JP6392179B2 - Method for deoxidizing Ti-Al alloy - Google Patents

Method for deoxidizing Ti-Al alloy Download PDF

Info

Publication number
JP6392179B2
JP6392179B2 JP2015131029A JP2015131029A JP6392179B2 JP 6392179 B2 JP6392179 B2 JP 6392179B2 JP 2015131029 A JP2015131029 A JP 2015131029A JP 2015131029 A JP2015131029 A JP 2015131029A JP 6392179 B2 JP6392179 B2 JP 6392179B2
Authority
JP
Japan
Prior art keywords
alloy
mass
flux
melting
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015131029A
Other languages
Japanese (ja)
Other versions
JP2016135907A (en
Inventor
史晃 工藤
史晃 工藤
大介 松若
大介 松若
哲史 出浦
哲史 出浦
坂本 浩一
浩一 坂本
大喜 高橋
大喜 高橋
石田 斉
斉 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to US15/508,384 priority Critical patent/US20170283906A1/en
Priority to PCT/JP2015/074970 priority patent/WO2016035824A1/en
Priority to RU2017110549A priority patent/RU2673589C2/en
Priority to EP15838357.0A priority patent/EP3190196B1/en
Priority to CN201580046835.3A priority patent/CN106661670B/en
Priority to AU2015312896A priority patent/AU2015312896B2/en
Publication of JP2016135907A publication Critical patent/JP2016135907A/en
Priority to ZA2017/01496A priority patent/ZA201701496B/en
Application granted granted Critical
Publication of JP6392179B2 publication Critical patent/JP6392179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/003General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals by induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、チタン材料およびアルミニウム材料よりなる、酸素を合計で0.1質量%以上含有する合金材料を用いて作製したTi−Al系合金から酸素を除去するTi−Al系合金の脱酸方法に関するものである。   The present invention relates to a Ti-Al alloy deoxidation method for removing oxygen from a Ti-Al alloy produced using an alloy material comprising a titanium material and an aluminum material and containing 0.1 mass% or more of oxygen in total. It is about.

近年、航空機や自動車向けの金属素材としてTi−Al系合金の需要が高まりつつある。このような活性金属のチタンを主成分とするTi−Al系合金等のチタン合金を製造する際には、溶解中の酸素による汚染を防ぐ必要があり、従来から真空アーク溶解法(VAR)、電子ビーム溶解法(EB)、プラズマアーク溶解法(PAM)、真空誘導溶解法(VIM)、水冷銅式誘導溶解法(CCIM)などの溶解法が採用されてきた。   In recent years, the demand for Ti-Al alloys as metal materials for aircraft and automobiles is increasing. When producing a titanium alloy such as a Ti-Al alloy containing titanium as an active metal as a main component, it is necessary to prevent contamination by oxygen during melting. Conventionally, a vacuum arc melting method (VAR), Melting methods such as electron beam melting (EB), plasma arc melting (PAM), vacuum induction melting (VIM), and water-cooled copper induction melting (CCIM) have been adopted.

上記した溶解法の中でも、VAR、EB、VIMといった溶解法は真空雰囲気下で合金の溶解を行う溶解法であり、Ti−Al系合金の溶解に、このような溶解法を採用した場合、合金元素であるAlだけではなく、Tiについても溶解中に揮発してしまいロスを生じることになる。つまり、工業プロセスにおいて、Ti−Al系合金を目標の組成に制御することは極めて困難であり、その結果、製造コストの増加を招くことにもつながっているのが現状である。   Among the above melting methods, melting methods such as VAR, EB, and VIM are melting methods in which an alloy is melted in a vacuum atmosphere. When such a melting method is used for melting a Ti-Al alloy, an alloy is used. Not only Al, which is an element, but also Ti volatilizes during melting, causing loss. That is, in an industrial process, it is extremely difficult to control the Ti—Al-based alloy to a target composition, and as a result, the manufacturing cost is increased.

また、酸素含有量が少ないTi−Al系合金を溶製するためには、酸素含有量が少ない高品位なチタン材料を用いてTi−Al系合金を製造することが有効であるが、高品位なチタン材料は、高価格であり、特に近年は高騰する傾向にあるため、高品位なチタン材料より酸素含有量は多いが、廉価なスポンジチタン、スクラップ原料、ルチル鉱石(TiO)などの比較的低品位なチタン材料を用いてTi−Al合金を製造したいというニーズが日々高まっている。 In order to melt a Ti-Al alloy having a low oxygen content, it is effective to produce a Ti-Al alloy using a high-grade titanium material having a low oxygen content. Titanium materials are expensive and have a tendency to soar in recent years, so the oxygen content is higher than high-grade titanium materials, but cheap sponge titanium, scrap raw materials, rutile ore (TiO 2 ), etc. There is a growing need to manufacture Ti-Al alloys using low-grade titanium materials.

Tiは活性金属であり、溶解する雰囲気中に存在する不純物、特に酸素との結合力が極めて強いため、溶解中に外部から取り込まれる酸素を低減し、いかに汚染を防ぐかという対策が従来からなされていた。しかし、一度Ti中に固溶した酸素を除去することは容易ではなく、その取り組み自体が少ないのが現状であるが、先行技術としては以下に示すような提案がある。   Since Ti is an active metal and has a very strong binding force with impurities, especially oxygen, present in the melting atmosphere, measures have been conventionally taken to reduce oxygen taken from the outside during melting and prevent contamination. It was. However, it is not easy to remove oxygen once dissolved in Ti, and the efforts themselves are few at present, but there are proposals as shown below as prior art.

特許文献1には、低酸素Ti−Al系合金の製造方法および低酸素Ti−Al系合金に関する発明が開示されているが、その段落[0013]には、「1×10−2Torrよりも高い真空雰囲気下において強制的にAlを除去すると、これに伴って溶湯中の酸素量も減少するのであり、最終目標組成のAl含有量よりもAlを多く含有する組成の溶湯から強制的にAlを除去することにより、最終目標組成のTi−Al系合金を製造することができると同時に酸素を200ppm以下に低減させることができる。」と記載されている。 Patent Document 1 discloses a method for producing a low-oxygen Ti—Al-based alloy and an invention related to a low-oxygen Ti—Al-based alloy. In paragraph [0013], “1 × 10 −2 Torr than When Al is forcibly removed in a high vacuum atmosphere, the amount of oxygen in the molten metal is reduced accordingly, and the Al is forced from the molten metal having a composition containing more Al than the Al content of the final target composition. By removing this, it is possible to produce a Ti—Al-based alloy having the final target composition and simultaneously reduce oxygen to 200 ppm or less. ”

すなわち、特許文献1に記載された低酸素Ti−Al系合金の製造方法は、1.33Pa(1×10−2Torr)よりも低い圧力の高真空雰囲気下において低酸素Ti−Al系合金を製造する方法であり、このような高真空雰囲気における溶解では、合金元素であるAlだけではなく、Tiについても揮発ロスを生じることになり、低酸素Ti−Al系合金の製造方法としては有効な方法であるということができるが、余分にTiおよびAlを添加する必要があり、製造コストの増加が懸念される。 That is, the method for producing a low oxygen Ti—Al based alloy described in Patent Document 1 uses a low oxygen Ti—Al based alloy in a high vacuum atmosphere at a pressure lower than 1.33 Pa (1 × 10 −2 Torr). Such melting in a high vacuum atmosphere causes volatilization loss not only for the alloy element Al, but also for Ti, and is effective as a method for producing a low oxygen Ti—Al alloy. Although this method can be said to be a method, it is necessary to add extra Ti and Al, and there is a concern about an increase in manufacturing cost.

また、特許文献2には、低酸素Ti−Al系合金およびその製造方法に関する発明が開示されており、その段落[0010]には、「本発明は、上記の問題点を解決するためになされたもので、Ti−Alを主成分とする合金系の溶製において、Caで脱酸し、過剰のCaを蒸発除去することおよび無汚染均一溶解によって、高純度の低酸素Ti−Al系合金およびその製造方法を提供することを目的とする。」と記載されている。   Patent Document 2 discloses an invention relating to a low-oxygen Ti—Al-based alloy and a method for producing the same, and paragraph [0010] describes that “the present invention is made in order to solve the above problems. In high-purity low-oxygen Ti-Al alloy by deoxidizing with Ca, evaporating and removing excess Ca and non-contaminating homogeneous dissolution And an object thereof is to provide a manufacturing method thereof ”.

この方法は、低酸素Ti−Al系合金を製造するために有効な方法であるということができるが、金属Ca添加溶解並びに金属Ca除去、そして均質化のための溶解という複数の工程を経る方法であり、また、金属Caはチタン中に固溶するため、残留Caの完全な除去が困難な方法でもあり、製造コストおよび製造時間の増加、除去しきれなかった残留CaによるTi−Al系合金の汚染、各種特性の変化が懸念される方法である。   Although this method can be said to be an effective method for producing a low-oxygen Ti—Al-based alloy, it is a method that undergoes a plurality of steps of melting and adding metal Ca, removing metal Ca, and melting for homogenization. In addition, since the metal Ca is dissolved in titanium, it is difficult to completely remove the residual Ca. Therefore, the manufacturing cost and the manufacturing time are increased, and the Ti—Al based alloy due to the residual Ca that cannot be completely removed. This is a method of concern for contamination and changes in various properties.

特許文献3には、TiAl基合金の鋳塊製造方法に関する発明が開示されており、その段落[0017]には酸素含有量を鋳塊の全ての領域で低減できることが記載されている。また、その請求項1には、「Ti原料の酸素含有量を800ppm以下、Al原料の酸素含有量を100ppm以下とすると共に、他の合金成分がCr、V、Nbの場合はそれらの酸素含有量を2000ppm以下、他の合金成分がMnの場合はその酸素含有量を3000ppm以下とすることを特徴とするTiAl基合金の鋳塊製造方法。」と記載されている。   Patent Document 3 discloses an invention related to a method for producing a TiAl-based alloy ingot, and paragraph [0017] describes that the oxygen content can be reduced in all regions of the ingot. In addition, the claim 1 states that “the oxygen content of the Ti raw material is 800 ppm or less, the oxygen content of the Al raw material is 100 ppm or less, and when the other alloy components are Cr, V, Nb, the oxygen content thereof. The method for producing an ingot of a TiAl-based alloy characterized in that when the amount is 2000 ppm or less and the other alloy component is Mn, its oxygen content is 3000 ppm or less.

このように、特許文献3に記載されたTiAl基合金の鋳塊製造方法は、鋳塊の酸素含有量を低減できる有効な方法であるといえるが、この方法は、酸素含有量が低い高品位な材料を用いて、酸素含有量の低いTiAl基合金を得ようとする方法であり、酸素含有量が比較的高い低品位なTi材料を用いた方法ではない。また、実施例にはAlの含有量が30質量%と低いTiAl合金しか記載されていない。   Thus, it can be said that the ingot manufacturing method of the TiAl-based alloy described in Patent Document 3 is an effective method that can reduce the oxygen content of the ingot, but this method is a high-quality low oxygen content. This method is to obtain a TiAl-based alloy having a low oxygen content using a simple material, and is not a method using a low-grade Ti material having a relatively high oxygen content. In the examples, only a TiAl alloy having a low Al content of 30% by mass is described.

また、特許文献4には、チタン−アルミニウム合金鋳造物の鋳造方法に関する発明が開示されており、原料としてのスポンジチタンを溶融し、その溶融チタン中に、原料としてのアルミニウムを添加して、所定量のチタンおよびアルミニウムを含有するチタンーアルミニウム合金を調整することが記載されており、その請求項2および段落[0020]には、そのスポンジチタンの酸素含有量が350ppm以下であること、また、実施例にはスポンジチタンの酸素含有量が0.03wt%であることが記載されている。   Patent Document 4 discloses an invention relating to a casting method of a titanium-aluminum alloy casting, in which sponge titanium as a raw material is melted, and aluminum as a raw material is added to the molten titanium. It is described that a titanium-aluminum alloy containing a fixed amount of titanium and aluminum is prepared, and in claim 2 and paragraph [0020], the oxygen content of the sponge titanium is 350 ppm or less, and In the examples, it is described that the oxygen content of titanium sponge is 0.03 wt%.

このように、特許文献4に記載されたチタン−アルミニウム合金鋳造物の鋳造方法では、原料として酸素含有量が350ppm以下(0.035質量%以下に相当)の高品位なスポンジチタンが用いられており、酸素含有量が低い高品位な材料を用いて、酸素含有量の低いチタン−アルミニウム合金鋳造物を得ようとする方法であり、酸素含有量が比較的高い低品位なチタン材料を用いた方法ではない。また、実施例にはAlの含有量が34質量%と低いチタン−アルミニウム合金鋳造物しか記載されていない。   Thus, in the casting method of the titanium-aluminum alloy casting described in Patent Document 4, high-grade sponge titanium having an oxygen content of 350 ppm or less (corresponding to 0.035 mass% or less) is used as a raw material. In this method, a high-grade material with a low oxygen content is used to obtain a cast titanium-aluminum alloy with a low oxygen content, and a low-grade titanium material with a relatively high oxygen content is used. Not a way. Moreover, only the titanium-aluminum alloy casting whose content of Al is as low as 34 mass% is described in the Example.

特開平5−59466号公報JP-A-5-59466 特開平5−140669号公報Japanese Patent Laid-Open No. 5-140669 特開2009−113060号公報JP 2009-1113060 A 特開平5−154642号公報JP-A-5-154642

本発明は、上記従来の問題を解決せんとしてなされたもので、酸素含有量が高い低品位なチタン材料を用いて、目標の組成でしかも酸素含有量が少ないTi−Al系合金を、高真空雰囲気としなくても容易に製造することができるTi−Al系合金の脱酸方法を提供することを課題とするものである。   The present invention has been made as a solution to the above-described conventional problems, and uses a low-grade titanium material having a high oxygen content, and a Ti-Al alloy having a target composition and a low oxygen content can be used in a high vacuum. It is an object of the present invention to provide a Ti—Al-based alloy deoxidation method that can be easily manufactured without an atmosphere.

本発明のTi−Al系合金の脱酸方法は、チタン材料およびアルミニウム材料よりなる、酸素を合計で0.1質量%以上含有する合金材料を用いて作製した、Alを40質量%以上含有するTi−Al系合金を、1.33Pa以上の雰囲気下で、水冷銅容器を用いた溶解法によって溶解し、保持することにより、前記Ti−Al系合金の酸素含有量を低下させることを特徴とする。   The Ti-Al alloy deoxidation method of the present invention contains 40 mass% or more of Al produced by using an alloy material made of a titanium material and an aluminum material and containing 0.1 mass% or more of oxygen in total. The Ti-Al-based alloy is melted by a melting method using a water-cooled copper container in an atmosphere of 1.33 Pa or more and held, thereby reducing the oxygen content of the Ti-Al-based alloy. To do.

また、前記Ti−Al合金を溶解する前或いは溶解中に、酸化カルシウムにフッ化カルシウムを35〜95質量%配合したCaO−CaFフラックスを添加することが好ましい。 Moreover, it is preferable to add CaO—CaF 2 flux in which 35 to 95% by mass of calcium fluoride is mixed with calcium oxide before or during melting of the Ti—Al alloy.

また、前記水冷銅容器を用いた溶解法は、アーク溶解法、プラズマアーク溶解法、誘導溶解法の何れかであることが好ましい。   The melting method using the water-cooled copper container is preferably any one of an arc melting method, a plasma arc melting method, and an induction melting method.

本発明のTi−Al系合金の脱酸方法によると、酸素含有量が0.1質量%以上と高い低品位で廉価なチタン材料を用いて、AlおよびTiの揮発ロスが少なく(実質的に低下させることなく)、目標の組成で、しかも酸素含有量が少ないTi−Al系合金を、高真空雰囲気としなくても容易に製造することができる。   According to the Ti—Al-based alloy deoxidation method of the present invention, a low-quality and inexpensive titanium material having an oxygen content of 0.1 mass% or more is used, and the volatilization loss of Al and Ti is small (substantially A Ti—Al alloy having a target composition and a low oxygen content can be easily manufactured without a high vacuum atmosphere (without lowering).

尚、本発明のTi−Al系合金の脱酸方法によって得られるAl含有量が40質量%以上で且つ酸素含有量が少ないTi−Al系合金を、低酸素チタンで希釈すれば、Al含有量が40質量%未満で且つ酸素含有量が少ないTi−Al系合金を、比較的容易に且つ廉価に製造することが可能である。   In addition, if the Ti content obtained by the deoxidation method of the Ti—Al based alloy of the present invention is 40% by mass or more and the Ti—Al based alloy having a small oxygen content is diluted with low oxygen titanium, the Al content is obtained. Is less than 40% by mass and a Ti-Al alloy having a low oxygen content can be produced relatively easily and inexpensively.

溶解後のTi−Al系合金中のAl含有量と酸素含有量の関係を示すグラフ図である。It is a graph which shows the relationship between Al content in the Ti-Al type alloy after melt | dissolution, and oxygen content. CaO−CaFフラックス中のフッ化カルシウムの配合量と溶解後のTi−Al系合金中の酸素含有量の関係を示すグラフ図である。Is a graph showing the relationship between the oxygen content of Ti-Al-based alloy after dissolution and the amount of calcium fluoride CaO-CaF 2 in the flux. Ti−Al系合金サンプルの溶解時間と溶解前後の質量変化率の関係を示すグラフ図である。It is a graph which shows the relationship between the melt | dissolution time of a Ti-Al type alloy sample, and the mass change rate before and behind melt | dissolution. Ti−Al系合金サンプルのAl含有量と溶解前後の質量変化率の関係を示すグラフ図である。It is a graph which shows the relationship between Al content of a Ti-Al type-alloy sample, and the mass change rate before and behind melt | dissolution. Ti−Al系合金中に固溶する最大酸素量を示すグラフ図である。It is a graph which shows the maximum oxygen amount which dissolves in a Ti-Al type alloy.

本発明者らは、低品位なスポンジチタン、スクラップ原料や、ルチル鉱石(TiO)などの酸素を多く含有する低品位なチタン材料を用いて、AlおよびTiの揮発ロスが少なく(実質的に低下させることなく)、目標の組成で、しかも酸素含有量が少ないTi−Al系合金を、高真空雰囲気としなくても容易に製造できる方法を見出すため、鋭意検討を行った。 The inventors use low-grade titanium materials containing a large amount of oxygen such as low-grade sponge titanium, scrap raw materials, and rutile ore (TiO 2 ), so that the volatilization loss of Al and Ti is small (substantially) In order to find a method that can easily produce a Ti—Al alloy having a target composition and a low oxygen content without a high vacuum atmosphere (without reducing it), intensive studies were conducted.

Ti−Al系合金中に固溶する最大酸素量は、X.L.Li,R.Hillel,F.Teyssandier,S.K.Choi,and F.J.J.Van.Loo,Acta Metall.Mater.,40{11}3147−3157(1992)に示されたTi−Al−Oの3元系状態図によると、図5に示す破線のような関係になると想定される。この事実から、本発明者らは高濃度のAlを含有するTi−Al系合金は固溶酸素濃度が低くなるということに着目した。その結果、低品位なチタン材料を用いて作製したTi−Al系合金であっても、Alを40質量%以上含有するTi−Al系合金であれば、高真空雰囲気下でなくとも水冷銅容器を用いた溶解で脱酸反応が進行し、また、AlやTiの揮発ロスが少なく(実質的に低下させることなく)、目標の組成の低酸素Ti−Al系合金を容易に製造できることを見出し、本発明を完成させるに至った。   The maximum amount of oxygen dissolved in the Ti—Al alloy is X. L. Li, R.R. Hillel, F.M. Teyssandier, S .; K. Choi, and F.C. J. et al. J. et al. Van. Loo, Acta Metall. Mater. , 40 {11} 3147-3157 (1992), it is assumed that the relation shown by the broken line in FIG. 5 is obtained. From this fact, the present inventors paid attention to the fact that a Ti—Al-based alloy containing a high concentration of Al has a low solid solution oxygen concentration. As a result, even if it is a Ti-Al alloy produced using a low-grade titanium material, if it is a Ti-Al alloy containing 40 mass% or more of Al, it is a water-cooled copper container even in a high vacuum atmosphere. It has been found that deoxidation reaction proceeds by dissolution using bismuth, and that low loss of Al and Ti volatilization is small (substantially without reduction), and that a low-oxygen Ti—Al alloy having a target composition can be easily produced. The present invention has been completed.

また、更に検討を進めた結果、Ti−Al系合金を溶解する前或いは溶解中に、チタン中で固溶しない特定の成分組成のCaO−CaFフラックスを脱酸反応促進剤として添加することで、その脱酸反応はより確実に進行することを併せて見出した。尚、Ti−Al系合金へのCaO−CaFフラックス添加よる脱酸反応は、Ti−Al系合金の脱酸生成物であるAlが、添加したCaO−CaFフラックスに固溶することで発現する現象であり、そのCaO−CaFフラックスの融点は、Ti−Al系合金の溶解温度と推定される概ね1800K以下であることが必要である。 Further, as a result of further study, by adding a CaO—CaF 2 flux having a specific component composition not dissolved in titanium as a deoxidation reaction accelerator before or during melting of the Ti—Al alloy. The present inventors also found that the deoxidation reaction proceeds more reliably. In addition, in the deoxidation reaction by adding CaO-CaF 2 flux to Ti-Al alloy, Al 2 O 3 which is a deoxidation product of Ti-Al alloy is dissolved in the added CaO-CaF 2 flux. The melting point of the CaO—CaF 2 flux needs to be approximately 1800 K or less, which is estimated as the melting temperature of the Ti—Al alloy.

以下、本発明を実施形態に基づいて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments.

本発明のTi−Al系合金の脱酸方法は、チタン材料およびアルミニウム材料よりなる、酸素を合計で0.1質量%以上含有する合金材料を用いて作製した、Alを40質量%以上含有するTi−Al系合金を、1.33Pa以上の雰囲気下で、水冷銅容器を用いたアーク溶解法、プラズマアーク溶解法、誘導溶解法などの溶解法によって溶解し、保持することにより、前記Ti−Al合金の酸素含有量を低下させる方法であって、前記チタン材料としては、低品位なスポンジチタン、スクラップ原料や、ルチル鉱石(TiO)などを用いる。 The Ti-Al alloy deoxidation method of the present invention contains 40 mass% or more of Al produced by using an alloy material made of a titanium material and an aluminum material and containing 0.1 mass% or more of oxygen in total. By dissolving and holding the Ti—Al-based alloy by an arc melting method using a water-cooled copper container, a plasma arc melting method, an induction melting method, or the like in an atmosphere of 1.33 Pa or more, the Ti— In this method, the oxygen content of the Al alloy is reduced, and as the titanium material, low-grade sponge titanium, scrap raw material, rutile ore (TiO 2 ), or the like is used.

Ti−Al系合金の作製に、低品位なスポンジチタン、スクラップ原料や、ルチル鉱石(TiO)などの酸素含有量が多いチタン材料を用いる理由は、これらチタン材料が廉価であり調達し易いからである。これらチタン材料およびアルミニウム材料よりなる合金材料の酸素の合計含有量を0.1質量%以上としたのは、合金材料中の酸素の合計含有量が0.1質量%未満であれば、酸素の含有量は僅かであり脱酸自体が必要ないからである。尚、本発明では、酸素の含有量の上限は規定しないが、前記合金材料に実際に含有される酸素の合計含有量の上限は、25.0質量%程度であると考えられる。 The reason for using titanium materials with a high oxygen content such as low-grade sponge titanium, scrap raw materials, and rutile ore (TiO 2 ) for the production of Ti-Al alloys is because these titanium materials are inexpensive and easy to procure. It is. The total oxygen content of the alloy material composed of these titanium material and aluminum material is set to 0.1 mass% or more if the total oxygen content in the alloy material is less than 0.1 mass%. This is because the content is small and deoxidation itself is not necessary. In the present invention, the upper limit of the oxygen content is not specified, but the upper limit of the total content of oxygen actually contained in the alloy material is considered to be about 25.0% by mass.

また、前記チタン材料およびアルミニウム材料なる合金材料を用いて作製したTi−Al系合金のAl含有量を40質量%以上とした理由は、Ti−Al系合金中のAl含有量が40質量%以上であれば、高真空雰囲気下ではなくて、1.33Pa以上の雰囲気下であっても、水冷銅容器を用いたアーク溶解法、プラズマアーク溶解法、誘導溶解法などの溶解法によって、Ti−Al系合金の脱酸反応が進行するからである。この脱酸反応はAl含有量が高いTi−Al系合金において固溶酸素濃度が低下し、過飽和な酸素がAlと結合し、Alを形成することで発現する現象である。すなわち、Alの形態で酸素がTi−Al系合金中から排出される。Ti−Al系合金のAl含有量が40質量%以上であれば、Ti−Al系合金が溶解する概ね1800K以上の温度で脱酸反応が進行する。 Moreover, the reason why the Al content of the Ti-Al alloy produced using the titanium material and the alloy material made of the aluminum material is 40 mass% or more is that the Al content in the Ti-Al alloy is 40 mass% or more Then, even in an atmosphere of 1.33 Pa or higher, not in a high vacuum atmosphere, by a melting method such as an arc melting method using a water-cooled copper container, a plasma arc melting method, an induction melting method, Ti- This is because the deoxidation reaction of the Al-based alloy proceeds. This deoxidation reaction is a phenomenon that occurs when the concentration of solid solution oxygen in a Ti-Al alloy having a high Al content decreases and supersaturated oxygen combines with Al to form Al 2 O 3 . That is, oxygen is discharged from the Ti—Al alloy in the form of Al 2 O 3 . When the Al content of the Ti—Al alloy is 40% by mass or more, the deoxidation reaction proceeds at a temperature of approximately 1800 K or more at which the Ti—Al alloy is dissolved.

尚、本発明では、チタン材料およびアルミニウム材料なる合金材料を用いて作製したTi−Al系合金のAl含有量の上限は特に規定していないが、好ましい上限は70質量%、より好ましくは60質量%、更に好ましくは50質量%である。Ti−Al系合金はAl以外の他の合金元素や酸素などの不純物も含有するので、合金元素であるAlの含有量が多くなり過ぎるとTiの割合が少なくなりTi−Al系合金ということができなくなる。また、1.33Pa以上の雰囲気下とし、その上限は規定しなかったが、実際の上限は5.33×10Pa程度であると想定できる。 In the present invention, the upper limit of the Al content of a Ti-Al alloy produced using an alloy material such as a titanium material and an aluminum material is not particularly defined, but the preferable upper limit is 70% by mass, more preferably 60% by mass. %, More preferably 50% by mass. Ti-Al alloys contain other alloy elements other than Al and impurities such as oxygen. Therefore, if the content of Al, which is an alloy element, increases too much, the proportion of Ti decreases and it is called a Ti-Al alloy. become unable. Moreover, although it was set as the atmosphere of 1.33 Pa or more and the upper limit was not prescribed | regulated, it can be assumed that an actual upper limit is about 5.33 * 10 < 5 > Pa.

また、Ti−Al系合金の脱酸を行うにあたり、Ti−Al合金を溶解する前或いは溶解中に、脱酸反応促進剤としてフラックスを添加することで、脱酸反応をより確実に進行させることができる。このTi−Al系合金に脱酸反応促進剤として添加するフラックスはTi−Al系合金の溶解温度より低い融点の低融点フラックスである必要があり、本発明では低融点フラックスの中でも、性能、品質、コストの観点から最も好ましいと思われるCaO−CaFフラックスを採用することとした。 In addition, when deoxidizing a Ti-Al alloy, the deoxidation reaction can be advanced more reliably by adding a flux as a deoxidation reaction accelerator before or during the dissolution of the Ti-Al alloy. Can do. The flux added as a deoxidation reaction accelerator to the Ti-Al alloy must be a low melting point flux having a melting point lower than the melting temperature of the Ti-Al alloy. The CaO—CaF 2 flux, which seems to be most preferable from the viewpoint of cost, was adopted.

酸素含有量が少ないTi−Al系合金を製造するにあたり、このCaO−CaFフラックスをTi−Al系合金に添加することで脱酸反応がより促進されるが、前記したように、CaO−CaFフラックスの融点が、Ti−Al系合金の溶解温度である約1800K以下でなければ脱酸反応は促進されない。フラックス添加によって脱酸反応が促進される理由は、脱酸反応によって生成されたAlがフラックス中に吸収されることで、Alの活量が低下し、それに伴って酸素濃度が低下するためである。 In producing a Ti—Al based alloy having a low oxygen content, the deoxidation reaction is further promoted by adding this CaO—CaF 2 flux to the Ti—Al based alloy, but as described above, the CaO—CaF The deoxidation reaction is not accelerated unless the melting point of the two fluxes is about 1800 K or less, which is the melting temperature of the Ti—Al alloy. The reason why the deoxidation reaction is promoted by the addition of the flux is that Al 2 O 3 produced by the deoxidation reaction is absorbed in the flux, so that the activity of Al 2 O 3 is reduced, and the oxygen concentration is accordingly reduced. This is because of a decrease.

尚、Al脱酸反応は以下の式(1)で示すことができ、反応定数は式(2)で示すことができる。本脱酸反応が発現するAl/Al平衡状態下において、式(2)のKは一定となるが、脱酸反応によるaAl変化はほとんどないため、以下の式(2)中のaAlが低下すると(フラックス中に吸収されると限りなくゼロに近付く)、それに伴って式(2)中のPO(含有酸素濃度)も低下する。
2Al(inAl)+3/2O(inTi−Al)=Al・・・式(1)
K=aAl/(aAl・PO 3/2)・・・式(2)
The Al deoxidation reaction can be represented by the following formula (1), and the reaction constant can be represented by the formula (2). Under the Al / Al 2 O 3 equilibrium state in which the present deoxidation reaction is expressed, K in the formula (2) is constant, but since there is almost no change in aAl due to the deoxidation reaction, aAl in the following formula (2) When 2 O 3 decreases (approaching zero as much as it is absorbed in the flux), PO 2 (containing oxygen concentration) in formula (2) also decreases accordingly.
2Al (inAl) + 3 / 2O 2 (inTi-Al) = Al 2 O 3 ··· Equation (1)
K = aAl 2 O 3 / (aAl 2 · PO 2 3/2 ) Formula (2)

CaO−CaFフラックスのフッ化カルシウムの配合量が35質量%未満である場合は、CaO−CaFフラックスの融点が1800Kを超えてしまい、CaO−CaFフラックス添加による脱酸反応の促進作用を得ることができない。一方、フッ化カルシウムの配合量が95質量%を超えると、フッ素による汚染が発生する。よって、本発明では、酸化カルシウムにフッ化カルシウムを35〜95質量%配合したCaO−CaFフラックスを添加する。このCaO−CaFフラックスのフッ化カルシウムのより好ましい配合量は、60〜90質量%である。尚、CaO−CaFフラックスの添加量は、Ti−Al系合金の質量に対して、5〜20%の質量とすることが好ましい。 When the blending amount of calcium fluoride in the CaO-CaF 2 flux is less than 35% by mass, the melting point of the CaO-CaF 2 flux exceeds 1800K, and the deoxidation reaction promoting action by adding the CaO-CaF 2 flux is promoted. Can't get. On the other hand, when the blending amount of calcium fluoride exceeds 95% by mass, contamination with fluorine occurs. Therefore, in the present invention, the addition of CaO-CaF 2 flux was blended 35 to 95 wt% of calcium fluoride to calcium oxide. The more preferable amount of calcium fluoride in the CaO—CaF 2 flux is 60 to 90% by mass. The addition amount of CaO-CaF 2 flux, relative to the weight of Ti-Al alloy, it is preferable that 5 to 20 percent by weight.

尚、本発明のTi−Al系合金の脱酸方法は、Ti−Al系合金のAlやTiの揮発ロスが少なく(実質的に低下させることなく)、酸素含有量を低下させる方法であると説明したが、実質的に許容することができるAlやTiの含有量の低下率は、5.0%以下である。つまり、実質的にとは5.0%以下のことを示す。   In addition, the deoxidation method of the Ti—Al based alloy of the present invention is a method of reducing the oxygen content with little (without substantially reducing) the volatilization loss of Al or Ti of the Ti—Al based alloy. Although demonstrated, the fall rate of content of Al and Ti which can be accept | permitted substantially is 5.0% or less. That is, substantially means 5.0% or less.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

(Ti−Al系合金中のAl含有量と溶解後の酸素含有量の関係)
・プラズマアーク溶解法、フラックス添加無
チタン材料およびアルミニウム材料からなる合金材料を用いて作製した、酸素含有量が0.8質量%のTi−Al系合金の脱酸を、水冷銅容器を用いた100kWプラズマアーク炉で溶解し、その後保持することにより実施した。Ti−Al系合金のAl含有量が溶解による脱酸反応に与える影響を調べるため、Al含有量が10質量%、20質量%、30質量%、40質量%、50質量%、60質量%のTi−Al系合金をそれぞれ用いて作製したサンプルを準備した。尚、各サンプルは100gとし、プラズマガスはArのみを使用、溶解中の圧力は1.20×10Paとした。100kWプラズマアーク炉を用いて溶解、保持を行った後のTi−Al系合金中のAl濃度(Al含有量)と溶解後の酸素濃度(酸素含有量)の関係を図1に示す。
(Relation between Al content in Ti-Al alloy and oxygen content after dissolution)
・ Plasma arc melting method, flux addition-free Deoxidation of Ti-Al alloy with oxygen content of 0.8% by mass using an alloy material made of titanium material and aluminum material using a water-cooled copper container It was carried out by melting in a 100 kW plasma arc furnace and holding it thereafter. In order to investigate the influence of the Al content of the Ti—Al based alloy on the deoxidation reaction due to dissolution, the Al content is 10% by mass, 20% by mass, 30% by mass, 40% by mass, 50% by mass, and 60% by mass. Samples prepared using Ti-Al alloys were prepared. Each sample was 100 g, only Ar was used as the plasma gas, and the pressure during dissolution was 1.20 × 10 5 Pa. FIG. 1 shows the relationship between the Al concentration (Al content) in the Ti-Al alloy after melting and holding using a 100 kW plasma arc furnace and the oxygen concentration (oxygen content) after melting.

図1によると、Al含有量が10〜30質量%までのTi−Al系合金の溶解後の酸素含有量は0.8質量%前後で変化がないが、Al含有量が40質量%以上のTi−Al系合金では溶解後に酸素含有量が低下していることがわかる。この結果から、Ti−Al系合金のAl含有量が40質量%以上になると溶解により脱酸反応が進行することがわかる。   According to FIG. 1, the oxygen content after melting of the Ti-Al alloy having an Al content of 10 to 30% by mass does not change around 0.8% by mass, but the Al content is 40% by mass or more. It can be seen that in the Ti-Al alloy, the oxygen content decreases after melting. From this result, it can be seen that when the Al content of the Ti-Al alloy is 40% by mass or more, the deoxidation reaction proceeds by dissolution.

・プラズマアーク溶解法、フラックス添加有
また、前記試験で溶解後に酸素含有量が低下した、Al含有量が、30質量%、40質量%、60質量%のTi−Al系合金について、CaO−CaFフラックス添加による脱酸反応の促進の状況を調べるため、CaO−CaFフラックスの添加以外は、フラックスを添加しない時と全く同じ条件として、プラズマアーク溶解によるTi−Al合金の脱酸を実施した。尚、CaO−CaFフラックス中のフッ化カルシウムの配合量は80質量%、CaO−CaFフラックスの添加量は5gとした。結果を図1に示す。
・ Plasma arc melting method, with flux addition In addition, with regard to Ti—Al based alloys whose oxygen content decreased after melting in the above test and whose Al content was 30% by mass, 40% by mass, and 60% by mass, CaO—CaF In order to investigate the progress of the deoxidation reaction by addition of 2 flux, Ti-Al alloy was deoxidized by plasma arc melting under exactly the same conditions as when no flux was added except for the addition of CaO-CaF 2 flux. . Incidentally, the amount of calcium fluoride CaO-CaF 2 in the flux 80 wt%, the added amount of CaO-CaF 2 flux was 5g. The results are shown in FIG.

図1によると、CaO−CaFフラックスを添加した場合は、Al含有量が、40質量%、60質量%の何れの場合においても、CaO−CaFフラックスを添加しない場合に比べ、更に脱酸が促進されていることが分かる。因みに、溶解後のTi−Al合金中の酸素含有量(質量比、以下酸素含有量は全て質量比で示す。)は、Al含有量が40質量%の場合で、CaO−CaFフラックスを添加しない時が5400ppm、CaO−CaFフラックスを添加した時が2400ppmであり、また、Al含有量が60質量%の場合で、CaO−CaFフラックスを添加しない時が280ppm、CaO−CaFフラックスを添加した時が220ppmである。 According to FIG. 1, the case of adding CaO-CaF 2 flux, Al content of 40 mass%, in either case of 60 mass percent, compared to the case without the addition of CaO-CaF 2 flux, further deoxidation It can be seen that is promoted. Incidentally, the oxygen content in the Ti-Al alloy after melting (mass ratio, hereinafter all oxygen contents are shown by mass ratio) is the case where the Al content is 40% by mass and the CaO-CaF 2 flux is added. not when the 5400Ppm, is 2400ppm is upon addition of CaO-CaF 2 flux, and in case the Al content is 60 wt%, when no addition of CaO-CaF 2 flux 280 ppm, a CaO-CaF 2 flux When added, it is 220 ppm.

・チタン材料として酸化チタン材料を用いた場合
また、別途、酸化チタン材料およびアルミニウム材料からなる合金材料を用いて作製した、酸素含有量が16.3質量%のTi−Al系合金の脱酸を、水冷銅容器を用いた100kWプラズマアーク炉で溶解し、その後保持することにより実施した。このとき、Ti−Al系合金のAl含有量は60質量%とし、CaO−CaFフラックスを添加する場合と添加しない場合の両方を実施した。尚、プラズマガスはArのみを使用、溶解中の圧力は1.20×10Paとし、CaO−CaFフラックス中のフッ化カルシウムの配合量は80質量%、CaO−CaFフラックスの添加量は5gとした。
When a titanium oxide material is used as the titanium material In addition, deoxidation of a Ti-Al alloy having an oxygen content of 16.3% by mass produced separately using an alloy material composed of a titanium oxide material and an aluminum material is performed. It was carried out by melting in a 100 kW plasma arc furnace using a water-cooled copper container and holding it thereafter. At this time, the Al content of the Ti—Al-based alloy was set to 60% by mass, and both the case where the CaO—CaF 2 flux was added and the case where it was not added were performed. The plasma gas uses only Ar, the pressure during dissolution is 1.20 × 10 5 Pa, the compounding amount of calcium fluoride in the CaO—CaF 2 flux is 80% by mass, and the addition amount of the CaO—CaF 2 flux Was 5 g.

溶解、保持を行った後のTi−Al系合金中の酸素含有量はCaO−CaFフラックスを添加しない場合で540ppm程度であり、酸化チタンを原料に用いて酸素含有量が10質量%を超えるような材料であっても、脱酸効果がかなり発揮されていた。CaO−CaFフラックスを添加する場合では、Ti−Al系合金中の酸素含有量は330ppm程度であり、フラックスを添加することで、一層脱酸効果が発揮されることが確認できた。 The oxygen content in the Ti-Al alloy after melting and holding is about 540 ppm when no CaO-CaF 2 flux is added, and the oxygen content exceeds 10 mass% using titanium oxide as a raw material. Even with such a material, the deoxidation effect was considerably exhibited. In the case of adding the CaO—CaF 2 flux, the oxygen content in the Ti—Al based alloy is about 330 ppm, and it was confirmed that the deoxidation effect was further exhibited by adding the flux.

・誘導溶解法、フラックス添加無
また、プラズマアーク溶解法に変えて、水冷銅容器を用いた誘導溶解法を採用し、前記プラズマアーク溶解法と同様に酸素含有量が0.8質量%のTi−Al系合金からの脱酸試験を実施した。Ti−Al系合金のAl含有量が脱酸反応に与える影響を調べるため、Al含有量が37質量%、39質量%、51質量%のTi−Al系合金をそれぞれ溶製した。尚、各溶解において、溶解量は20kgとし、溶解チャンバー内雰囲気はAr、溶解中の圧力は7.0×10Paとした。誘導溶解炉を用いて溶解、保持を行った後のTi−Al系合金中のAl濃度(Al含有量)と酸素濃度(酸素含有量)の関係を、プラズマアーク溶解法を用いた場合のデータと併せて図1に示す。
・ Inductive melting method, no flux added In addition, instead of the plasma arc melting method, an induction melting method using a water-cooled copper container is adopted, and Ti having an oxygen content of 0.8 mass% is used as in the plasma arc melting method. -A deoxidation test from an Al-based alloy was performed. In order to investigate the influence of the Al content of the Ti—Al based alloy on the deoxidation reaction, Ti—Al based alloys having an Al content of 37 mass%, 39 mass%, and 51 mass% were respectively melted. In each dissolution, the dissolution amount was 20 kg, the atmosphere in the dissolution chamber was Ar, and the pressure during dissolution was 7.0 × 10 4 Pa. Data on the relationship between Al concentration (Al content) and oxygen concentration (oxygen content) in Ti-Al alloys after melting and holding using an induction melting furnace when using plasma arc melting method Together with FIG.

図1によると、プラズマアーク溶解法を採用した場合と同様に、Al含有量が40質量%を超えた辺りから、溶解後の酸素含有量が低下していることがわかる。この結果から、誘導溶解法の場合もプラズマアーク溶解法と同様に、Ti−Al系合金のAl含有量が40質量%以上になると溶解により脱酸反応が進行することがわかる。   According to FIG. 1, it can be seen that the oxygen content after melting decreases from the point where the Al content exceeds 40% by mass, as in the case of employing the plasma arc melting method. From this result, it can be understood that, in the case of the induction melting method, as in the plasma arc melting method, the deoxidation reaction proceeds by dissolution when the Al content of the Ti-Al alloy becomes 40% by mass or more.

・誘導溶解法、フラックス添加有
また、Al含有量が、40質量%、48質量%、59質量%のTi−Al系合金について、CaO−CaFフラックス添加による脱酸反応の促進状況を調べるため、水冷銅容器を用いた誘導溶解法によるTi−Al合金の脱酸を実施した。尚、各溶解において、溶解チャンバー内雰囲気はAr、溶解中の圧力は7.0×10Paとし、CaO−CaFフラックス中のフッ化カルシウムの配合量は80質量%、CaO−CaFフラックスの添加量は、メタル質量の10%とした。結果を図1に示す。
Induction melting method, a flux added Yes addition, Al content is 40 wt%, 48 wt%, 59 for mass% of Ti-Al alloy, in order to examine the accelerated conditions of deoxidation reaction with CaO-CaF 2 flux added The Ti—Al alloy was deoxidized by induction melting using a water-cooled copper container. In each dissolution, the atmosphere in the dissolution chamber was Ar, the pressure during dissolution was 7.0 × 10 4 Pa, the blending amount of calcium fluoride in the CaO—CaF 2 flux was 80% by mass, and the CaO—CaF 2 flux The amount of added was 10% of the metal mass. The results are shown in FIG.

図1によると、水冷銅容器を用いた誘導溶解法を用いた場合でも、CaO−CaFフラックスを添加した場合は、Al含有量が、40質量%、48質量%、59質量%の何れの場合においても、CaO−CaFフラックスを添加しない場合に比べ、更に脱酸が促進されていることがわかる。 According to FIG. 1, even when the induction melting method using a water-cooled copper container is used, when the CaO—CaF 2 flux is added, the Al content is any of 40% by mass, 48% by mass, and 59% by mass. Even in the case, it is understood that deoxidation is further promoted as compared with the case where the CaO—CaF 2 flux is not added.

(CaO−CaFフラックス中のフッ化カルシウムの配合量)
Al含有量が40質量%のTi−Al合金を用い、添加するCaO−CaFフラックスのフッ化カルシウムの配合量を変えて、あとは全て前記した実施例と同じ条件で、100kWプラズマアーク炉を用いたプラズマアーク溶解によりTi−Al合金の脱酸を実施した。尚、CaO−CaFフラックスは、予め溶解前のTi−Al合金の周囲に敷き詰めた。結果を図2に示す。
(Amount of calcium fluoride in CaO-CaF 2 flux)
Using a Ti—Al alloy with an Al content of 40% by mass, changing the blending amount of calcium fluoride in the CaO—CaF 2 flux to be added, and then using a 100 kW plasma arc furnace under the same conditions as in the previous examples. The Ti-Al alloy was deoxidized by the plasma arc melting used. The CaO—CaF 2 flux was spread around the Ti—Al alloy before melting. The results are shown in FIG.

CaO−CaFフラックスを添加しない場合の溶解後の酸素含有量である5400ppmを基準とし、CaO−CaFフラックス添加による脱酸反応促進効果の度合いを調べた。図2によると、酸化カルシウムにフッ化カルシウムを60〜90質量%配合したCaO−CaFフラックスを添加した場合が、最も顕著な脱酸反応促進効果が得られていることが分かるが、40質量%以上配合した場合でも大きな脱酸反応促進効果がある。この試験結果から、酸化カルシウムにフッ化カルシウムを35〜95質量%配合したCaO−CaFフラックスを添加することで脱酸効果が得られることが分かる。尚、図2によると、酸化カルシウムにフッ化カルシウムを30質量%配合したCaO−CaFフラックスを添加した場合は、脱酸が促進されていないことが分かる。これはCaO−CaFフラックスの融点が高過ぎて未溶融であるからである。 The 5400ppm oxygen content after dissolution without the addition of CaO-CaF 2 flux as a reference, was examined the degree of deoxidation reaction acceleration effect by CaO-CaF 2 flux added. According to FIG. 2, it can be seen that when CaO—CaF 2 flux containing 60 to 90% by mass of calcium fluoride in calcium oxide is added, the most remarkable deoxidation reaction promoting effect is obtained. Even when blended in an amount of at least%, there is a significant deoxidation reaction promoting effect. From this test result, it can be seen that the deoxidation effect can be obtained by adding CaO—CaF 2 flux containing 35 to 95 mass% of calcium fluoride to calcium oxide. Incidentally, according to FIG. 2, the case of adding CaO-CaF 2 flux was blended 30 wt% of calcium fluoride to calcium oxide, it can be seen that deoxidation is not promoted. This is because the melting point of the CaO—CaF 2 flux is too high and is not melted.

(溶解前後のTi−Al系合金の質量およびAl含有量の変化)
Ti−Al系合金を、100kWプラズマアーク炉を用いて溶解した時の揮発による材料歩留りを、溶解前後の前記各サンプルの質量およびAl含有量の変化を調べることで評価した。
(Changes in mass and Al content of Ti-Al alloy before and after melting)
The material yield due to volatilization when the Ti—Al based alloy was melted using a 100 kW plasma arc furnace was evaluated by examining the change in mass and Al content of each sample before and after melting.

まず、溶解時間と溶解前後のサンプルの質量変化率の関係を図3に示す。図3によると、溶解前後でサンプルの質量変化は殆どないことがわかる。次に、サンプルのAl濃度(含有量)と溶解前後のサンプルの質量変化率の関係を図4に示す。図4によると、溶解前後でサンプルの質量変化は殆どなく、Alは100kWプラズマアーク炉を用いた溶解により揮発していないことがわかる。これらの結果から、水冷銅容器を用いた溶解の一例であるプラズマアーク炉を用いた溶解では、Ti−Al系合金の溶解時に、合金元素であるAl、更にはTiも揮発しないことがわかる。   First, FIG. 3 shows the relationship between the dissolution time and the mass change rate of the sample before and after dissolution. According to FIG. 3, it can be seen that there is almost no change in the mass of the sample before and after dissolution. Next, FIG. 4 shows the relationship between the Al concentration (content) of the sample and the mass change rate of the sample before and after dissolution. According to FIG. 4, there is almost no change in the mass of the sample before and after melting, and it can be seen that Al is not volatilized by melting using a 100 kW plasma arc furnace. From these results, it is understood that in the melting using the plasma arc furnace, which is an example of the melting using the water-cooled copper container, the alloy elements Al and further Ti are not volatilized when the Ti—Al alloy is melted.

Claims (3)

チタン材料およびアルミニウム材料よりなる、酸素を合計で0.1質量%以上含有する合金材料を用いて作製した、Alを40質量%以上含有するTi−Al系合金を、1.33Pa以上の雰囲気下で、水冷銅容器を用いた溶解法によって溶解し、保持することにより、
前記Ti−Al系合金の酸素含有量を低下させることを特徴とするTi−Al系合金の脱酸方法。
A Ti—Al-based alloy containing 40 mass% or more of Al produced by using an alloy material made of a titanium material and an aluminum material and containing 0.1 mass% or more in total of oxygen under an atmosphere of 1.33 Pa or more By dissolving and holding by a dissolution method using a water-cooled copper container,
A method for deoxidizing a Ti-Al alloy, wherein the oxygen content of the Ti-Al alloy is reduced.
前記Ti−Al合金を溶解する前或いは溶解中に、酸化カルシウムにフッ化カルシウムを35〜95質量%配合したCaO−CaFフラックスを添加する請求項1記載のTi−Al系合金の脱酸方法。 During before or dissolve dissolving the Ti-Al alloy, deoxidation method Ti-Al alloy according to claim 1, wherein the addition of CaO-CaF 2 flux was blended 35 to 95 wt% of calcium fluoride to calcium oxide . 前記水冷銅容器を用いた溶解法は、アーク溶解法、プラズマアーク溶解法、誘導溶解法の何れかである請求項1または2記載のTi−Al系合金の脱酸方法。   The Ti-Al alloy deoxidation method according to claim 1 or 2, wherein the melting method using the water-cooled copper container is any one of an arc melting method, a plasma arc melting method, and an induction melting method.
JP2015131029A 2014-09-04 2015-06-30 Method for deoxidizing Ti-Al alloy Active JP6392179B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2015/074970 WO2016035824A1 (en) 2014-09-04 2015-09-02 METHOD FOR DEOXIDIZING Ti-Al ALLOY
RU2017110549A RU2673589C2 (en) 2014-09-04 2015-09-02 Ti-Al ALLOY DEOXIDATION METHOD
EP15838357.0A EP3190196B1 (en) 2014-09-04 2015-09-02 Method for deoxidizing ti-al alloy
CN201580046835.3A CN106661670B (en) 2014-09-04 2015-09-02 The method of deoxidation of Ti-Al systems alloy
US15/508,384 US20170283906A1 (en) 2014-09-04 2015-09-02 METHOD FOR DEOXIDIZING Ti-Al ALLOY
AU2015312896A AU2015312896B2 (en) 2014-09-04 2015-09-02 Method for deoxidizing Ti-Al alloy
ZA2017/01496A ZA201701496B (en) 2014-09-04 2017-02-28 Method for deoxidizing ti-al alloy

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014180431 2014-09-04
JP2014180431 2014-09-04
JP2014180432 2014-09-04
JP2014180432 2014-09-04
JP2015006765 2015-01-16
JP2015006765 2015-01-16
JP2015006764 2015-01-16
JP2015006764 2015-01-16

Publications (2)

Publication Number Publication Date
JP2016135907A JP2016135907A (en) 2016-07-28
JP6392179B2 true JP6392179B2 (en) 2018-09-19

Family

ID=56512486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015131029A Active JP6392179B2 (en) 2014-09-04 2015-06-30 Method for deoxidizing Ti-Al alloy

Country Status (6)

Country Link
US (1) US20170283906A1 (en)
EP (1) EP3190196B1 (en)
JP (1) JP6392179B2 (en)
CN (1) CN106661670B (en)
AU (1) AU2015312896B2 (en)
RU (1) RU2673589C2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319614B2 (en) 2014-11-04 2022-05-03 Kobe Steel, Ltd. Method for deoxidizing Al—Nb—Ti alloy
EP3586998B1 (en) 2017-02-23 2021-08-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing ti-al alloy
JP7412197B2 (en) * 2020-02-03 2024-01-12 株式会社神戸製鋼所 Method for manufacturing Ti-Al alloy
CN112809013B (en) * 2020-12-30 2022-05-27 中国科学院过程工程研究所 Preparation method of Ti-6Al-4V alloy powder

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711039B2 (en) * 1990-08-24 1995-02-08 京都大学長 Intermetallic compound Al (3) Ti manufacturing method
JP3046349B2 (en) * 1990-11-14 2000-05-29 ゼネラル・エレクトリック・カンパニイ Method of treating titanium-aluminum modified with chromium and niobium
US5102450A (en) * 1991-08-01 1992-04-07 General Electric Company Method for melting titanium aluminide alloys in ceramic crucible
JP2989053B2 (en) * 1991-08-30 1999-12-13 株式会社神戸製鋼所 Method for producing low oxygen Ti-Al alloy and low oxygen Ti-Al alloy
JP2989060B2 (en) * 1991-11-15 1999-12-13 株式会社神戸製鋼所 Low oxygen Ti-Al alloy and method for producing the same
JP3125393B2 (en) * 1991-12-06 2001-01-15 日本鋼管株式会社 Casting method of titanium-aluminum alloy casting
US5332545A (en) * 1993-03-30 1994-07-26 Rmi Titanium Company Method of making low cost Ti-6A1-4V ballistic alloy
US6004368A (en) * 1998-02-09 1999-12-21 Hitchiner Manufacturing Co., Inc. Melting of reactive metallic materials
CN1158397C (en) * 2001-11-21 2004-07-21 中国科学院金属研究所 Process for vacuum induction smelting Ti-Al alloy
RU2269584C1 (en) * 2004-07-30 2006-02-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Titanium-base alloy
JP5048222B2 (en) * 2005-04-01 2012-10-17 株式会社神戸製鋼所 Method for producing long ingots of active refractory metal alloys
RU2463365C2 (en) * 2010-09-27 2012-10-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" METHOD TO PRODUCE INGOT OF PSEUDO β-TITANIUM ALLOY, CONTAINING (4,0-6,0)%Al, (4,5-6,0)% Mo, (4,5-6,0)% V, (2,0-3,6)%Cr, (0,2-0,5)% Fe, (0,1-2,0)%Zr

Also Published As

Publication number Publication date
US20170283906A1 (en) 2017-10-05
AU2015312896A1 (en) 2017-03-30
JP2016135907A (en) 2016-07-28
EP3190196B1 (en) 2019-05-01
CN106661670A (en) 2017-05-10
AU2015312896B2 (en) 2018-10-18
RU2673589C2 (en) 2018-11-28
EP3190196A4 (en) 2018-03-28
RU2017110549A3 (en) 2018-10-08
EP3190196A1 (en) 2017-07-12
RU2017110549A (en) 2018-10-08
CN106661670B (en) 2018-05-04

Similar Documents

Publication Publication Date Title
JP6392179B2 (en) Method for deoxidizing Ti-Al alloy
WO2016035824A1 (en) METHOD FOR DEOXIDIZING Ti-Al ALLOY
JP6720087B2 (en) Copper alloy sputtering target and manufacturing method thereof
KR20160052664A (en) Tantalum sputtering target
TWI518183B (en) Corrosion resistant high nickel alloy and its manufacturing method
CN110819817B (en) Basic slag system for aluminum-titanium-containing nickel-based high-temperature alloy and electroslag remelting method
JP2018134675A (en) Method for producing Ti-Al based alloy
JP6513530B2 (en) Deoxidation method of Ti-Si alloy
KR101591629B1 (en) Method for manufacturing Al-Mg alloy under the melting point of magnesium
JP6556554B2 (en) Method for deoxidizing Al-Nb-Ti alloy
JP6982795B2 (en) Manufacturing method of boron-containing stainless steel
US11319614B2 (en) Method for deoxidizing Al—Nb—Ti alloy
JP6544638B2 (en) Method of manufacturing Ti-containing maraging steel and method of manufacturing preform thereof
JP2004307985A (en) PROCESS FOR MANUFACTURING Al ALLOY CONTAINING LITTLE Ca, AND BASE METAL FOR MANUFACTURING Al ALLOY CONTAINING LITTLE Ca
CN112853129A (en) Short-process preparation method of aluminum-titanium-containing alloy
CN110951983A (en) Method for refining 2618 aluminum alloy as-cast grain structure
WO2023079851A1 (en) Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material
JP2018178242A (en) MANUFACTURING METHOD OF Ti-Al-BASED ALLOY
JPH04120225A (en) Manufacture of ti-al series alloy
JP2023070039A (en) Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material
JP2005232509A (en) METHOD FOR MANUFACTURING Mn ALLOY SPUTTERING TARGET, AND Mn ALLOY SPUTTERING TARGET MANUFACTURED THEREBY
JP2019077909A (en) Manufacturing method of boron-containing stainless steel
JP2003089853A (en) HIGH PURITY Fe-Cr ALLOY HAVING EXCELLENT FORMING WORKABILITY
JP2018135581A (en) Ti CONCENTRATION METHOD OF Ti-Al ALLOY SCRAP
JP2018135583A (en) METHOD OF CONCENTRATING Nb OF Nb-CONTAINING Ti-Al ALLOY

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180822

R150 Certificate of patent or registration of utility model

Ref document number: 6392179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150