JP6982272B2 - Heat pump type hot water supply device - Google Patents

Heat pump type hot water supply device Download PDF

Info

Publication number
JP6982272B2
JP6982272B2 JP2017031700A JP2017031700A JP6982272B2 JP 6982272 B2 JP6982272 B2 JP 6982272B2 JP 2017031700 A JP2017031700 A JP 2017031700A JP 2017031700 A JP2017031700 A JP 2017031700A JP 6982272 B2 JP6982272 B2 JP 6982272B2
Authority
JP
Japan
Prior art keywords
outside air
air temperature
compressor
hot water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017031700A
Other languages
Japanese (ja)
Other versions
JP2018136098A (en
Inventor
将典 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2017031700A priority Critical patent/JP6982272B2/en
Publication of JP2018136098A publication Critical patent/JP2018136098A/en
Application granted granted Critical
Publication of JP6982272B2 publication Critical patent/JP6982272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ式給湯装置に関し、さらに詳しく言えば、沸き上げ運転時における圧縮機の低差圧運転(低圧縮比での運転)を回避する技術に関するものである。 The present invention relates to a heat pump type hot water supply device, and more specifically, to a technique for avoiding low differential pressure operation (operation at a low compression ratio) of a compressor during boiling operation.

ヒートポンプ式給湯装置は、基本的な構成として、圧縮機、利用側熱交換部、膨張弁および熱源側熱交換器を冷媒配管を介して順次接続してなる冷媒回路と、貯湯タンクとを備え、利用側熱交換部は、例えば貯湯タンクの外周に冷媒配管を巻き付けた構成とし、利用側熱交換器が凝縮器として作用するように冷媒回路を切り換えて、貯湯タンク内の水と冷媒との熱交換により貯湯タンク内の水を加熱するようにしている。 The heat pump type hot water supply device is provided with a refrigerant circuit in which a compressor, a heat exchanger on the user side, an expansion valve and a heat exchanger on the heat source side are sequentially connected via a refrigerant pipe, and a hot water storage tank as a basic configuration. For example, the heat exchanger on the user side has a configuration in which a refrigerant pipe is wound around the outer periphery of the hot water storage tank, and the heat exchanger on the user side is switched so that the heat exchanger acts as a condenser to heat the water in the hot water storage tank and the refrigerant. The water in the hot water storage tank is heated by replacement.

このようなヒートポンプ式給湯装置では、貯湯タンク内の水温が最終的に到達させたい温水温度(目標水温)となるような沸き上げ運転が行われる。沸き上げ運転では、圧縮機から吐出された高温高圧の冷媒が利用側熱交換器に流入し貯湯タンク内の水と熱交換して凝縮する。凝縮した冷媒は膨張弁で減圧され熱源側熱交換器で外気との熱交換により蒸発し低圧のガス冷媒となって圧縮機に戻る。 In such a heat pump type hot water supply device, a boiling operation is performed so that the water temperature in the hot water storage tank finally reaches the hot water temperature (target water temperature) to be reached. In the boiling operation, the high-temperature and high-pressure refrigerant discharged from the compressor flows into the heat exchanger on the user side, exchanges heat with the water in the hot water storage tank, and condenses. The condensed refrigerant is decompressed by the expansion valve, evaporates by heat exchange with the outside air in the heat source side heat exchanger, becomes a low-pressure gas refrigerant, and returns to the compressor.

特開2007−113836号公報Japanese Unexamined Patent Publication No. 2007-1183836

ところで、外気温度が高いとき(例えば、30℃以上)には、熱源側熱交換器での蒸発能力が高くなり、冷媒回路の低圧側で蒸発圧力が上昇する。これに対して、沸き上げ運転開始時には、貯湯タンク内の水温が低いため、冷媒回路の高圧側での凝縮圧力が低くなる。 By the way, when the outside air temperature is high (for example, 30 ° C. or higher), the evaporation capacity in the heat source side heat exchanger becomes high, and the evaporation pressure rises in the low pressure side of the refrigerant circuit. On the other hand, at the start of the boiling operation, the water temperature in the hot water storage tank is low, so that the condensation pressure on the high pressure side of the refrigerant circuit is low.

このような低圧側の圧力が高く、高圧側の圧力が低い場合、圧縮機の圧縮比が低くなって圧縮機の性能下限値を下回るおそれがある。しかしながら、圧縮比を確保するため、圧縮機の回転数をむやみに上げると、沸き上げ運転時の運転効率が悪くなる。 When the pressure on the low pressure side is high and the pressure on the high pressure side is low, the compression ratio of the compressor may be low and fall below the lower limit of the performance of the compressor. However, if the rotation speed of the compressor is unnecessarily increased in order to secure the compression ratio, the operation efficiency during the boiling operation deteriorates.

特に、沸き上げ運転の開始直後、すなわち、貯湯タンク内の水温が低くて目標水温との温度差が大きいときは、圧縮機の回転数を上げて貯湯タンクの熱交換部の温度を高くしても、貯湯タンク内部の水の熱容量が大きいことに起因して、熱交換部の温度に見合う貯湯タンク内の水の温度上昇が得られず、圧縮比のみが必要以上に大きくなって運転効率が悪化する。 In particular, immediately after the start of the boiling operation, that is, when the water temperature in the hot water storage tank is low and the temperature difference from the target water temperature is large, the number of revolutions of the compressor is increased to raise the temperature of the heat exchange part of the hot water storage tank. However, due to the large heat capacity of the water inside the hot water storage tank, the temperature of the water in the hot water storage tank that matches the temperature of the heat exchange unit cannot be obtained, and only the compression ratio becomes larger than necessary, resulting in higher operating efficiency. Getting worse.

そこで、本発明の課題は、ヒートポンプ式給湯装置において、沸き上げ運転時の運転効率を低下させることなく、圧縮機の圧縮比を性能下限以上とすることにある。 Therefore, an object of the present invention is to set the compression ratio of the compressor to be equal to or higher than the lower limit of performance in the heat pump type hot water supply device without lowering the operation efficiency during the boiling operation.

上記課題を解決するため、本発明は、圧縮機、流路切替手段、水と冷媒との熱交換を行う利用側熱交換部および熱源側熱交換器を冷媒配管を介して順次接続してなる冷媒回路と、外気温度を検出する外気温センサと、上記圧縮機の吐出側で冷媒の凝縮圧力を検出する圧力センサと、制御手段とを含み、上記制御手段にて上記外気温センサで検出される外気温度と上記圧力センサで検出される冷媒の凝縮圧力とに基づいて上記圧縮機の最低回転数が決定されるヒートポンプ式給湯装置において、
上記制御手段は、上記外気温度と上記凝縮圧力に応じて上記圧縮機の最低回転数が定められたテーブルを有し、上記テーブルには、上記外気温度が予め定められた少なくとも1つの所定温度Toより高い第1外気温度Ta時の最低回転数と、上記外気温度が上記所定温度Toより低い第2外気温度Tb時の最低回転数とがそれぞれ定められており、同じ値の上記凝縮圧力に対応する上記圧縮機の最低回転数は、上記第1外気温度Ta時の方が上記第2外気温度Tb時よりも高い回転数が定められていることを特徴としている。
In order to solve the above problems, the present invention sequentially connects a compressor, a flow path switching means, a user-side heat exchange unit for heat exchange between water and a refrigerant, and a heat source-side heat exchanger via a refrigerant pipe. It includes a refrigerant circuit, an outside temperature sensor that detects the outside air temperature, a pressure sensor that detects the condensation pressure of the refrigerant on the discharge side of the compressor, and a control means, and is detected by the outside temperature sensor by the control means. In a heat pump type hot water supply device in which the minimum rotation speed of the compressor is determined based on the outside air temperature and the condensation pressure of the refrigerant detected by the pressure sensor.
The control means has a table in which the minimum rotation speed of the compressor is determined according to the outside air temperature and the condensing pressure, and the table has at least one predetermined temperature To in which the outside air temperature is predetermined. The minimum rotation speed when the first outside air temperature Ta is higher and the minimum rotation speed when the second outside air temperature Tb is lower than the predetermined temperature To are defined, respectively, and correspond to the same value of the condensation pressure. The minimum rotation speed of the compressor is characterized in that the rotation speed at the time of the first outside air temperature Ta is higher than that at the time of the second outside air temperature Tb.

本発明において、上記最低回転数は、上記圧縮機の圧縮比が性能下限値を下回らない回転数である。 In the present invention, the minimum rotation speed is a rotation speed at which the compression ratio of the compressor does not fall below the lower limit of performance.

本発明によれば、所定の外気温度を境にして、外気温度が所定の外気温度より高い場合(第1外気温度Ta時)と低い場合(第2外気温度Tb時)とで、同じ凝縮圧力でありながら圧縮機の最低回転数が異なる値、具体的には、外気温度が所定の外気温度より高いときの方が外気温度が所定の外気温度より低いときよりも高く設定されている。外気温度が高いときは外気温度が低いときに比べて最低回転数を高くすることにより、圧縮比が性能下限値を下回ることが回避される。また、外気温度が低いときは、圧縮比が性能下限を下回るおそれが少ないことから、外気温度が高いときと比べて最低回転数を低くすることにより、沸き上げ運転時の運転効率を改善することができる。 According to the present invention, the same condensation pressure is used when the outside air temperature is higher than the predetermined outside air temperature (at the time of the first outside air temperature Ta) and when the outside air temperature is lower than the predetermined outside air temperature (at the time of the second outside air temperature Tb). However, the minimum rotation speed of the compressor is set to a different value, specifically, when the outside air temperature is higher than the predetermined outside air temperature, the outside air temperature is set higher than when the outside air temperature is lower than the predetermined outside air temperature. By increasing the minimum rotation speed when the outside air temperature is high as compared with when the outside air temperature is low, it is possible to prevent the compression ratio from falling below the lower limit of performance. In addition, when the outside air temperature is low, the compression ratio is unlikely to fall below the lower limit of performance. Therefore, by lowering the minimum rotation speed compared to when the outside air temperature is high, the operating efficiency during boiling operation should be improved. Can be done.

本発明によるヒートポンプ式給湯装置の構成を示す模式図。The schematic diagram which shows the structure of the heat pump type hot water supply apparatus by this invention. 制御手段が備えるテーブルを示す模式図。The schematic diagram which shows the table provided in the control means.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、給湯端末である貯湯タンクを有し、冷媒との熱交換により貯湯タンク内部に貯留された水を加熱するヒートポンプ式給湯装置を例に挙げて説明する。なお、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. As an embodiment, a heat pump type hot water supply device having a hot water storage tank which is a hot water supply terminal and heating water stored in the hot water storage tank by heat exchange with a refrigerant will be described as an example. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.

図1は、本発明によるヒートポンプ式給湯装置の構成を示している。このヒートポンプ式給湯装置100は、能力可変型の圧縮機1、流路切替手段である四方弁2、貯湯タンク70の外周に後述する冷媒配管11の一部を巻き付けて構成される利用側の熱交換部3、膨張弁4、熱源側熱交換器5,アキュムレータ6を順に冷媒配管11で接続した冷媒回路10を有しており、四方弁2を切り換えることによって冷媒の循環方向を切り換えることができるようになっている。 FIG. 1 shows the configuration of a heat pump type hot water supply device according to the present invention. This heat pump type hot water supply device 100 is configured by winding a part of a refrigerant pipe 11 described later around the outer periphery of a compressor 1 having a variable capacity, a four-way valve 2 which is a flow path switching means, and a hot water storage tank 70, and heat on the user side. It has a refrigerant circuit 10 in which a switching unit 3, an expansion valve 4, a heat source side heat exchanger 5, and an accumulator 6 are connected in order by a refrigerant pipe 11, and the circulation direction of the refrigerant can be switched by switching the four-way valve 2. It has become like.

この冷媒回路10において、圧縮機1の冷媒吐出口付近の冷媒配管11には、圧縮機1から吐出された冷媒の温度を検出するための吐出温度センサ51が備えられている。また、熱交換部3と膨張弁4との間の冷媒配管11には、熱交換部3が凝縮器として機能しているときに熱交換部3から流出する冷媒の温度を、あるいは、熱交換部3が蒸発器として機能しているときに熱交換部3に流入する冷媒の温度を、各々検出する冷媒温度センサ53が備えられている。 In the refrigerant circuit 10, the refrigerant pipe 11 near the refrigerant discharge port of the compressor 1 is provided with a discharge temperature sensor 51 for detecting the temperature of the refrigerant discharged from the compressor 1. Further, in the refrigerant pipe 11 between the heat exchange unit 3 and the expansion valve 4, the temperature of the refrigerant flowing out from the heat exchange unit 3 when the heat exchange unit 3 is functioning as a condenser, or heat exchange. A refrigerant temperature sensor 53 is provided to detect the temperature of the refrigerant flowing into the heat exchange unit 3 when the unit 3 functions as an evaporator.

また、膨張弁4と熱源側熱交換器5との間の冷媒配管11には、熱源側熱交換器5が蒸発器として機能しているときに熱源側熱交換器5に流入する冷媒の温度を、あるいは、熱源側熱交換器5が凝縮器として機能しているときに熱源側熱交換器5から流出する冷媒の温度を、各々検出する熱交温度検出手段である熱交温度センサ54が備えられている。 Further, in the refrigerant pipe 11 between the expansion valve 4 and the heat source side heat exchanger 5, the temperature of the refrigerant flowing into the heat source side heat exchanger 5 when the heat source side heat exchanger 5 is functioning as an evaporator Or, the heat exchange temperature sensor 54, which is a heat exchange temperature detecting means, detects the temperature of the refrigerant flowing out from the heat source side heat exchanger 5 when the heat source side heat exchanger 5 is functioning as a condenser. It is prepared.

さらには、圧縮機1の吐出側(四方弁2と熱交換部3との間)の冷媒配管11には、沸き上げ運転時、つまり、熱交換部3が凝縮器として機能するときの熱交換部3における冷媒の凝縮圧力を検出する圧力センサ50が備えられている。また、熱源側熱交換器5の近傍には、外気温度検出手段である外気温度センサ52が設けられている。 Further, the refrigerant pipe 11 on the discharge side of the compressor 1 (between the four-way valve 2 and the heat exchange unit 3) exchanges heat during the boiling operation, that is, when the heat exchange unit 3 functions as a condenser. A pressure sensor 50 for detecting the condensation pressure of the refrigerant in the unit 3 is provided. Further, an outside air temperature sensor 52, which is an outside air temperature detecting means, is provided in the vicinity of the heat source side heat exchanger 5.

熱源側熱交換器5の近傍には、ヒートポンプ式給湯装置100の図示しない筐体内部に外気を取り込んで熱源側熱交換器5に外気を流通させるファン7が配置されている。ファン7は、回転数を可変できる図示しないモータの出力軸(回転軸)に取り付けられている。また、膨張弁4は、ステッピングモータを用いて弁の開度をパルス制御可能としたものである。 In the vicinity of the heat source side heat exchanger 5, a fan 7 that takes in outside air into a housing (not shown) of the heat pump type hot water supply device 100 and circulates the outside air to the heat source side heat exchanger 5 is arranged. The fan 7 is attached to an output shaft (rotational shaft) of a motor (not shown) whose rotation speed can be varied. Further, the expansion valve 4 is capable of pulse control of the valve opening degree by using a stepping motor.

熱交換部3は、冷媒配管11の一部に含まれている。本実施形態において、熱交換部3は貯湯タンク70の外周面の下部側に螺旋状に冷媒配管11の一部を巻き付けて構成され、貯湯タンク70内の水との間で熱交換を行う。なお、熱交換部3は、貯湯タンク70内に配置されてもよい。また、図示しないが、熱交換部3は、冷媒側流路と水側流路を有する二重管熱交換器のように、貯湯タンク70内の水を熱交換部3に流入させて冷媒と熱交換させるものであってもよい。 The heat exchange unit 3 is included in a part of the refrigerant pipe 11. In the present embodiment, the heat exchange unit 3 is configured by spirally winding a part of the refrigerant pipe 11 around the lower side of the outer peripheral surface of the hot water storage tank 70, and exchanges heat with the water in the hot water storage tank 70. The heat exchange unit 3 may be arranged in the hot water storage tank 70. Further, although not shown, the heat exchange unit 3 causes the water in the hot water storage tank 70 to flow into the heat exchange unit 3 and becomes a refrigerant, like a double tube heat exchanger having a refrigerant side flow path and a water side flow path. It may be one that exchanges heat.

貯湯タンク70の上部には、貯湯タンク70の内部に貯留されている温水を浴槽や洗面台蛇口等に供給するための給湯口73が備えられている。また、貯湯タンク70の下部には、貯湯タンク70の内部に水を供給するための入水口72が備えられており、入水口72には図示しない水道管が接続されている。 The upper part of the hot water storage tank 70 is provided with a hot water supply port 73 for supplying hot water stored inside the hot water storage tank 70 to a bathtub, a washbasin faucet, or the like. Further, a water inlet 72 for supplying water to the inside of the hot water storage tank 70 is provided in the lower portion of the hot water storage tank 70, and a water pipe (not shown) is connected to the water inlet 72.

また、貯湯タンク70の内部の上下方向のほぼ中央部には、貯湯タンク70内に滞留する温水の温度を検出する水温センサ58が備えられている。 Further, a water temperature sensor 58 for detecting the temperature of hot water staying in the hot water storage tank 70 is provided in a substantially central portion of the inside of the hot water storage tank 70 in the vertical direction.

以上説明した構成のほかに、ヒートポンプ式給湯装置100は、制御手段60を有している。制御手段60は、各温度センサ51,52,53,54,58で検出した温度や圧力センサ50で検出した沸き上げ運転時の冷媒の凝縮圧力を取り込み、あるいは、図示しないリモコン等による使用者からの運転要求を取り込み、これらに応じて圧縮機1やファン7の駆動制御、四方弁2の切り換え制御、膨張弁4の開度制御等といった、ヒートポンプ式給湯装置100の運転に関わる様々な制御を行う。 In addition to the configuration described above, the heat pump type hot water supply device 100 has a control means 60. The control means 60 takes in the temperature detected by the temperature sensors 51, 52, 53, 54, 58 and the condensing pressure of the refrigerant during the boiling operation detected by the pressure sensor 50, or from a user using a remote control (not shown) or the like. Various controls related to the operation of the heat pump type hot water supply device 100, such as drive control of the compressor 1 and fan 7, switching control of the four-way valve 2, opening control of the expansion valve 4, etc. conduct.

なお、図示は省略するが、制御手段60は、時間を計測するタイマー部や、各種センサで検出した値やヒートポンプ式給湯装置100の制御プログラム等を記憶する記憶部を有している。 Although not shown, the control means 60 has a timer unit for measuring time, a storage unit for storing values detected by various sensors, a control program of the heat pump type hot water supply device 100, and the like.

次に、本実施形態のヒートポンプ式給湯装置100が備える冷媒回路10における冷媒の流れや各部の動作について説明する。 Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 included in the heat pump type hot water supply device 100 of the present embodiment will be described.

本実施形態のヒートポンプ式給湯装置100は、冷媒回路10を暖房サイクルとして貯湯タンク70に貯留されている水を沸き上げる沸き上げ運転と、沸き上げ運転を行っているときに冷媒回路10を冷房サイクルとして熱源側熱交換器5の除霜を行う逆サイクル除霜運転を行うことができる。 The heat pump type hot water supply device 100 of the present embodiment uses the refrigerant circuit 10 as a heating cycle to boil water stored in the hot water storage tank 70, and a cooling cycle for the refrigerant circuit 10 during the boiling operation. The reverse cycle defrosting operation for defrosting the heat source side heat exchanger 5 can be performed.

沸き上げ運転時には、冷媒が図1の実線矢印80方向に流れるのに対し、逆サイクル除霜運転には、四方弁2が切り換えられて冷媒が図1の破線矢印81方向に流れるが、本発明において、逆サイクル除霜運転には特に特徴を有していないため、その詳細な説明は省略し、以下に沸き上げ運転時のヒートポンプ式給湯装置100の動作について説明する。 During the boiling operation, the refrigerant flows in the direction of the solid arrow 80 in FIG. 1, whereas in the reverse cycle defrosting operation, the four-way valve 2 is switched and the refrigerant flows in the direction of the broken arrow 81 in FIG. Since the reverse cycle defrosting operation is not particularly characterized in the above, the detailed description thereof will be omitted, and the operation of the heat pump type hot water supply device 100 during the boiling operation will be described below.

〈沸き上げ運転〉
使用者が図示しないリモコン等を操作して沸き上げ運転の開始を指示すると、制御手段60は、冷媒回路10が暖房サイクルとなるように四方弁2を切り換える。具体的には、制御手段60は、圧縮機1の吐出側と熱交換部3とが接続されるよう、また、圧縮機1の吸入側と熱源側熱交換器5とが接続されるよう、四方弁2を切り換える。これにより、熱交換部3が凝縮器として機能し、また、熱源側熱交換器5が蒸発器として機能する。
<Boiling operation>
When the user operates a remote controller or the like (not shown) to instruct the start of the boiling operation, the control means 60 switches the four-way valve 2 so that the refrigerant circuit 10 becomes a heating cycle. Specifically, the control means 60 is such that the discharge side of the compressor 1 and the heat exchange unit 3 are connected, and the suction side of the compressor 1 and the heat source side heat exchanger 5 are connected. Switch the four-way valve 2. As a result, the heat exchange unit 3 functions as a condenser, and the heat source side heat exchanger 5 functions as an evaporator.

次に、制御手段60は、圧縮機1およびファン7を起動してヒートポンプ式給湯装置100の沸き上げ運転を開始する。制御手段60は、水温センサ58で検出される貯湯タンク70内の現在の水温と沸き上げ目標温度の温度差に応じて、記憶部に記憶されている温度差と圧縮機1の回転数とを関係付けた図示しないテーブルを参照して圧縮機1の回転数を決定し、この回転数で圧縮機1を駆動する。 Next, the control means 60 starts the compressor 1 and the fan 7 to start the boiling operation of the heat pump type hot water supply device 100. The control means 60 determines the temperature difference stored in the storage unit and the number of revolutions of the compressor 1 according to the temperature difference between the current water temperature in the hot water storage tank 70 and the boiling target temperature detected by the water temperature sensor 58. The number of revolutions of the compressor 1 is determined with reference to the associated table (not shown), and the compressor 1 is driven by this number of revolutions.

圧縮機1が駆動すると、図1の実線矢印80に示すように、圧縮機1から吐出された高温高圧の冷媒は四方弁2を通過し、熱交換部3で水と熱交換して凝縮し、さらに膨張弁4で減圧されて熱源側熱交換器5で外気と熱交換して蒸発し、アキュムレータ6で気液分離された後、圧縮機1に吸入されて再び圧縮機1で圧縮される過程を繰り返す。 When the compressor 1 is driven, as shown by the solid line arrow 80 in FIG. 1, the high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the four-way valve 2 and exchanges heat with water in the heat exchange unit 3 to condense. Further, the pressure is reduced by the expansion valve 4, heat is exchanged with the outside air by the heat source side heat exchanger 5, the air is evaporated, the gas and liquid are separated by the accumulator 6, and then sucked into the compressor 1 and compressed again by the compressor 1. Repeat the process.

このようにして、貯湯タンク70内の水が熱交換部3を流れる高温高圧の冷媒により加熱され、貯湯タンク70内の水温が沸き上げ目標温度に到達すると、制御手段60は圧縮機1およびファン7の運転を停止する。 In this way, the water in the hot water storage tank 70 is heated by the high-temperature and high-pressure refrigerant flowing through the heat exchange unit 3, and when the water temperature in the hot water storage tank 70 boils up and reaches the target temperature, the control means 60 uses the compressor 1 and the fan. Stop the operation of 7.

なお、制御手段60は、水温センサ58で検出した貯湯タンク70内の水温を常時監視しており、その水温が沸き上げ目標温度から予め設定された所定温度(例えば、5℃)低下すると、沸き上げ運転を再開する。 The control means 60 constantly monitors the water temperature in the hot water storage tank 70 detected by the water temperature sensor 58, and when the water temperature drops from the boiling target temperature to a preset predetermined temperature (for example, 5 ° C.), it boils. Restart the raising operation.

ところで、先にも説明したように、外気温度が高いときには、熱源側熱交換器5での蒸発能力が高くなり、冷媒回路10の低圧側で蒸発圧力が上昇する。これに対して、沸き上げ運転開始時には、貯湯タンク70内の水温が低いため、冷媒回路10の凝縮圧力が低くなる。 By the way, as described above, when the outside air temperature is high, the evaporation capacity of the heat source side heat exchanger 5 is high, and the evaporation pressure is high on the low pressure side of the refrigerant circuit 10. On the other hand, at the start of the boiling operation, the water temperature in the hot water storage tank 70 is low, so that the condensation pressure of the refrigerant circuit 10 is low.

このような低圧側の圧力が高く、高圧側の圧力が低い場合、圧縮機1の圧縮比が低くなって圧縮機1の性能下限値を下回るおそれがある。なお、圧縮比の性能下限値は例えば1.2である。しかしながら、圧縮比を確保するため、圧縮機1の回転数をむやみに上げると、沸き上げ運転時の運転効率が悪くなる。 When the pressure on the low pressure side is high and the pressure on the high pressure side is low, the compression ratio of the compressor 1 may be low and fall below the lower limit of the performance of the compressor 1. The lower limit of the compression ratio is, for example, 1.2. However, if the rotation speed of the compressor 1 is unnecessarily increased in order to secure the compression ratio, the operation efficiency during the boiling operation deteriorates.

特に、沸き上げ運転の開始直後、すなわち、貯湯タンク内の水温が低くて目標水温との温度差が大きいときは、圧縮機1の回転数を上げて貯湯タンクの熱交換部3の温度を高くしても、貯湯タンク内部の水の熱容量が大きいことに起因して、熱交換部の温度に見合う貯湯タンク内の水の温度上昇が得られず、圧縮比のみが必要以上に大きくなって運転効率が悪化する。 In particular, immediately after the start of the boiling operation, that is, when the water temperature in the hot water storage tank is low and the temperature difference from the target water temperature is large, the rotation speed of the compressor 1 is increased to raise the temperature of the heat exchange unit 3 of the hot water storage tank. However, due to the large heat capacity of the water inside the hot water storage tank, the temperature of the water in the hot water storage tank that matches the temperature of the heat exchange unit cannot be obtained, and only the compression ratio becomes larger than necessary for operation. Efficiency deteriorates.

そこで、このヒートポンプ式給湯装置100において、制御手段60は、外気温度センサ52で検出される外気温度と、圧力センサ50で検出される冷媒の凝縮圧力とに基づいて圧縮機1の最低回転数を求めるテーブル(以下、テーブルTと記載する)を備えている。図2に、テーブルTの一例を模式的に示す。 Therefore, in the heat pump type hot water supply device 100, the control means 60 determines the minimum rotation speed of the compressor 1 based on the outside air temperature detected by the outside air temperature sensor 52 and the condensation pressure of the refrigerant detected by the pressure sensor 50. It is provided with a desired table (hereinafter referred to as table T). FIG. 2 schematically shows an example of the table T.

この例において、テーブルTには、所定の外気温度To(30℃)を境にして、外気温度30℃以上の高い温度側の第1外気温度Ta時と、外気温度30℃未満の低い温度側の第2外気温度Tb時とが設定されている。 In this example, on the table T, the first outside air temperature Ta on the high temperature side of the outside air temperature of 30 ° C. or higher and the low temperature side of the outside air temperature of less than 30 ° C. are set on the table T. The second outside air temperature of Tb is set.

この高い温度側の第1外気温度Ta時と低い温度側の第2外気温度Tb時の各々に、凝縮圧力に応じて選択される圧縮機1の最低回転数が設定されている。ここで、各外気温度Ta時,Tb時ともに、圧力上昇時の閾値を2.5、3.2としているのに対して、圧力下降時の閾値を2.3、3.0としているのは、圧縮機1の回転数制御のチャタリングを防止するためである。 The minimum rotation speed of the compressor 1 selected according to the condensation pressure is set for each of the first outside air temperature Ta on the high temperature side and the second outside air temperature Tb on the low temperature side. Here, the threshold value at the time of pressure increase is 2.5 and 3.2, while the threshold value at the time of pressure decrease is 2.3 and 3.0 at each outside air temperature Ta and Tb. This is to prevent chattering of the rotation speed control of the compressor 1.

圧力センサ50で検出される凝縮圧力をCpとして、制御手段60は、外気温度センサ52で検出される外気温度が30℃以上である場合には、テーブルTにおける第1外気温度Ta時を参照し、圧力上昇時で、圧力センサ50で検出される凝縮圧力Cpが2.5MPa未満(Cp<2.5)であれば最低回転数35rpsを選択、凝縮圧力Cpが2.5MPa以上3.2MPa未満(2.5≦Cp<3.2)であれば最低回転数30rpsを選択、凝縮圧力Cpが3.2MPa以上(3.2≦Cp)であれば最低回転数25rpsを選択し、これら最低回転数以上の回転数で圧縮機1を駆動する。 With the condensed pressure detected by the pressure sensor 50 as Cp, the control means 60 refers to the first outside air temperature Ta on the table T when the outside air temperature detected by the outside air temperature sensor 52 is 30 ° C. or higher. If the condensed pressure Cp detected by the pressure sensor 50 is less than 2.5 MPa (Cp <2.5) when the pressure rises, select the minimum rotation speed of 35 rps, and the condensed pressure Cp is 2.5 MPa or more and less than 3.2 MPa. If (2.5 ≦ Cp <3.2), select the minimum rotation speed of 30 rps, and if the condensation pressure Cp is 3.2 MPa or more (3.2 ≦ Cp), select the minimum rotation speed of 25 rps, and select these minimum rotation speeds. The compressor 1 is driven at a rotation speed of several or more.

制御手段60は、外気温度センサ52で検出される外気温度が30℃以上である場合には、テーブルTにおける第1外気温度Ta時を参照し、圧力下降時で、圧力センサ50で検出される凝縮圧力Cpが2.3MPa未満(Cp<2.3)であれば最低回転数35rpsを選択、凝縮圧力Cpが2.3MPa以上3.0MPa未満(2.3≦Cp<3.0)であれば最低回転数30rpsを選択、凝縮圧力Cpが3.0MPa以上(3.0≦Cp)であれば最低回転数25rpsを選択し、これら最低回転数以上の回転数で圧縮機1を駆動する。 When the outside air temperature detected by the outside air temperature sensor 52 is 30 ° C. or higher, the control means 60 refers to the first outside air temperature Ta on the table T, and is detected by the pressure sensor 50 when the pressure drops. If the condensation pressure Cp is less than 2.3 MPa (Cp <2.3), select the minimum rotation speed of 35 rps, and if the condensation pressure Cp is 2.3 MPa or more and less than 3.0 MPa (2.3 ≤ Cp <3.0). For example, the minimum rotation speed of 30 rps is selected, and if the condensation pressure Cp is 3.0 MPa or more (3.0 ≦ Cp), the minimum rotation speed of 25 rps is selected, and the compressor 1 is driven at these minimum rotation speeds or more.

制御手段60は、外気温度センサ52で検出される外気温度が30℃未満である場合には、テーブルTにおける第2外気温度Tb時を参照し、圧力上昇時で、圧力センサ50で検出される凝縮圧力Cpが2.5MPa未満(Cp<2.5)であれば最低回転数30rpsを選択、凝縮圧力Cpが2.5MPa以上3.2MPa未満(2.5≦Cp<3.2)であれば最低回転数25rpsを選択、凝縮圧力Cpが3.2MPa以上(3.2≦Cp)であれば最低回転数20rpsを選択し、これら最低回転数以上の回転数で圧縮機1を駆動する。 When the outside air temperature detected by the outside air temperature sensor 52 is less than 30 ° C., the control means 60 refers to the second outside air temperature Tb in the table T, and is detected by the pressure sensor 50 when the pressure rises. If the condensation pressure Cp is less than 2.5 MPa (Cp <2.5), select the minimum rotation speed of 30 rps, and if the condensation pressure Cp is 2.5 MPa or more and less than 3.2 MPa (2.5 ≦ Cp <3.2). For example, the minimum rotation speed of 25 rps is selected, and if the condensation pressure Cp is 3.2 MPa or more (3.2 ≦ Cp), the minimum rotation speed of 20 rps is selected, and the compressor 1 is driven at these minimum rotation speeds or higher.

また、制御手段60は、外気温度センサ52で検出される外気温度が30℃未満である場合には、テーブルTにおける第2外気温度Tb時を参照し、圧力下降時で、圧力センサ50で検出される凝縮圧力Cpが2.3MPa未満(Cp<2.3)であれば最低回転数30rpsを選択、凝縮圧力Cpが2.3MPa以上3.0MPa未満(2.3≦Cp<3.0)であれば最低回転数25rpsを選択、凝縮圧力Cpが3.0MPa以上(3.0≦Cp)であれば最低回転数20rpsを選択し、これら最低回転数以上の回転数で圧縮機1を駆動する。 Further, when the outside air temperature detected by the outside air temperature sensor 52 is less than 30 ° C., the control means 60 refers to the time of the second outside air temperature Tb in the table T, and detects it by the pressure sensor 50 when the pressure drops. If the condensed pressure Cp to be formed is less than 2.3 MPa (Cp <2.3), select the minimum rotation speed of 30 rps, and if the condensed pressure Cp is 2.3 MPa or more and less than 3.0 MPa (2.3 ≦ Cp <3.0). If, select the minimum rotation speed of 25 rps, select the minimum rotation speed of 20 rps if the condensation pressure Cp is 3.0 MPa or more (3.0 ≦ Cp), and drive the compressor 1 at these minimum rotation speeds or higher. do.

このように、圧力上昇時と圧力下降時のいずれの場合においても、同じ値の凝縮圧力に対する圧縮機の最低回転数は、高い温度側の第1外気温度時Taの方が低い温度側の第2外気温度時Tbよりも本実施形態では5rpsだけ高く設定されている。 In this way, the minimum rotation speed of the compressor for the same value of condensation pressure is the first on the high temperature side, Ta on the lower temperature side, regardless of whether the pressure rises or falls. 2 In this embodiment, the temperature is set higher than Tb at the outside air temperature by 5 rps.

上記のように、図2のテーブルTを参照して圧縮機1の最低回転数を決定する、すなわち、外気温度が高い(30℃以上)ときは、外気温度が低い(30℃未満)ときと比べて最低回転数を高くすることで、外気温度が高くて圧縮比の性能下限を下回る可能性が高いときに、圧縮比が性能下限を下回ることを回避できる。 As described above, the minimum rotation speed of the compressor 1 is determined with reference to the table T in FIG. 2, that is, when the outside air temperature is high (30 ° C. or higher), when the outside air temperature is low (less than 30 ° C.). By increasing the minimum rotation speed as compared with the case, it is possible to prevent the compression ratio from falling below the lower limit of the performance when the outside air temperature is high and the possibility of falling below the lower limit of the performance of the compression ratio is high.

一方、外気温度が低い(30℃未満)のときは、圧縮比が性能下限を下回るおそれが少ないことから、外気温度が高い(30℃以上)ときと比べて最低回転数を低くすることで、沸き上げ運転時の運転効率を改善することができる。 On the other hand, when the outside air temperature is low (less than 30 ° C), the compression ratio is less likely to fall below the lower limit of performance, so by lowering the minimum rotation speed compared to when the outside air temperature is high (30 ° C or higher), It is possible to improve the operation efficiency during boiling operation.

上記実施形態では、テーブルTに2つの外気温度時Ta,Tbを含ませているが、外気温を例えば2つの外気温30℃,25℃を境として3つの外気温度時(30℃以上の場合、25℃以上30℃未満の場合、25℃未満の場合)に分けることもできる。 In the above embodiment, the table T includes two outside air temperatures Ta and Tb, but the outside air temperature is, for example, two outside air temperatures of 30 ° C. and 25 ° C., and three outside air temperatures (30 ° C. or higher). , 25 ° C or higher and lower than 30 ° C, and lower than 25 ° C).

その場合、同じ値の凝縮圧力に対する圧縮機の最低回転数は、高い温度側の外気温度時の方が低い温度側の外気温度時よりも高いという条件のもとで、回転数差をどのような値にするかは任意に決められてよい。 In that case, under the condition that the minimum rotation speed of the compressor for the same value of condensation pressure is higher at the outside air temperature on the high temperature side than at the outside air temperature on the lower temperature side, how is the rotation speed difference? It may be arbitrarily decided whether or not the value should be set.

100 ヒートポンプ式給湯装置
1 圧縮機
2 四方弁
3 熱交換部(利用側熱交換器)
4 膨張弁
5 熱源側熱交換器
6 キュムレータ
7 ファン
10 冷媒回路
11 冷媒配管
51 吐出温度センサ
52 外気温度センサ
53 冷媒温度センサ
58 水温センサ
60 制御手段
70 貯湯タンク
100 Heat pump type hot water supply device 1 Compressor 2 Four-way valve 3 Heat exchanger (heat exchanger on the user side)
4 Expansion valve 5 Heat source side heat exchanger 6 Cumulator 7 Fan 10 Refrigerant circuit 11 Refrigerant piping 51 Discharge temperature sensor 52 Outside air temperature sensor 53 Refrigerant temperature sensor 58 Water temperature sensor 60 Control means 70 Hot water storage tank

Claims (2)

圧縮機、流路切替手段、水と冷媒との熱交換を行う利用側熱交換部および熱源側熱交換器を冷媒配管を介して順次接続してなる冷媒回路と、外気温度を検出する外気温センサと、上記圧縮機の吐出側で冷媒の凝縮圧力を検出する圧力センサと、制御手段とを含み、上記制御手段にて上記外気温センサで検出される外気温度と上記圧力センサで検出される冷媒の凝縮圧力とに基づいて上記圧縮機の最低回転数が決定されるヒートポンプ式給湯装置において、
上記制御手段は、上記外気温度と上記凝縮圧力に応じて上記圧縮機の最低回転数が定められたテーブルを有し、上記テーブルには、上記外気温度が予め定められた少なくとも1つの所定温度Toより高い第1外気温度Ta時の最低回転数と、上記外気温度が上記所定温度Toより低い第2外気温度Tb時の最低回転数とがそれぞれ定められており、同じ値の上記凝縮圧力に対応する上記圧縮機の最低回転数は、上記第1外気温度Ta時の方が上記第2外気温度Tb時よりも高い回転数が定められていることを特徴とするヒートポンプ式給湯装置。
A compressor circuit that sequentially connects a compressor, a flow path switching means, a heat exchange section on the user side that exchanges heat between water and a refrigerant, and a heat exchanger on the heat source side via a refrigerant pipe, and an outside temperature that detects the outside air temperature. It includes a sensor, a pressure sensor that detects the condensed pressure of the refrigerant on the discharge side of the compressor, and a control means, and is detected by the outside air temperature detected by the outside temperature sensor and the pressure sensor by the control means. In a heat pump type hot water supply device in which the minimum number of revolutions of the compressor is determined based on the condensation pressure of the refrigerant.
The control means has a table in which the minimum rotation speed of the compressor is determined according to the outside air temperature and the condensation pressure, and the table has at least one predetermined temperature To in which the outside air temperature is predetermined. The minimum rotation speed when the first outside air temperature Ta is higher and the minimum rotation speed when the second outside air temperature Tb is lower than the predetermined temperature To are defined, respectively, and correspond to the same value of the condensation pressure. The heat pump type hot water supply device is characterized in that the minimum rotation speed of the compressor is determined to be higher at the first outside air temperature Ta than at the second outside air temperature Tb.
上記最低回転数は、上記圧縮機の圧縮比が性能下限値を下回らない回転数であることを特徴とする請求項1に記載のヒートポンプ式給湯装置。 The heat pump type hot water supply device according to claim 1, wherein the minimum rotation speed is a rotation speed at which the compression ratio of the compressor does not fall below the lower limit of performance.
JP2017031700A 2017-02-23 2017-02-23 Heat pump type hot water supply device Active JP6982272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017031700A JP6982272B2 (en) 2017-02-23 2017-02-23 Heat pump type hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017031700A JP6982272B2 (en) 2017-02-23 2017-02-23 Heat pump type hot water supply device

Publications (2)

Publication Number Publication Date
JP2018136098A JP2018136098A (en) 2018-08-30
JP6982272B2 true JP6982272B2 (en) 2021-12-17

Family

ID=63366702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017031700A Active JP6982272B2 (en) 2017-02-23 2017-02-23 Heat pump type hot water supply device

Country Status (1)

Country Link
JP (1) JP6982272B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147540A (en) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006342980A (en) * 2005-06-07 2006-12-21 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2012032091A (en) * 2010-07-30 2012-02-16 Fujitsu General Ltd Heat pump cycle system
JP6086074B2 (en) * 2014-01-29 2017-03-01 株式会社富士通ゼネラル Heat pump type hot water heater

Also Published As

Publication number Publication date
JP2018136098A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6919780B2 (en) Heat pump type hot water supply device
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
JP5223795B2 (en) Heat pump water heater
JP2011144960A (en) Air conditioner and method of defrosting operation of air conditioner
JP6405700B2 (en) Air conditioner
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
JP6749471B2 (en) Air conditioner
JP2011257098A (en) Heat pump cycle device
JP2012007851A (en) Heat pump cycle device
JP5194492B2 (en) Heat pump water heater
JP3668750B2 (en) Air conditioner
KR102500807B1 (en) Air conditioner and a method for controlling the same
JP2012007751A (en) Heat pump cycle device
JP6428221B2 (en) Air conditioner
JP6137016B2 (en) Heat pump water heater and control method of heat pump water heater
JP6086074B2 (en) Heat pump type hot water heater
JP6982272B2 (en) Heat pump type hot water supply device
JP2020122626A (en) Air conditioner
JP3703995B2 (en) Heat pump water heater
JP2018169105A (en) Air conditioning device
JP6102794B2 (en) Heat pump type hot water heater
JP6136158B2 (en) Heat pump cycle equipment
JP6805887B2 (en) Air conditioner
JP4334153B2 (en) Heat pump water heater
JP2016166700A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211102

R151 Written notification of patent or utility model registration

Ref document number: 6982272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151