or less, and particularly preferably 0.03 mm or less. The smaller the roundness, the easier it is to apply to the manufacturing process of semiconductor packages. The definition of roundness is a value obtained by subtracting the minimum value from the maximum value of the outer shape of the wafer.

本発明の支持ガラス基板の製造方法は、切断除去工程後に、支持ガラス基板の外周の一部にノッチ部(位置合わせ部)を形成するノッチ加工工程を備えることが好ましい。これにより、支持ガラス基板のノッチ部に位置決めピン等の位置決め部材を当接させて、支持ガラス基板を位置固定し易くなる。結果として、加工基板と支持ガラス基板の位置合わせが容易になる。なお、加工基板にもノッチ部を形成して、位置決め部材を当接させると、加工基板と支持ガラス基板の位置合わせが更に容易になる。 The method for manufacturing a support glass substrate of the present invention preferably includes a notch processing step of forming a notch portion (alignment portion) on a part of the outer periphery of the support glass substrate after the cutting and removing step. As a result, a positioning member such as a positioning pin is brought into contact with the notch portion of the support glass substrate, and the position of the support glass substrate can be easily fixed. As a result, the alignment between the processed substrate and the supporting glass substrate becomes easy. If a notch portion is also formed on the processed substrate and the positioning member is brought into contact with the processed substrate, the alignment between the processed substrate and the supporting glass substrate becomes easier.

本発明の支持ガラス基板の製造方法は、切断除去工程後に、支持ガラス基板の端面(ノッチ部の端面を含む)に対して面取り加工を行う面取り工程を備えることが好ましい。これにより、端面からガラス粉等が発生することを防止することができる。面取り加工には、溝つき砥石を使用した面取り加工、フッ酸等の酸エッチングによる面取り加工等を採択することができる。 The method for manufacturing a support glass substrate of the present invention preferably includes a chamfering step of chamfering the end face (including the end face of the notch portion) of the support glass substrate after the cutting and removing step. This makes it possible to prevent glass powder and the like from being generated from the end face. For the chamfering process, a chamfering process using a grooved grindstone, a chamfering process by acid etching such as hydrofluoric acid, or the like can be adopted.

本発明の支持ガラス基板の製造方法において、支持ガラス基板に対してイオン交換処理を行わないことが好ましい。イオン交換処理を行うと、支持ガラス基板の製造コストが高騰し、更に支持ガラス基板の全体板厚偏差を低減し難くなる。 In the method for manufacturing a support glass substrate of the present invention, it is preferable not to perform an ion exchange treatment on the support glass substrate. When the ion exchange treatment is performed, the manufacturing cost of the supporting glass substrate rises, and it becomes difficult to reduce the deviation in the overall thickness of the supporting glass substrate.

本発明の半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層体を作製する積層工程と、積層体の加工基板に対して、加工処理を行う加工処理工程と、を備えると共に、支持ガラス基板が、上記の支持ガラス基板の製造方法により作製されていることを特徴とする。本発明の半導体パッケージの製造方法において、本発明の支持ガラス基板の製造方法の技術的特徴は記載済みであるため、その部分の詳細な記載を省略する。 The method for manufacturing a semiconductor package of the present invention includes a laminating step of producing a laminated body including at least a processed substrate and a supporting glass substrate for supporting the processed substrate, and a process of processing the processed substrate of the laminated body. It is characterized by comprising a processing step and the support glass substrate being manufactured by the above-mentioned method for manufacturing a support glass substrate. In the method for manufacturing a semiconductor package of the present invention, the technical features of the method for manufacturing a support glass substrate of the present invention have already been described, and therefore detailed description of the portion thereof will be omitted.

本発明の半導体パッケージの製造方法において、加工基板と支持ガラス基板の間に、接着層を設けることが好ましい。接着層は、樹脂であることが好ましく、例えば、熱硬化性樹脂、光硬化性樹脂(特に紫外線硬化樹脂)等が好ましい。また半導体パッケージの製造工程における熱処理に耐える耐熱性を有するものが好ましい。これにより、半導体パッケージの製造工程で接着層が融解し難くなり、加工処理の精度を高めることができる。なお、加工基板と支持ガラス基板を容易に固定するため、紫外線硬化型テープを接着層として使用することもできる。 In the method for manufacturing a semiconductor package of the present invention, it is preferable to provide an adhesive layer between the processed substrate and the supporting glass substrate. The adhesive layer is preferably a resin, and for example, a thermosetting resin, a photocurable resin (particularly an ultraviolet curable resin), or the like is preferable. Further, those having heat resistance to withstand heat treatment in the manufacturing process of the semiconductor package are preferable. As a result, the adhesive layer is less likely to melt in the manufacturing process of the semiconductor package, and the accuracy of the processing can be improved. In addition, in order to easily fix the processed substrate and the supporting glass substrate, an ultraviolet curable tape can also be used as an adhesive layer.

更に、加工基板と支持ガラス基板の間に、より具体的には加工基板と接着層の間に、剥離層を設けることが好ましい。このようにすれば、加工基板に対して、所定の加工処理を行った後に、加工基板を支持ガラス基板から剥離し易くなる。加工基板の剥離は、生産性の観点から、レーザー光等の照射光により行うことが好ましい。レーザー光源として、YAGレーザー(波長1064nm)、半導体レーザー(波長780〜1300nm)等の赤外光レーザー光源を用いることができる。また、剥離層には赤外線レーザーを照射することで分解する樹脂を使用することができる。また、赤外線を効率良く吸収し、熱に変換する物質を樹脂に添加することもできる。例えば、カーボンブラック、グラファイト粉、微粒子金属粉末、染料、顔料等を樹脂に添加することもできる。 Further, it is preferable to provide a release layer between the processed substrate and the supporting glass substrate, more specifically, between the processed substrate and the adhesive layer. By doing so, it becomes easy to peel off the processed substrate from the supporting glass substrate after performing a predetermined processing treatment on the processed substrate. From the viewpoint of productivity, it is preferable to peel off the processed substrate by irradiation light such as laser light. As the laser light source, an infrared light laser light source such as a YAG laser (wavelength 1064 nm) or a semiconductor laser (wavelength 780 to 1300 nm) can be used. Further, a resin that decomposes by irradiating the peeling layer with an infrared laser can be used. In addition, a substance that efficiently absorbs infrared rays and converts them into heat can be added to the resin. For example, carbon black, graphite powder, fine particle metal powder, dye, pigment and the like can be added to the resin.

剥離層は、レーザー光等の照射光により「層内剥離」又は「界面剥離」が生じる材料で構成される。つまり一定の強度の光を照射すると、原子又は分子における原子間又は分子間の結合力が消失又は減少して、アブレーション(ablation)等を生じ、剥離を生じさせる材料で構成される。なお、照射光の照射により、剥離層に含まれる成分が気体となって放出されて分離に至る場合と、剥離層が光を吸収して気体になり、その蒸気が放出されて分離に至る場合とがある。 The peeling layer is made of a material in which "intra-layer peeling" or "interfacial peeling" occurs due to irradiation light such as laser light. That is, when irradiated with light of a certain intensity, the interatomic or intermolecular bonding force in the atom or molecule disappears or decreases, ablation or the like occurs, and the material is composed of a material that causes peeling. In addition, there are cases where the components contained in the peeling layer are released as a gas and lead to separation by irradiation with irradiation light, and cases where the peeling layer absorbs light and becomes a gas and the vapor is released and leads to separation. There is.

本発明の半導体パッケージの製造方法において、加工基板の寸法を支持ガラス基板の寸法よりも大きくすることが好ましい。これにより、加工基板と支持ガラス基板を積層する際に、両者の中心位置が僅かに離間した場合でも、支持ガラス基板から加工基板の縁部が食み出し難くなる。 In the method for manufacturing a semiconductor package of the present invention, it is preferable that the size of the processed substrate is larger than the size of the supporting glass substrate. As a result, when the processed substrate and the support glass substrate are laminated, even if the center positions of the two are slightly separated from each other, the edge portion of the processed substrate is less likely to protrude from the support glass substrate.

本発明の半導体パッケージの製造方法は、更に積層体を搬送する搬送工程を備えることが好ましい。これにより、加工処理の処理効率を高めることができる。なお、「搬送工程」と「加工処理工程」とは、必ずしも別途に行う必要はなく、同時であってもよい。 It is preferable that the method for manufacturing a semiconductor package of the present invention further includes a transport step for transporting the laminate. This makes it possible to increase the processing efficiency of the processing process. The "transport process" and the "processing process" do not necessarily have to be performed separately, and may be performed at the same time.

本発明の半導体パッケージの製造方法において、加工処理は、加工基板の一方の表面に配線する処理、或いは加工基板の一方の表面に半田バンプを形成する処理が好ましい。本発明の半導体パッケージの製造方法では、これらの処理時に加工基板が寸法変化し難いため、これらの工程を適正に行うことができる。 In the method for manufacturing a semiconductor package of the present invention, the processing is preferably a process of wiring on one surface of the processed substrate or a process of forming solder bumps on one surface of the processed substrate. In the method for manufacturing a semiconductor package of the present invention, the dimensions of the processed substrate are unlikely to change during these processes, so that these steps can be appropriately performed.

加工処理として、上記以外にも、加工基板の一方の表面(通常、支持ガラス基板とは反対側の表面)を機械的に研磨する処理、加工基板の一方の表面(通常、支持ガラス基板とは反対側の表面)をドライエッチングする処理、加工基板の一方の表面(通常、支持ガラス基板とは反対側の表面)をウェットエッチングする処理の何れかであってもよい。なお、本発明の半導体パッケージの製造方法では、加工基板に反りが発生し難いと共に、積層体の剛性を維持することができる。結果として、上記加工処理を適正に行うことができる。 In addition to the above, the processing includes processing to mechanically polish one surface of the processed substrate (usually the surface opposite to the supporting glass substrate), and processing to mechanically polish one surface of the processed substrate (usually what is the supporting glass substrate). It may be either a process of dry etching the surface on the opposite side or a process of wet etching one surface of the processed substrate (usually the surface on the opposite side of the supporting glass substrate). In the method for manufacturing a semiconductor package of the present invention, the processed circuit board is less likely to warp and the rigidity of the laminated body can be maintained. As a result, the above processing can be properly performed.

図面を参酌しながら、本発明を更に説明する。 The present invention will be further described with reference to the drawings.

図1は、本発明に係る積層体1の一例を示す概念斜視図である。図1では、積層体1は、支持ガラス基板10と加工基板11とを備えている。支持ガラス基板10は、加工基板11の寸法変化を防止するために、加工基板11に貼着されている。支持ガラス基板10と加工基板11との間には、剥離層12と接着層13が配置されている。剥離層12は、支持ガラス基板10と接触しており、接着層13は、加工基板11と接触している。 FIG. 1 is a conceptual perspective view showing an example of the laminated body 1 according to the present invention. In FIG. 1, the laminated body 1 includes a support glass substrate 10 and a processed substrate 11. The support glass substrate 10 is attached to the processed substrate 11 in order to prevent the dimensional change of the processed substrate 11. A release layer 12 and an adhesive layer 13 are arranged between the support glass substrate 10 and the processed substrate 11. The release layer 12 is in contact with the support glass substrate 10, and the adhesive layer 13 is in contact with the processed substrate 11.

図1から分かるように、積層体1は、支持ガラス基板10、剥離層12、接着層13、加工基板11の順に積層配置されている。支持ガラス基板10の形状は、加工基板11に応じて決定されるが、図1では、支持ガラス基板10及び加工基板11の形状は、何れも略円板状である。剥離層12は、例えばレーザーを照射することで分解する樹脂を使用することができる。また、レーザー光を効率よく吸収し、熱に変換する物質を樹脂に添加することもできる。たとえば、カーボンブラック、グラファイト粉、微粒子金属粉末、染料、顔料などである。剥離層12は、プラズマCVDや、ゾル−ゲル法によるスピンコート等により形成される。接着層13は、樹脂で構成されており、例えば、各種印刷法、インクジェット法、スピンコート法、ロールコート法等により塗布形成される。また、紫外線硬化型テープも使用可能である。接着層13は、剥離層12により加工基板11から支持ガラス基板10が剥離された後、溶剤等により溶解除去される。紫外線硬化型テープは、紫外線を照射した後、剥離用テープにより除去可能である。 As can be seen from FIG. 1, the laminated body 1 is laminated and arranged in the order of the support glass substrate 10, the release layer 12, the adhesive layer 13, and the processed substrate 11. The shape of the support glass substrate 10 is determined according to the processed substrate 11, but in FIG. 1, the shapes of the support glass substrate 10 and the processed substrate 11 are both substantially disk-shaped. For the release layer 12, for example, a resin that decomposes by irradiating with a laser can be used. In addition, a substance that efficiently absorbs laser light and converts it into heat can be added to the resin. For example, carbon black, graphite powder, fine particle metal powder, dyes, pigments and the like. The release layer 12 is formed by plasma CVD, spin coating by a sol-gel method, or the like. The adhesive layer 13 is made of a resin and is formed by coating, for example, by various printing methods, an inkjet method, a spin coating method, a roll coating method, or the like. In addition, UV curable tape can also be used. The adhesive layer 13 is dissolved and removed by a solvent or the like after the support glass substrate 10 is peeled from the processed substrate 11 by the peeling layer 12. The ultraviolet curable tape can be removed by a peeling tape after being irradiated with ultraviolet rays.

図2は、fan out型のWLPの製造工程を示す概念断面図である。図2(a)は、支持部材20の一方の表面上に接着層21を形成した状態を示している。必要に応じて、支持部材20と接着層21の間に剥離層を形成してもよい。次に、図2(b)に示すように、接着層21の上に複数の半導体チップ22を貼付する。その際、半導体チップ22のアクティブ側の面を接着層21に接触させる。次に、図2(c)に示すように、半導体チップ22を樹脂の封止材23でモールドする。封止材23は、圧縮成形後の寸法変化、配線を成形する際の寸法変化が少ない材料が使用される。続いて、図2(d)、(e)に示すように、支持部材20から半導体チップ22がモールドされた加工基板24を分離した後、接着層25を介して、支持ガラス基板26と接着固定させる。その際、加工基板24の表面の内、半導体チップ22が埋め込まれた側の表面とは反対側の表面が支持ガラス基板26側に配置される。このようにして、積層体27を得ることができる。なお、必要に応じて、接着層25と支持ガラス基板26の間に剥離層を形成してもよい。更に、得られた積層体27を搬送した後に、図2(f)に示すように、加工基板24の半導体チップ22が埋め込まれた側の表面に配線28を形成した後、複数の半田バンプ29を形成する。最後に、支持ガラス基板26から加工基板24を分離した後に、加工基板24を半導体チップ22毎に切断し、後のパッケージング工程に供される。また、支持ガラス基板26は、HCl等による酸処理を経た後に再利用に供される(図2(g))。 FIG. 2 is a conceptual cross-sectional view showing a manufacturing process of a fan-out type WLP. FIG. 2A shows a state in which the adhesive layer 21 is formed on one surface of the support member 20. If necessary, a release layer may be formed between the support member 20 and the adhesive layer 21. Next, as shown in FIG. 2B, a plurality of semiconductor chips 22 are attached onto the adhesive layer 21. At that time, the surface on the active side of the semiconductor chip 22 is brought into contact with the adhesive layer 21. Next, as shown in FIG. 2C, the semiconductor chip 22 is molded with the resin encapsulant 23. As the sealing material 23, a material having little dimensional change after compression molding and dimensional change when molding wiring is used. Subsequently, as shown in FIGS. 2 (d) and 2 (e), the processed substrate 24 on which the semiconductor chip 22 is molded is separated from the support member 20, and then bonded and fixed to the support glass substrate 26 via the adhesive layer 25. Let me. At that time, among the surfaces of the processed substrate 24, the surface opposite to the surface on the side where the semiconductor chip 22 is embedded is arranged on the support glass substrate 26 side. In this way, the laminated body 27 can be obtained. If necessary, a release layer may be formed between the adhesive layer 25 and the support glass substrate 26. Further, after the obtained laminated body 27 is conveyed, as shown in FIG. 2 (f), a wiring 28 is formed on the surface of the processed substrate 24 on the side where the semiconductor chip 22 is embedded, and then a plurality of solder bumps 29 are formed. To form. Finally, after separating the processed substrate 24 from the support glass substrate 26, the processed substrate 24 is cut for each semiconductor chip 22 and used for a subsequent packaging step. Further, the support glass substrate 26 is subjected to acid treatment with HCl or the like and then reused (FIG. 2 (g)).

以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described based on examples. The following examples are merely examples. The present invention is not limited to the following examples.

表1、2は、本発明の実施例(試料No.1〜7、9〜22)と比較例(試料No.8)を示している。 Tables 1 and 2 show Examples (Sample Nos. 1 to 7, 9 to 22) and Comparative Examples (Sample No. 8) of the present invention.

Figure 0006987356
Figure 0006987356

Figure 0006987356
Figure 0006987356

次のようにして、試料No.1〜7を作製した。まず、ガラス組成として、質量%で、SiO 65.6%、Al 8.0%、B 9.1%、NaO 12.8%、CaO 3.2%、ZnO 0.9%、SnO 0.3%、Sb 0.1%を含有するように、ガラス原料を調合、混合し、ガラスバッチを得た後、ガラス溶融炉に供給して1550℃で溶融し、次いで得られた溶融ガラスを清澄、攪拌した上で、オーバーフローダウンドロー法の成形装置に供給し、板厚が0.7mmになるように成形した。その後、得られたガラス基板を矩形状に切断した。なお、得られたガラス基板について、ASTM C336に記載の方法により歪点を測定したところ、519℃であった。As follows, the sample No. 1 to 7 were prepared. First, as the glass composition, in terms of mass%, SiO 2 65.6%, Al 2 O 3 8.0%, B 2 O 3 9.1%, Na 2 O 12.8%, CaO 3.2%, ZnO. The glass raw materials were prepared and mixed so as to contain 0.9%, SnO 2 0.3%, and Sb 2 O 3 0.1%, and after obtaining a glass batch, the glass was supplied to a glass melting furnace at 1550 ° C. Then, the obtained molten glass was clarified and stirred, and then supplied to a molding apparatus of an overflow down draw method to form a plate having a thickness of 0.7 mm. Then, the obtained glass substrate was cut into a rectangular shape. The strain point of the obtained glass substrate was measured by the method described in ASTM C336 and found to be 519 ° C.

続いて、ガラス基板の寸法よりも大きい熱処理用セッターを用意し、その熱処理用セッター上に、成形後のガラス基板を載置し、更にこのガラス基板の上に耐熱基板を載置した後、これを電気炉に投入した。次に、表中に記載の最高温度まで電気炉内を昇温し、その最高温度において表中に記載の時間で保持した後、表中に記載の降温速度で電気炉内を降温した。 Subsequently, a heat treatment setter larger than the size of the glass substrate is prepared, the molded glass substrate is placed on the heat treatment setter, and the heat resistant substrate is placed on the glass substrate. Was put into an electric furnace. Next, the temperature inside the electric furnace was raised to the maximum temperature shown in the table, and the temperature inside the electric furnace was kept at the maximum temperature for the time described in the table, and then the temperature inside the electric furnace was lowered at the temperature lowering rate described in the table.

熱処理後のガラス基板について、温度範囲20〜220℃における平均線熱膨張係数と温度範囲30〜380℃における平均線熱膨張係数をディラトメーター(ネッチジャパン社製DIL402C)で測定した。なお、試料No.8は、上記熱処理を行っていない成形後のガラス基板を示している。 For the glass substrate after the heat treatment, the average linear thermal expansion coefficient in the temperature range of 20 to 220 ° C. and the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. were measured with a dilatometer (DIL402C manufactured by Netch Japan Co., Ltd.). In addition, sample No. Reference numeral 8 shows a glass substrate after molding that has not been subjected to the above heat treatment.

更に、熱処理後のガラス基板について、アルキメデス法により密度を測定した。 Further, the density of the heat-treated glass substrate was measured by the Archimedes method.

表1から明らかなように、試料No.1〜7は、所定の熱処理により、熱膨張係数の低下が認められた。これらのデータを利用し、熱処理条件を適宜調整すると、成形後のガラス基板の熱膨張係数を目標値に変動させることが可能である。更に、試料No.1〜7は、所定の熱処理により、密度の上昇が認められた。よって、熱処理条件を適宜調整すると、成形後のガラス基板の密度を目標値に変動させることも可能である。 As is clear from Table 1, the sample No. In 1 to 7, a decrease in the coefficient of thermal expansion was observed by the predetermined heat treatment. By using these data and appropriately adjusting the heat treatment conditions, it is possible to change the coefficient of thermal expansion of the molded glass substrate to the target value. Furthermore, the sample No. In 1 to 7, an increase in density was observed by the predetermined heat treatment. Therefore, by appropriately adjusting the heat treatment conditions, it is possible to change the density of the glass substrate after molding to the target value.

次のようにして、試料No.9、10を作製した。まず、ガラス組成として、質量%で、SiO61.7%、Al 18.0%、B 0.5%、NaO 14.5%、KO 2.0%、MgO 3.0%、SnO 0.3%を含有するように、ガラス原料を調合、混合し、ガラスバッチを得た後、ガラス溶融炉に供給して1600℃で溶融し、次いで得られた溶融ガラスを清澄、攪拌した上で、オーバーフローダウンドロー法の成形装置に供給し、板厚が1.1mmになるように成形した。その後、得られたガラス基板を矩形状に切断した。なお、得られたガラス基板について、ASTM C336に記載の方法により歪点を測定したところ、567℃であった。As follows, the sample No. 9 and 10 were prepared. First, as a glass composition, in mass%, SiO 2 61.7%, Al 2 O 3 18.0%, B 2 O 3 0.5%, Na 2 O 14.5%, K 2 O 2.0% , MgO 3.0%, SnO 2 0.3%, glass raw materials were prepared and mixed to obtain a glass batch, which was supplied to a glass melting furnace and melted at 1600 ° C., and then obtained. The molten glass was clarified and stirred, and then supplied to a molding apparatus of the overflow down draw method, and molded so that the plate thickness became 1.1 mm. Then, the obtained glass substrate was cut into a rectangular shape. The strain point of the obtained glass substrate was measured by the method described in ASTM C336 and found to be 567 ° C.

続いて、ガラス基板の寸法よりも大きい熱処理用セッターを用意し、その熱処理用セッター上に、成形後のガラス基板を載置し、更にこのガラス基板の上に耐熱基板を載置した後、これを電気炉に投入した。次に、表中に記載の最高温度まで電気炉内を昇温し、その最高温度において表中に記載の時間で保持した後、表中に記載の降温速度で電気炉内を降温した。 Subsequently, a heat treatment setter larger than the size of the glass substrate is prepared, the molded glass substrate is placed on the heat treatment setter, and the heat resistant substrate is placed on the glass substrate. Was put into an electric furnace. Next, the temperature inside the electric furnace was raised to the maximum temperature shown in the table, and the temperature inside the electric furnace was kept at the maximum temperature for the time described in the table, and then the temperature inside the electric furnace was lowered at the temperature lowering rate described in the table.

熱処理後のガラス基板について、温度範囲20〜220℃における平均線熱膨張係数と温度範囲30〜380℃における平均線熱膨張係数をディラトメーター(ネッチジャパン社製DIL402C)で測定した。 For the glass substrate after the heat treatment, the average linear thermal expansion coefficient in the temperature range of 20 to 220 ° C. and the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. were measured with a dilatometer (DIL402C manufactured by Netch Japan Co., Ltd.).

表2から明らかなように、試料No.9、10は、熱処理条件を適宜調整すると、ガラス基板の熱膨張係数を目標値に変動させることが可能である。 As is clear from Table 2, the sample No. In Nos. 9 and 10, the coefficient of thermal expansion of the glass substrate can be changed to the target value by appropriately adjusting the heat treatment conditions.

次のようにして、試料No.11、12を作製した。まず、質量%で、SiO 56.2%、Al 13.0%、B 2.0%、NaO 14.5%、KO 4.9%、MgO 2.0%、CaO 2.0%、ZrO 4.0% SnO 0.35%、Sb 0.05%、CeO 1.0%を含有するように、ガラス原料を調合、混合し、ガラスバッチを得た後、ガラス溶融炉に供給して1600℃で溶融し、次いで得られた溶融ガラスを清澄、攪拌した上で、オーバーフローダウンドロー法の成形装置に供給し、板厚が1.1mmになるように成形した。その後、得られたガラス基板を矩形状に切断した。なお、得られたガラス基板について、ASTM C336に記載の方法により歪点を測定したところ、558℃であった。As follows, the sample No. 11 and 12 were produced. First, in terms of mass%, SiO 2 56.2%, Al 2 O 3 13.0%, B 2 O 3 2.0%, Na 2 O 14.5%, K 2 O 4.9%, MgO 2. The glass raw materials are prepared and mixed so as to contain 0%, CaO 2.0%, ZrO 2 4.0% SnO 2 0.35%, Sb 2 O 3 0.05%, and CeO 2 1.0%. After obtaining a glass batch, it is supplied to a glass melting furnace and melted at 1600 ° C., and then the obtained molten glass is clarified and stirred, and then supplied to a molding apparatus of an overflow down draw method to have a plate thickness of 1. It was molded to be .1 mm. Then, the obtained glass substrate was cut into a rectangular shape. The strain point of the obtained glass substrate was measured by the method described in ASTM C336 and found to be 558 ° C.

続いて、ガラス基板の寸法よりも大きい熱処理用セッターを用意し、その熱処理用セッター上に、成形後のガラス基板を載置し、更にこのガラス基板の上に耐熱基板を載置した後、これを電気炉に投入した。次に、表中に記載の最高温度まで電気炉内を昇温し、その最高温度において表中に記載の時間で保持した後、表中に記載の降温速度で電気炉内を降温した。 Subsequently, a heat treatment setter larger than the size of the glass substrate is prepared, the molded glass substrate is placed on the heat treatment setter, and the heat resistant substrate is placed on the glass substrate. Was put into an electric furnace. Next, the temperature inside the electric furnace was raised to the maximum temperature shown in the table, and the temperature inside the electric furnace was kept at the maximum temperature for the time described in the table, and then the temperature inside the electric furnace was lowered at the temperature lowering rate described in the table.

熱処理後のガラス基板について、温度範囲20〜220℃における平均線熱膨張係数と温度範囲30〜380℃における平均線熱膨張係数をディラトメーター(ネッチジャパン社製DIL402C)で測定した。 For the glass substrate after the heat treatment, the average linear thermal expansion coefficient in the temperature range of 20 to 220 ° C. and the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. were measured with a dilatometer (DIL402C manufactured by Netch Japan Co., Ltd.).

表2から明らかなように、試料No.11、12は、熱処理条件を適宜調整すると、ガラス基板の熱膨張係数を目標値に変動させることが可能である。 As is clear from Table 2, the sample No. In Nos. 11 and 12, the coefficient of thermal expansion of the glass substrate can be changed to the target value by appropriately adjusting the heat treatment conditions.

次のようにして、試料No.13、14を作製した。まず、質量%で、SiO 60.4%、Al 10.7%、NaO 15.5%、KO 8.8%、MgO 1.7%、CaO 2.6%、Sb 0.3%を含有するように、ガラス原料を調合、混合し、ガラスバッチを得た後、ガラス溶融炉に供給して1400℃で溶融し、次いで得られた溶融ガラスを清澄、攪拌した上で、オーバーフローダウンドロー法の成形装置に供給し、板厚が1.1mmになるように成形した。その後、得られたガラス基板を矩形状に切断した。なお、得られたガラス基板について、ASTM C336に記載の方法により歪点を測定したところ、452℃であった。As follows, the sample No. 13 and 14 were produced. First, in terms of mass%, SiO 2 60.4%, Al 2 O 3 10.7%, Na 2 O 15.5%, K 2 O 8.8%, MgO 1.7%, CaO 2.6%, The glass raw materials were prepared and mixed so as to contain Sb 2 O 3 0.3%, and after obtaining a glass batch, the glass was supplied to a glass melting furnace and melted at 1400 ° C., and then the obtained molten glass was clarified. After stirring, the glass was supplied to a molding apparatus of the overflow down draw method and molded so that the plate thickness was 1.1 mm. Then, the obtained glass substrate was cut into a rectangular shape. The strain point of the obtained glass substrate was measured by the method described in ASTM C336 and found to be 452 ° C.

続いて、ガラス基板の寸法よりも大きい熱処理用セッターを用意し、その熱処理用セッター上に、成形後のガラス基板を載置し、更にこのガラス基板の上に耐熱基板を載置した後、これを電気炉に投入した。次に、表中に記載の最高温度まで電気炉内を昇温し、その最高温度において表中に記載の時間で保持した後、表中に記載の降温速度で電気炉内を降温した。 Subsequently, a heat treatment setter larger than the size of the glass substrate is prepared, the molded glass substrate is placed on the heat treatment setter, and the heat resistant substrate is placed on the glass substrate. Was put into an electric furnace. Next, the temperature inside the electric furnace was raised to the maximum temperature shown in the table, and the temperature inside the electric furnace was kept at the maximum temperature for the time described in the table, and then the temperature inside the electric furnace was lowered at the temperature lowering rate described in the table.

熱処理後のガラス基板について、温度範囲20〜220℃における平均線熱膨張係数と温度範囲30〜380℃における平均線熱膨張係数をディラトメーター(ネッチジャパン社製DIL402C)で測定した。 For the glass substrate after the heat treatment, the average linear thermal expansion coefficient in the temperature range of 20 to 220 ° C. and the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. were measured with a dilatometer (DIL402C manufactured by Netch Japan Co., Ltd.).

表2から明らかなように、試料No.13、14は、熱処理条件を適宜調整すると、ガラス基板の熱膨張係数を目標値に変動させることが可能である。 As is clear from Table 2, the sample No. In 13 and 14, the coefficient of thermal expansion of the glass substrate can be changed to the target value by appropriately adjusting the heat treatment conditions.

次のようにして、試料No.15、16を作製した。まず、質量%で、SiO 60.4%、Al 8.7%、NaO 13.6%、KO 12.7%、MgO 1.6%、CaO 2.5%、Sb 0.2%,SnO 0.3%を含有するように、ガラス原料を調合、混合し、ガラスバッチを得た後、ガラス溶融炉に供給して1350℃で溶融し、次いで得られた溶融ガラスを清澄、攪拌した上で、オーバーフローダウンドロー法の成形装置に供給し、板厚が1.1mmになるように成形した。その後、得られたガラス基板を矩形状に切断した。なお、得られたガラス基板について、ASTM C336に記載の方法により歪点を測定したところ、445℃であった。As follows, the sample No. 15 and 16 were produced. First, in terms of mass%, SiO 2 60.4%, Al 2 O 3 8.7%, Na 2 O 13.6%, K 2 O 12.7%, MgO 1.6%, CaO 2.5%, The glass raw materials were prepared and mixed so as to contain Sb 2 O 3 0.2% and SnO 2 0.3%, and after obtaining a glass batch, the glass was supplied to a glass melting furnace and melted at 1350 ° C., and then melted at 1350 ° C. The obtained molten glass was clarified and stirred, and then supplied to a molding apparatus of the overflow down draw method, and molded so that the plate thickness became 1.1 mm. Then, the obtained glass substrate was cut into a rectangular shape. The strain point of the obtained glass substrate was measured by the method described in ASTM C336 and found to be 445 ° C.

続いて、ガラス基板の寸法よりも大きい熱処理用セッターを用意し、その熱処理用セッター上に、成形後のガラス基板を載置し、更にこのガラス基板の上に耐熱基板を載置した後、これを電気炉に投入した。次に、表中に記載の最高温度まで電気炉内を昇温し、その最高温度において表中に記載の時間で保持した後、表中に記載の降温速度で電気炉内を降温した。 Subsequently, a heat treatment setter larger than the size of the glass substrate is prepared, the molded glass substrate is placed on the heat treatment setter, and the heat resistant substrate is placed on the glass substrate. Was put into an electric furnace. Next, the temperature inside the electric furnace was raised to the maximum temperature shown in the table, and the temperature inside the electric furnace was kept at the maximum temperature for the time described in the table, and then the temperature inside the electric furnace was lowered at the temperature lowering rate described in the table.

熱処理後のガラス基板について、温度範囲20〜220℃における平均線熱膨張係数と温度範囲30〜380℃における平均線熱膨張係数をディラトメーター(ネッチジャパン社製DIL402C)で測定した。 For the glass substrate after the heat treatment, the average linear thermal expansion coefficient in the temperature range of 20 to 220 ° C. and the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. were measured with a dilatometer (DIL402C manufactured by Netch Japan Co., Ltd.).

表2から明らかなように、試料No.15、16は、熱処理条件を適宜調整すると、ガラス基板の熱膨張係数を目標値に変動させることが可能である。 As is clear from Table 2, the sample No. In 15 and 16, the coefficient of thermal expansion of the glass substrate can be changed to the target value by appropriately adjusting the heat treatment conditions.

次のようにして、試料No.17、18を作製した。まず、質量%で、SiO 66.1%、Al 8.5%、B 12.4%、NaO 8.4%、CaO 3.3%、ZnO 1.0%、SnO 0.3%を含有するように、ガラス原料を調合、混合し、ガラスバッチを得た後、ガラス溶融炉に供給して1500℃で溶融し、次いで得られた溶融ガラスを清澄、攪拌した上で、オーバーフローダウンドロー法の成形装置に供給し、板厚が1.1mmになるように成形した。その後、得られたガラス基板を矩形状に切断した。なお、得られたガラス基板について、ASTM C336に記載の方法により歪点を測定したところ、532℃であった。As follows, the sample No. 17 and 18 were produced. First, in mass%, SiO 2 66.1%, Al 2 O 3 8.5%, B 2 O 3 12.4%, Na 2 O 8.4%, CaO 3.3%, ZnO 1.0% , SnO 2 0.3% was prepared and mixed with the glass raw materials to obtain a glass batch, which was supplied to a glass melting furnace and melted at 1500 ° C., and then the obtained molten glass was clarified. After stirring, it was supplied to a molding apparatus of the overflow down draw method and molded so that the plate thickness became 1.1 mm. Then, the obtained glass substrate was cut into a rectangular shape. The strain point of the obtained glass substrate was measured by the method described in ASTM C336 and found to be 532 ° C.

続いて、ガラス基板の寸法よりも大きい熱処理用セッターを用意し、その熱処理用セッター上に、成形後のガラス基板を載置し、更にこのガラス基板の上に耐熱基板を載置した後、これを電気炉に投入した。次に、表中に記載の最高温度まで電気炉内を昇温し、その最高温度において表中に記載の時間で保持した後、表中に記載の降温速度で電気炉内を降温した。 Subsequently, a heat treatment setter larger than the size of the glass substrate is prepared, the molded glass substrate is placed on the heat treatment setter, and the heat resistant substrate is placed on the glass substrate. Was put into an electric furnace. Next, the temperature inside the electric furnace was raised to the maximum temperature shown in the table, and the temperature inside the electric furnace was kept at the maximum temperature for the time described in the table, and then the temperature inside the electric furnace was lowered at the temperature lowering rate described in the table.

熱処理後のガラス基板について、温度範囲20〜220℃における平均線熱膨張係数と温度範囲30〜380℃における平均線熱膨張係数をディラトメーター(ネッチジャパン社製DIL402C)で測定した。 For the glass substrate after the heat treatment, the average linear thermal expansion coefficient in the temperature range of 20 to 220 ° C. and the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. were measured with a dilatometer (DIL402C manufactured by Netch Japan Co., Ltd.).

表2から明らかなように、試料No.17、18は、熱処理条件を適宜調整すると、ガラス基板の熱膨張係数を目標値に変動させることが可能である。 As is clear from Table 2, the sample No. In 17 and 18, the coefficient of thermal expansion of the glass substrate can be changed to the target value by appropriately adjusting the heat treatment conditions.

次のようにして、試料No.19、20を作製した。まず、質量%で、SiO 58.1%、Al 13.0%、LiO 0.1%、NaO 14.5%、KO 5.5%、MgO 2.0%、CaO 2.0%、ZrO 4.5%、SnO 0.3%を含有するように、ガラス原料を調合、混合し、ガラスバッチを得た後、ガラス溶融炉に供給して1500℃で溶融し、次いで得られた溶融ガラスを清澄、攪拌した上で、オーバーフローダウンドロー法の成形装置に供給し、板厚が0.7mmになるように成形した。その後、得られたガラス基板を矩形状に切断した。なお、得られたガラス基板について、ASTM C336に記載の方法により歪点を測定したところ、517℃であった。As follows, the sample No. 19, 20 were made. First, in terms of mass%, SiO 2 58.1%, Al 2 O 3 13.0%, Li 2 O 0.1%, Na 2 O 14.5%, K 2 O 5.5%, MgO 2.0. The glass raw materials were prepared and mixed so as to contain%, CaO 2.0%, ZrO 2 4.5%, and SnO 2 0.3%, and after obtaining a glass batch, the glass was supplied to a glass melting furnace for 1500. It was melted at ° C., and then the obtained molten glass was clarified and stirred, and then supplied to a molding device of an overflow down draw method to form a plate having a thickness of 0.7 mm. Then, the obtained glass substrate was cut into a rectangular shape. The strain point of the obtained glass substrate was measured by the method described in ASTM C336 and found to be 517 ° C.

続いて、ガラス基板の寸法よりも大きい熱処理用セッターを用意し、その熱処理用セッター上に、成形後のガラス基板を載置し、更にこのガラス基板の上に耐熱基板を載置した後、これを電気炉に投入した。次に、表中に記載の最高温度まで電気炉内を昇温し、その最高温度において表中に記載の時間で保持した後、表中に記載の降温速度で電気炉内を降温した。 Subsequently, a heat treatment setter larger than the size of the glass substrate is prepared, the molded glass substrate is placed on the heat treatment setter, and the heat resistant substrate is placed on the glass substrate. Was put into an electric furnace. Next, the temperature inside the electric furnace was raised to the maximum temperature shown in the table, and the temperature inside the electric furnace was kept at the maximum temperature for the time described in the table, and then the temperature inside the electric furnace was lowered at the temperature lowering rate described in the table.

熱処理後のガラス基板について、温度範囲20〜220℃における平均線熱膨張係数と温度範囲30〜380℃における平均線熱膨張係数をディラトメーター(ネッチジャパン社製DIL402C)で測定した。 For the glass substrate after the heat treatment, the average linear thermal expansion coefficient in the temperature range of 20 to 220 ° C. and the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. were measured with a dilatometer (DIL402C manufactured by Netch Japan Co., Ltd.).

表2から明らかなように、試料No.19、20は、熱処理条件を適宜調整すると、ガラス基板の熱膨張係数を目標値に変動させることが可能である。 As is clear from Table 2, the sample No. In 19 and 20, the coefficient of thermal expansion of the glass substrate can be changed to the target value by appropriately adjusting the heat treatment conditions.

次のようにして、試料No.21、22を作製した。まず、質量%で、SiO 47.5%、Al 23.0%、P 13.1%、NaO 14.7%、MgO 1.5%,SnO 0.2%を含有するように、ガラス原料を調合、混合し、ガラスバッチを得た後、ガラス溶融炉に供給して1500℃で溶融し、次いで得られた溶融ガラスを清澄、攪拌した上で、オーバーフローダウンドロー法の成形装置に供給し、板厚が0.7mmになるように成形した。その後、得られたガラス基板を矩形状に切断した。なお、得られたガラス基板について、ASTM C336に記載の方法により歪点を測定したところ、595℃であった。As follows, the sample No. 21 and 22 were produced. First, in terms of mass%, SiO 2 47.5%, Al 2 O 3 23.0%, P 2 O 5 13.1%, Na 2 O 14.7%, MgO 1.5%, SnO 2 0.2. The glass raw materials were prepared and mixed so as to contain%, and after obtaining a glass batch, the glass was supplied to a glass melting furnace and melted at 1500 ° C., and then the obtained molten glass was clarified and stirred, and then overflowed. It was supplied to a downdraw method molding apparatus and molded so that the plate thickness was 0.7 mm. Then, the obtained glass substrate was cut into a rectangular shape. The strain point of the obtained glass substrate was measured by the method described in ASTM C336 and found to be 595 ° C.

続いて、ガラス基板の寸法よりも大きい熱処理用セッターを用意し、その熱処理用セッター上に、成形後のガラス基板を載置し、更にこのガラス基板の上に耐熱基板を載置した後、これを電気炉に投入した。次に、表中に記載の最高温度まで電気炉内を昇温し、その最高温度において表中に記載の時間で保持した後、表中に記載の降温速度で電気炉内を降温した。 Subsequently, a heat treatment setter larger than the size of the glass substrate is prepared, the molded glass substrate is placed on the heat treatment setter, and the heat resistant substrate is placed on the glass substrate. Was put into an electric furnace. Next, the temperature inside the electric furnace was raised to the maximum temperature shown in the table, and the temperature inside the electric furnace was kept at the maximum temperature for the time described in the table, and then the temperature inside the electric furnace was lowered at the temperature lowering rate described in the table.

熱処理後のガラス基板について、温度範囲20〜220℃における平均線熱膨張係数と温度範囲30〜380℃における平均線熱膨張係数をディラトメーター(ネッチジャパン社製DIL402C)で測定した。 For the glass substrate after the heat treatment, the average linear thermal expansion coefficient in the temperature range of 20 to 220 ° C. and the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. were measured with a dilatometer (DIL402C manufactured by Netch Japan Co., Ltd.).

表2から明らかなように、試料No.21、22は、熱処理条件を適宜調整すると、ガラス基板の熱膨張係数を目標値に変動させることが可能である。 As is clear from Table 2, the sample No. In 21 and 22, the coefficient of thermal expansion of the glass substrate can be changed to the target value by appropriately adjusting the heat treatment conditions.

表1、2から分かるように、熱処理条件を適宜調整すると、各種ガラス組成を有するガラス基板の熱膨張係数を目標値に変動させることが可能である。 As can be seen from Tables 1 and 2, the coefficient of thermal expansion of the glass substrate having various glass compositions can be changed to the target value by appropriately adjusting the heat treatment conditions.

更に、熱処理後の各種ガラス基板(試料No.1〜7、9〜22:全体板厚偏差約4.0μm)をφ300mmにくり抜いた後、ガラス基板の両表面を研磨装置により研磨処理した。具体的には、ガラス基板の両表面を外径が相違する一対の研磨パットで挟み込み、ガラス基板と一対の研磨パッドを共に回転させながらガラス基板の両表面を研磨処理した。研磨処理の際、時折、ガラス基板の一部が研磨パッドから食み出すように制御した。なお、研磨パッドをウレタン製、研磨処理の際に使用した研磨スラリーの平均粒径を2.5μm、研磨速度を15m/分とした。得られた各研磨済みガラス基板について、コベルコ科研社製のBow/Warp測定装置 SBW−331ML/dにより、全体板厚偏差と反り量を測定した。その結果、全体板厚偏差がそれぞれ1.0μm未満であり、反り量がそれぞれ35μm以下であった。 Further, various glass substrates (Sample Nos. 1 to 7, 9 to 22: Overall plate thickness deviation of about 4.0 μm) after the heat treatment were hollowed out to φ300 mm, and then both surfaces of the glass substrate were polished by a polishing device. Specifically, both surfaces of the glass substrate were sandwiched between a pair of polishing pads having different outer diameters, and both surfaces of the glass substrate were polished while rotating the glass substrate and the pair of polishing pads together. During the polishing process, it was occasionally controlled so that a part of the glass substrate protruded from the polishing pad. The polishing pad was made of urethane, the average particle size of the polishing slurry used during the polishing process was 2.5 μm, and the polishing rate was 15 m / min. For each of the obtained polished glass substrates, the total plate thickness deviation and the amount of warpage were measured by the Bow / Warp measuring device SBW-331ML / d manufactured by Kobelco Kaken Co., Ltd. As a result, the total plate thickness deviation was less than 1.0 μm, and the warpage amount was 35 μm or less.

1、27 積層体
10、26 支持ガラス基板
11、24 加工基板
12 剥離層
13、21、25 接着層
20 支持部材
22 半導体チップ
23 封止材
28 配線
29 半田バンプ
1,27 Laminated body 10, 26 Supporting glass substrate 11, 24 Processed substrate 12 Peeling layer 13, 21, 25 Adhesive layer 20 Supporting member 22 Semiconductor chip 23 Encapsulant 28 Wiring 29 Solder bump

Claims (13)

加工基板を支持するための支持ガラス基板の製造方法において、
支持ガラス基板を成形する成形工程と、成形後の支持ガラス基板を熱処理して、支持ガラス基板の熱膨張係数を変動させると共に、支持ガラス基板の反り量を40μm以下に低減する熱処理工程と、を備え
支持ガラス基板の寸法よりも大きい熱処理用セッターを用意し、その熱処理用セッター上に、成形後の支持ガラス基板を載置すると共に、支持ガラス基板の上方に耐熱基板を配置することにより、熱処理セッターと耐熱基板で支持ガラス基板を挟持した後、熱処理工程に供することを特徴とする支持ガラス基板の製造方法。
In the method of manufacturing a support glass substrate for supporting a processed substrate,
A molding process for molding the support glass substrate and a heat treatment step for heat-treating the support glass substrate after molding to fluctuate the coefficient of thermal expansion of the support glass substrate and reduce the amount of warpage of the support glass substrate to 40 μm or less. Prepare ,
A heat treatment setter that is larger than the size of the support glass substrate is prepared, and the heat treatment setter is placed on the heat treatment setter after molding, and the heat treatment substrate is placed above the support glass substrate. A method for manufacturing a support glass substrate, which comprises sandwiching the support glass substrate between the heat-resistant substrate and subjecting the support glass substrate to a heat treatment step.
成形工程後の支持ガラス基板を熱処理して、支持ガラス基板の熱膨張係数を低下させることを特徴とする請求項1に記載の支持ガラス基板の製造方法。 The method for manufacturing a support glass substrate according to claim 1, wherein the support glass substrate after the molding step is heat-treated to reduce the coefficient of thermal expansion of the support glass substrate. 熱処理の最高温度を(支持ガラス基板の歪点−100)℃よりも高くすることを特徴とする請求項1又は2に記載の支持ガラス基板の製造方法。 The method for manufacturing a supporting glass substrate according to claim 1 or 2, wherein the maximum temperature of the heat treatment is made higher than (distortion point -100 of the supporting glass substrate) ° C. 熱処理の最高温度に到達した後、熱処理温度を5℃/分以下の速度で降温することを特徴とする請求項1〜3の何れかに記載の支持ガラス基板の製造方法。 The method for manufacturing a supporting glass substrate according to any one of claims 1 to 3, wherein the heat treatment temperature is lowered at a rate of 5 ° C./min or less after reaching the maximum temperature of the heat treatment. 熱処理により支持ガラス基板の反り量を35μm以下に低減することを特徴とする請求項1〜4の何れかに記載の支持ガラス基板の製造方法。 The method for manufacturing a support glass substrate according to any one of claims 1 to 4, wherein the amount of warpage of the support glass substrate is reduced to 35 μm or less by heat treatment. 板厚が400μm以上、且つ2mm未満になるように、支持ガラス基板を成形することを特徴とする請求項1〜の何れかに記載の支持ガラス基板の製造方法。 The method for manufacturing a support glass substrate according to any one of claims 1 to 5 , wherein the support glass substrate is molded so that the plate thickness is 400 μm or more and less than 2 mm. オーバーフローダウンドロー法により支持ガラス基板を成形することを特徴とする請求項1〜の何れかに記載の支持ガラス基板の製造方法。 The method for manufacturing a support glass substrate according to any one of claims 1 to 6 , wherein the support glass substrate is formed by an overflow down draw method. 熱処理工程後に、支持ガラス基板の表面を研磨して、全体板厚偏差を2.0μm未満に低減する研磨工程を備えることを特徴とする請求項1〜の何れかに記載の支持ガラス基板の製造方法。 The support glass substrate according to any one of claims 1 to 7 , further comprising a polishing step of polishing the surface of the support glass substrate after the heat treatment step to reduce the overall plate thickness deviation to less than 2.0 μm. Production method. 熱処理工程後に、支持ガラス基板の周辺部を切断除去する切断除去工程を備えることを特徴とする請求項1〜の何れかに記載の支持ガラス基板の製造方法。 The method for manufacturing a supporting glass substrate according to any one of claims 1 to 8 , further comprising a cutting and removing step of cutting and removing the peripheral portion of the supporting glass substrate after the heat treatment step. 少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層体を作製する積層工程と、
積層体の加工基板に対して、加工処理を行う加工処理工程と、を備えると共に、
支持ガラス基板が、請求項1〜の何れかに記載の支持ガラス基板の製造方法により作製されていることを特徴とする半導体パッケージの製造方法。
A laminating process for producing a laminate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate.
In addition to being provided with a processing process for performing processing on the processed substrate of the laminated body,
A method for manufacturing a semiconductor package, wherein the support glass substrate is manufactured by the method for manufacturing a support glass substrate according to any one of claims 1 to 9.
加工基板が、少なくとも封止材でモールドされた半導体チップを備えることを特徴とする請求項10に記載の半導体パッケージの製造方法。 The method for manufacturing a semiconductor package according to claim 10 , wherein the processed substrate includes at least a semiconductor chip molded with a sealing material. 加工処理が、加工基板の一方の表面に配線する処理を含むことを特徴とする請求項10又は11に記載の半導体パッケージの製造方法。 Processing method for forming a semiconductor package according to claim 10 or 11, characterized in that it comprises a process of wiring on one surface of the processed substrate. 加工処理が、加工基板の一方の表面に半田バンプを形成する処理を含むことを特徴とする請求項1012の何れかに記載の半導体パッケージの製造方法。 The method for manufacturing a semiconductor package according to any one of claims 10 to 12 , wherein the processing includes a process of forming solder bumps on one surface of the processed substrate.
JP2017556000A 2015-12-17 2016-12-07 Manufacturing method of support glass substrate Active JP6987356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021188397A JP7268718B2 (en) 2015-12-17 2021-11-19 Manufacturing method of supporting glass substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015246131 2015-12-17
JP2015246131 2015-12-17
PCT/JP2016/086427 WO2017104513A1 (en) 2015-12-17 2016-12-07 Method of manufacturing a glass support plate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021188397A Division JP7268718B2 (en) 2015-12-17 2021-11-19 Manufacturing method of supporting glass substrate

Publications (2)

Publication Number Publication Date
JPWO2017104513A1 JPWO2017104513A1 (en) 2018-10-04
JP6987356B2 true JP6987356B2 (en) 2021-12-22

Family

ID=59056471

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017556000A Active JP6987356B2 (en) 2015-12-17 2016-12-07 Manufacturing method of support glass substrate
JP2021188397A Active JP7268718B2 (en) 2015-12-17 2021-11-19 Manufacturing method of supporting glass substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021188397A Active JP7268718B2 (en) 2015-12-17 2021-11-19 Manufacturing method of supporting glass substrate

Country Status (5)

Country Link
JP (2) JP6987356B2 (en)
KR (1) KR102588111B1 (en)
CN (1) CN108367961A (en)
TW (1) TWI701221B (en)
WO (1) WO2017104513A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2021322B1 (en) * 2018-06-28 2020-01-06 Corning Inc Continuous methods of making glass ribbon and as-drawn glass articles from the same
WO2020005555A1 (en) 2018-06-28 2020-01-02 Corning Incorporated Continuous methods of making glass ribbon and as-drawn glass articles from the same
WO2020018290A1 (en) * 2018-07-16 2020-01-23 Corning Incorporated Setter plates and methods of ceramming glass articles using the same
WO2020018408A1 (en) 2018-07-16 2020-01-23 Corning Incorporated Methods for ceramming glass with nucleation and growth density and viscosity changes
WO2020018285A1 (en) * 2018-07-16 2020-01-23 Corning Incorporated Methods of ceramming glass articles having improved warp
US11014848B2 (en) 2018-07-16 2021-05-25 Corning Incorporated Glass ceramic articles having improved properties and methods for making the same
CN113692395B (en) 2019-01-28 2023-10-31 康宁股份有限公司 Glass ceramic articles, compositions, and methods of making the same
JP2022547308A (en) 2019-09-13 2022-11-11 コーニング インコーポレイテッド A continuous method for forming a glass ribbon using a gyrotron microwave heating device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505571A (en) * 1965-09-30 1970-04-07 Gen Electric Glass covered semiconductor device
JP4792705B2 (en) * 2003-04-03 2011-10-12 旭硝子株式会社 Silica glass containing TiO2 and method for producing the same
JP5332085B2 (en) * 2006-06-28 2013-11-06 日本電気硝子株式会社 Manufacturing method of glass substrate for flat panel display
WO2013145503A1 (en) * 2012-03-29 2013-10-03 コニカミノルタ株式会社 Method for producing hdd glass substrate
JP6287070B2 (en) 2012-11-09 2018-03-07 日本電気硝子株式会社 Method for producing glass film laminate and method for producing electronic / electrical device
JP6593669B2 (en) 2013-09-12 2019-10-23 日本電気硝子株式会社 Support glass substrate and carrier using the same
CN115636583A (en) * 2014-04-07 2023-01-24 日本电气硝子株式会社 Supporting glass substrate and laminate using same
JP6379678B2 (en) * 2014-05-29 2018-08-29 日本電気硝子株式会社 Manufacturing method of glass substrate
JP6031613B2 (en) * 2014-06-30 2016-11-24 AvanStrate株式会社 Sheet glass manufacturing method and sheet glass manufacturing apparatus
JP6742593B2 (en) * 2015-01-05 2020-08-19 日本電気硝子株式会社 Method for manufacturing supporting glass substrate and method for manufacturing laminated body

Also Published As

Publication number Publication date
CN108367961A (en) 2018-08-03
TWI701221B (en) 2020-08-11
JP7268718B2 (en) 2023-05-08
WO2017104513A1 (en) 2017-06-22
KR20180095513A (en) 2018-08-27
TW201731783A (en) 2017-09-16
JP2022025147A (en) 2022-02-09
JPWO2017104513A1 (en) 2018-10-04
KR102588111B1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
JP6987356B2 (en) Manufacturing method of support glass substrate
JP6963219B2 (en) Support glass substrate and laminate using this
KR102430746B1 (en) Supporting glass substrate and manufacturing method therefor
JP6802966B2 (en) Support glass substrate and laminate using this
JP6519221B2 (en) Glass substrate and laminate using the same
JP6866850B2 (en) Support crystallized glass substrate and laminate using this
JP6763124B2 (en) Laminates and methods for manufacturing semiconductor packages using them
JP6593676B2 (en) Laminated body and semiconductor package manufacturing method
TWI682905B (en) Glass plate manufacturing method
JP2016155736A (en) Support glass substrate and laminate using the same
JP6955320B2 (en) Manufacturing method of laminate and semiconductor package
JP6922276B2 (en) Support crystallized glass substrate and laminate using this
JP7011215B2 (en) Support glass substrate and laminate using it
TWI755449B (en) Support glass substrate and laminate using the same, semiconductor package, method for producing the same, and electronic device
JP6813813B2 (en) Glass plate
TW201910285A (en) Supporting glass substrate and laminated substrate using the same
JP7051053B2 (en) Support glass substrate and laminate using it
JP2019001698A (en) Method for manufacturing support glass substrate
TWI835738B (en) Supports glass substrates, laminated substrates, semiconductor package manufacturing methods, and glass substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211114

R150 Certificate of patent or registration of utility model

Ref document number: 6987356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150