JP2019077910A - Manufacturing method of boron-containing stainless steel - Google Patents

Manufacturing method of boron-containing stainless steel Download PDF

Info

Publication number
JP2019077910A
JP2019077910A JP2017204678A JP2017204678A JP2019077910A JP 2019077910 A JP2019077910 A JP 2019077910A JP 2017204678 A JP2017204678 A JP 2017204678A JP 2017204678 A JP2017204678 A JP 2017204678A JP 2019077910 A JP2019077910 A JP 2019077910A
Authority
JP
Japan
Prior art keywords
slag
boron
mass
stainless steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017204678A
Other languages
Japanese (ja)
Other versions
JP6982795B2 (en
Inventor
駿介 成田
Shunsuke Narita
駿介 成田
俊一 及川
Shunichi Oikawa
俊一 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2017204678A priority Critical patent/JP6982795B2/en
Publication of JP2019077910A publication Critical patent/JP2019077910A/en
Application granted granted Critical
Publication of JP6982795B2 publication Critical patent/JP6982795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a manufacturing method of a boron-containing stainless steel by a secondary melting using a slag containing AlOand a consumable electrode for suppressing reduction of specific electric resistance, which provides high temperature mechanical strength with considering a slag component affects on deposition of BN particles.SOLUTION: There is provided a manufacturing method for providing a boron-containing stainless steel having a component composition, in which at least, by mass%, C:0.08 to 0.40% and Cr:8 to 14% are contained and Al is suppressed to 0.01% or less although B:0.0010 to 0.0300% is contained for depositing BN fine particles, by a secondary dissolution method using a consumable electrode containing at least AlOand a slag. The slag contains, by mass%, CaO:20 to 40%, AlO:20 to 40%, and SiO:6 to 15%, may contain BOof 2% or less as an additive, and consists of the balance CaFwith inevitable impurities by balancing a metal-slag reaction.SELECTED DRAWING: None

Description

本発明は、少なくともAlを含むスラグ及び消耗電極を用いた二次溶解法によるボロン含有ステンレス鋼の製造方法に関し、特に、BN(ボロンナイトライド)の微細粒子による高温機械強度の向上を与え得るボロン含有ステンレス鋼の製造方法に関する。 The present invention relates to a method of producing a boron-containing stainless steel by secondary melting method using a slag containing at least Al 2 O 3 and a consumable electrode, and in particular, an improvement of high temperature mechanical strength by fine particles of BN (boron nitride) The present invention relates to a method of producing a boron-containing stainless steel that can be provided.

スラグと消耗電極を用いたESR(Electro-Slag Remelting)法による鋼の二次溶解法において、消耗電極の下端で生成した滴はスラグ中を落下して、メタルプールを経て凝固し鋼塊を形成する。つまり、スラグ中でのメタル−スラグ反応を制御することで鋼塊の成分組成を調整することができる。   In the secondary melting method of steel by ESR (Electro-Slag Remelting) method using slag and consumable electrode, the droplets formed at the lower end of the consumable electrode fall in the slag and solidify through the metal pool to form steel ingot Do. That is, the component composition of the steel ingot can be adjusted by controlling the metal-slag reaction in the slag.

例えば、特許文献1では、Ti及びAlを含有する耐熱鋼のESR法による製造方法において、スラグの成分組成を調整することでTi及びAlの成分変動を抑え、成分偏析の少ないインゴットを得ようとする製造方法を開示している。スラグは、Al−CaO(生石灰)−CaF(ホタル石)系であって、CaFに、質量%で、5%≦Al≦30%、CaO≦15%を与え、更に、1%≦TiO≦15%を与えた組成を有している。これにより、消耗電極中のTi及びAlと、スラグ中のTiO及びAlのバランスを制御できる。なお、対象とする鋼は、質量%で0.5%≦Ti≦5.0%、0.1%≦Al≦2.0%を含む成分組成である。 For example, in Patent Document 1, in the production method of a heat-resistant steel containing Ti and Al according to the ESR method, the component composition of the slag is adjusted to suppress the component fluctuation of Ti and Al and obtain an ingot with less component segregation. Discloses a manufacturing method. The slag is an Al 2 O 3 -CaO (quick lime) -CaF 2 (fluorite) system, which gives 5% ≦ Al 2 O 3 ≦ 30%, CaO ≦ 15% by mass% to CaF 2 , Furthermore, it has a composition giving 1% ≦ TiO 2 ≦ 15%. This makes it possible to control the balance between Ti and Al in the consumable electrode and TiO 2 and Al 2 O 3 in the slag. In addition, the target steel is a component composition including 0.5% ≦ Ti ≦ 5.0% and 0.1% ≦ Al ≦ 2.0% by mass.

同様に、Bを含有する鋼のESR法による製造方法においても、スラグの成分組成を調整することが提案されている。   Similarly, in the method of producing B-containing steel by the ESR method, it is proposed to adjust the composition of the slag.

例えば、特許文献2では、Bを含有する耐熱鋼のESR法による製造方法において、消耗電極のSiとBの成分量に合わせてスラグ中のSiOとBの成分量を調整することで、溶鋼の成分組成中のBの成分量を制御する耐熱鋼の製造方法を開示している。かかる製造方法において用いられるスラグは、Al−CaO−CaFにフラックスとしてSiOとともにBを与えたものである。ここで、溶鋼成分とスラグ成分との間では、
3(SiO)+4B=2(B)+3Si
の反応が生じるため、SiOの存在下ではBが酸化されて成分偏析や目標成分値からの逸脱を生じさせるとしている。そこで、スラグ中のSiOとBの成分量を所定の式を満たすように調整することで、上記反応式の両辺のバランスを制御し溶鋼中でのBの成分量を制御している。
For example, in Patent Document 2, in the method of manufacturing B-containing heat-resistant steel according to the ESR method, adjusting the amounts of SiO 2 and B 2 O 3 in the slag according to the amounts of Si and B of the consumable electrode. Thus, a method for producing a heat-resistant steel is disclosed, which controls the amount of B in the component composition of molten steel. The slag used in this production method is one obtained by adding B 2 O 3 together with SiO 2 as a flux to Al 2 O 3 -CaO-CaF 2 . Here, between the molten steel component and the slag component,
3 (SiO 2) + 4B = 2 (B 2 O 3) + 3Si
In the presence of SiO 2 , B is oxidized to cause component segregation and deviation from the target component value. Therefore, by adjusting the amount of components of SiO 2 and B 2 O 3 in the slag to satisfy a predetermined equation, the balance of both sides of the above reaction formula is controlled, and the amount of component of B in molten steel is controlled. There is.

特開2012−241230号公報JP 2012-241230 A 特開2001−11546号公報Japanese Patent Application Publication No. 2001-11546

BNの微細粒子を利用してクリープなどの高温機械強度の向上を与えたBを含有する耐熱鋼が知られている。かかる耐熱鋼では、上記したようなAl−CaO−CaF系スラグを用いたメタル−スラグ反応において、Bの酸化物だけでなく、窒化物についても考慮する必要がある。ここで、特に、Alも酸化物だけでなく窒化物を形成するため、BNの微細粒子の析出状態を変化させ、高温機械強度にも影響を与え得る。そこで、特に、Al量を減じた耐熱鋼が提案され、これに合わせてスラグ中のAlを減じることが考慮される。しかしながら、スラグ中のAl量が低減されることでスラグの比抵抗が小さくなり、二次溶解法における電力消費量が増加し、また、消耗電極の溶解が難しくなる場合もある。かかる状況は、大型鋼塊を得ようとする場合に特に問題となり得る。 A heat-resistant steel containing B is known which has been improved in high temperature mechanical strength such as creep using fine particles of BN. In such a heat-resistant steel, it is necessary to consider not only oxides of B but also nitrides in the metal-slag reaction using the Al 2 O 3 -CaO-CaF 2 -based slag as described above. Here, in particular, Al forms not only oxides but also nitrides, so that the precipitation state of BN fine particles can be changed, and high-temperature mechanical strength can also be affected. Therefore, in particular, a heat resistant steel with a reduced amount of Al is proposed, and it is considered to reduce the amount of Al 2 O 3 in the slag according to this. However, as the amount of Al 2 O 3 in the slag is reduced, the specific resistance of the slag may be reduced, the power consumption in the secondary melting method may be increased, and it may be difficult to melt the consumable electrode. Such a situation can be particularly problematic when trying to obtain large steel ingots.

本発明はかかる状況に鑑みてなされたものであって、その目的とするところは、比抵抗の低下を抑制すべくAlを含むスラグと消耗電極を用いた二次溶解によるボロン含有ステンレス鋼の製造方法において、BN粒子の析出に影響を与えるスラグ成分を考慮し高温機械強度の向上を与え得るボロン含有ステンレス鋼の製造方法を提供することにある。 The present invention has been made in view of such circumstances, and the object of the present invention is to use boron-containing stainless steel by secondary melting using a slag containing Al 2 O 3 and a consumable electrode to suppress a decrease in specific resistance. It is an object of the present invention to provide a method for producing a boron-containing stainless steel capable of providing an improvement in high-temperature mechanical strength in consideration of a slag component which affects precipitation of BN particles in a method of producing steel.

本発明によるボロン含有ステンレス鋼の製造方法は、質量%で、C:0.08〜0.40%、Cr:8〜14%を少なくとも含み、BN微細粒子を析出させ得るよう、B:0.0010〜0.0300%を含む一方でとともに、Alを0.01%以下に抑制した成分組成のボロン含有ステンレス鋼を得るための少なくともAlを含むスラグ及び消耗電極を用いた二次溶解法による製造方法であって、前記スラグは、質量%で、CaO:20〜40%、Al:20〜40、SiO:6〜15%を含むとともに、添加物としてBを2%以下で含み得て、残部CaF及び不可避的不純物からなることを特徴とする。 The method for producing a boron-containing stainless steel according to the present invention contains at least by mass: C: 0.08 to 0.40%, Cr: 8 to 14%, and B: 0. B so that BN fine particles can be precipitated. Secondary dissolution using a slag and a consumable electrode containing at least Al 2 O 3 to obtain a boron-containing stainless steel having a component composition in which Al is suppressed to 0.01% or less while containing 0010 to 0.0300% The slag includes CaO: 20 to 40%, Al 2 O 3 : 20 to 40, SiO 2 : 6 to 15% by mass, and B 2 O 3 as an additive. May be contained at 2% or less, and the balance is characterized by consisting of the balance CaF 2 and unavoidable impurities.

かかる発明によれば、比抵抗の低下を抑制するようにAlを一定量含むAl−CaO−CaF系スラグでありながら、BNと窒化において競合し得る鋼中のAl量を抑制させてBNを形成し得るB量を適正化できて、BN微細粒子を析出させて高温機械強度を向上させ得るボロン含有ステンレス鋼を与えるのである。 According to the invention, while being Al 2 O 3 -CaO-CaF 2 slag containing Al 2 O 3 a certain amount so as to suppress a decrease in specific resistance, Al content in steel which may compete in BN nitride It is possible to optimize the amount of B capable of forming BN by suppressing B, and to provide a boron-containing stainless steel capable of precipitating BN fine particles and improving high-temperature mechanical strength.

上記した発明において、前記消耗電極は、質量%で、C:0.08〜0.40%、Cr:8〜14%、Ni:2.5%以下、V:0.1〜0.3%、Co:0.5〜3.5%、Nb:0.03〜0.10%、B:0.0010〜0.0300%、及び、N:0.0100〜0.0500%、を含み、残部Fe及び不可避的不純物とするとともに、Al及びSiの含有量をそれぞれ0.010%以下及び0.10%以下に抑制した成分組成を有することを特徴としてもよい。かかる発明によれば、上記したスラグ成分の範囲内でB量を適正化できて、結果として降温機械強度を向上させ得るボロン含有ステンレス鋼を確実に与えるのである。   In the above invention, the consumable electrode is, by mass%, C: 0.08 to 0.40%, Cr: 8 to 14%, Ni: 2.5% or less, V: 0.1 to 0.3% , Co: 0.5 to 3.5%, Nb: 0.03 to 0.10%, B: 0.0010 to 0.0300%, and N: 0.0100 to 0.0500%. It may be characterized by having a component composition in which the content of Al and Si is suppressed to 0.010% or less and 0.10% or less, respectively, as the balance Fe and the inevitable impurities. According to this invention, the amount of B can be optimized within the range of the above-mentioned slag component, and as a result, the boron-containing stainless steel which can improve the temperature-falling mechanical strength is surely given.

上記した発明において、前記消耗電極中の成分Mの質量%を[%M]、前記スラグ中の含有物Qのモル分率を{mfQ}として、前記スラグは、Y=log([%B]/[%Si]) X=log({mfB/{mfSiO)とすると、−5.1≦Y−X≦−4.6の範囲内となる成分組成を有することを特徴としてもよい。かかる発明によれば、得られるB量をより適正化し、高温機械強度を向上させ得るボロン含有ステンレス鋼を確実に与えるのである。 In the above-described invention, assuming that the mass% of the component M in the consumable electrode is [% M] and the molar fraction of the inclusion Q in the slag is {mf Q}, the slag has Y = log ([% B] Assuming that 4 / [% Si] 3 ) X = log ({mfB 2 O 3 } 2 / {mfSiO 2 } 3 ), the component composition within the range of −5.1 ≦ Y−X ≦ −4.6 It may be characterized by having. According to this invention, the boron content stainless steel which can make the amount of B obtained more appropriate and can improve high temperature mechanical strength is certainly given.

消耗電極に用いた鋼種の成分組成の一覧表である。It is a list of ingredient composition of a steel grade used for a consumption electrode. 消耗電極のSi及びBの含有量とスラグの組成の一覧表である。It is a list of content of Si and B of a consumption electrode, and a composition of slag. X、Y、Y−Xの値と得られた鋼塊中のBのばらつき及びAlの含有量の表である。It is a table | surface of the value of X, Y, Y-X value, dispersion | variation of B in the obtained steel ingot, and Al content. X、Yをプロットしたグラフである。It is the graph which plotted X and Y.

本発明による1つの実施例であるボロン含有ステンレス鋼の製造方法について、図1を用いて詳細を説明する。   A method of manufacturing a boron-containing stainless steel according to an embodiment of the present invention will be described in detail with reference to FIG.

本実施例において、得ようとするボロン含有ステンレス鋼は、質量%で、C:0.08〜0.40%、Cr:8〜14%を少なくとも含む。また、Bを0.0010〜0.0300%で含有させるとともにAlを0.01%以下に抑制したことで、鋼塊にBを分布させ、その後の処理においてBN微細粒子を粒界に析出させ得るようにして、耐クリープ特性などの高温機械強度に優れるようにすることを意図している。   In the present embodiment, the boron-containing stainless steel to be obtained at least contains at least C: 0.08 to 0.40% and Cr: 8 to 14% by mass. In addition, B is contained in 0.0010 to 0.0300% and Al is suppressed to 0.01% or less, whereby B is distributed to the steel ingot and BN fine particles are precipitated in grain boundaries in the subsequent processing. It is intended to obtain excellent high-temperature mechanical strength such as creep resistance.

このような鋼は、消耗電極とスラグを用いたESR(エレクトロスラグ再溶解)などの二次溶解法によって製造することができる。なお、二次溶解は、不活性ガスもしくは真空をベースに、アルゴンや窒素などを調整した雰囲気中で行われることが好ましい。   Such steels can be manufactured by secondary melting methods such as ESR (electroslag remelting) using consumable electrodes and slag. In addition, it is preferable that secondary melting is performed in the atmosphere which adjusted argon, nitrogen, etc. based on inert gas or a vacuum.

ここで、図1に示すように、消耗電極の材料としては、例えば鋼種A〜Dの4種類の成分組成を有する鋼を用い得る。なお、本実施例において用い得る消耗電極の材料となる鋼の成分組成としては、質量%で、C:0.08〜0.40%、Ni:2.5%以下、Cr:8〜14%、V:0.1〜0.3%、Co:0.5〜3.5%、Nb:0.03〜0.10%、B:0.0010〜0.0300%、N:0.0100〜0.0500%として含み、Alの含有量を0.01%以下、Siの含有量を0.10%以下にそれぞれ制御したものが好ましい。また、これらの鋼においては、不可避的不純物として、P、S、Cu、Pb、As、Sn、Sb、Ti、O、Hなどを含み得る。   Here, as shown in FIG. 1, as a material of the consumable electrode, for example, steel having four kinds of component compositions of steel types A to D can be used. In addition, as a component composition of the steel used as a material of the consumable electrode which can be used in a present Example, C: 0.08-0.40%, Ni: 2.5% or less, Cr: 8-14% by mass% , V: 0.1 to 0.3%, Co: 0.5 to 3.5%, Nb: 0.03 to 0.10%, B: 0.0010 to 0.0300%, N: 0.0100 It is preferable to control the content of Al as 0.01% or less and the content of Si as 0.10% or less. Moreover, in these steels, P, S, Cu, Pb, As, Sn, Sb, Ti, O, H etc. may be included as unavoidable impurities.

一方、スラグは、比抵抗の低下を抑制すべく少なくともAlを含むスラグであって、質量%で、CaO:20〜40%、Al:20〜40%、SiO:6〜15%、残部CaFとした組成を有するAl−CaO−CaF系スラグである。このような組成範囲とすることで、二次溶解において電気抵抗値の低下を抑制するとともに、消耗電極からの溶湯とスラグとのメタル−スラグ反応をバランスさせて、メタルプール中のAl量を抑制できる。Al量を抑制することで、得られた鋼塊においてAl窒化物の生成が抑制され、Al窒化物以外の窒化物を生成するようNを残存させ、結果として、BNの形成を促進させるのである。上記したように、Alを減じることでスラグの比抵抗が低下してしまうため、比抵抗の低下を抑制すべく所定量のAlを含むスラグを用いる。このようなスラグは、特に、10トン以上の大型鋼塊を得る場合などにおいて好ましい。 On the other hand, the slag is a slag containing at least Al 2 O 3 in order to suppress a decrease in specific resistance, and by mass%, CaO: 20 to 40%, Al 2 O 3 : 20 to 40%, SiO 2 : 6 15%, an Al 2 O 3 -CaO-CaF 2 slag having a composition with the remainder CaF 2. By setting it as such a composition range, while suppressing the fall of an electrical resistance value in secondary melting, the metal-slag reaction of the molten metal and slag from a consumable electrode is balanced, and the amount of Al in a metal pool is suppressed. it can. By suppressing the amount of Al, the formation of Al nitride is suppressed in the obtained steel ingot, N is left to form nitrides other than Al nitride, and as a result, the formation of BN is promoted. . As described above, because the lowered specific resistance of slag by reducing the Al 2 O 3, using a slag containing Al 2 O 3 of a predetermined amount so as to suppress a decrease in specific resistance. Such a slag is preferable particularly when obtaining a large steel ingot of 10 tons or more.

また、スラグには、添加物として2質量%以下でBを更に含んでもよい。ここで、消耗電極中の成分Mの質量%を[%M]、スラグ中の含有物Qのモル分率を{mfQ}として、
Y=log([%B]/[%Si]) (式1)
X=log({mfB/{mfSiO) (式2)
とすると、−5.1≦Y−X≦−4.6の範囲内とすることが好ましい。これによって、得られる鋼塊内におけるAlの含有量を抑えることが容易となる。
In addition, the slag may further contain B 2 O 3 at 2 % by mass or less as an additive. Here, the% by mass of the component M in the consumable electrode is [% M], and the molar fraction of the inclusion Q in the slag is {mf Q},
Y = log ([% B] 4 / [% Si] 3 ) (Equation 1)
X = log ({mfB 2 O 3 } 2 / {mfSiO 2 } 3 ) (Equation 2)
Then, it is preferable to set in the range of −5.1 ≦ Y−X ≦ −4.6. This makes it easy to reduce the content of Al in the obtained steel ingot.

かかるメタル−スラグ反応は、下記平衡式によって制御され得る。ここで、[ ]はメタル中の成分、{ }はスラグ中の成分である。
平衡の式a:4[Al]+3{SiO}⇔2{Al}+3[Si]
平衡の式b:3[Si]+2{B}⇔3{SiO}+4[B]
平衡の式c:2[Al]+{B}⇔{Al}+2[B]
Such metal-slag reaction can be controlled by the following equilibrium equation. Here, [] is a component in metal and {} is a component in slag.
Equilibrium equation a: 4 [Al] + 3 {SiO 2 } ⇔ 2 {Al 2 O 3 } + 3 [Si]
Equation of equilibrium b: 3 [Si] + 2 {B 2 O 3 } ⇔ 3 {SiO 2 } + 4 [B]
Equilibrium equation c: 2 [Al] + {B 2 O 3 } ⇔ {Al 2 O 3 } + 2 [B]

これらの平衡の式において、本実施例では、スラグの組成成分を制御することでメタル中でのAlの含有量を抑制するとともに必要なBの含有量を確保するようにバランスさせる。例えば、SiOを多くすることで平衡の式aは右辺に進行しやすくなり、メタル中のAlの含有量を抑えることができる。 In these equations of equilibrium, in the present embodiment, by controlling the composition component of the slag, the content of Al in the metal is suppressed, and the necessary content of B is secured. For example, by increasing the amount of SiO 2 , the equilibrium expression a can easily progress to the right side, and the content of Al in the metal can be suppressed.

以上のようなボロン含有ステンレス鋼の製造方法によって、鋼塊にBを分布させて、BNの微細粒子を析出させ得るようにして、高温機械強度の向上を可能とする。すなわち、BNと窒化において競合するAl量を抑制させるよう、スラグ組成を調整するのである。   By the method of manufacturing a boron-containing stainless steel as described above, B can be distributed in a steel ingot so that fine particles of BN can be precipitated, and high temperature mechanical strength can be improved. That is, the slag composition is adjusted so as to suppress the amount of Al competing with BN in nitriding.

[実施例]
以下、上記した消耗電極及びスラグを用いた二次溶解法によるボロン含有ステンレス鋼の製造方法によって鋼塊を製造した結果について、図1乃至図4を用いて説明する。
[Example]
Hereinafter, the result of producing a steel ingot by the method for producing a boron-containing stainless steel by the secondary melting method using the consumable electrode and the slag described above will be described using FIGS. 1 to 4.

ここでは、図1に示すように、代表成分である鋼種A〜Dを消耗電極の材料として用いた。   Here, as shown in FIG. 1, steel types A to D, which are representative components, were used as the material of the consumable electrode.

図2に示すように、各鋼種A〜Dによる消耗電極と、各スラグ組成を有するスラグとを用いた実施例1〜5、比較例1及び2によって、それぞれ二次溶解法で鋼塊を製造した。   As shown in FIG. 2, steel ingots are produced by the secondary melting method in each of Examples 1 to 5 and Comparative Examples 1 and 2 using consumable electrodes of each steel type A to D and slag having each slag composition. did.

図3には鋼塊を製造した結果として、製造に用いた電極及びスラグの組成に関する上記した式1によるXの値、式2によるYの値、及び、Y−Xの値と、得られた鋼塊中におけるBのばらつき及びAlの含有量を示した。Bのばらつきについては、鋼塊のTop側、中央、Bottom側からそれぞれサンプルを切り出してBの含有量を定量し、それらの最大値から最小値を減じてこれを平均値で除した上で、百分率で示した。   In FIG. 3, as a result of producing a steel ingot, the value of X according to the equation 1 described above, the value of Y according to the equation 2 and the value of Y-X with respect to the composition of the electrode and slag used for production were obtained The variation of B and the content of Al in the steel ingot are shown. Samples are cut from the top side, center, and bottom side of the steel ingot to determine the B variation, the B content is quantified, the minimum value is subtracted from the maximum value, and this is divided by the average value, It is shown as a percentage.

実施例1〜5で得られた鋼塊において、Alの含有量は0.002%と少なかった。つまり、スラグの成分組成を制御することで、得られる鋼塊のAlの含有量を抑制できている。   In the steel ingots obtained in Examples 1 to 5, the content of Al was as low as 0.002%. That is, by controlling the component composition of the slag, the content of Al in the steel ingot obtained can be suppressed.

これに対し、比較例1及び2では、いずれもスラグのSiOの含有量を0.4%と少なくしており、得られた鋼塊のAlの含有量がそれぞれ0.008質量%及び0.011質量%として実施例1〜5に比べて多くなった。上記した平衡の式aにより、SiOの含有量を少なくすることでメタル中のAlの含有量を多くしやすく、そのため得られた鋼塊においてもAlの含有量を多くしてしまったものと考えられる。 On the other hand, in Comparative Examples 1 and 2, the content of SiO 2 in the slag is reduced to 0.4%, and the content of Al in the obtained steel ingot is 0.008% by mass and 0, respectively. .011% by mass was increased as compared with Examples 1 to 5. The content of Al in the metal can be easily increased by decreasing the content of SiO 2 according to the above-mentioned equation of equilibrium a, and therefore the content of Al in the obtained steel ingot is also increased. Conceivable.

ここで、図4を併せて参照すると、実施例1〜5、比較例1及び2のそれぞれについて(X,Y)をグラフにプロットした。得られた鋼塊におけるAlの含有量の少ない実施例1〜5では上記したY−Xの値が−5.1以上かつ−4.6以下の範囲内となった。これに対し、Alの含有量の多い比較例1及び2では、Y−Xの値がその範囲外となった。つまり、消耗電極の合金及びスラグの組成は、上記した式1及び式2に基づいて−5.1≦Y−X≦−4.6となるように調整されることが好ましく、これによって得られる鋼塊中のAlの含有量を少なくすることを容易とするのである。   Here, referring to FIG. 4 together, (X, Y) was plotted on a graph for each of Examples 1 to 5 and Comparative Examples 1 and 2. In Examples 1 to 5 in which the content of Al in the obtained steel ingot is small, the value of Y-X described above is in the range of -5.1 or more and -4.6 or less. On the other hand, in Comparative Examples 1 and 2 in which the content of Al is large, the value of Y-X was out of the range. That is, it is preferable that the composition of the alloy and the slag of the consumable electrode be adjusted to satisfy −5.1 ≦ Y−X ≦ −4.6 based on the equation 1 and the equation 2 described above. It is easy to reduce the content of Al in the steel ingot.

なお、消耗電極に用いた鋼種A〜Dは、それぞれ成分組成に差異を有するが、得られる鋼塊中のAlの含有量に関しては同等の成分組成を有している。例えば、鋼種Dは比較例1にのみ用いられているが、消耗電極の鋼種の成分組成から算出されるYの値を他の鋼種A〜Cと同等としている。つまり、比較例1においてAlの含有量を多くした主な原因は、消耗電極の成分組成ではなくスラグの組成にあると言える。   The steel types A to D used for the consumable electrode have differences in component compositions, but have similar component compositions as to the content of Al in the steel ingot obtained. For example, steel type D is used only in comparative example 1, but the value of Y calculated from the component composition of the steel type of the consumable electrode is made equal to the other steel types A to C. That is, it can be said that the main reason for increasing the content of Al in Comparative Example 1 is not the component composition of the consumable electrode but the composition of slag.

ところで、上記したボロン含有ステンレス鋼の製造方法に用いられるスラグの組成範囲は以下のように定められる。   By the way, the composition range of the slag used for the manufacturing method of the above-mentioned boron containing stainless steel is defined as follows.

CaOは、精錬能の確保のために20質量%以上とし、鋼塊肌を良好に保ち歩留まりの悪化を防ぐために40質量%以下とした。   CaO is 20% by mass or more to secure the refining ability, and 40% by mass or less to keep the steel ingot surface well and prevent the deterioration of the yield.

Alは、Al−CaO−CaF系スラグにおける比抵抗の低下を抑制するために20質量%以上とし、鋼塊肌を良好に保ち歩留まりの悪化を防ぐために40質量%以下とした。 Al 2 O 3 is 20% by mass or more in order to suppress a decrease in specific resistance in Al 2 O 3 -CaO-CaF 2 type slag, and 40% by mass or less in order to keep steel ingot surface well and prevent deterioration of yield And

SiOは、Alの増加による窒素のピックアップを抑制するため6質量%以上とし、SiOの量によって添加すべき量の増加するBを少なくしてコストの悪化を避けるように15質量%以下とした。 The amount of SiO 2 is 6% by mass or more in order to suppress the pickup of nitrogen due to the increase of Al, and the amount of B 2 O 3 to be added according to the amount of SiO 2 is reduced to avoid the deterioration of cost by 15%. % Or less.

は、Bの歩留まりを確保するために2質量%以下で添加してもよい。 B 2 O 3 may be added at 2% by mass or less in order to secure the yield of B.

CaFは、上記した他の成分の残部としてスラグに配合されるが、粘性の増大を避けて操業の安定性を確保するため30質量%以上とすることが好ましい。   CaF is blended into the slag as the balance of the other components described above, but it is preferably 30% by mass or more in order to avoid the increase in viscosity and ensure the stability of operation.

ここまで本発明による代表的実施例及びこれに基づく改変例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例を見出すことができるであろう。

Although the representative embodiments according to the present invention and the modifications based thereon are described above, the present invention is not necessarily limited thereto. Those skilled in the art will be able to find various alternative embodiments without departing from the scope of the appended claims.

Claims (3)

質量%で、C:0.08〜0.40%、Cr:8〜14%を少なくとも含み、BN微細粒子を析出させ得るよう、B:0.0010〜0.0300%を含む一方でAlを0.01%以下に抑制した成分組成のボロン含有ステンレス鋼を得るための少なくともAlを含むスラグ及び消耗電極を用いた二次溶解法による製造方法であって、
前記スラグは、質量%で、CaO:20〜40%、Al:20〜40%、SiO:6〜15%を含むとともに、添加物としてBを2%以下で含み得て、残部CaF及び不可避的不純物からなることを特徴とするボロン含有ステンレス鋼の製造方法。
C: 0.08 to 0.40%, Cr: 8 to 14% at least, B: 0.0010 to 0.0300% so as to precipitate BN fine particles, Al is included A manufacturing method by a secondary melting method using a slag including at least Al 2 O 3 and a consumable electrode for obtaining a boron-containing stainless steel having a component composition suppressed to 0.01% or less,
The slag may contain, by mass%, 20 to 40% of CaO, 20 to 40% of Al 2 O 3 , 6 to 15% of SiO 2 and may contain 2% or less of B 2 O 3 as an additive. And a balance of CaF 2 and inevitable impurities.
前記消耗電極は、質量%で、
C:0.08〜0.40%、
Cr:8〜14%、
Ni:2.5%以下、
V:0.1〜0.3%、
Co:0.5〜3.5%、
Nb:0.03〜0.10%、
B:0.0010〜0.0300%、及び、
N:0.0100〜0.0500%、を含み、残部Fe及び不可避的不純物とするとともに、Al及びSiの含有量をそれぞれ0.010%以下及び0.10%以下に抑制した成分組成を有することを特徴とする請求項1記載のボロン含有ステンレス鋼の製造方法。
The consumable electrode is in mass%,
C: 0.08 to 0.40%,
Cr: 8 to 14%,
Ni: 2.5% or less,
V: 0.1 to 0.3%,
Co: 0.5 to 3.5%,
Nb: 0.03 to 0.10%,
B: 0.0010 to 0.0300%, and
N: contains 0.0100 to 0.0500%, has the balance Fe and inevitable impurities, and has a component composition in which the content of Al and Si is suppressed to 0.010% or less and 0.10% or less, respectively The method for producing a boron-containing stainless steel according to claim 1, characterized in that:
前記消耗電極中の成分Mの質量%を[%M]、前記スラグ中の含有物Qのモル分率を{mfQ}として、
前記スラグは、
Y=log([%B]/[%Si]
X=log({mfB/{mfSiO)とすると、
−5.1≦Y−X≦−4.6
の範囲内となる成分組成を有することを特徴とする請求項1記載のボロン含有ステンレス鋼の製造方法。
The% by mass of the component M in the consumable electrode is [% M], and the molar fraction of the inclusion Q in the slag is {mf Q},
The slag is
Y = log ([% B] 4 / [% Si] 3 )
Assuming that X = log ({mfB 2 O 3 } 2 / {mfSiO 2 } 3 ),
−5.1 ≦ Y−X ≦ −4.6
The method for producing a boron-containing stainless steel according to claim 1, having a component composition within the range of
JP2017204678A 2017-10-23 2017-10-23 Manufacturing method of boron-containing stainless steel Active JP6982795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017204678A JP6982795B2 (en) 2017-10-23 2017-10-23 Manufacturing method of boron-containing stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017204678A JP6982795B2 (en) 2017-10-23 2017-10-23 Manufacturing method of boron-containing stainless steel

Publications (2)

Publication Number Publication Date
JP2019077910A true JP2019077910A (en) 2019-05-23
JP6982795B2 JP6982795B2 (en) 2021-12-17

Family

ID=66628291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017204678A Active JP6982795B2 (en) 2017-10-23 2017-10-23 Manufacturing method of boron-containing stainless steel

Country Status (1)

Country Link
JP (1) JP6982795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111139365A (en) * 2020-03-02 2020-05-12 上海一郎合金材料有限公司 Slag system for smelting GH3625 nickel-based alloy containing rare earth Ce and electroslag remelting method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045962A (en) * 2012-12-26 2013-04-17 钢铁研究总院 Steel for steam-temperature ultra-supercritical thermal power unit and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045962A (en) * 2012-12-26 2013-04-17 钢铁研究总院 Steel for steam-temperature ultra-supercritical thermal power unit and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D S KIM ET AL.: "Manufacturing of 9CrMoCoB Steel of Large Ingot with Homogeneity by ESR Process", MATERIALS AND SCIENCE ENGINEERING, vol. vol.143,012002, JPN7021002646, 2015, pages 1 - 10, ISSN: 0004554239 *
XIAOHUA WANG ET AL.: "The physical properties of CaF2-CaO-Al2O3-SiO2 slag system for ESR of 12Cr", EXTENDED ABSTRACTS OF THE 9TH INTERNATIONAL CONFERENCE ON MOLTEN SLAGS, FLUXES AND SALTS (MOLTENSLAG, vol. Capter5, JPN7021002645, 2012, pages 78, ISSN: 0004554240 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111139365A (en) * 2020-03-02 2020-05-12 上海一郎合金材料有限公司 Slag system for smelting GH3625 nickel-based alloy containing rare earth Ce and electroslag remelting method thereof

Also Published As

Publication number Publication date
JP6982795B2 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
JP4460462B2 (en) Method for preventing nozzle clogging in continuous casting of steel
JP2013049908A (en) Method for producing high-purity steel by electroslag remelting method
JP6786964B2 (en) How to prevent blockage of continuous casting nozzle of sulfur-added steel
CN110172648B (en) Zirconium-containing electrothermal alloy and preparation method of zirconium-containing alloy
CN101899579A (en) Process for electroslag remelting of steel containing Ti
AU2015312896B2 (en) Method for deoxidizing Ti-Al alloy
JP2012241230A (en) Manufacturing method of ingot
JP6982795B2 (en) Manufacturing method of boron-containing stainless steel
KR20170026590A (en) Method for controlling ti concentration in steel, and method for producing silicon-deoxidized steel
KR101641177B1 (en) Manufacturing method of high purity ferro-tungsten
JP2019077909A (en) Manufacturing method of boron-containing stainless steel
WO2022210651A1 (en) Duplex stainless steel wire rod, and duplex stainless steel wire
JPH09194962A (en) Slag for electroslag remelting for ni base superalloy material and method for electroslag remelting for the same superalloy material
JP4653629B2 (en) Method for producing Ti-containing chromium-containing molten steel
JPH11323456A (en) Production of aluminum alloy ingot
JP7145411B2 (en) Method for producing Mg-containing high-Ni alloy
KR100844794B1 (en) A method for refining with high purity of austenitic stainless steel
JP2008266706A (en) Method for continuously casting ferritic stainless steel slab
EP3802899B1 (en) Silicon based alloy, method for the production thereof and use of such alloy
JP2008163423A (en) Si-KILLED STEEL WIRE ROD AND SPRING SUPERIOR IN FATIGUE CHARACTERISTIC
JP6544638B2 (en) Method of manufacturing Ti-containing maraging steel and method of manufacturing preform thereof
JP2017106105A (en) Method for producing sulfur-added steel
JPH04111962A (en) Production of high-speed tool steel
JPH11199955A (en) Titanium alloy for casting, excellent in impact resistance
CN107312907A (en) In a kind of control in low-sulfur low-oxygen steel manganese sulfide form method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211104

R150 Certificate of patent or registration of utility model

Ref document number: 6982795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150