JP6556554B2 - Method for deoxidizing Al-Nb-Ti alloy - Google Patents
Method for deoxidizing Al-Nb-Ti alloy Download PDFInfo
- Publication number
- JP6556554B2 JP6556554B2 JP2015159315A JP2015159315A JP6556554B2 JP 6556554 B2 JP6556554 B2 JP 6556554B2 JP 2015159315 A JP2015159315 A JP 2015159315A JP 2015159315 A JP2015159315 A JP 2015159315A JP 6556554 B2 JP6556554 B2 JP 6556554B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- mass
- content
- melting
- oxygen content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000956 alloy Substances 0.000 title claims description 107
- 229910045601 alloy Inorganic materials 0.000 title claims description 97
- 229910020012 Nb—Ti Inorganic materials 0.000 title claims description 65
- 238000000034 method Methods 0.000 title claims description 45
- 239000001301 oxygen Substances 0.000 claims description 69
- 229910052760 oxygen Inorganic materials 0.000 claims description 69
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 67
- 239000010955 niobium Substances 0.000 claims description 66
- 238000002844 melting Methods 0.000 claims description 55
- 230000008018 melting Effects 0.000 claims description 55
- 239000000463 material Substances 0.000 claims description 54
- 229910052758 niobium Inorganic materials 0.000 claims description 47
- 239000010936 titanium Substances 0.000 claims description 44
- 229910052719 titanium Inorganic materials 0.000 claims description 34
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 29
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 28
- 238000004090 dissolution Methods 0.000 claims description 25
- 230000004907 flux Effects 0.000 claims description 25
- 229910052782 aluminium Inorganic materials 0.000 claims description 24
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 15
- 239000000292 calcium oxide Substances 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 10
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 10
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 8
- 230000006698 induction Effects 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 12
- 229910001257 Nb alloy Inorganic materials 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229910004349 Ti-Al Inorganic materials 0.000 description 9
- 229910004692 Ti—Al Inorganic materials 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910000484 niobium oxide Inorganic materials 0.000 description 5
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- OQPDWFJSZHWILH-UHFFFAOYSA-N [Al].[Al].[Al].[Ti] Chemical compound [Al].[Al].[Al].[Ti] OQPDWFJSZHWILH-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910021324 titanium aluminide Inorganic materials 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- -1 scrap raw material Chemical compound 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/10—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/20—Arc remelting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、アルミニウム材料、ニオブ材料およびチタン材料よりなる、酸素を合計で0.5質量%以上含有する合金材料を用いて作製したAl−Nb−Ti系合金から酸素を除去するAl−Nb−Ti系合金の脱酸方法に関するものである。 The present invention removes oxygen from an Al—Nb—Ti-based alloy made using an alloy material made of an aluminum material, a niobium material, and a titanium material and containing 0.5% by mass or more of oxygen in total. The present invention relates to a method for deoxidizing a Ti-based alloy.
近年、航空機や自動車向けの金属素材としてTi−Al系合金の需要が高まりつつある。その中でもTi−Alに更にNbを添加し、耐酸化性をより向上させたTi−Al−Nb系合金の需要は特に高まりつつある。このような活性金属のチタンを主成分とするTi−Al−Nb系合金等のチタン合金を製造する際には、溶解中の酸素による汚染を防ぐことが不可欠であり、従来から真空アーク溶解法(VAR)、電子ビーム溶解法(EB)、プラズマアーク溶解法(PAM)、真空誘導溶解法(VIM)、水冷銅式誘導溶解法(CCIM)などの溶解法が採用されてきた。 In recent years, the demand for Ti-Al alloys as metal materials for aircraft and automobiles is increasing. Among them, the demand for Ti—Al—Nb alloys in which Nb is further added to Ti—Al to further improve the oxidation resistance is increasing. When manufacturing titanium alloys such as Ti-Al-Nb alloys mainly composed of such active metal titanium, it is indispensable to prevent contamination by oxygen during melting. Melting methods such as (VAR), electron beam melting (EB), plasma arc melting (PAM), vacuum induction melting (VIM), and water-cooled copper induction melting (CCIM) have been adopted.
上記した溶解法の中でも、VAR、EB、VIMといった溶解法は真空雰囲気下で合金の溶解を行う溶解法であり、Ti−Al−Nb系合金の溶解に、このような溶解法を採用した場合、合金元素であるAlやNbだけではなく、Tiについても溶解中に揮発してしまいロスを生じることになる。つまり、工業プロセスにおいて、Ti−Al−Nb系合金を目標の組成に制御することは極めて困難であり、その結果、製造コストの増加を招くことにもつながっているのが現状である。 Among the above-described melting methods, melting methods such as VAR, EB, and VIM are melting methods in which an alloy is melted in a vacuum atmosphere. When such a melting method is used for melting a Ti-Al-Nb alloy. In addition to Al and Nb, which are alloy elements, Ti also volatilizes during melting and causes loss. That is, in an industrial process, it is extremely difficult to control the Ti—Al—Nb-based alloy to a target composition, and as a result, the manufacturing cost is increased.
また、酸素含有量が少ないTi−Al−Nb系合金を溶製するためには、酸素含有量が少ない高品位なニオブ材料やチタン材料を用いてTi−Al−Nb系合金を製造することが有効であるが、高品位なニオブ材料は、高価格であり、特に近年は高騰する傾向にあるため、酸素含有量は多いが価格が安い低級ニオブ、酸化ニオブ鉱石(Nb2O5)、スクラップ原料などの比較的低品位なニオブ材料を用いてTi−Al−Nb合金を製造したいというニーズが日々高まっている。また、高品位なチタン材料も価格が高く、ニオブ材料同様にスクラップ原料など低品位なチタン材料を使用したいとのニーズも高まっている。 Further, in order to melt a Ti—Al—Nb alloy having a low oxygen content, it is possible to manufacture a Ti—Al—Nb alloy using a high-grade niobium material or a titanium material having a low oxygen content. Although effective, high-quality niobium materials are expensive and particularly tend to soar in recent years, low-grade niobium, niobium oxide ore (Nb 2 O 5 ), scrap with high oxygen content but low price There is a growing need to manufacture Ti—Al—Nb alloys using relatively low grade niobium materials such as raw materials. High-grade titanium materials are also expensive and there is a growing need to use low-grade titanium materials such as scrap raw materials as well as niobium materials.
Tiは活性金属であり、溶解する雰囲気中に存在する酸素との結合力が極めて強いため、溶解中に外部から取り込まれる酸素を低減し、いかに汚染を防ぐかという対策が従来からなされていた。しかし、一度Ti中に溶存した酸素を除去することは容易ではなく、その取り組み自体が少ないのが現状であるが、先行技術としては以下に示すような提案がある。 Since Ti is an active metal and has an extremely strong binding force with oxygen present in the melting atmosphere, measures have been conventionally taken to reduce oxygen taken from the outside during melting and prevent contamination. However, it is not easy to remove oxygen once dissolved in Ti, and the efforts themselves are few at present, but there are proposals as shown below as prior art.
特許文献1には、酸化カルシウム製の坩堝中で、アルミニウム化チタン合金と、メルト中への酸素の取り込みを低減するのに有効な量のニオブ等の金属とからなる装入材料を融解させる段階から成る、γアルミニウム化チタン合金を融解させる方法が記載されているが、単にTi−Al−Nb系合金の溶解方法が記載されているだけで、Ti−Al−Nb系合金の脱酸方法に関する技術は記載ばかりか示唆すらされていない。また、ニオブ原料も純度99.9%以上の高純度品が使用されており、溶解後のTi−Al−Nb系合金の酸素濃度も脱酸が必要ない濃度となっている。 Patent Document 1 discloses a step of melting a charging material composed of a titanium aluminide alloy and a metal such as niobium in an amount effective for reducing oxygen uptake into a melt in a crucible made of calcium oxide. A method for melting a γ titanium aluminide alloy is described, but only a method for melting a Ti—Al—Nb alloy is described, and a method for deoxidizing a Ti—Al—Nb alloy is described. The technology is not only mentioned or even suggested. In addition, niobium raw materials are high-purity products having a purity of 99.9% or more, and the oxygen concentration of the Ti—Al—Nb-based alloy after melting is a concentration that does not require deoxidation.
また、特許文献2には、Ti−Al系合金を石灰坩堝の中で真空或いは不活性雰囲気中で溶解し、この溶融Ti−Al系合金にCa或いはCa含有合金を添加して、脱酸処理を行うTi−Al系合金の製造方法が記載されている。この特許文献2には、確かにTi−Al系合金の脱酸方法に関する技術が記載されているものの、酸素含有量が高いニオブ材料を用いることばかりか、ニオブ材料を用いることすら記載されておらず、また、示唆すらされていない。
In
特許文献3には、Ti−Alを主成分とする合金系の溶製において、Caで脱酸し、過剰のCaを蒸発除去することおよび無汚染均一溶解によって、高純度の低酸素Ti−Al系合金を製造する方法が記載されている。しかしながら、この特許文献3にも、ニオブ材料を用いることすら記載されておらず、Ti−Al−Nb系合金の脱酸方法については記載も示唆もされていない。また、特許文献3に記載された技術によれば、Ca添加溶解、並びにCa除去および均質化のための溶解の2工程を要すると共に、残留Caの完全な排除ができないため、製造コスト時間の増大と共に、残留Caによる各種特性の変化すら懸念される。 In Patent Document 3, high purity, low oxygen Ti-Al is obtained by deoxidizing with Ca, evaporating and removing excess Ca, and non-contaminating homogeneous dissolution in the melting of an alloy system mainly composed of Ti-Al. A method for producing a base alloy is described. However, this Patent Document 3 does not even describe the use of a niobium material, nor does it describe or suggest a deoxidation method for a Ti—Al—Nb alloy. In addition, according to the technique described in Patent Document 3, two steps of dissolution for addition of Ca and dissolution for removal and homogenization of Ca are required, and residual Ca cannot be completely eliminated, resulting in an increase in manufacturing cost time. At the same time, there are concerns about changes in various characteristics due to residual Ca.
本発明は、上記従来の問題を解決せんとしてなされたもので、酸素含有量が高い低品位なニオブ材料を用いて、目標の組成でしかも酸素含有量が少ないTi−Al−Nb系合金を得るにあたり、まずはAlを主成分とする酸素含有量の少ないAl−Nb−Ti系合金を製造することに着目し、高真空雰囲気としなくても容易に製造することができるAl−Nb−Ti系合金の脱酸方法を提供することを課題とするものである。 The present invention has been made as a solution to the above-described conventional problems, and uses a low-grade niobium material having a high oxygen content to obtain a Ti-Al-Nb alloy having a target composition and a low oxygen content. At first, focusing on producing an Al—Nb—Ti alloy having a low oxygen content with Al as a main component, an Al—Nb—Ti alloy that can be easily produced without using a high vacuum atmosphere. It is an object of the present invention to provide a deoxidation method.
本発明のAl−Nb−Ti系合金の脱酸方法は、アルミニウム材料、ニオブ材料およびチタン材料よりなる、酸素を合計で0.5質量%以上含有する合金材料を用いて作製した、Alを50〜75質量%、Nbを5〜30質量%、且つ、AlとNbの合計量で80質量%以下を含有するAl−Nb−Ti系合金を、1900K以上の温度、1.33Pa〜2.67×105Paの雰囲気下で、水冷銅容器を用いた溶解法によって溶解し、保持することにより、酸素含有量を低下させることを特徴とする。 The method for deoxidizing an Al—Nb—Ti alloy according to the present invention uses an aluminum material, a niobium material, and a titanium material, which is made of an alloy material containing a total of 0.5 mass% or more of oxygen. An Al—Nb—Ti-based alloy containing 75% by mass, 5% to 30% by mass of Nb, and 80% by mass or less in terms of the total amount of Al and Nb is at a temperature of 1900K or more, 1.33 Pa to 2.67. In an atmosphere of × 10 5 Pa, the oxygen content is reduced by dissolving and holding by a dissolution method using a water-cooled copper container.
更に、前記水冷銅容器を用いた溶解法による前記Al−Nb−Ti系合金の溶解中に、酸化カルシウムにフッ化カルシウムを0〜95質量%配合したCaO−CaF2フラックスを添加することが好ましい。 Furthermore, it is preferable to add CaO—CaF 2 flux in which 0 to 95% by mass of calcium fluoride is mixed with calcium oxide during dissolution of the Al—Nb—Ti alloy by the melting method using the water-cooled copper container. .
また、前記水冷銅容器を用いた溶解法は、アーク溶解法、プラズマアーク溶解法、誘導溶解法の何れかであることが好ましい。 The melting method using the water-cooled copper container is preferably any one of an arc melting method, a plasma arc melting method, and an induction melting method.
本発明のAl−Nb−Ti系合金の脱酸方法によると、融体中のAlの含有量を50〜75質量%と高濃度とすることで、酸素含有量が高い低品位で廉価なニオブ材料を用いて、Al、Nb、Tiが溶解中に揮発ロスすることが殆どなく、目標の組成で、しかも酸素含有量が少ないAl−Nb−Ti系合金を、高真空雰囲気としなくても容易に製造することができる。そして、上記酸素含有量が少ないAl−Nb−Ti系合金を酸素含有量が少ないTiと適量混合することで、比較的低コストで、所望のTiを主成分とするTi−Al−Nb系合金を得ることができるようになる。 According to the deoxidation method of the Al—Nb—Ti alloy of the present invention, the low content and low price niobium with a high oxygen content can be obtained by setting the Al content in the melt as high as 50 to 75% by mass. Using materials, Al, Nb, Ti hardly loses volatilization during melting, and it is easy even if Al-Nb-Ti alloy with a target composition and low oxygen content is not used in a high vacuum atmosphere. Can be manufactured. Then, by mixing an appropriate amount of the above-described Al—Nb—Ti alloy having a low oxygen content with Ti having a low oxygen content, a Ti—Al—Nb alloy having the desired Ti as a main component at a relatively low cost. You will be able to get
本発明者らは、前記した酸素含有量が高い低品位なニオブ材料を用いて、目標の組成でしかも酸素含有量が少ないTi-Al−Nb系合金(活性金属のチタンを主成分とするTi-Al−Nb系合金)を得るため、鋭意検討を行ってきた。 The present inventors have used the above-described low-grade niobium material having a high oxygen content, and a Ti—Al—Nb-based alloy having a target composition and a low oxygen content (Ti containing an active metal titanium as a main component). -Al-Nb-based alloys) have been studied earnestly.
その結果、予め所望の組成、すなわちチタンを主成分とする合金組成に制御しつつ、並行して酸素含有量を低減させることは技術的・コスト的に難しい一方、その工程を分割し、酸素含有量が少なく、且つアルミを主成分とするAl-Nb-Ti合金を作製した後、当該酸素含有量の少ないAl-Nb-Ti合金と通常の製法で得られる酸素含有量の少ない純Tiを適量混合するようにすれば、比較的容易且つ低コストで所望の組成のチタンを主成分とするTi-Al−Nb系合金を得ることができるのではないかとの考えに至った。 As a result, while it is difficult to reduce the oxygen content in parallel while controlling the desired composition in advance, that is, the alloy composition containing titanium as a main component, it is difficult in terms of technology and cost. After producing an Al-Nb-Ti alloy with a small amount and containing aluminum as a main component, an appropriate amount of the Al-Nb-Ti alloy with a low oxygen content and pure Ti with a low oxygen content obtained by a normal manufacturing method It came to the idea that a Ti—Al—Nb-based alloy containing titanium having a desired composition as a main component could be obtained relatively easily and at low cost if mixed.
そして、本発明者らは、合金中に高濃度のAlを含有する組成範囲において固溶し得る酸素濃度(固溶限)が低下することを見出し、低級ニオブ、酸化ニオブ鉱石(NbOX)、スクラップ原料などの酸素を多く含有する低品位なニオブ材料やチタン材料を用いて、Al、Nb、Tiが揮発ロスすることなく目標の組成で、しかも酸素含有量が少ないAl−Nb−Ti系合金を、高真空雰囲気としなくても容易に製造できる方法を見出すため、鋭意検討を行った。 Then, the present inventors have found that the oxygen concentration (solid solubility limit) that can be dissolved in a composition range containing a high concentration of Al in the alloy decreases, and lower niobium, niobium oxide ore (NbO x ), Using a low-grade niobium material or titanium material containing a large amount of oxygen such as scrap raw material, Al-Nb-Ti alloy with a target composition and low oxygen content with no volatilization loss of Al, Nb, Ti In order to find a method that can be easily manufactured without using a high-vacuum atmosphere, intensive studies were conducted.
すなわち、融体中のAlの含有量を50〜75質量%と高くすることで、低品位なニオブ材料やチタン材料を用いて作製したAl−Nb−Ti系合金であっても、高真空雰囲気としなくても水冷銅容器を用いた溶解で脱酸反応が進行し、また、Al、Nb、Tiの揮発ロスが殆どなく目標の組成の低酸素Al−Nb−Ti系合金を容易に製造できることを見出し、本発明を完成させるに至った。 That is, even if it is an Al—Nb—Ti alloy produced using a low-grade niobium material or a titanium material by increasing the Al content in the melt to 50 to 75 mass%, a high vacuum atmosphere Even if it does not, deoxidation reaction proceeds by dissolution using a water-cooled copper container, and there is almost no volatilization loss of Al, Nb, Ti, and a low-oxygen Al—Nb—Ti alloy having a target composition can be easily produced. As a result, the present invention has been completed.
また、Al−Nb−Ti系合金を溶解する前或いは溶解中に、チタン中で溶存しない特定の成分組成のCaO−CaF2フラックスを脱酸反応促進剤として添加することで、その脱酸反応はより確実に進行することも併せて見出した。 Further, before or during the dissolution of the Al—Nb—Ti alloy, by adding CaO—CaF 2 flux having a specific component composition not dissolved in titanium as a deoxidation reaction accelerator, the deoxidation reaction is We also found that the process progressed more reliably.
以下、本発明を実施形態に基づいて更に詳細に説明する。 Hereinafter, the present invention will be described in more detail based on embodiments.
本発明のAl−Nb−Ti系合金の脱酸方法は、アルミニウム材料、ニオブ材料およびチタン材料よりなる、酸素を合計で0.5質量%以上含有する合金材料を用いて作製した、Alを50〜75質量%、Nbを5〜30質量%、且つ、AlとNbの合計量で80質量%以下を含有するAl−Nb−Ti系合金を、1900K以上の温度、1.33Pa〜2.67×105Paの雰囲気下で、水冷銅容器を用いたアーク溶解法、プラズマアーク溶解法、誘導溶解法などの溶解法によって溶解し、保持することにより、酸素含有量を低下させる方法であって、前記ニオブ材料としては、低品位な、低級ニオブ、酸化ニオブ鉱石(NbOx)、スクラップ原料などを、前記チタン材料としては、酸化チタン(TiOX)やスクラップ原料などを用いることができる。 The method for deoxidizing an Al—Nb—Ti alloy according to the present invention uses an aluminum material, a niobium material, and a titanium material, which is made of an alloy material containing a total of 0.5 mass% or more of oxygen. An Al—Nb—Ti-based alloy containing 75% by mass, 5% to 30% by mass of Nb, and 80% by mass or less in terms of the total amount of Al and Nb is at a temperature of 1900K or more, 1.33 Pa to 2.67. It is a method of reducing the oxygen content by melting and holding by a melting method such as an arc melting method using a water-cooled copper container, a plasma arc melting method, an induction melting method in an atmosphere of × 10 5 Pa. Examples of the niobium material, a low-grade, lower niobium, niobium oxide ore (NbO x), and scrap material, as the titanium material, titanium oxide (TiO X) or scrap material such as It can be used.
Al−Nb−Ti系合金の作製に、低品位な、低級ニオブ、酸化ニオブ鉱石(NbOx)、スクラップ原料などの酸素含有量が多いニオブ材料を用いる理由は、これらニオブ材料が、高品位な原料に比べて、廉価であり調達し易いからである。また、アルミニウム材料、ニオブ材料およびチタン材料よりなる合金材料の酸素の合計含有量を0.5質量%以上としたのは、合金材料中の酸素の合計含有量が0.5質量%未満であれば、酸素の含有量は僅かであり、希釈化や簡易的な精錬を実施することで低酸素Al−Nb−Ti系合金を容易に得ることができるからである。尚、本発明では、酸素の含有量の上限は規定しないが、前記合金材料に実際に含有される酸素の合計含有量の上限は、30.0質量%程度であると考えられる。 The reason for using low-grade, low-grade niobium, niobium oxide ore (NbO x ), scrap materials and other oxygen-containing niobium materials for the production of Al—Nb—Ti-based alloys is because these niobium materials are high-grade. This is because it is cheaper and easier to procure than raw materials. Also, the total oxygen content of the alloy material made of aluminum material, niobium material and titanium material is 0.5 mass% or more if the total oxygen content in the alloy material is less than 0.5 mass%. For example, the oxygen content is small, and a low-oxygen Al—Nb—Ti-based alloy can be easily obtained by dilution or simple refining. In the present invention, the upper limit of the oxygen content is not specified, but the upper limit of the total content of oxygen actually contained in the alloy material is considered to be about 30.0% by mass.
また、前記アルミニウム材料、ニオブ材料およびチタン材料よりなる合金材料を用いて作製したAl−Nb−Ti系合金のAl含有量を50〜75質量%、Nb含有量を5〜30質量%、且つ、AlとNbの合計量で80質量%以下とした理由は、Al−Nb−Ti系合金中のAl含有量が50質量%以上、Nbの含有量が5質量%以上であれば、高真空雰囲気下ではなくて、1.33Pa〜2.67×105Paの雰囲気下であっても、水冷銅容器を用いたアーク溶解法、プラズマアーク溶解法、誘導溶解法などの溶解法によって、Al−Nb−Ti系合金の脱酸反応が進行するからである。また、溶解中の圧力を1.33Pa〜2.67×105Paとした理由は、Al、Nb、Tiの揮発ロスがなく、且つ、溶湯の飛散による歩留り低下を防止できるのが、この範囲の圧力であるからである。 Further, the Al content of the Al—Nb—Ti alloy produced using the alloy material made of the aluminum material, niobium material and titanium material is 50 to 75 mass%, the Nb content is 5 to 30 mass%, and The reason why the total amount of Al and Nb is 80% by mass or less is that if the Al content in the Al—Nb—Ti-based alloy is 50% by mass or more and the Nb content is 5% by mass or more, a high vacuum atmosphere Even under an atmosphere of 1.33 Pa to 2.67 × 10 5 Pa, not by the bottom, by a melting method such as an arc melting method using a water-cooled copper container, a plasma arc melting method, an induction melting method, etc. This is because the deoxidation reaction of the Nb—Ti alloy proceeds. Moreover, the reason why the pressure during melting is 1.33 Pa to 2.67 × 10 5 Pa is that there is no volatilization loss of Al, Nb, and Ti, and it is possible to prevent a decrease in yield due to scattering of the molten metal. This is because of the pressure.
この脱酸反応は、酸素固溶量の少ない高Al含有領域においてのみ発現する現象であり、Al含有量が高くなる程、酸素固溶限が少なくなることは、以下のTi−Al−O3元系状態図に示唆されている(X.L.Li,R.Hillel,F.Teyssandier,S.K.Choi,and F.J.J.Van Loo,Acta Metall.Mater.40[11]3147−3157(1992))。また、この脱酸反応は、液相において発現する現象でもあり、Al−Nb−Ti系合金の場合は、合金融体中のAl活量が高くなると脱酸反応がより顕著に進行する。Al−Nb−Ti系合金のAl含有量が50〜75質量%、Nbの含有量が5〜30質量%、且つ、AlとNbの合計量で80質量%以下であれば、概ね1900K以上の温度で、脱酸反応が進行する。 This deoxidation reaction is a phenomenon that appears only in a high Al-containing region with a small amount of oxygen solid solution. The higher the Al content, the smaller the oxygen solid solution limit is, the following Ti-Al-O3 element. It is suggested in the system phase diagram (XL Li, R. Hillel, F. Teyssandier, SK Choi, and F. J. J. Van Loo, Acta Metal. Mater. 40 [11] 3147- 3157 (1992)). Moreover, this deoxidation reaction is also a phenomenon that develops in the liquid phase. In the case of an Al—Nb—Ti alloy, the deoxidation reaction proceeds more significantly when the Al activity in the combined financial body increases. If the Al content of the Al—Nb—Ti-based alloy is 50 to 75% by mass, the Nb content is 5 to 30% by mass, and the total amount of Al and Nb is 80% by mass or less, approximately 1900K or more. The deoxidation reaction proceeds at temperature.
また、Al−Nb−Ti系合金のAl含有量の上限を75質量%、Nb含有量の上限を30質量%、且つ、AlとNbの合計量で80質量%以下とした理由は、Al−Nb−Ti系合金はNbおよびTi以外の他の合金元素や酸素などの不純物も含有するので、AlおよびNbの含有量が多くなり過ぎるとTiの割合が少なくなりAl−Nb−Ti系合金ということができなくなるからである。 The reason why the upper limit of the Al content of the Al—Nb—Ti-based alloy is 75% by mass, the upper limit of the Nb content is 30% by mass, and the total amount of Al and Nb is 80% by mass or less is that Al— Since the Nb-Ti alloy contains other alloy elements other than Nb and Ti and impurities such as oxygen, if the content of Al and Nb is excessively large, the proportion of Ti decreases and the Al-Nb-Ti alloy is referred to. Because it becomes impossible.
また、本発明のAl−Nb−Ti系合金の脱酸方法は、Al、Nb、Tiの揮発ロスが殆どなく、酸素含有量を低下させる方法であると説明したが、揮発ロスが殆どないとは、溶解前後でのAl含有量の差が1.0質量%以下、Nb含有量の差が0.5質量%以下であることを指す。 Moreover, although the deoxidation method of the Al-Nb-Ti alloy of the present invention is described as a method of reducing the oxygen content with almost no volatilization loss of Al, Nb, Ti, there is almost no volatilization loss. Means that the difference in Al content before and after dissolution is 1.0 mass% or less, and the difference in Nb content is 0.5 mass% or less.
また、Al−Nb−Ti系合金の脱酸を行うにあたり、脱酸反応促進剤として、CaO単体のフラックス、または酸化カルシウムにフッ化カルシウムを0質量%超95質量%以下配合したCaO−CaF2フラックスを添加することで脱酸反応がより促進される。 Further, when deoxidizing the Al—Nb—Ti alloy, as a deoxidation reaction accelerator, CaO single flux or CaO—CaF 2 in which calcium fluoride is blended with calcium oxide in an amount of more than 0 mass% and not more than 95 mass%. The deoxidation reaction is further promoted by adding the flux.
また、Al−Nb−Ti系合金中に固溶しない、CaO単体のフラックス、または酸化カルシウムにフッ化カルシウムを0質量%超95質量%以下配合したCaO−CaF2フラックスを添加することにより、Al−Nb−Ti系合金溶解時に生成した脱酸生成物のAl2O3がCaOと化合物を生成またはCaO−CaF2中に溶解してAl2O3活量が低下し、更に脱酸反応が促進される。 Further, by adding a CaO single flux that does not form a solid solution in the Al—Nb—Ti-based alloy, or a CaO—CaF 2 flux in which calcium fluoride is added to calcium oxide in an amount of more than 0% by mass to 95% by mass, Al The deoxidation product Al 2 O 3 produced during dissolution of the —Nb—Ti-based alloy produces a compound with CaO or dissolves in CaO—CaF 2 to lower the activity of Al 2 O 3 , and further the deoxidation reaction Promoted.
前記脱酸反応が進行するためには、Al−Nb−Ti系合金中に存在しているAl2O3と添加フラックスが接触する必要があると考えられる。Al−Nb−Ti系合金の比重は、高比重のNbが添加されているため、Ti−Al2元系合金の比重よりも大きくなり、Al−Nb−Ti系合金と、Al2O3および添加フラックスの分離が促進され、結果的に、Al2O3とフラックスが接触しやすくなると推測される。 In order for the deoxidation reaction to proceed, it is considered that Al 2 O 3 present in the Al—Nb—Ti-based alloy needs to come into contact with the added flux. The specific gravity of the Al—Nb—Ti alloy is higher than that of the Ti—Al binary alloy because of the high specific gravity of Nb added, and the Al—Nb—Ti alloy, Al 2 O 3 and the addition are added. It is presumed that separation of the flux is promoted, and as a result, Al 2 O 3 and the flux are likely to come into contact with each other.
また、フッ化カルシウムが0質量%の場合、つまりCaO単体のフラックスは高融点であり、Al−Nb−Ti系合金の融点程度の温度では溶融しないが、Al−Nb−Ti系合金中に存在しているAl2O3と接触すると低融点のCaO−Al2O3系化合物を生成し、Al2O3活量を低下させ、更なる脱酸促進が可能であるため、Al−Nb−Ti系合金の融点以上のフラックスであるが使用可能である。 When calcium fluoride is 0% by mass, that is, the flux of CaO alone has a high melting point and does not melt at a temperature about the melting point of the Al—Nb—Ti alloy, but exists in the Al—Nb—Ti alloy. When it comes into contact with Al 2 O 3 , a low melting point CaO—Al 2 O 3 -based compound is generated, Al 2 O 3 activity is lowered, and further deoxidation promotion is possible. It is possible to use a flux that is higher than the melting point of the Ti-based alloy.
一方、フッ化カルシウムの配合量が95質量%を超えると、フッ素による汚染が発生する。よって、本発明では、CaO単体のフラックス、または酸化カルシウムにフッ化カルシウムを0質量%超95質量%以下配合したCaO−CaF2フラックスを採用する。 On the other hand, when the blending amount of calcium fluoride exceeds 95% by mass, contamination with fluorine occurs. Therefore, in the present invention, a CaO single flux or a CaO—CaF 2 flux in which calcium fluoride is mixed with calcium oxide in an amount of more than 0% by mass and 95% by mass or less is employed.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.
(Al−Nb−Ti系合金中のAl含有量と溶解前後の酸素含有量の関係)
アルミニウム材料、ニオブ材料およびチタン材料(酸化チタンまたは金属チタン)からなる合金材料を用いて、酸素含有量が4〜30質量%の合金元素の含有量が様々なAl−Nb−Ti系合金を作製した。作製したAl−Nb−Ti系合金系合金の脱酸を、水冷銅容器を用いた100kWプラズマアーク炉で溶解し、その後保持することにより実施した。尚、プラズマガスはArのみを使用し、溶解中の圧力は1.20×105Paとした。
(Relation between Al content in Al-Nb-Ti alloy and oxygen content before and after dissolution)
Using an alloy material composed of an aluminum material, a niobium material, and a titanium material (titanium oxide or metal titanium), an Al—Nb—Ti alloy with various oxygen content of 4 to 30% by mass is produced. did. Deoxidation of the produced Al—Nb—Ti-based alloy-based alloy was performed by melting in a 100 kW plasma arc furnace using a water-cooled copper container and holding it thereafter. Note that only Ar was used as the plasma gas, and the pressure during melting was 1.20 × 10 5 Pa.
Al−Nb−Ti系合金のAl含有量が溶解による脱酸反応に与える影響を調べるため、Al含有量が30質量%、45質量%、60質量%のAl−Nb−Ti系合金をそれぞれ用いて作製したサンプルとした。Al含有量が30質量%、60質量%のAl−Nb−Ti系合金を用いたサンプルについては、チタン材料として酸化チタンと金属チタンを用いたサンプルを両方準備したが、Al含有量が45質量%のAl−Nb−Ti系合金を用いたサンプルについては、チタン材料として酸化チタンを用いたサンプルのみを準備した。図1,2には、酸化チタンを用いたサンプルは●印で、金属チタンを用いたサンブルは■印で、それぞれ表す。尚、これらAl−Nb−Ti系合金のNb含有量は、表1に示すように10〜20質量%の範囲である。 In order to investigate the influence of the Al content of the Al—Nb—Ti alloy on the deoxidation reaction by dissolution, Al—Nb—Ti alloys having an Al content of 30% by mass, 45% by mass, and 60% by mass were used. A sample was prepared. For samples using Al-Nb-Ti alloys with an Al content of 30% by mass and 60% by mass, both samples using titanium oxide and metal titanium were prepared as titanium materials, but the Al content was 45% by mass. As for the sample using the Al—Nb—Ti based alloy, only the sample using titanium oxide as the titanium material was prepared. In FIGS. 1 and 2, samples using titanium oxide are indicated by ●, and samples using metal titanium are indicated by ■. In addition, as shown in Table 1, the Nb content of these Al—Nb—Ti alloys is in the range of 10 to 20% by mass.
Al−Nb−Ti系合金中のAl濃度(Al含有量)と溶解前後の酸素濃度(酸素含有量)の関係を図1,2に示す。矢印の上側(基端側)が溶解前、下側(先端側)が溶解後を示す。尚、図1,2では、Al含有量が30質量%、60質量%のAl−Nb−Ti系合金を用いたサンプルについては、●印と■印を見やすいよう左右に多少ずらせてプロットしている。 The relationship between the Al concentration (Al content) in the Al—Nb—Ti-based alloy and the oxygen concentration (oxygen content) before and after melting is shown in FIGS. The upper side (base end side) of the arrow indicates before dissolution, and the lower side (tip end side) indicates after dissolution. In FIGS. 1 and 2, the samples using Al-Nb-Ti alloys with an Al content of 30% by mass and 60% by mass are plotted slightly shifted left and right so that the ● and ■ marks can be seen easily. Yes.
Al−Nb−Ti系合金については、概ね0.1質量%以下の酸素含有量が求められているが、図1,2によると、Al含有量が30質量%および45質量%のサンプルの溶解後の酸素含有量は、全て0.1質量%以下になっておらず、酸素含有量が0.1質量%以下という条件を満たしていない。一方、Al含有量が60質量%のサンプルの溶解後の酸素含有量は、チタン材料として金属チタンを用いた場合は勿論、酸化チタンを用いた場合も、0.1質量%以下になっており、酸素含有量が0.1質量%以下という条件を満たしている。 For Al—Nb—Ti alloys, an oxygen content of approximately 0.1% by mass or less is required. According to FIGS. 1 and 2, dissolution of samples having an Al content of 30% by mass and 45% by mass is achieved. The subsequent oxygen content is not 0.1% by mass or less, and does not satisfy the condition that the oxygen content is 0.1% by mass or less. On the other hand, the oxygen content after dissolution of a sample having an Al content of 60% by mass is 0.1% by mass or less when titanium oxide is used as well as when titanium metal is used as the titanium material. The oxygen content is 0.1% by mass or less.
Al脱酸はチタン合金中のAl活量に支配されており、Al活量はAl含有量と対数的な相関関係があるとされている。溶解後の酸素含有量とAl含有量の関係は、M.Maeda et al.Material Science and Engineering A239−240(1997)276−280によると、図1に示す破線のような関係になると想定される。この破線を基に推定すると、Al含有量50質量%を境に、酸素含有量が0.1質量%以下となると考えられる。 Al deoxidation is governed by the Al activity in the titanium alloy, and the Al activity is assumed to have a logarithmic correlation with the Al content. The relationship between the oxygen content after dissolution and the Al content is as follows. Maeda et al. According to Material Science and Engineering A239-240 (1997) 276-280, it is assumed that the relationship is as shown by the broken line in FIG. If estimated based on this broken line, the oxygen content is considered to be 0.1 mass% or less with the Al content of 50 mass% as a boundary.
(溶解前の配合合金濃度と溶解後の合金濃度の関係)
また、Al−Nb−Ti系合金の溶解(脱酸)前の配合合金濃度と、溶解(脱酸)後の合金濃度の関係についても併せて調査した。表1に、Al−Nb−Ti系合金の溶解前のAlおよびNbの含有量と、溶解後のAlおよびNbの含有量の関係を示す。尚、No.の末尾に「a」を記載したものは、チタン材料として酸化チタンを用いたものを、No.の末尾に「b」を記載したものは、チタン材料として金属チタンを用いたものを、それぞれ示す。
(Relationship between compound alloy concentration before melting and alloy concentration after melting)
Moreover, the relationship between the alloy concentration of the Al—Nb—Ti-based alloy before dissolution (deoxidation) and the alloy concentration after dissolution (deoxidation) was also investigated. Table 1 shows the relationship between the contents of Al and Nb before melting of the Al—Nb—Ti alloy and the contents of Al and Nb after melting. No. In the case where “a” is written at the end of “No.”, no. "B" at the end of each indicates that using titanium metal as the titanium material.
Al含有量が30質量%のAl−Nb−Ti系合金の場合は、Alが2.0〜2.2質量%、Nbが0.8〜1.4質量%となっており、溶解後は目標とする組成から乖離していた。また、Al含有量が45質量%のTAl−Nb−Ti系合金の場合は、Alが0.8質量%、Nbが0.4質量%となっており、溶解後は目標とする組成からの乖離は小さいものの、これらはAlの含有量が少ないため、前記の通り、酸素含有量が0.1質量%以下になっていない。 In the case of an Al-Nb-Ti alloy having an Al content of 30% by mass, Al is 2.0 to 2.2% by mass and Nb is 0.8 to 1.4% by mass. Deviated from the target composition. Further, in the case of a TAl—Nb—Ti alloy with an Al content of 45% by mass, Al is 0.8% by mass and Nb is 0.4% by mass. Although the divergence is small, since the content of Al is small, as described above, the oxygen content is not less than 0.1% by mass.
これに対し、Al含有量が60質量%のAl−Nb−Ti系合金の場合は、溶解後は、Alが0.4〜0.7質量%、Nbが0.2〜0.3質量%の乖離に止まっている。この結果は、Al含有量が60質量%のAl−Nb−Ti系合金の場合は、Alの含有量が、全ての酸化Nbが還元できるだけの十分な含有量であったことを示している。 On the other hand, in the case of an Al—Nb—Ti alloy having an Al content of 60% by mass, Al is 0.4 to 0.7% by mass and Nb is 0.2 to 0.3% by mass after melting. The divergence has stopped. This result shows that, in the case of an Al—Nb—Ti alloy with an Al content of 60% by mass, the Al content was sufficient to reduce all the oxidized Nb.
・フラックスを添加した実施例
(Al−Nb−Ti系合金中のAl含有量と溶解前後の酸素含有量の関係)
アルミニウム材料、ニオブ材料(酸化ニオブ)、チタン材料からなる合金材料を用いて、表2に示す合金元素の含有量が異なる2種のAl−Nb−Ti系合金を作製した。作製した2種のAl−Nb−Ti系合金を水冷銅容器を用いた10kWプラズマアーク炉で溶解し、脱酸反応促進剤としてフラックスをそれぞれ添加し、その後保持することにより、Al−Nb−Ti系合金の脱酸を実施した。尚、プラズマガスはArのみを使用し、溶解中の圧力は1.20×105Paとした。
・ Examples with added flux (Relation between Al content in Al-Nb-Ti alloy and oxygen content before and after dissolution)
Two types of Al—Nb—Ti alloys having different alloy element contents shown in Table 2 were prepared using an alloy material made of an aluminum material, a niobium material (niobium oxide), and a titanium material. The prepared two types of Al—Nb—Ti-based alloys were dissolved in a 10 kW plasma arc furnace using a water-cooled copper vessel, and flux was added as a deoxidation reaction accelerator, and then retained, thereby maintaining Al—Nb—Ti. Deoxidation of the system alloy was performed. Note that only Ar was used as the plasma gas, and the pressure during melting was 1.20 × 10 5 Pa.
添加したフラックスは、酸化カルシウムにフッ化カルシウムを80質量%配合したCaO−CaF2フラックスと、フッ化カルシウムを配合しないCaO単体のフラックスのそれぞれ2種である。 The added flux is two kinds of CaO—CaF 2 flux in which 80% by mass of calcium fluoride is blended with calcium oxide, and a CaO single flux in which calcium fluoride is not blended.
Al−Nb−Ti系合金の溶解後のAl濃度(Al含有量)と酸素濃度(酸素含有量)の関係を図3,4および表2に示す。尚、図3,4にはフラックスを添加しない実施例についても併せて表示している。 3 and 4 and Table 2 show the relationship between the Al concentration (Al content) and the oxygen concentration (oxygen content) after dissolution of the Al-Nb-Ti alloy. 3 and 4 also show an example in which no flux is added.
前記したように、Al−Nb−Ti系合金については、概ね0.1質量%以下の酸素含有量が求められている。フラックスを添加しないNo.1のサンプルでもAl含有量が60質量%であるため、溶解後の酸素含有量は0.076質量%で、酸素含有量が0.1質量%以下という条件を満たしているが、CaO単体のフラックスを添加したNo.4のサンプルでは、溶解後の酸素含有量は0.036質量%、酸化カルシウムにフッ化カルシウムを80質量%配合したCaO−CaF2フラックスを添加したNo.5のサンプルでは、溶解後の酸素含有量は0.018質量%と、更に脱酸が促進されていることが分かる。 As described above, an Al-Nb-Ti-based alloy is required to have an oxygen content of approximately 0.1% by mass or less. No addition of flux. Even in the sample 1, since the Al content is 60% by mass, the dissolved oxygen content is 0.076% by mass and the oxygen content is 0.1% by mass or less. No. with added flux In the sample No. 4, the dissolved oxygen content was 0.036% by mass, and No. 2 in which CaO—CaF 2 flux containing calcium fluoride in 80% by mass was added to calcium oxide. In sample No. 5, the oxygen content after dissolution was 0.018% by mass, indicating that deoxidation was further promoted.
Claims (3)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/522,062 US11319614B2 (en) | 2014-11-04 | 2015-11-04 | Method for deoxidizing Al—Nb—Ti alloy |
PCT/JP2015/081093 WO2016072434A1 (en) | 2014-11-04 | 2015-11-04 | METHOD FOR DEOXIDIZING Al-Nb-Ti ALLOY |
AU2015344310A AU2015344310B2 (en) | 2014-11-04 | 2015-11-04 | Method for deoxidizing Al-Nb-Ti alloy |
CN201580058014.1A CN107148484B (en) | 2014-11-04 | 2015-11-04 | The method of deoxidation of Al-Nb-Ti system alloy |
EP15856211.6A EP3216882B1 (en) | 2014-11-04 | 2015-11-04 | Method for deoxidizing an al-nb-ti alloy |
RU2017115476A RU2665654C1 (en) | 2014-11-04 | 2015-11-04 | METHOD OF DEOXIDIZING OF Al-Nb-Ti ALLOY |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014224360 | 2014-11-04 | ||
JP2014224360 | 2014-11-04 | ||
JP2015078626 | 2015-04-07 | ||
JP2015078626 | 2015-04-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016183403A JP2016183403A (en) | 2016-10-20 |
JP6556554B2 true JP6556554B2 (en) | 2019-08-07 |
Family
ID=57242896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015159315A Active JP6556554B2 (en) | 2014-11-04 | 2015-08-12 | Method for deoxidizing Al-Nb-Ti alloy |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3216882B1 (en) |
JP (1) | JP6556554B2 (en) |
CN (1) | CN107148484B (en) |
AU (1) | AU2015344310B2 (en) |
RU (1) | RU2665654C1 (en) |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3046349B2 (en) * | 1990-11-14 | 2000-05-29 | ゼネラル・エレクトリック・カンパニイ | Method of treating titanium-aluminum modified with chromium and niobium |
JP2989053B2 (en) * | 1991-08-30 | 1999-12-13 | 株式会社神戸製鋼所 | Method for producing low oxygen Ti-Al alloy and low oxygen Ti-Al alloy |
JP2989060B2 (en) * | 1991-11-15 | 1999-12-13 | 株式会社神戸製鋼所 | Low oxygen Ti-Al alloy and method for producing the same |
JPH08283890A (en) * | 1995-04-13 | 1996-10-29 | Nippon Steel Corp | Tial-base intermetallic compound excellent in creep resistance and its production |
JP4305792B2 (en) * | 1999-03-25 | 2009-07-29 | ソニー株式会社 | Metal refining method and refining method |
JP4516243B2 (en) * | 2001-07-23 | 2010-08-04 | 本田技研工業株式会社 | Casting casting method |
CN1164780C (en) * | 2001-12-25 | 2004-09-01 | 中国科学院金属研究所 | Process for vacuum induction smelting of Ti-Al-Nb-B alloy |
RU2265672C2 (en) * | 2003-11-05 | 2005-12-10 | Мартемьянов Юрий Васильевич | Method of fire refining of metals in thermodynamically equilibrium system of drop-and-gas medium |
RU2247168C1 (en) * | 2003-11-26 | 2005-02-27 | Открытое акционерное общество "Композит" | Aluminum-based alloy |
DE102004022578A1 (en) * | 2004-05-07 | 2005-12-01 | Mtu Aero Engines Gmbh | Titanium-aluminum alloy |
RU2485194C1 (en) * | 2012-02-13 | 2013-06-20 | Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) | Method for obtaining titanium-aluminium alloy from oxide titanium-containing material |
WO2016035824A1 (en) * | 2014-09-04 | 2016-03-10 | 株式会社神戸製鋼所 | METHOD FOR DEOXIDIZING Ti-Al ALLOY |
-
2015
- 2015-08-12 JP JP2015159315A patent/JP6556554B2/en active Active
- 2015-11-04 RU RU2017115476A patent/RU2665654C1/en active
- 2015-11-04 CN CN201580058014.1A patent/CN107148484B/en active Active
- 2015-11-04 EP EP15856211.6A patent/EP3216882B1/en active Active
- 2015-11-04 AU AU2015344310A patent/AU2015344310B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3216882A1 (en) | 2017-09-13 |
CN107148484A (en) | 2017-09-08 |
JP2016183403A (en) | 2016-10-20 |
AU2015344310B2 (en) | 2018-12-20 |
AU2015344310A1 (en) | 2017-05-18 |
RU2665654C1 (en) | 2018-09-03 |
EP3216882B1 (en) | 2019-05-08 |
EP3216882A4 (en) | 2018-04-11 |
CN107148484B (en) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8496046B2 (en) | Method for producing alloy ingot | |
JP2020117806A (en) | Copper alloy sputtering target | |
JP6392179B2 (en) | Method for deoxidizing Ti-Al alloy | |
JP2007154214A (en) | METHOD FOR REFINING ULTRAHIGH PURITY Fe-BASE, Ni-BASE AND Co-BASE ALLOY MATERIALS | |
WO2016035824A1 (en) | METHOD FOR DEOXIDIZING Ti-Al ALLOY | |
EP3586998B1 (en) | Method for producing ti-al alloy | |
JP6794598B2 (en) | Manufacturing method of Ti—Al alloy | |
TW201629240A (en) | Corrosion resistant high-nickel alloy and its manufacturing method | |
WO2018155658A1 (en) | Method for producing ti-al alloy | |
JP6513530B2 (en) | Deoxidation method of Ti-Si alloy | |
JP6556554B2 (en) | Method for deoxidizing Al-Nb-Ti alloy | |
WO2016072434A1 (en) | METHOD FOR DEOXIDIZING Al-Nb-Ti ALLOY | |
JP5831199B2 (en) | Manufacturing method of high purity steel | |
JP7412197B2 (en) | Method for manufacturing Ti-Al alloy | |
JP6756078B2 (en) | Manufacturing method of Ti—Al alloy | |
JP6451363B2 (en) | Desulfurization method for molten steel | |
JP2017043817A (en) | METHOD FOR PRODUCING Ti-CONTAINING MARAGING STEEL AND METHOD FOR PRODUCING THE PREFORM THEREOF | |
JPS59153824A (en) | Manufacture of maraging steel | |
JP2018135583A (en) | METHOD OF CONCENTRATING Nb OF Nb-CONTAINING Ti-Al ALLOY | |
JP2018135581A (en) | Ti CONCENTRATION METHOD OF Ti-Al ALLOY SCRAP | |
JP2018135582A (en) | DEOXIDIZATION METHOD OF Ti-Al MULTICOMPONENT ALLOY | |
KR20150146087A (en) | Addition of B2O3 for removal of iron and silicon in molten mgnesium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20160713 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190319 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190709 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190710 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6556554 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |