JP6982795B2 - Manufacturing method of boron-containing stainless steel - Google Patents
Manufacturing method of boron-containing stainless steel Download PDFInfo
- Publication number
- JP6982795B2 JP6982795B2 JP2017204678A JP2017204678A JP6982795B2 JP 6982795 B2 JP6982795 B2 JP 6982795B2 JP 2017204678 A JP2017204678 A JP 2017204678A JP 2017204678 A JP2017204678 A JP 2017204678A JP 6982795 B2 JP6982795 B2 JP 6982795B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- boron
- steel
- stainless steel
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、少なくともAl2O3を含むスラグ及び消耗電極を用いた二次溶解法によるボロン含有ステンレス鋼の製造方法に関し、特に、BN(ボロンナイトライド)の微細粒子による高温機械強度の向上を与え得るボロン含有ステンレス鋼の製造方法に関する。 The present invention relates to a method for producing a boron-containing stainless steel by a secondary melting method using slag containing at least Al 2 O 3 and a consumable electrode, and particularly to improve high-temperature mechanical strength by using fine particles of BN (boron nitride). The present invention relates to a method for producing a possible boron-containing stainless steel.
スラグと消耗電極を用いたESR(Electro-Slag Remelting)法による鋼の二次溶解法において、消耗電極の下端で生成した滴はスラグ中を落下して、メタルプールを経て凝固し鋼塊を形成する。つまり、スラグ中でのメタル−スラグ反応を制御することで鋼塊の成分組成を調整することができる。 In the secondary melting method of steel by the ESR (Electro-Slag Remelting) method using slag and consumable electrode, the drops generated at the lower end of the consumable electrode fall in the slag and solidify through the metal pool to form a steel ingot. do. That is, the composition of the ingot can be adjusted by controlling the metal-slag reaction in the slag.
例えば、特許文献1では、Ti及びAlを含有する耐熱鋼のESR法による製造方法において、スラグの成分組成を調整することでTi及びAlの成分変動を抑え、成分偏析の少ないインゴットを得ようとする製造方法を開示している。スラグは、Al2O3−CaO(生石灰)−CaF2(ホタル石)系であって、CaF2に、質量%で、5%≦Al2O3≦30%、CaO≦15%を与え、更に、1%≦TiO2≦15%を与えた組成を有している。これにより、消耗電極中のTi及びAlと、スラグ中のTiO2及びAl2O3のバランスを制御できる。なお、対象とする鋼は、質量%で0.5%≦Ti≦5.0%、0.1%≦Al≦2.0%を含む成分組成である。 For example, in Patent Document 1, in a method for producing heat-resistant steel containing Ti and Al by the ESR method, in order to suppress fluctuations in the components of Ti and Al by adjusting the component composition of slag and obtain an ingot with less component segregation. The manufacturing method to be carried out is disclosed. The slag is an Al 2 O 3- CaO (quick lime) -CaF 2 (fluorite) system, and CaF 2 is given 5% ≤ Al 2 O 3 ≤ 30% and CaO ≤ 15% by mass. Further, it has a composition given 1% ≤ TiO 2 ≤ 15%. Thereby, the balance between Ti and Al in the consumable electrode and TiO 2 and Al 2 O 3 in the slag can be controlled. The target steel has a component composition containing 0.5% ≤ Ti ≤ 5.0% and 0.1% ≤ Al ≤ 2.0% in mass%.
同様に、Bを含有する鋼のESR法による製造方法においても、スラグの成分組成を調整することが提案されている。 Similarly, it has been proposed to adjust the component composition of slag in the method for producing B-containing steel by the ESR method.
例えば、特許文献2では、Bを含有する耐熱鋼のESR法による製造方法において、消耗電極のSiとBの成分量に合わせてスラグ中のSiO2とB2O3の成分量を調整することで、溶鋼の成分組成中のBの成分量を制御する耐熱鋼の製造方法を開示している。かかる製造方法において用いられるスラグは、Al2O3−CaO−CaF2にフラックスとしてSiO2とともにB2O3を与えたものである。ここで、溶鋼成分とスラグ成分との間では、
3(SiO2)+4B=2(B2O3)+3Si
の反応が生じるため、SiO2の存在下ではBが酸化されて成分偏析や目標成分値からの逸脱を生じさせるとしている。そこで、スラグ中のSiO2とB2O3の成分量を所定の式を満たすように調整することで、上記反応式の両辺のバランスを制御し溶鋼中でのBの成分量を制御している。
For example, in Patent Document 2, in the method for producing heat-resistant steel containing B by the ESR method, the components of SiO 2 and B 2 O 3 in the slag are adjusted according to the components of Si and B of the consumable electrode. Discloses a method for producing a heat-resistant steel that controls the amount of the component B in the component composition of the molten steel. The slag used in such a production method is Al 2 O 3- CaO-CaF 2 provided with B 2 O 3 together with SiO 2 as a flux. Here, between the molten steel component and the slag component,
3 (SiO 2 ) + 4B = 2 (B 2 O 3 ) + 3Si
In the presence of SiO 2 , B is oxidized to cause component segregation and deviation from the target component value. Therefore, by adjusting the component amounts of SiO 2 and B 2 O 3 in the slag so as to satisfy a predetermined formula, the balance of both sides of the above reaction formula is controlled and the component amount of B in the molten steel is controlled. There is.
BNの微細粒子を利用してクリープなどの高温機械強度の向上を与えたBを含有する耐熱鋼が知られている。かかる耐熱鋼では、上記したようなAl2O3−CaO−CaF2系スラグを用いたメタル−スラグ反応において、Bの酸化物だけでなく、窒化物についても考慮する必要がある。ここで、特に、Alも酸化物だけでなく窒化物を形成するため、BNの微細粒子の析出状態を変化させ、高温機械強度にも影響を与え得る。そこで、特に、Al量を減じた耐熱鋼が提案され、これに合わせてスラグ中のAl2O3を減じることが考慮される。しかしながら、スラグ中のAl2O3量が低減されることでスラグの比抵抗が小さくなり、二次溶解法における電力消費量が増加し、また、消耗電極の溶解が難しくなる場合もある。かかる状況は、大型鋼塊を得ようとする場合に特に問題となり得る。 A heat-resistant steel containing B, which is provided with improved high-temperature mechanical strength such as creep by utilizing fine particles of BN, is known. In such heat-resistant steel, metal with Al 2 O 3 -CaO-CaF 2 slag as described above - in the slag reaction, not only the oxide of B, it is also necessary to consider nitride. Here, in particular, since Al also forms a nitride as well as an oxide, it can change the precipitation state of fine particles of BN and affect the high-temperature mechanical strength. Therefore, in particular, heat-resistant steel with a reduced amount of Al has been proposed, and consideration is given to reducing Al 2 O 3 in the slag accordingly. However, by reducing the amount of Al 2 O 3 in the slag, the specific resistance of the slag becomes small, the power consumption in the secondary melting method increases, and the melting of the consumable electrode may become difficult. This situation can be particularly problematic when trying to obtain large ingots.
本発明はかかる状況に鑑みてなされたものであって、その目的とするところは、比抵抗の低下を抑制すべくAl2O3を含むスラグと消耗電極を用いた二次溶解によるボロン含有ステンレス鋼の製造方法において、BN粒子の析出に影響を与えるスラグ成分を考慮し高温機械強度の向上を与え得るボロン含有ステンレス鋼の製造方法を提供することにある。 The present invention was made in view of such circumstances, it is an object of the boron-containing stainless by secondary dissolved with slag and consumable electrode containing Al 2 O 3 in order to suppress the decrease of specific resistance It is an object of the present invention to provide a method for producing a boron-containing stainless steel which can improve the high-temperature mechanical strength in consideration of the slag component which affects the precipitation of BN particles in the method for producing steel.
本発明によるボロン含有ステンレス鋼の製造方法は、質量%で、C:0.08〜0.40%、Cr:8〜14%を少なくとも含み、BN微細粒子を析出させ得るよう、B:0.0010〜0.0300%を含む一方でとともに、Alを0.01%以下に抑制した成分組成のボロン含有ステンレス鋼を得るための少なくともAl2O3を含むスラグ及び消耗電極を用いた二次溶解法による製造方法であって、前記スラグは、質量%で、CaO:20〜40%、Al2O3:20〜40、SiO2:6〜15%を含むとともに、添加物としてB2O3を2%以下で含み得て、残部CaF2及び不可避的不純物からなることを特徴とする。 The method for producing a boron-containing stainless steel according to the present invention contains at least C: 0.08 to 0.40% and Cr: 8 to 14% in mass%, and B: 0. together while containing from 0010 to 0.0300%, secondary dissolution using slag and consumable electrode comprising at least Al 2 O 3 to obtain a boron-containing stainless steel of the chemical composition that suppresses Al below 0.01% a manufacturing method according to the law, the slag, by mass%, CaO: 20~40%, Al 2 O 3: 20~40, SiO 2: with containing 6~15%, B 2 O 3 as an additive Can be contained in an amount of 2% or less, and is characterized by having a balance CaF 2 and unavoidable impurities.
かかる発明によれば、比抵抗の低下を抑制するようにAl2O3を一定量含むAl2O3−CaO−CaF2系スラグでありながら、BNと窒化において競合し得る鋼中のAl量を抑制させてBNを形成し得るB量を適正化できて、BN微細粒子を析出させて高温機械強度を向上させ得るボロン含有ステンレス鋼を与えるのである。 According to such an invention, although it is an Al 2 O 3- CaO-CaF 2 system slag containing a certain amount of Al 2 O 3 so as to suppress a decrease in resistivity, the amount of Al in steel that can compete with BN in nitriding. It provides a boron-containing stainless steel capable of optimizing the amount of B capable of forming BN by suppressing the slag, and precipitating BN fine particles to improve high-temperature mechanical strength.
上記した発明において、前記消耗電極は、質量%で、C:0.08〜0.40%、Cr:8〜14%、Ni:2.5%以下、V:0.1〜0.3%、Co:0.5〜3.5%、Nb:0.03〜0.10%、B:0.0010〜0.0300%、及び、N:0.0100〜0.0500%、を含み、残部Fe及び不可避的不純物とするとともに、Al及びSiの含有量をそれぞれ0.010%以下及び0.10%以下に抑制した成分組成を有することを特徴としてもよい。かかる発明によれば、上記したスラグ成分の範囲内でB量を適正化できて、結果として降温機械強度を向上させ得るボロン含有ステンレス鋼を確実に与えるのである。 In the above-mentioned invention, the consumable electrode has C: 0.08 to 0.40%, Cr: 8 to 14%, Ni: 2.5% or less, V: 0.1 to 0.3% in mass%. , Co: 0.5 to 3.5%, Nb: 0.03 to 0.10%, B: 0.0010 to 0.0300%, and N: 0.0100 to 0.0500%. It may be characterized by having a component composition in which the remaining Fe and unavoidable impurities are used, and the contents of Al and Si are suppressed to 0.010% or less and 0.10% or less, respectively. According to such an invention, it is possible to reliably provide a boron-containing stainless steel capable of optimizing the amount of B within the range of the above-mentioned slag component and, as a result, improving the temperature lowering mechanical strength.
上記した発明において、前記消耗電極中の成分Mの質量%を[%M]、前記スラグ中の含有物Qのモル分率を{mfQ}として、前記スラグは、Y=log([%B]4/[%Si]3) X=log({mfB2O3}2/{mfSiO2}3)とすると、−5.1≦Y−X≦−4.6の範囲内となる成分組成を有することを特徴としてもよい。かかる発明によれば、得られるB量をより適正化し、高温機械強度を向上させ得るボロン含有ステンレス鋼を確実に与えるのである。 In the above invention, the mass% of the component M in the consumable electrode is [% M], the mole fraction of the content Q in the slag is {mfQ}, and the slag is Y = log ([% B]. 4 / [% Si] 3 ) If X = log ({mfB 2 O 3 } 2 / {mfSiO 2 } 3 ), the component composition within the range of -5.1 ≤ Y-X ≤ -4.6 It may be characterized by having. According to such an invention, a boron-containing stainless steel capable of further optimizing the obtained amount of B and improving the high-temperature mechanical strength is surely provided.
本発明による1つの実施例であるボロン含有ステンレス鋼の製造方法について、図1を用いて詳細を説明する。 A method for producing a boron-containing stainless steel, which is one embodiment of the present invention, will be described in detail with reference to FIG.
本実施例において、得ようとするボロン含有ステンレス鋼は、質量%で、C:0.08〜0.40%、Cr:8〜14%を少なくとも含む。また、Bを0.0010〜0.0300%で含有させるとともにAlを0.01%以下に抑制したことで、鋼塊にBを分布させ、その後の処理においてBN微細粒子を粒界に析出させ得るようにして、耐クリープ特性などの高温機械強度に優れるようにすることを意図している。 In this example, the boron-containing stainless steel to be obtained contains at least C: 0.08 to 0.40% and Cr: 8 to 14% in mass%. Further, by containing B at 0.0010 to 0.0300% and suppressing Al to 0.01% or less, B is distributed in the steel ingot, and BN fine particles are precipitated at the grain boundaries in the subsequent treatment. It is intended to be obtained and to have excellent high temperature mechanical strength such as creep resistance.
このような鋼は、消耗電極とスラグを用いたESR(エレクトロスラグ再溶解)などの二次溶解法によって製造することができる。なお、二次溶解は、不活性ガスもしくは真空をベースに、アルゴンや窒素などを調整した雰囲気中で行われることが好ましい。 Such steel can be produced by a secondary melting method such as ESR (electroslag remelting) using a consumable electrode and slag. The secondary dissolution is preferably carried out in an atmosphere in which argon, nitrogen or the like is adjusted based on an inert gas or vacuum.
ここで、図1に示すように、消耗電極の材料としては、例えば鋼種A〜Dの4種類の成分組成を有する鋼を用い得る。なお、本実施例において用い得る消耗電極の材料となる鋼の成分組成としては、質量%で、C:0.08〜0.40%、Ni:2.5%以下、Cr:8〜14%、V:0.1〜0.3%、Co:0.5〜3.5%、Nb:0.03〜0.10%、B:0.0010〜0.0300%、N:0.0100〜0.0500%として含み、Alの含有量を0.01%以下、Siの含有量を0.10%以下にそれぞれ制御したものが好ましい。また、これらの鋼においては、不可避的不純物として、P、S、Cu、Pb、As、Sn、Sb、Ti、O、Hなどを含み得る。 Here, as shown in FIG. 1, as the material of the consumable electrode, for example, steel having four kinds of component compositions of steel grades A to D can be used. The composition of steel used as a material for the consumable electrode that can be used in this example is C: 0.08 to 0.40%, Ni: 2.5% or less, Cr: 8 to 14% in mass%. , V: 0.1 to 0.3%, Co: 0.5 to 3.5%, Nb: 0.03 to 0.10%, B: 0.0010 to 0.0300%, N: 0.0100 It is preferably contained as ~ 0.0500%, and the Al content is controlled to 0.01% or less and the Si content is controlled to 0.10% or less. Further, these steels may contain P, S, Cu, Pb, As, Sn, Sb, Ti, O, H and the like as unavoidable impurities.
一方、スラグは、比抵抗の低下を抑制すべく少なくともAl2O3を含むスラグであって、質量%で、CaO:20〜40%、Al2O3:20〜40%、SiO2:6〜15%、残部CaF2とした組成を有するAl2O3−CaO−CaF2系スラグである。このような組成範囲とすることで、二次溶解において電気抵抗値の低下を抑制するとともに、消耗電極からの溶湯とスラグとのメタル−スラグ反応をバランスさせて、メタルプール中のAl量を抑制できる。Al量を抑制することで、得られた鋼塊においてAl窒化物の生成が抑制され、Al窒化物以外の窒化物を生成するようNを残存させ、結果として、BNの形成を促進させるのである。上記したように、Al2O3を減じることでスラグの比抵抗が低下してしまうため、比抵抗の低下を抑制すべく所定量のAl2O3を含むスラグを用いる。このようなスラグは、特に、10トン以上の大型鋼塊を得る場合などにおいて好ましい。 On the other hand, the slag is a slag containing at least Al 2 O 3 in order to suppress a decrease in specific resistance, and is CaO: 20 to 40%, Al 2 O 3 : 20 to 40%, SiO 2 : 6 in mass%. 15%, an Al 2 O 3 -CaO-CaF 2 slag having a composition with the remainder CaF 2. By setting such a composition range, the decrease in the electric resistance value in the secondary melting is suppressed, and the metal-slag reaction between the molten metal from the consumable electrode and the slag is balanced, and the amount of Al in the metal pool is suppressed. can. By suppressing the amount of Al, the formation of Al nitride is suppressed in the obtained steel ingot, N remains so as to form a nitride other than Al nitride, and as a result, the formation of BN is promoted. .. As described above, because the lowered specific resistance of slag by reducing the Al 2 O 3, using a slag containing Al 2 O 3 of a predetermined amount so as to suppress a decrease in specific resistance. Such slag is particularly preferable when obtaining a large ingot of 10 tons or more.
また、スラグには、添加物として2質量%以下でB2O3を更に含んでもよい。ここで、消耗電極中の成分Mの質量%を[%M]、スラグ中の含有物Qのモル分率を{mfQ}として、
Y=log([%B]4/[%Si]3) (式1)
X=log({mfB2O3}2/{mfSiO2}3) (式2)
とすると、−5.1≦Y−X≦−4.6の範囲内とすることが好ましい。これによって、得られる鋼塊内におけるAlの含有量を抑えることが容易となる。
Further, the slag may further contain B 2 O 3 as an additive in an amount of 2% by mass or less. Here, the mass% of the component M in the consumable electrode is [% M], and the mole fraction of the content Q in the slag is {mfQ}.
Y = log ([% B] 4 / [% Si] 3 ) (Equation 1)
X = log ({mfB 2 O 3 } 2 / {mfSiO 2 } 3 ) (Equation 2)
Then, it is preferable that the range is -5.1 ≤ Y-X ≤ -4.6. This makes it easy to suppress the Al content in the obtained ingot.
かかるメタル−スラグ反応は、下記平衡式によって制御され得る。ここで、[ ]はメタル中の成分、{ }はスラグ中の成分である。
平衡の式a:4[Al]+3{SiO2}⇔2{Al2O3}+3[Si]
平衡の式b:3[Si]+2{B2O3}⇔3{SiO2}+4[B]
平衡の式c:2[Al]+{B2O3}⇔{Al2O3}+2[B]
Such a metal-slag reaction can be controlled by the following equilibrium equation. Here, [] is a component in metal, and {} is a component in slag.
Equilibrium equation a: 4 [Al] +3 {SiO 2 } ⇔ 2 {Al 2 O 3 } + 3 [Si]
Equilibrium equation b: 3 [Si] +2 {B 2 O 3 } ⇔ 3 {SiO 2 } + 4 [B]
Equilibrium equation c: 2 [Al] + {B 2 O 3 } ⇔ {Al 2 O 3 } + 2 [B]
これらの平衡の式において、本実施例では、スラグの組成成分を制御することでメタル中でのAlの含有量を抑制するとともに必要なBの含有量を確保するようにバランスさせる。例えば、SiO2を多くすることで平衡の式aは右辺に進行しやすくなり、メタル中のAlの含有量を抑えることができる。 In these equilibrium equations, in this embodiment, the composition component of the slag is controlled to suppress the Al content in the metal and balance it so as to secure the required B content. For example, by increasing the amount of SiO 2 , the equilibrium equation a tends to proceed to the right side, and the Al content in the metal can be suppressed.
以上のようなボロン含有ステンレス鋼の製造方法によって、鋼塊にBを分布させて、BNの微細粒子を析出させ得るようにして、高温機械強度の向上を可能とする。すなわち、BNと窒化において競合するAl量を抑制させるよう、スラグ組成を調整するのである。 By the above-mentioned method for producing boron-containing stainless steel, B can be distributed in the ingot so that fine particles of BN can be deposited, and high-temperature mechanical strength can be improved. That is, the slag composition is adjusted so as to suppress the amount of Al that competes with BN in nitriding.
[実施例]
以下、上記した消耗電極及びスラグを用いた二次溶解法によるボロン含有ステンレス鋼の製造方法によって鋼塊を製造した結果について、図1乃至図4を用いて説明する。
[Example]
Hereinafter, the results of producing ingots by the method for producing boron-containing stainless steel by the secondary melting method using the consumable electrodes and slag described above will be described with reference to FIGS. 1 to 4.
ここでは、図1に示すように、代表成分である鋼種A〜Dを消耗電極の材料として用いた。 Here, as shown in FIG. 1, steel grades A to D, which are representative components, were used as the material for the consumable electrode.
図2に示すように、各鋼種A〜Dによる消耗電極と、各スラグ組成を有するスラグとを用いた実施例1〜5、比較例1及び2によって、それぞれ二次溶解法で鋼塊を製造した。 As shown in FIG. 2, steel ingots are produced by a secondary melting method according to Examples 1 to 5 and Comparative Examples 1 and 2 using consumable electrodes of each steel type A to D and slag having each slag composition. did.
図3には鋼塊を製造した結果として、製造に用いた電極及びスラグの組成に関する上記した式1によるXの値、式2によるYの値、及び、Y−Xの値と、得られた鋼塊中におけるBのばらつき及びAlの含有量を示した。Bのばらつきについては、鋼塊のTop側、中央、Bottom側からそれぞれサンプルを切り出してBの含有量を定量し、それらの最大値から最小値を減じてこれを平均値で除した上で、百分率で示した。 As a result of manufacturing the ingot, FIG. 3 shows the X value according to the above formula 1, the Y value according to the formula 2, and the YX value regarding the composition of the electrode and the slag used for the production. The variation of B and the content of Al in the ingot are shown. Regarding the variation of B, samples are cut out from the Top side, the center, and the Bottom side of the ingot, the content of B is quantified, the minimum value is subtracted from the maximum value, and this is divided by the average value. Shown as a percentage.
実施例1〜5で得られた鋼塊において、Alの含有量は0.002%と少なかった。つまり、スラグの成分組成を制御することで、得られる鋼塊のAlの含有量を抑制できている。 In the steel ingots obtained in Examples 1 to 5, the Al content was as low as 0.002%. That is, by controlling the component composition of the slag, the Al content of the obtained ingot can be suppressed.
これに対し、比較例1及び2では、いずれもスラグのSiO2の含有量を0.4%と少なくしており、得られた鋼塊のAlの含有量がそれぞれ0.008質量%及び0.011質量%として実施例1〜5に比べて多くなった。上記した平衡の式aにより、SiO2の含有量を少なくすることでメタル中のAlの含有量を多くしやすく、そのため得られた鋼塊においてもAlの含有量を多くしてしまったものと考えられる。 On the other hand, in Comparative Examples 1 and 2, the content of SiO 2 in the slag was as low as 0.4%, and the Al content of the obtained ingot was 0.008% by mass and 0, respectively. The amount was increased to 0.011% by mass as compared with Examples 1 to 5. According to the above equilibrium formula a, it is easy to increase the Al content in the metal by reducing the content of SiO 2 , and therefore the Al content is also increased in the obtained steel ingot. Conceivable.
ここで、図4を併せて参照すると、実施例1〜5、比較例1及び2のそれぞれについて(X,Y)をグラフにプロットした。得られた鋼塊におけるAlの含有量の少ない実施例1〜5では上記したY−Xの値が−5.1以上かつ−4.6以下の範囲内となった。これに対し、Alの含有量の多い比較例1及び2では、Y−Xの値がその範囲外となった。つまり、消耗電極の合金及びスラグの組成は、上記した式1及び式2に基づいて−5.1≦Y−X≦−4.6となるように調整されることが好ましく、これによって得られる鋼塊中のAlの含有量を少なくすることを容易とするのである。 Here, referring to FIG. 4 together, (X, Y) are plotted on the graph for each of Examples 1 to 5 and Comparative Examples 1 and 2. In Examples 1 to 5 in which the Al content in the obtained steel ingot was low, the above-mentioned YX value was in the range of −5.1 or more and -4.6 or less. On the other hand, in Comparative Examples 1 and 2 having a high Al content, the value of YX was out of the range. That is, the composition of the alloy of the consumable electrode and the slag is preferably adjusted to be −5.1 ≦ Y−X ≦ -4.6 based on the above formulas 1 and 2, and is obtained thereby. This makes it easy to reduce the Al content in the ingot.
なお、消耗電極に用いた鋼種A〜Dは、それぞれ成分組成に差異を有するが、得られる鋼塊中のAlの含有量に関しては同等の成分組成を有している。例えば、鋼種Dは比較例1にのみ用いられているが、消耗電極の鋼種の成分組成から算出されるYの値を他の鋼種A〜Cと同等としている。つまり、比較例1においてAlの含有量を多くした主な原因は、消耗電極の成分組成ではなくスラグの組成にあると言える。 The steel types A to D used for the consumable electrode have different component compositions, but have the same component composition with respect to the Al content in the obtained ingot. For example, the steel grade D is used only in Comparative Example 1, but the value of Y calculated from the component composition of the steel grade of the consumable electrode is the same as that of the other steel grades A to C. That is, it can be said that the main reason for increasing the Al content in Comparative Example 1 is not the component composition of the consumable electrode but the composition of the slag.
ところで、上記したボロン含有ステンレス鋼の製造方法に用いられるスラグの組成範囲は以下のように定められる。 By the way, the composition range of slag used in the above-mentioned method for producing boron-containing stainless steel is defined as follows.
CaOは、精錬能の確保のために20質量%以上とし、鋼塊肌を良好に保ち歩留まりの悪化を防ぐために40質量%以下とした。 The CaO was set to 20% by mass or more in order to secure the refining ability, and 40% by mass or less in order to keep the ingot skin good and prevent deterioration of the yield.
Al2O3は、Al2O3−CaO−CaF2系スラグにおける比抵抗の低下を抑制するために20質量%以上とし、鋼塊肌を良好に保ち歩留まりの悪化を防ぐために40質量%以下とした。 Al 2 O 3 is 20% by mass or more in order to suppress a decrease in specific resistance in Al 2 O 3- CaO-CaF 2 system slag, and 40% by mass or less in order to maintain good steel ingot skin and prevent deterioration of yield. And said.
SiO2は、Alの増加による窒素のピックアップを抑制するため6質量%以上とし、SiO2の量によって添加すべき量の増加するB2O3を少なくしてコストの悪化を避けるように15質量%以下とした。 SiO 2 is set to 6% by mass or more in order to suppress nitrogen pickup due to an increase in Al, and 15 mass is used so as to reduce the amount of B 2 O 3 to be added depending on the amount of SiO 2 and avoid deterioration of cost. % Or less.
B2O3は、Bの歩留まりを確保するために2質量%以下で添加してもよい。 B 2 O 3 may be added in an amount of 2% by mass or less in order to secure the yield of B.
CaFは、上記した他の成分の残部としてスラグに配合されるが、粘性の増大を避けて操業の安定性を確保するため30質量%以上とすることが好ましい。 CaF is added to the slag as the remainder of the other components described above, but it is preferably 30% by mass or more in order to avoid an increase in viscosity and ensure operational stability.
ここまで本発明による代表的実施例及びこれに基づく改変例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例を見出すことができるであろう。
Although typical examples according to the present invention and modifications based on the same have been described so far, the present invention is not necessarily limited thereto. One of ordinary skill in the art will be able to find various alternative embodiments without departing from the attached claims.
Claims (3)
C:0.08〜0.40%、
Cr:8〜14%、
Ni:2.5%以下、
V:0.1〜0.3%、
Co:0.5〜3.5%、
Nb:0.03〜0.10%、
B:0.0010〜0.0300%、及び、
N:0.0100〜0.0500%、を含み、残部Fe及び不可避的不純物とするとともに、Al及びSiの含有量をそれぞれ0.010%以下及び0.10%以下に抑制した成分組成を有する消耗電極及びスラグを用いた二次溶解法によるボロン含有ステンレス鋼の製造方法であって、
前記スラグは、質量%で、CaO:20〜40%、Al2O3:20〜40%、SiO2:6〜15%を含み、残部CaF2及び不可避的不純物からなることを特徴とするボロン含有ステンレス鋼の製造方法。 By mass%,
C: 0.08 to 0.40%,
Cr: 8-14%,
Ni: 2.5% or less,
V: 0.1 to 0.3%,
Co: 0.5-3.5%,
Nb: 0.03 to 0.10%,
B: 0.0010 to 0.0300% and
N: Containing 0.0100 to 0.0500%, the balance Fe and unavoidable impurities, and having a component composition in which the contents of Al and Si are suppressed to 0.010% or less and 0.10% or less, respectively. A method for producing boron-containing stainless steel by a secondary melting method using consumable electrodes and slag.
The slag, in mass%, CaO: 20~40%, Al 2 O 3: 20~40%, SiO 2: 6 to 15 percent free free, characterized in that the balance CaF 2 and unavoidable impurities A method for manufacturing stainless steel containing boron.
前記スラグは、
Y=log([%B]4/[%Si]3)
X=log({mfB2O3}2/{mfSiO2}3)とすると、
−5.1≦Y−X≦−4.6
の範囲内となる成分組成を有することを特徴とする請求項1又は2に記載のボロン含有ステンレス鋼の製造方法。 The mass% of the component M in the consumable electrode is [% M], and the mole fraction of the content Q in the slag is {mfQ}.
The slag is
Y = log ([% B] 4 / [% Si] 3 )
If X = log ({mfB 2 O 3 } 2 / {mfSiO 2 } 3 ),
-5.1 ≤ Y-X ≤ -4.6
The method for producing a boron-containing stainless steel according to claim 1 or 2, which has a component composition within the range of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017204678A JP6982795B2 (en) | 2017-10-23 | 2017-10-23 | Manufacturing method of boron-containing stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017204678A JP6982795B2 (en) | 2017-10-23 | 2017-10-23 | Manufacturing method of boron-containing stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019077910A JP2019077910A (en) | 2019-05-23 |
JP6982795B2 true JP6982795B2 (en) | 2021-12-17 |
Family
ID=66628291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017204678A Active JP6982795B2 (en) | 2017-10-23 | 2017-10-23 | Manufacturing method of boron-containing stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6982795B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111139365B (en) * | 2020-03-02 | 2021-10-22 | 上海一郎合金材料有限公司 | Slag system for smelting GH3625 nickel-based alloy containing rare earth Ce and electroslag remelting method thereof |
CN116144937A (en) * | 2023-01-04 | 2023-05-23 | 成都先进金属材料产业技术研究院股份有限公司 | Electroslag mixing method for inhibiting boron element burning loss in boron-containing nitrogen-containing heat-resistant steel |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103045962B (en) * | 2012-12-26 | 2014-11-05 | 钢铁研究总院 | Steel for steam-temperature ultra-supercritical thermal power unit and preparation method thereof |
-
2017
- 2017-10-23 JP JP2017204678A patent/JP6982795B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019077910A (en) | 2019-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6786964B2 (en) | How to prevent blockage of continuous casting nozzle of sulfur-added steel | |
JP4460462B2 (en) | Method for preventing nozzle clogging in continuous casting of steel | |
JP6982795B2 (en) | Manufacturing method of boron-containing stainless steel | |
JP6937190B2 (en) | Ni-Cr-Mo-Nb alloy and its manufacturing method | |
WO2022210651A1 (en) | Duplex stainless steel wire rod, and duplex stainless steel wire | |
JP5155141B2 (en) | Method for refining Ni-base alloy with excellent hot workability | |
JP6392179B2 (en) | Method for deoxidizing Ti-Al alloy | |
JP7010094B2 (en) | Manufacturing method of stainless steel slabs | |
JP2019077909A (en) | Manufacturing method of boron-containing stainless steel | |
KR20170026590A (en) | Method for controlling ti concentration in steel, and method for producing silicon-deoxidized steel | |
JP5047477B2 (en) | Secondary refining method for high Al steel | |
JP2005023346A (en) | METHOD OF REFINING Ni BASED ALLOY HAVING EXCELLENT HOT WORKABILITY | |
JP6809243B2 (en) | Continuously cast steel slabs and their manufacturing methods | |
JPH09194962A (en) | Slag for electroslag remelting for ni base superalloy material and method for electroslag remelting for the same superalloy material | |
WO2007094265A1 (en) | Raw material phosphor bronze alloy for casting of semi-molten alloy | |
JP4653629B2 (en) | Method for producing Ti-containing chromium-containing molten steel | |
JPH108210A (en) | Wear resistant high manganese cast steel | |
JP2008266706A (en) | Method for continuously casting ferritic stainless steel slab | |
JPS60228631A (en) | Manufacture of titanium alloy | |
JPH08225820A (en) | Production of high carbon silicon killed steel | |
JP6544638B2 (en) | Method of manufacturing Ti-containing maraging steel and method of manufacturing preform thereof | |
JPH0578729A (en) | Method for making ingot of low nitrogen steel containing rare earth element | |
JP3573344B2 (en) | Manufacturing method of highly clean maraging steel | |
EP3802899B1 (en) | Silicon based alloy, method for the production thereof and use of such alloy | |
JPH11199955A (en) | Titanium alloy for casting, excellent in impact resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210720 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211022 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6982795 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |